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Motivation
» Implementation of LPC speech coder
« Division operation required in Levinson-Durbin algorithm
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Basic Division Algorithms

Digit Recurrence Algorithm
* Restoring Division
» Non-Restoring Division
» SRT Division (Sweeney, Robertson, and Tocher)

Multiplicative Algorithm

» Approximation Algorithms
CORDIC Algorithm

» Continued Product Algorithm

Useful site
http://www.ecs.umass.edu/ece/koren/arith/simulator

.
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Definitions and Notations
X = qd+ rem lrem <|d ulp
Divideng/ / \ . - A/ .
- Remainder unit in the last position
Quotient Divisor ulp=1 for integer quotient
ulp=r" for radix-r representation
with n-digit quotient
» Two types of division operations
* Integer division: with integer operands and result
 Fractional division: operands and results are fractions
» Any division algorithm can be carried out independent of
 Position of the decimal point
* sign of operands
.
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Restoring Division Algorithm

» Put x in register A, dinregister B, 0in register P, and
perform n divide steps ( n is the quotient wordlength)

» Each step consists of

« (i) Shift the register pair (P,A) one bit left

* (ii) Subtract the contents of B from P, put the result back in P

o (iii) If the result is -ve, set the low-order bit of A to O otherwise to O

 (iv) If the result is -ve, restore the old value of P by adding the
contents of B back in P

| ¢ v
P | A

shift

After n cycles, A will contain the
quotient, P will contain the remainder

B
.
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P A Operation
00000 1110 Divide 14 = 1110 by 3 = 11. B register always contains 0011
00001 110 step 1(i): shift
-00011 step 1(ii): subtract
-00010 1100 step 1(iii): quotient is -ve, set quotient bit to 0
00001 1100 step 1(iv): restore
00011 100 step 2(i): shift
-00011 step 2(ii): subtract
00000 1001 step 2(iii): quotient is +ve, set quotient bit to 1
00001 001 step 3(i): shift
-00011 step 3(ii): subtract
-00010 0010 step 3(iii): quotient is -ve, set quotient bit to 0
00001 0010 step 3(iv): restore
00010 010 step 4(i): shift
-00011 step 4(ii): subtract
-00001 0100 step 4(iii): quotient is -ve, set quotient bit to 0
00010 0100 step 4(iv): restore
e The quotient is 0100 and the remainder is 00010
» The name restoringbecause if subtraction by b yields a negative
result, the Pregister is restored by adding b back
.
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Non-Restoring Division Algorithm

A variant that skips the restoring step and instead works
with negative residuals
* If P is negative

* (i-a) Shift the register pair (P,A) one bit left
* (ii-a) Add the contents of register B to P

* If P is positive
* (i-b) Shift the register pair (P,A) one bit left
* (ii-b) Subtract the contents of register B from P
* (iil) If P is negative, set the low-order bit of A to O,
otherwise setitto 1
» After n cycles

* The quotientis in A
 If P is positive, it is the remainder, otherwise it has to be restored
(add B to it) to get the remainder

.
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Non-Restoring Division Example

\.

P A Operation
00000 1110 Divide 14 = 1110 by 3 = 11. B register always contains 0011
00001 110 step 1(i-b): shift
+00011 step 1(ii-b): subtract b (add two’s complement)
11110 1100 step 1(iii): P is negative, so set quotient bit to 0
11101 100 step 2(i-a): shift
+00011 step 2(ii-a): add b
00000 1001 step 2(iii): P is +ve, so set quotient bit to 1
00001 001 step 3(i-b): shift
+11101 step 3(ii-b): subtract b
11110 0010 step 3(iii): P is -ve, so set quotient bit to 0
11100 010 step 4(i-a): shift
+00011 step 4(ii-a): add b
11111 0100 step 4(iii): P is -ve, set quotient bit to 0
+00011 Remainder is negative, so do final restore step
00010

The quotient is 0100 and the remainder is 00010

restoring division seems to be more complicated since it involves
extra addition in step (iv)

This is not true since the sign resulting from the subtraction is
tested at adder o/p and only if the sum is +ve, it is loaded back to
the P register
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SRT Division Algorithm

* Pre-normalization of divisor (1/2 <d < 1) and dividend (x < d)

For an n-bit quotient, n iterations are needed
Each iteration involves 4 intermediate steps

Start by defining a residual (or partial remainder) w an
setting w[0]=x

stepl:0One digit left-shift of w[j] to produce rwlj]
step2:Determine the quotien{.q using quotient-digit
select function

i =SEL(w(j],d)

step3:Generation of d g
step4:Generation of w[j+1]=rw([j] - d gj,1
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Quotient-digit Select Function

The Quotient-digit set plays a crucial role in the
complexity of implementation

Restoring algorithm =>0 <q;<r-1
Non-Restoring algorithm =>q ; {-1,1}
SRT quotient-digit selection function

1 v 2<2w[ ]

0 —1/2<2w[j]<1/2
-1 2w[j]<-1/2

Gj+1 =

SRT division is very fast in the case of consecutive
zeroes in g (Wi+1]=rw[j]-d q j+1=rw[j])
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SRT Division Example

e Example d=0.1101, x=0.011000

Table 1: Example of radix-2 SRT Division

i 2w(j] qje1 QL] QMIj]

0 0.110000 1 0 0

1 1.111000 0 0.1 0.0

2 1.110000 0 0.10 0.01

3 1.100000 0 0.100 0.011

4 1.000000 -1 0.1000 0.0111

5 1.101000 0 0.01111 0.01110
6 1.010000 -1 0.011110 0.011101

* Quotient Conversion (on-the-fly conversion algorithm) with initial
conditions Q[0]=QMI[0]=0

(k+1) —(k+1)

QLK +ay , of U120 QIK + (g , 1~ 1)r U+1>0
Q[k+1] = k+1 k+1 QM[k+1] = k+1 k+1
M[K] + —k+1) <0 M[K] + ((r -1 ~(k+1) <0
QM[K] (r—‘qk,rl‘)r A +1 QM[K] +((r - )_‘qk+1‘)r de+1S
.
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( SRT Division Implementation
d Div. Step
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.
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