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1 » About openHMC

1.1 What is openHMC?

openHMC[1] is an open-source project developed by the Computer Architecture Group (CAG)

at the University of Heidelberg in Germany. It is a configurable, vendor-agnostic, AXI-4

compliant Hybrid Memory Cube (HMC) controller that can be parameterized to different

data-widths, external lane-width requirements, and clock speeds depending on speed and

area requirements. It further includes a test environment to evaluate the capabilities of the

openHMC controller. The main objective of this project is to lower the barrier for others to

experiment with the HMC, without the risks of using commercial solutions.

openHMC is licensed under the terms and conditions of version 3 of the Lesser General

Purpose License[2].

Contact: openhmc@ziti.uni-heidelberg.de

1.2 About The Hybrid Memory Cube

The HMC is memory that is built of stacked DRAM organized in independent sections, so

called vaults. Figure 1.1 shows an abstract view of the structure of an HMC. It integrates all

DRAM-related management circuits and therefore off-loads the user from DRAM timings.

A single HMC features up to 4 serial links each running with up to 16 lanes and 15 Gb/s

Partition

Partition

Partition

Logic

Vault

Partition

Figure 1.1: HMC: Abstract View
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per lane. Transactions are packetized instead of using dedicated data and address strobes.

More information on the HMC and its specification are available at the official Hybrid Memory

Cube Consortium (HMCC) website www.hybridmemorycube.org.

1.3 The openHMC Controller

The openHMC controller is presented as a high-level block diagram in Figure 1.2. The

transmit and receive FIFOs form an AXI4 streaming interface and allow the user to access

the controller from a different clock domain. On the transceiver side, a registered output

holds the data reordered on a lane-by-lane basis; allowing seamless integration with any

transceiver types. A register-file provides access to control and monitor the operation of the

controller.

A
X
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4
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iver

Register File

Sync / Async Receive FIFO

Sync / Async Transmit FIFO TX

RX

openHMC Controller

Figure 1.2: openHMC Host Controller Block Diagram

1.4 Features

The openHMC host controller implements the following features as described in the HMC

specification Rev 1.1 [3]:

• Full link-training, sleep mode and link retraining

• 16Byte up to 128Byte read and write (posted and non-posted) transactions

• Posted and non-posted bit-write and atomic requests

• Mode read and write

• Error response

• Full packet flow control

• Packet integrity checks (sequence number, packet length, CRC)

• Full automatic error handling and link retry

openHMC documentation Rev. 1.5 p.4



1.4.1 Supported Configurations

Currently the following configurations for the AXI-4 interface are supported:

• 2 FLITs per Word / 256-bit datapath

• 4 FLITs per Word / 512-bit datapath

• 6 FLITs per Word / 768-bit datapath

• 8 FLITs per Word / 1024-bit datapath

Any configuration can be applied to any HMC link width and speed. Other configurations

may require specific CRC implementations and/or initialization schemes. For a more detailed

overview of commonly used configurations see Chapter 4.

openHMC documentation Rev. 1.5 p.5



2 » Module Description

This chapter describes the Verilog modules of the openHMC package. The verification

environment is introduced separately in Chapter 6.

2.1 Top Module (openhmc_top.v)

The openHMC top module instantiates and connects all logical sub-modules and does not

contain any logic itself. It provides the AXI-4 , Transceiver and Register File interfaces.

Figure 2.1 shows a more detailed view of the opeHMC controller top level including the two

possible clock domains and main interface signals. For a full interface specification refer

to Chapter 3. The host controller is also referred to as ’Requester’ and the data flow from

host to HMC is called downstream traffic, or transmit direction (TX). The requester issues

request packets and receives responses. On the other hand, the HMC is the ’Responder’

and any traffic flowing in host direction is called upstream traffic, or receive direction (RX).

The responder receives and processes requests, and returns responses if desired by the

request type. In the following, all sub-modules are described in the order they are logically

passed by a request/response transaction.

2.2 Transmit and Receive FIFOs

The transmit and receive FIFOs connect the user logic in the clk_user clock domain to the

openHMC controller in the clk_hmc clock domain. Both FIFOs appear as an AXI-4 Stream

Protocol Interface to the user. The full interface specification can be found in Chapter 3. The

FIFOs can be either configured as synchronous or asynchronous and an additional define

XILINX will instantiate Xilinx FPGA specific SRL FIFOs instead of register-based ones.

2.3 TX Link (tx_link.v)

The TX Link has two main interfaces, that is the input FIFO interface to receive HMC packets

and the output register stage which provides scrambled and lane-by-lane re-ordered data

FLITs to connect the transceivers. The user must generate HMC packets within the user

logic, including the 64bit header. Also, the user is responsible for operational closure using

TAGs, if desired. Note that an unsupported command or a dln/lng mismatch may produce
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Figure 2.1: Detailed view of the openHMC Controller Top Module

undefined behavior in the current implementation. The 64bit tail must be set all to zero

since it will be filled in the TX Link. Internally, the openHMC controller uses register stages

to encapsulate logically-independent units, and to avoid critical paths due to excessive

use of combinational logic. The main control function is implemented as a Finite State

Machine (FSM) as shown in Figure 2.2.

NULL1

Reset

TS1 NULL2 IDLE TX

HMC_RTRY

LNK_RTRYSLEEP
WAIT
_FOR
_HMC

Figure 2.2: TX FSM

States and transitions are listed in Table 2.1 and Table 2.2. The next states are listed in the

order of their priority. By default, the current state is maintained. For a better understanding

of the initialization steps necessary after power-up refer to Section 4.2.

When in TX state FLITs are processed as implied by the blue path in Figure 2.3. Register

File (RF) signals and such that are driven by the RX link are represented by green colored,

control signals by gray colored lines. The operation of the TX link can be summarized as

follows: First, data FLITs are collected at the FIFO interface. A token handler keeps track

of the remaining tokens in the HMC input buffer. With each FLIT transmitted the token
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Table 2.1: TX FSM State Table

State Description
NULL1 Transmit NULL FLITs (Reset State)
TS1 Transmit the lane dependent TS1 sequence
NULL2 Transmit NULL FLITs
IDLE Send TRET packet if there are tokens to be returned
TX Transmit packets
HMC_RTRY Send start retry packets
LNK_RTRY Send clear retry packets and perform link retry
SLEEP Set LXRXPS = low to request HMC sleep mode
WAIT_FOR_HMC Wait until corresponding LXTXPS pin is high to exit sleep mode

Table 2.2: TX FSM Transition Table

State Next State & Trigger
NULL1 TS1: RX received NULL FLITs
TS1 NULL2: RX descramblers aligned
NULL2 IDLE: link_is_up

IDLE

HMC_RTRY: force_hmc_retry
LNK_RTRY: tx_link_retry_request
SLEEP: rf_hmc_sleep
TX: retry_buffer !full and tokens are available

TX
HMC_RTRY: force_hmc_retry
LNK_RTRY: tx_link_retry_request
IDLE: no more data to transmit

HMC_RTRY
LNK_RTRY: tx_link_retry_request
TX: retry_buffer !full and tokens are available
IDLE: no more data to transmit

LNK_RTRY
HMC_RTRY: force_hmc_retry
TX: retry_buffer !full and tokens are available
IDLE: no more data to transmit

SLEEP WAIT_FOR_HMC: as rf_hmc_sleep_requested is de-asserted
WAIT_FOR_HMC NULL1: as hmc_LXTXPS transitions to high
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Figure 2.4: Data-Reordering: 4FLIT/512bit example

count is decremented. When the token count is sufficient and no other interrupt occurs

the Return Token Count (RTC) is added to return tokens to the HMC, which indicates the

number of FLITs that passed the RX input buffer. Afterwards, the Sequence Number (SEQ)

and the Forward Retry Pointer (FRP), which is also the retry buffer read pointer are added.

At this point all FLITs are also written to the retry buffer. If there is a link retry request

(signaled by tx_link_retry_request) data is retransmitted out of the retry buffer instead of

the regular datapath. Eventually the Return Retry Pointer (RRP) which is the last received

HMC FRP is added and the CRC generated. Data is then scrambled and reordered on a

lane-by-lane basis depending on the configuration (NUM_LANES and FPW). Figure 2.4

shows an example for a 512-bit / 8-lane configuration where each transceiver connects to

64bit of the parallel output stage.

2.3.1 TX Retry Buffer (openhmc_ram.v)

The retry buffer holds a copy of each FLIT transmitted for possible retransmission. NULL

FLITs and flow packets, except TRET, are not subject to flow control and retransmission and

are not stored to the retry buffer. The retry buffer actually consists of FPW times 128-bit
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Table 2.3: RAM Configurations

Datawidth in FPW Depth per RAM [bits / entries]
2 7 / 128
4 6 / 64
6 5 / 32
8 5 / 32

RAMs so that each FLIT can be addressed independently. One address (i.e. the FRP)

is generated for each packet header. Since the required and accumulated RAM space is

defined by the pointer size (FRP = RRP = 8 bit = 256 FLITs), the depth per RAM in this

implementation is defined as 256 entries divided by FLITs Per Word (FPW). Table 2.3

summarizes the RAM properties for different data-width configurations. Note that a 6-FLIT

configuration results in reduced RAM capacity since 6 is not a power of 2 and therefore

the next higher of LOG_FPW must be chosen leaving some addresses unused. The least

significant bits address the target RAM while the remaining bits refer to a specific FLIT

within that RAM. The entire value is called FRP, and at the same time is the RAM write

pointer. As a result of this addressing scheme, FRPs are not generated consecutively but

still incremental, as packets may consist of more than one FLIT. The read pointer of the RAM

moves with each RRPs received at the RX Link, following the write pointer and therefore

excluding potential FLITs from retransmission. The link retry mechanism is described in

Section 4.5.

2.3.2 Scrambler (tx_scrambler.v)

Scramblers use a Linear Feedback Shift Register (LFSR) to ensure Clock-Data Recovery

(CDR) over high-speed serial links and replace encodings such as 8b/10b. One scrambler

per lane is initialized and its LFSR preloaded with a lane-specific seed.

2.3.3 Lane Run Length Limiter (tx_run_length_limiter.v)

The HMC specification defines a maximum of 85 bits per lane without a logical transition to

ensure CDR. When a lane reaches this limitation, a transition must be forced to so that the

receiver’s Phase-Locked Loops (PLLs) stay locked. The granularity of the run length limiter

is adjustable and can be set depending on die area and speed requirements (generally:

lower granularity = more logic and area utilization). Also consider technological conditions

when determining the best value, e.g. which Look-Up Tables (LUTs) are used.
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Figure 2.5: Scalable CRC Architecture: FPW=4 Example

2.3.4 CRC (tx_crc_combine.v)

The CRC architecture was specifically chosen to scale with different data-widths. As can

be seen in Figure 2.5 it consists of one 128-bit CRC per FLIT (crc_128_init). While the

CRCs are calculated another part of the logic assigns the targeted CRC to the tail of the

corresponding packet. After the CRCs are calculated all 32-bit remainder that belong to

the same packet are shifted to a dedicated accumulation CRC stage (crc_accu). These

remainders form the actual CRC within a single cycle. Finally, the output CRCs are added to

the tail of the packets.

2.3.5 General Notes on TX Link

The TX link only returns one flow packet per cycle which is sufficient and an easy way to

save some logic. However, (re-)initialization for instance will take some additional cycles

to transmit all available tokens since only 31 tokens may be returned within a single Token

Return (TRET) packet.

2.4 RX Link (rx_link.v)

The RX Link receives responses issued by the HMC. It then performs data integrity checks,

unpacks all valid and required information out of header and tail and forwards the information

to the TX Link. Only valid FLITs that pass all checks will enter the input buffer and can be

collected at the AXI-4 slave interface. Figure 2.6 shows a block diagram of the RX Link where

the data flow is indicated by orange, signals to the TX Link and to the RF by green, and

control signals by gray colored arrows. Note that the regular datapath is only selected after
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link initialization is done. For this purpose the initialization FSM controls a De-Multiplexer

(DEMUX) to distribute input data. Initialization in the RX link is divided into separate stages.
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Figure 2.6: RX Link Diagram

As soon as the phy_rx_ready signal at the openhmc_top module is set, initialization begins.

The RX link first waits for alle descramblers to lock. Afterwards lane polarity is detected (if

parameter DETECT_LANE_POLARITY=1) and applied (if CTRL_LANE_POLARITY=1). As

the HMC begins to send TS1 sequences the RX link first bit_slips each lane individually

until a valid TS1 is seen. Then it looks for the lane that is most/least advanced (parameter:

BIT_SLIP_SHIFT_RIGHT) and aligns all other lanes accordingly.

2.4.1 Descrambler (rx_descrambler.v)

The rx_descrambler module is instantiated once per lane and is self-seeding, which means

that it automatically determines the correct value for the internal LFSR. As the seed for a

descrambler is determined the descrambler is considered locked. Additionally each descram-

bler expects a dedicated, so called ’bit_slip’ single bit input which is used compensate lane

to lane skew. When bit_slip is set, input data on the specific lane is delayed by one bit during

initialization. This procedure is applied until all descramblers are fully aligned / synchronous

to each other.

2.4.2 CRC (rx_crc_compare.v)

The rx_crc_compare module is very similar to the tx_crc_combine instantiated in the TX

Link. The biggest difference is that the CRCs are not added to the tail of a packet at the

end of the data pipeline but compared instead. The corresponding poisoned or error flag for

the tail of the faulty packet is set if a mismatch occurs. Additionally, the data pipeline of this

module holds information bits for valid/header/tail FLITs as this information will be used in

the RX link.
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2.4.3 Input Buffer

The input buffer holds 2**LOG_MAX_RX_TOKENS entries, where each entry is as wide

as the datapath (DWIDTH). This results in more resource utilization, but allows a series of

2**LOG_MAX_RX_TOKENS cycles, carrying one valid FLIT each to be shifted-in without

a need for additional buffer distribution and utilization logic. Each valid FLIT at the buffer

output returns 1 token to the TX link on a shift_out event. These tokens will be returned as

RTC to the HMC. openHMC does not forward poisoned packets to the input buffer.

2.5 Register File (openhmc_rf.v)

The Register File features three main types of registers: Control, Status, and Counter.

Control registers directly affect openHMCs or HMC operation. Status registers can be used

to monitor the openHMC status, especially during initialization. Counters allow performance

measurement. For a full list of available registers, see Appendix B. Note that there are

several ’reserved’ fields which are not listed in the table of registers. These reserved fields

provide some space to add additional information and also serves as a byte aligner for other

fields. Reserved bits will be tied to constant 0 during synthesis.

2.6 Header Files

The following header files are present:

hmc_field_functions.h

hmc_field_functions contains useful functions that return fields such as the packet

length or the CRC out of HMC headers or tails.
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3 » Interface Description

This chapter contains an interface description for the top module openhmc_top.v. Due to the

fact that the controller is configured using parameters, most internal signal-widths depend

on the configuration. The openhmc_top module contains a set of parameters that can be

used to override the default configuration. All available parameters are listed in Table 3.1.

Additionally three optional global defines can be set (see Table 3.2)

3.1 System Interface

The controller top module (openhmc_top) expects a clock and a reset per clock domain.

Most likely, clk_hmc and the parallel transceiver clock domain will be sourced by the same

driver. The user clock clk_user may be any frequency equal to or higher the frequency of

clk_hmc. Therefore both clocks can origin from the same source. If SYNC_AXI4_IF is set to

0, source both clocks from the same source. Figure 3.1 shows the system interface. Note

that both resets are active low.

3.2 HMC Interface

The HMC provides the four signals presented in Figure 3.2. All signals are active low.

3.3 AXI-4 Stream Protocol Interface

The openHMC controller provides AXI-4 stream protocol interfaces for TX and RX. Both

comply with the ARM AMBA AXI-4 Interface Protocol Specification v1.0 [4]. However, not

openhmc_top
clk_hmc

System Interface

res_n_hmc

res_n_user

clk_user

Figure 3.1: System Interface Diagram
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Table 3.1: Configuration Parameters

Parameter Description Default
LOG_FPW Log of the desired data-width in FLITs 2
FPW Desired data-width in FLITs (1FLIT =

128bit). Valid: 2/4/6/8
4

DWIDTH FPW*128, width of the databus in bits 512
LOG_NUM_LANES Log of the link width in lanes. Valid: 3/4 3
NUM_LANES Link width in lanes (8 or 16) 8
NUM_DATA_BYTES FPW*16, defines the AXI-4 TUSER bus

width in bytes
64

HMC_RF_WWIDTH Register file rf_write_data bus size in bits 64
HMC_RF_RWIDTH Register file rf_read_data bus size in bits 64
HMC_RF_AWIDTH Register file rf_address bus size in bits 4
LOG_MAX_RX_TOKENS Log of the max RX input buffer space in

FLITs
8

LOG_MAX_HMC_TOKENS Log of the max HMC tokens 8
HMC_RX_AC_COUPLED Set to 0 if Controller TX is DC coupled to

HMC RX
1

RX_BIT_SLIP_CNT_LOG Define the number of cycles between two
bit slips

5 (32 cycles)

DETECT_LANE_POLARITY Set to 0 if lane polarity is controlled outside
or not applicable

1

CTRL_LANE_POLARITY Set to 0 if lane polarity should be
controlled by the transceivers or is
not applicable. Only valid if DE-
TECT_LANE_POLARITY=1

1

CTRL_LANE_REVERSAL Set to 0 if lane reversal should be con-
trolled by the transceivers or is not applica-
ble

1

BITSLIP_SHIFT_RIGHT Define how the parallel data is shifted by
bit slip. Refer to the transceivers user
guide

1

OPEN_RSP_MODE Use the HMC open-response mode. Re-
moves the openHMC RX input buffer

0

RX_RELAX_INIT_TIMING Simplify initialization in RX link. Increases
the risk of init to fail

1

SYNC_AXI4_IF Use synchronous transmit/receive FIFOs.
clk_hmc must be clk_user !

0

XIL_CNT_PIPELINED If XILINX is defined this adds a register at
the output of all counters.

1

DBG_RX_TOKEN_MON Enable/Disable monitoring of Tokens in the
rx_link input buffer (1=enabled)

1
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Table 3.2: Global Defines

Define Description
XILINX Use Xilinx specific counter (DSPs) and FIFOs (SRLs)
ASYNC_RES Define the active low resets as asynchronous
RESET_ALL Use reset values for all registers

openhmc_top
hmc_LxTXPS

HMC Interface Pins

FERR_N

hmc_LxRXPS

P_RST_N

Figure 3.2: HMC Interface Pins Diagram

all signals are used. Figure 3.3 provides an interface diagram of the master and slave

interfaces used in this implementation. The use and the corresponding size of these signals

is described below.

Note

The openHMC controller expects complete HMC packets at the TX

interface, and outputs such at the RX interface. HMC request packets

must be generated within the user logic, i.e. set a command, lng/dln

fields, the cube ID and target address. The tail must be set to zero.

TREADY 1 bit

• TX: openHMC is ready to sample TDATA and TUSER

• RX: User application is ready to sample TDATA and TUSER

TX FIFO

A
X

I-
4
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la

ve
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F

TREADY

TVALID

TDATA[FPW*128]

TUSER[NUM_DATA_BYTES]

TX

RX FIFO

A
X

I-
4

 M
as
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r 

IF

TREADY

TVALID

TDATA[FPW*128]

TUSER[NUM_DATA_BYTES]

RX

Figure 3.3: AXI-4 Interface Diagram
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TVALID 1 bit

• TX: TDATA and TUSER are sampled on TX when TVALID=1 and TREADY=1.

TVALID may be held high even when TREADY=0.

• RX: TDATA and TUSER are valid when TVALID=1. TREADY may be held high even

when TVALID=0. TDATA and TUSER will not change when TREADY=0.

TDATA FPW*128 bit

The TDATA bus expects complete HMC request packets, starting with the 64bit header

followed by data FLITs. Note that a single AXI cycle can carry (parts of) multiple

packets on both interfaces, TX and RX. The user is responsible to populate all request

header fields (see Figure 3.4 or refer to the HMC documentation, chapter ’Request

Commands’). Note that the TAG field is optional, but required for operational request/re-

sponse closure. The tail must be set to all zeroes. Figure 3.5 shows an example

transaction of multiple different packet types. Packets may start at any 128-bit/ FLIT

border. ’Bubbles’ between packets are allowed as long as the corresponding valid

bit(s) is/are kept low. All FLITs of a packet must be transmitted throughout consecutive

FLITs. Also when a packet spreads over multiple 512-bit cycles, TVALID must be held

high until the entire packet (including its tail) was transmitted. On RX, the openHMC

controller outputs complete HMC response packets. Data is valid when TVALID=1 and

the output will not change while TREADY=0. Contrary to TX, the user has full control

on the assertion of TREADY. When a response header appears, the packet does not

need to be sampled consecutively throughout its tail.

CRC RTC

Request Tail
SEQ FRP RRP

Request Header
CUB ADRS TAG CMDLNGDLN

CRC RTC ERRSTAT

Response Tail
SEQ FRP RRP

Response Header
TAG CMDLNGDLN

07111524

B
it

 6
3

32 27 19 16 8 0

1820

5
57

07111524 5

32 27 16 8 0

Figure 3.4: HMC Header and Tail

TUSER NUM_DATA_BYTES bit

The user is responsible to set the following information on the TX TUSER bus respec-

tively the controller provides this information at the RX TUSER bus. Note that only a

part of the TUSER bus is populated. That is 3*FPW bits on TX and 4*FPW on RX.

valid at TUSER index [FPW-1:0]: Valid FLIT indicator (including header and tail), one

bit per FLIT

hdr at TUSER index [(2*FPW)-1:FPW]: Header indicator, one bit per FLIT
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Data3
Hdr3

Tail3
Data3

Data4
Hdr4

Tail4
Data4

Tail1
Hdr1

Data2
Hdr2

Data2

Tail2
Data2

Data0

Data0

Data0

Data0
Hdr0

Tail0
Data0

Cycle

0 1 2

FLIT3
TDATA[511:384]

FLIT0
TDATA[127:0]

Paket0: 64 Byte Write

Paket1: Read

Paket2: 32 Byte Write

Paket3: 16 Byte Write

Paket4: 16 Byte Write

FLIT1
TDATA[255:128]

FLIT2
TDATA[383:256]

3

Figure 3.5: Example transactions on the AXI TX TDATA bus for FPW=4

4'b0001

4'b0000

4'b1111

0x01F

Cycle

0 1 2

Tail
TUSER[11:8]

TUSER[11:0]

Valid
TUSER[3:0]

Hdr
TUSER[7:4]

3

4'b1100

4'b0101

4'b1101

0x5CD

4'b0010

4'b0000

4'b0011

0x203

4'b1010

4'b0101

4'b1111

0xA5F

Figure 3.6: TUSER Example for FPW=4

tail at TUSER index [(3*FPW)-1:2*FPW]: Tail indicator, one bit per FLIT

err_rsp [only on RX] at TUSER index [(4*FPW)-1:3*FPW]: Indicates an error response

packet at the corresponding FLIT position. One bit per FLIT. Error response packets

are single FLIT packets and have all flags (valid/hdr/tail/err_rsp) set

Every FLIT on the TDATA bus corresponds to one bit in the valid, hdr, and tail fields on

TUSER. FLIT 0 at TDATA[127:0] is defined by valid[0] (TUSER[0]), hdr[0](TUSER[FPW]),

and tail[0](TUSER[2*FPW]).

Example:

TDATA holds a header on FLIT position 0 (TDATA[127:0]). Set hdr[0] respectively

TUSER[FPW] to 1. Since a header is a valid FLIT, set valid[0] / TUSER[0] to 1. This

scheme applies to all FLITs on the TDATA bus. Figure 3.6 illustrates how to set the

TUSER signal according to the content of the TDATA bus in Figure 3.5.
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Important

For proper operation of the interface, all FLITs of a packet on TX

must be shifted in continuously without any ’bubble’ FLITs or cycles

in between. There is no constraint on ’bubbles’/NULL FLITs/NULL

cycles between packets. However, TVALID on TX must NOT be set

when there is no corresponding valid FLIT on TDATA / no valid bit

set on TUSER. Additionally the frequency of the user clock clk_user

driving the AXI-4 interface must be equal to or higher than clk_hmc.

Due to the nature of the asynchronous FIFO that is used, empty

and full signals may be delayed and might cause misbehavior in the

tx_link.

3.4 Transceiver Interface

The TX Link provides a DWIDTH wide register output phy_data_tx_link2phy with scrambled

and lane-by-lane ordered data, driven by clk_hmc. Hence the bits [(1*LANE_WIDTH)-

1:(0*LANE_WIDTH)] contain data for lane 0, [(2*LANE_WIDTH)-1:(1*LANE_WIDTH)] data

for lane 1 and so on. An additional input phy_ready should be connected to transceivers

’reset_done’ (or similar) to allow monitoring of the transceiver status. The RX Link’s data

input register phy_data_rx_phy2link expects input data by the receivers using the same

ordering as explained for the TX Link. Lane reversal is detected and applied in the RX Link

and does not affect ordering. Additionally the RX Link outputs bit_slip wires, one per lane,

used to compensate lane-to-lane skew on the parallel input data during initialization. Connect

these to the corresponding transceiver. If lane_polarity is performed within the transceivers,

the phy_lane_polarity output must be used. ’CTRL_LANE_POLARITY’ must be set to 1

in this case. For CTRL_LANE_POLARITY=0 phy_lane_polarity is tied to 0. All signals

are summarized in Table 3.3. Listing 3.1 shows how to connect the transceiver lanes in a

DWIDTH=512bit and NUM_LANES=8 configuration, with a lane-width of 512bit/8lanes=64

bits per lane.

Listing 3.1: Transceiver Connectivity Example for FPW=4 and NUM_LANES=8

wire [DWIDTH−1:0] tx_data ;

wire [DWIDTH−1:0] rx_data ;

wire [NUM_LANES−1:0] r x _ b i t _ s l i p ;

wire [NUM_LANES−1:0] r x _ l a n e _ p o l a r i t y ;

openhmc_top # ( . . . parameter l i s t . . . ) openhmc_I (
...
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. phy_data_tx_ l ink2phy ( tx_data ) ,

. phy_data_rx_phy2l ink ( rx_data ) ,

. p h y _ b i t _ s l i p ( r x _ b i t _ s l i p ) ,

. phy_ lane_po la r i t y ( r x _ l a n e _ p o l a r i t y ) ,
...

) ;

t r ansce i ve r_ top # ( . . . ) t r a n s c e i v e r _ I (
...

. lane0_tx_data ( tx_data [ 6 3 : 0 ] ) ,

. lane1_tx_data ( tx_data [ 1 2 7 : 6 4 ] ) ,
...

. lane0_rx_data ( rx_data [ 6 3 : 0 ] ) ,

. lane1_rx_data ( rx_data [ 1 2 7 : 6 4 ] ) ,
...

. l a n e 0 _ b i t _ s l i p ( r x _ b i t _ s l i p [ 0 ] ) ,

. l a n e 1 _ b i t _ s l i p ( r x _ b i t _ s l i p [ 1 ] ) ,
... ,

. l a n e 0 _ p o l a r i t y _ i n ( r x _ l a n e _ p o l a r i t y [ 0 ] ) ,

. l a n e 1 _ p o l a r i t y _ i n r x _ l a n e _ p o l a r i t y [ 1 ] )
...

) ;

Table 3.3: Transceiver Interface Signals

Signal Width Description
phy_data_tx_link2phy DWIDTH Lane by lane ordered output
phy_data_rx_phy2link DWIDTH Lane by lane ordered input
phy_ready 1 Signalize that the transceivers are ready
phy_bit_slip NUM_

LANES
Bit_slip is used to compensate lane to lane skew.
Bit_slip is controlled by the rx_link for each lane
individually

phy_lane_polarity HMC_
NUM_
LANES

Connect transceiver polarity inputs if polar-
ity is controlled within the transceivers and
’CTRL_LANE_POLARITY’ is set to 1.
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Table 3.4: Register File Interface Signals

Signal Width Description
rf_write_data HMC_RF_WWIDTH Value to be written
rf_read_data HMC_RF_RWIDTH Requested Value. Valid when ac-

cess_complete is asserted
rf_address HMC_RF_AWIDTH Address to be read or written to.
rf_read_en 1 Read the address provided
rf_write_en 1 Write the value of write_data to the address

provided
rf_invalid_address 1 Address out of the valid range
rf_access_complete 1 Indicates a successful operation

3.5 Register File Interface

A Register File module allows to control and monitor the openHMC operation. The interface

signals are shown in Figure 3.7 and described in Table 3.4. First the target address must

be applied. For a write, write_data must hold the 64-bit value to be written. Data is sampled

when write_enable is asserted. For a read the read_enable signal must be asserted instead.

Each operation is confirmed by the access_complete signal set for one cycle. In case that

an invalid address was applied, invalid_address will remain as long as read_en or write_en

are active. The user must not assert write_en and read_en both at the same time. The

RF resides in the clk_hmc clock domain and uses the active low res_n hmc reset signal.

Figure 3.8 provides an example for a register write followed by a read to address 0x10.

Refer to Table 3.5 for the address mapping. For a full listing of all fields within the RF see

Appendix B.

Register File Interface
rf_read_data

openhmc_top

rf_invalid_address

rf_access_complete

rf_address

rf_write_data

rf_write_en

rf_read_en

Figure 3.7: Register File Interface Diagram
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Table 3.5: Register File Address Map

Register Address Description
status_general 0x0 General HMC Controller Status
status_init 0x1 Debug register for initialization
control 0x2 Control register
sent_p 0x3 Number of posted requests issued
sent_np 0x4 Number of non-posted requests issued
sent_r 0x5 Number of read requests issued
poisoned_packets 0x6 Number of poisoned packets received
rcvd_rsp 0x7 Number of responses received
counter_reset 0x8 Reset all counter
tx_link_retries 0x9 Number of Link retries performed on TX
errors_on_rx 0xA Number of errors seen on RX
run_length_bit_flip 0xB Number of bit flips performed due to run length

limitation
error_abort_not_cleared 0xC Number of error_abort_mode not cleared

rf_write_en

rf_write_data 0x0123...

rf_read_en

rf_read_data 0x0123...

rf_invalid_address

rf_address 0x2 0x2

rf_access_complete

Figure 3.8: Register File Access: Write and read register 0x2
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4 » Configuration and Usage

The following chapter provides information on how to properly configure and use the

openHMC controller.

4.1 Clocking and Reset

Always keep both reset signals, res_n_user and res_n_hmc synchronous to their correspond-

ing clock. Although the ‘ifdef ASYNC_RES macro is implemented for all clock-triggered

always blocks, asynchronous reset should not be used where the target registers do not pro-

vide a dedicated asynchronous reset path. This is the case for FPGAs. If using synchronous

FIFOs both clocks must be driven by the same source.

4.2 Power-Up and Initialization

As soon clk_hmc is stable and the low-active res_n_hmc has been de-asserted, initialization

can begin. The p_rst_n bit in the control register is used to drive the active low HMC reset

signal P_RST_N. The general HMC initialization process is shown in Figure 4.1. In this

example I2C is used to load the internal HMC registers during the register load period (JTAG

may be used instead, refer to the HMC documentation [3]). Note that HMC register load is

not performed by the openHMC controller. As soon as register loading is done the user must

set the phy_rx_ready port to release the RX descrambler reset state. Any delay in doing so

may also delay the initialization process. No other user activity is required until the link_is_up

Power Supply

P_RST_N

HMC CLK

I2C Register Config

Downstream (TX to HMC) NULL TS1 NULL TRET

Upstream (HMC to RX) PRBS NULL TS1 NULL TRET

tRESP 1

tINIT

tRST

tRESP 2

Figure 4.1: TX-Link: Initialization Timing
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flag in the RF is set. The AXI-4 user interface may remain in reset during the initialization

process. Figure 4.2 provides the essential steps for the controller power up. Optionally the

user can set the values provided in Table 4.1 prior the de-assertion of res_n_hmc which

directly affect the initialization process.

Apply clk_hmc. Hold hmc_res_n low

Set hmc_res_n = 1

-HMC Register Load Period-

Set hmc_init_cont_set when Register Load has finished

openHMC controller performs initialization automatically

1.

2.

3.

4.

5.

Figure 4.2: openHMC Controller Power Up Steps

Table 4.1: Configuration Parameters

Register Valid values Description
control_rx_token_count 0 ≤ 1023 Set the available token space in the RX input

buffer. Note: LOG_MAX_RX_TOKENS must be
adjusted so that 2**LOG_MAX_RX_TOKENS is
greater than or equal to control_rx_token_count

AXI4 Interface

The AXI4 user interface is considered ’don’t care’ as long as

res_n_user is held low. No action is this interface is required for

power up and initialization. However, it may be activated at any time.

4.3 Sleep Mode

Sleep mode can be safely entered when all in-flight transactions are completed and tx_link

is in IDLE state. For instance, the performance counter in the RF can be used to track the

status of outstanding requests. To request sleep mode, the corresponding set_hmc_sleep

field in the RF control register must be set. The HMC will acknowledge sleep mode by

setting the LXTXPS pin low. To exit sleep mode, de-assert set_hmc_sleep. The sleep_mode

field within the RF status_general register may be used to monitor the entire process. Upon
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completion, the link is re-initialized as shown in Figure 4.1, except the need to exchange

initial TRETs as memory contents within the HMC are maintained during sleep mode.

4.4 Link Retraining

When detecting an unacceptable rate of link error monitored by the link_retries counter, sleep

mode should be entered and exited to retrain the link. All steps described in Section 4.3

apply.

4.5 Link Retry

As soon as a link error occurs, the respective receiver of the faulty packet enters the ’Error

Abort Mode’. There are two types of link retries that are described in the following. For a

better understanding, Figure 4.3 illustrates the flow of pointer between the host controller

and the HMC. Note that both endpoints, host controller and HMC, generate and check FRP’s

and RRP’s the same way.

Memory Controller HMC

Move Read Pointer

Transmit Pkt 1, located at RAM 
address FRP1

Process

If acknowledged, FRP1 travels back 
as RRP1

RRP1

FRP1

RRP1

FRP1

Acknowledge

Figure 4.3: Pointer Flow

TX Link Retry

In case of an error on the TX path from requester to responder, the HMC will request a link

retry. Subsequent received packets arriving at the HMC are dropped, and no header/tail

values are extracted. The HMC then issues a programmable series of start_retry packets to

the RX link to force a link retry. Start_retry packets have the ’StartRetryFlag’ set (FRP[0]=1).

When the irtry_received_threshold at the Receive (RX)-Link is reached, the Transmit (TX)

link starts to transmit a series of clear_error packets that have the ’ClearErrorFlag’ set

(FRP[1]=1). Afterwards, the TX link uses the last received RRP as the RAM read address

and re-transmits any valid FLITs in the retry buffer until the read address equals the write

address, meaning that all pending packets where re-transmitted. Upon completion the RAM

read address returns to the last received RRP. Re-transmitted packets may therefore be

re-transmitted again if another error occurs. Figure 4.4 shows the TX link retry mechanism.
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HMC 
Mem 
Ctrl

send start_retry

1. send clear_error
2. Process Retry

TX

TX

Notify TX

Error Detected
Enter Error Abort Mode

Notify TX

RX

RX

Figure 4.4: TX Link Retry

HMC 
Mem 
Ctrl HMC

send start_retry

1. send clear_error
2. Process Retry

TX

TX

Notify TX

Error Detected
Enter Error Abort Mode

Notify TX

RX

RX

Figure 4.5: HMC Retry

HMC Retry

In case of an error on the RX path from responder to requester, the RX link will request a

link retry. The TX link will than send start_retry packets whereupon the responder will start

to re-transmit all packets that were not acknowledged by the RRP yet. Meanwhile, the RX

link remains in the so called error_abort_mode where all subsequently incoming packets are

dropped. The TX link monitors this state and sends another series of start_retry packets if

the error_abort_mode was not cleared after 250cycles. Figure 4.5 shows the TX link retry

mechanism.

Link Retry

For correct link retry operation, equal to or more irtry packets (both

types) must be issued than the respective receiver expects. This

requirement applies to both, requester and responder. The cor-

responding irtry_to_send value must be equal to or higher than

irtry_received_threshold in the register file (default). The internal

registers in the HMC must be set accordingly.

openHMC documentation Rev. 1.5 p.26



4.6 Retry Pointer Loop Time

According to the HMC specification[3], the retry pointer loop time should not exceed certain

limitations. These limitations vary depending on the selected link speed (10Gbit/s, 12Gbit/s,

or 15Gbit/s). Factors such as the HMC delay, host delay, serialization, and de-serilazation

contribute to the total retry pointer loop time. In case the host exceeds the maximum

allowable delay, the HMC retry buffer may run full and therefore throttle packet streaming

which leads to NULL FLITs between transaction packets. Table 4.2 lists both, internal HMC

delay and host allowable delay in nanoseconds. It is based on the assumption that the

retry buffer full period is as twice as big when running a link at half-width (8 lanes). Note

that all calculations in this section were performed with the run length limiter deactived

(HMC_RX_AC_COUPLED=0) and no lane polarity control (CTRL_LANE_POLARITY=0).

4.6.1 TX Link Retry Pointer Delay

Table 4.3 shows the worst case delay for the RRP (the former HMC FRP) to be embedded,

starting at the point where the RRP becomes available at the tx_link input until the RRP

appears in the scrambled output data stage. The best case delay for RRP embedding occurs

when the RRP becomes available right in a cycle where a tail is processed in the ’Add

RRP’ stage. In the worst case, a new packet has just begun at the top-most FLIT position.

Embedding will therefore be delayed by the number of cycles it takes to forward a packet

until its tail is seen at this stage. Hence, the maximum delay is measured with a 128-Byte

request in 2-FLIT (256Bit) configuration where the RRP becomes available and FLIT(0) is

NULL, FLIT(1) the header of the packet. As can be seen in Table 4.3, the worst case delay

reduces with wider data-paths.

4.6.2 RX Link Retry Pointer Delay

Table 4.4 shows the delay for the HMC FRP to be extracted and passed to the TX Link,

starting at the point where the HMC FRP becomes available at the scrambled_data_in input

Table 4.2: Retry Pointer Loop Time

Lane Speed
[Gb/s]

Lanes Retry Buffer Full
Period [ns]

HMC Delay[ns] Max Host Delay[ns]

10 8 307.2 26.5 280.7
12.5 8 327.6 25.9 301.7
15 8 272.8 22.3 250.5
10 16 153.6 26.5 127.1
12.5 16 163.8 25.9 138
15 16 136.4 22.3 114.2
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Table 4.3: TX Link Worst Case RRP Embed Delay

DWIDTH [FLITs] 2 FLIT (256Bit) 4 FLIT (512Bit) 6 FLIT (768Bit) 8 FLIT (1024Bit)

Stage Cycles Acc Cycles Acc Cycles Acc Cycles Acc
Add RRP 5 5 3 3 2 2 2 2
CRC 4 9 4 7 4 6 4 6
Scrambler 1 10 1 8 1 7 1 7

Max Delay[cycles]* 10 8 8 7

*Max Delay increases by 1 cycle if the Run Length Limiter is used (HMC_RX_AC_COUPLED=1)

Table 4.4: RX Link RRP Process/Extract Delay

Stage Cycles Acc
Descrambler 1 1
to CRC 1 2
CRC 4 6
DLN/LNG 1 7
Retry 1 8
Seq 1 9
Extraction 1 10

Total Delay[cycles]* 10

*Delay increases by 1 cycle if CRTL_LANE_POLARITY=1

until it was extracted and becomes available for the TX Link to be embedded. The delay

for HMC FRP extraction decreases as the datapath becomes wider, since the depth of the

’Invalidation Stage’ decreases.

4.6.3 Combined Retry Pointer Loop Time

Table 4.5 summarizes the results of openHMC TX and RX pointer delays (Table 4.3 and

Table 4.4).

Table 4.5: Combined Retry Pointer Delay

DWIDTH [FLITs] 2 FLIT (256Bit) 4 FLIT (512Bit) 6 FLIT (768Bit) 8 FLIT (1024Bit)

TX 10 8 7 7
RX 10 10 10 10

Total Delay[cycles] 20 18 17 17
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4.7 openHMC Configuration

According the configuration of the data-width (DWIDTH), half-width or full-width (NUM_LANES)

and their respective lane speed, Table 4.6 lists selected configurations that can be applied.

Many other configurations are possible as long as they are feasible for implementation with

regard to the clocking frequency. Table 4.7 lists all valid parameter sets. The resulting core

clocking frequency clk_hmc is calculated with:

clk_hmc[MHz] = NUM_LANES ∗ LANE_SPEED[Gbit/s]
DWIDTH ∗ 106

Table 4.6 furthermore summarizes the results for the retry pointer loop time through the

openHMC controller. Refer to Table 4.2 for the maximum allowed host delay. It seems that

all configurations stay within the maximum allowable host delay. Additional, non negligible

delay, however, will be introduced through serialization and de-serialization and may lead to

a loop time violation.

Table 4.6: Example Configurations

DWIDTH
[bit]

NUM
_LANES

lane
speed
[Gbits]

clk_hmc
[MHz]

Period
[ns]

Worst Case
Delay
[cycles]

Worst Case
Delay[ns]

256 8 10 312.5 3.2 20 64
256 8 12.5 390.625 2.56 20 51.2
512 8 10 156.25 6.4 18 115.2
512 8 12.5 195.3125 5.12 18 92.16
512 8 15 234.375 4.27 18 76.86
512 16 10 312.5 3.2 18 57.6
512 16 12.5 390.625 2.56 18 46.08
768 8 15 156.25 6.4 17 108.8
768 16 10 208.33 4.8 17 81.6
768 16 12.5 260.417 3.84 17 65.28
768 16 15 312.5 3.2 17 54.4
1024 16 10 156.25 6.4 17 108.8
1024 16 12.5 195.3125 5.12 17 87.04
1024 16 15 234.375 4.27 17 72.59

Input Buffer Token Count

By default the input buffer token count of the rx_link input buffer is set to 255’d. It can be

changed using the rx_token_count register in the Register File control register, if desired.

According to the maximum packet length of 9 FLITs, it must be set to 9 or more. The top

level parameter LOG_MAX_RTC must be set accordingly, i.e. the actual token count must

be equal to or less than 2LOG_MAX_RT C .
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Table 4.7: Valid parameter sets

Desired DWIDTH [bit] LOG_FPW FPW
256 1 2
512 2 4
768 3 6
1024 3 8

4.8 HMC Configuration

Maximum Packet Size

The user must not send any packets bigger than ’maximum block size’ in the HMC Address

Configuration Register is set to.

HMC Token Count

To avoid misbehavior for any of the listed configurations, set the token count within the HMC

token register to at least 25’d
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5 » Implementation

This section gives advice on key elements to consider in order to successfully implement

the openHMC controller. It further presents example configurations that were already

implemented and verified in an FPGA.

5.1 Design with the Core

As always, a good design practice is inevitable in order to successfully implement a design

and close timing. Implementing the openHMC controller in a 2-FLIT/10Gbit configuration is

not extremely challenging. However, when it comes to 1024bit datapaths and lane-speeds

of 15Gbit/s, logical paths may fail for several reasons:

High fanout nets Candidates for very high fanout nets are global clocks or resets for

example. Use clock or reset buffer or limit the loads by replicating heavy-loaded nets.

Alternatively, reset conditions may be removed where applicable. This is especially the

case for pipelined datapaths and registers that should hold logical zeroes at power-up.

Non- or false constrainted clock-domain crossings Clock domain transitions, such as in

asynchronous FIFOs, must be explicitly defined as asynchronous paths. This prevents

the implementation tool from investigating the timing on these paths.

Routing congestion and overlapping nets Components with a high logic density such as

the crc modules may be difficult to route, especially in a 1024bit/FPW=8 configuration.

Solutions may be location constraints, additional pipelining, or the use of special

implementation strategies.

5.2 Implementation Results

The openHMC controller was verified in real hardware and simulation including the CAG

HMC verification environment as well as with the Micron HMC Bus Functional Model (BFM).

Implementation runs with a proper floor-planning allows the openHMC controller to run with

up to 392.5MHz at FPW=4 on a Xilinx Virtex 7 device. The Xilinx Vivado Design Suite 2015.2

was used as implementation tool. All runs were performed with the configuration parameters

set as listed in Table 5.1 and default synthesis and implementation strategies.

openHMC documentation Rev. 1.5 p.31



Table 5.1: Top-Level Implementation Parameters

Parameter Value Parameter Value
LOG_MAX_RX_TOKENS 8 CTRL_SCRAMBLERS 1
LOG_MAX_HMC_TOKENS 8 OPEN_RSP_MODE 0
HMC_RX_AC_COUPLED 0 RX_BIT_SLIP_CNT_LOG 5
DETECT_LANE_POLARITY 0 SYNC_AXI4_IF 1
CTRL_LANE_POLARITY 0 XIL_CNT_PIPELINED 1
CTRL_LANE_REVERSAL 0 DBG_RX_TOKEN_MON 0

Table 5.2: Resource Utilization in a Xilinx Virtex 7 without the XILINX define set

FPW HMC Lanes Lanespeed LUTs combined Registers BRAM B36/B18 DSP
2 8 10 8244 8561 8 0
4 8 10 18449 15883 15.5 0
4 8 15 19537 15883 15.5 0
4 16 12.5 21107 16194 15.5 0
6 16 15 41117 23590 23 0
8 16 15 67222 30976 31 0

5.2.1 Resource Utilization

Table 5.2 gives an overview over the approximate resource utilization for implementations

runs of several commonly used configurations without the XILINX define set. Table 5.3

similarly shows resource usage when the XILINX define is set. It can be seen that using

vendor specific components significantly reduces LUT and register requirements. Note that

the presented values may slightly vary for different implementation strategies. As can be

seen, resource utilization is strongly coupled with the FPW setting. Changing the speed of

the HMC link, however, has only minor impact on resources but influences the resulting clock

speed and therefore placement and router effort.

Table 5.3: Resource Utilization in a Xilinx Virtex 7 with the XILINX define set

FPW HMC Lanes Lanespeed LUTs combined Registers BRAM B36/B18 DSP
2 8 10 6653 6825 8 9
4 8 10 15662 12524 15.5 9
4 8 15 16480 12524 15.5 9
4 16 12.5 18317 12849 15.5 9
6 16 15 37821 18650 23 9
8 16 15 62512 24450 31 9
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6 » openHMC Test Environment

The Universal Verification Methodology (UVM) based test environment can be used to

demonstrate and verify the functionality of the openHMC controller. It is designed following

the IEEE Standard for SystemVerilog[5] and tested for the Cadence Incisive tool chain (NC

Sim) version 14.10 and newer. Other simulators might be supported in the future. With

openHMC revision 1.5 a CAG HMC systemverilog model is provided to allow simulating

the controller without the bus funtional HMC model BFM provided by Micron. The BFM,

however, is still supported and can be obtained under NDA. Please contact openhmc@ziti.uni-

heidelberg.de for more information.

6.1 Set up the simulation environment

A few steps must be performed until the test environment is ready to use. Please read the

following instructions carefully and review the steps when experiencing problems.

1. Export the OPENHMC_PATH and OPENHMC_SIM environment variables. Example:

export $OPENHMC_PATH=home/user/openhmc

export $OPENHMC_SIM=home/user/openhmc/sim

Alternatively source the script ’export.sh’.

If you are using the CAG HMC verification component everything is set. For

simulations using the Micron BFM continue with the following steps

2. Extract the BFM package

3. Copy the contents of the package to ’$OPENHMC_SIM/bfm/’. The content of this

folder should now contain the folders ’src’, ’doc’, and so on.

4. Open ’hmc_bfm.f’ and change the all paths from src/ to $OPENHMC_SIM/bfm/src.

6.2 Run a Test using the CAG HMC verification

component

Navigate to $OPENHMC_PATH/sim/tb/run and execute run.sh by typing ’./run.sh’. Table 6.1

lists all available arguments. A test in a 2FLIT, 16lane configuration using asynchronous

FIFOs with detailed debug output may be started with:
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Table 6.1: Runscript Arguments

Argument Requires Value Description
-a Use asynchronous FIFOs
-c Clean up old build files
-d X Define a different target (advanced)
-f X FPW. Set the datapath width
-g Start Simvision
-l X NUM_LANES. Set the number of lanes
-o Enable Coverage
-r Run openHMC in open response loop mode
-s X Start the test with a different seed
-t X Specify a test (see Section 6.6)
-v X Verbosity of the debug output. Available values are

UVM_NONE, UVM_LOW (default), UVM_MEDIUM, and
UVM_HIGH

-? Print usage help

./run.sh -f 2 -l 16 -a -v UVM_HIGH

It is also possible to run the script without any arguments. In this case the design is

automatically defaulted to FPW=4 (512bit), NUM_LANES=8. Besides the runscript the folder

also contains a cleanup script ’clean_up.sh’ which can be run to remove build files from

previous simulation runs.

6.3 Run a Test using the Micron HMC BFM

To run a simulation using the Micron BFM follow the steps in Section 6.2 but execute the

run_bfm.sh instead.

6.4 Test Environment

The UVM based test environment is presented in Figure 6.1. It consists of the following

components:

AXI4 UVC Used to verify the AXI4 interface. Depending on the purpose the AXI4 UVC

creates a master agent that generates packets and drives AXI4 cycles into the Device

Under Test (DUT) respectively a slave agent that receives packets.

HMC UVC Used to verify the HMC interface which replaces the BFM. It inherits an additional

internal HMC interface to inject bit-errors on the link.

openHMC documentation Rev. 1.5 p.34



Response
HMC Link

Request
HMC Link

Response
AXI4 Link

Request
AXI4 Link

HMC Module UVC

Scoreboard

AXI4_HMC
MON_RSP

AXI4_HMC
MON_REQ

HMC
MON_RSP

HMC
MON_REQ

openHMC 
controller

MonitorAXI4_UVC

Config

Master Driver

Master Agent

Config: PASSIVE

Master Sequencer

Slave Agent

Slave Driver

Config: ACTIVE

VIF

MonitorAXI4_UVC

Config

Master Driver

Master Agent

Config: ACTIVE

Master Sequencer

Slave Driver

Slave Agent

Config: PASSIVE

VIF

BFM
BFM_MON

RSP

BFM_MON
REQ

AXI4
Cycle

AXI4
Cycle

CAG_RGM

Monitor

Slave DriverMaster Driver

MonitorCAG HMC UVC

Config

VIF

Master Driver

Master Agent

Config

Master Sequencer

Slave Driver

Slave Agent

Config

Slave Sequencer

Transaction Mon

Retry Buffer

Int. VIFError Injector

BFM Packet

BFM Packet

HMC Packet

HMC Packet

Figure 6.1: HMC Testbench

Module UVC The module UVC contains the Scoreboard, which contains 2 sets of input-

analysis channels. One set is used to check packets on the AXI4 interface. The second

set collects and checks packets at the HMC interface. Each set contains a request-,

and a response analysis input. Packet types are defined in the base type package

(hmc_packet.sv). The scoreboard checks all data packets including TAGs.

BFM The Micron BFM (optional)

CAG_RGM UVC Simulates the Register File access

All these components are instantiated within the HMC testbench (hmc_tb.sv)

6.4.1 Randomization

Features such as lane reversal, lane polarity, lane delay, and HMC and openHMC token

counts are randomized and can be user-constrained in:

hmc_config.sv located under UVC/hmc/sv for the CAG HMC model

hmc_link_config.sv located under tb/bfm/src for the Micron BFM

6.5 Test Procedure

All tests are processed in three phases as shown in Figure 6.2. After the test has started the

respective HMC model and the openHMC controller are configured during the hmc_model_init_seq
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Figure 6.2: Test Procedure

and openhmc_init_seq sequences. As soon as the link comes up (signalized by the link_up

bit in the register file ’status register’) the actual test starts. Depending on the test one or

more hmc_pkt_sequences are executed. These sequences will execute one or multiple

hmc_2_axi4_sequence with additional constrains. Finally, after the actual test has finished,

a check sequence (openhmc_check_sequence) is executed. This sequence ensures that

all responses to non-posted requests were collected and that all tokens were successfully

returned. The test will abort and report a fatal error in case the openhmc_check_seq will

timeout. The current status of the check sequence is provided in the simulation output.

6.6 The Tests

The following tests are available. The bit_error and error_pkt test are only valid for the CAG

HMC model. Bit errors for the Micron BFM can be enabled in hmc_link_config.sv using the

error_rates_c constraint.

atomic_pkt_test

Constrain packets to be atomic. Repeat max 10times.

big_pkt_test

Constrain packets to be large (min length = 6 Flits).

big_pkt_hdelay_test

This test combines the constraints of big_pkt_test and hdelay_pkt_test. The Packet

size is constrained to be above 6 Flits with high packet delay.

big_pkt_zdelay_test

This test combines the constraints of big_pkt_test and zdelay_pkt_test. The Packet

size is constrained to be above 6 Flits with zero packet delay.
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posted_pkt_test

Constrain packets to be posted. This test randomly selects one of the test sequences

described above. Repeat max 10times.

non_posted_pkt_test

Constrain packets to be non posted. This test randomly selects one of the test

sequences described above. Repeat max 10times.

init_test

Runs initialization including TRET exchange. No data packets will be sent.

high_delay_pkt_test

Constrain the delay between packets to be above 90 flit times.

simple_test (default)

This test sends up to 10 unconstrained packets sequences with up to 50 packets per

sequence.

sleep_mode_test

Send a packet sequence, enter sleep, exit sleep, (repeat). Warnings that might be

thrown by the BFM (violation of timing tOP) can be safely ignored.

small_pkt_hdelay_test

This test combines the constraints of small_pkt_test and hdelay_pkt_test.

small_pkt_test

Constrain packets to be small (max length = 2 Flits).

small_pkt_zdelay_test

This test combines the constraints of small_pkt_test and zdelay_pkt_test.

zero_delay_pkt_test

Constrain the delay between packets to be zero.

error_pkt_test

This test enables error injection within a packet.. This test also enables poisoning of

packets. The error rates can be configured per link in the hmc_local_link_config class.

Setting the error rates to high will slow down or even crash this test.

bit_error_test

This test enables the error injector. Errors will be injected on both links if the corre-

sponding Link is in LINK_UP State. Corrupt Packets will be treated as HMC_NULL

Packets since the Command might be corrupt. The error rates can be configured per

link in the hmc_local_link_config class. Setting the error rates to high will slow down or

even stop this test.
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6.7 Error Injection / Link Retry

Automatic, randomized error injection is enabled when running the bit_error (errors in both

directions) or error_pkt test (only response direction) with the CAG HMC model. Error

injection for the BFM can be configured in hmc_link_config.sv. The openHMC verification

environment was tested with BFM 28965. For this revision, error injection in response

packets can be used without any limitations (cfg_rsp_* in hmc_link_config.sv). CAG does

not recommend error injection in request packets due to issues with the BFM. However,

request packet error injection may be used when sequence number poisoning is left out

(cfg_req_seq=0 in hmc_link_config.sv !).
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A » Acronyms

BFM Bus Functional Model

CAG Computer Architecture Group

CDR Clock-Data Recovery

DEMUX De-Multiplexer

DUT Device Under Test

FPW FLITs Per Word

FRP Forward Retry Pointer

FSM Finite State Machine

HMC Hybrid Memory Cube

HMCC Hybrid Memory Cube Consortium

LFSR Linear Feedback Shift Register

LUT Look-Up Table

PLL Phase-Locked Loop

RF Register File

RRP Return Retry Pointer

RTC Return Token Count

RX Receive

SEQ Sequence Number

TRET Token Return

TX Transmit

UVM Universal Verification Methodology
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B » Register File Contents

Note that some field-widths depend on the parameter NUM_LANES. All bits that are not

listed are reserved and tied to logical 0.

Legend

HW Hardware access rights (through port list)

SW Software access rights (through RF interface)

wo write-only

ro read-only

rw read-write

Table B.1: Status General

Field Bit Width

[Bits]

Description & Encoding Res HW SW

link_up 0 1 Link is ready for operation 0 wo ro

link_training 1 1 Link training in progress 0 wo ro

sleep_mode 2 1 HMC is in Sleep Mode 0 wo ro

FERR_N 3 1 HMC FERR_N signal 0 wo ro

lanes

_reversed

4 1 0: Normal Operation

1: Lanes reversed (lane 15/8 with 0, ...)
0 wo ro

phy_tx_ready 8 1 SerDes TX reset is done 0 wo ro

phy_rx_ready 8 1 SerDes RX reset is done 0 wo ro

hmc_tokens

_remaining

16+:
LOG_MAX_HMC_

TOKENS

LOG_MAX_
HMC_

TOKENS

Number of Tokens remaining in the HMC

input buffer

0 wo ro

rx_tokens

_remaining

32+:
LOG_MAX_RX_

TOKENS

LOG_MAX_
RX_

TOKENS

Number of Tokens remaining in

the rx_link input buffer (if param

DBG_RX_TOKEN_MON = 1)

0 wo ro

lane _polarity

_reversed

48+:
NUM_LANES

NUM
LANES

0: Normal Operation

1: Data is logically inverted lane-by-lane
0 wo ro
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Table B.2: Status Init

Field Bit Width
[Bits]

Description & Encoding Res HW SW

lane
_descramblers
_locked

0+:
NUM_LANES

NUM
LANES

Lane by lane descrambler locked 0 wo ro

descrambler
_part
_aligned

16+:
NUM_LANES

NUM
LANES

Lane by lane descrambler partially
aligned

0 wo ro

descrambler
_aligned

32+:
NUM_LANES

NUM
LANES

Lane by lane descrambler fully aligned 0 wo ro

all_descramblers
_aligned

48 1 All descramblers are aligned 0 wo ro

status_init_rx
_init_state

51:49 3 Init status of the RX link
3’b000: HMC_DOWN
3’b001: HMC_WAIT_FOR_NULL
3’b010: HMC_NULL
3’b011: HMC_TS1_PART_ALIGN
3’b100: HMC_TS1_FIND_REF
3’b101: HMC_TS1_ALIGN
3’b110: HMC_NULL_NEXT
3’b111: HMC_UP

0 wo ro

status_init_tx
_init_state

53:53 2 Init status of the TX link
2’b00: INIT_TX_NULL_1
2’b01: INIT_TX_TS1
2’b10: INIT_TX_NULL_2
2’b11: INIT_DONE

0 wo ro

Table B.3: Other Counter (Each Entry equals one Register)

Field # Bits Description & Encoding Reset HW SW
tx_link_retries 32 Incremental 1-bit counter: Number of Link re-

tries performed on TX
0 wo ro

errors_on_rx 32 Incremental 1-bit counter: Number of success-
ful HMC retries performed

0 wo ro

run_length
_bit_flip

32 Incremental 1-bit counter: How many bit_flips
were performed by the run length limiter

0 wo ro

error_abort
_not_cleared

32 Incremental 1-bit counter: Indicates the num-
ber of link retry attemps that timed out

0 wo ro

counter_reset 1 Reset counter in the ’Other Counter’ category.
This bit is automatically cleared

0 wo ro
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Table B.4: Performance Counter (Each Entry equals one Register)

Field # Bits Description & Encoding Reset HW SW
poisoned_packets 64 Number of poisoned packets received 0 wo ro
sent_np 64 Number of non posted requests issued (includ-

ing all types)
0 wo ro

sent_p 64 Number of Posted Data Write requests issued 0 wo ro
sent_r 64 Number of Read Data requests issued 0 wo ro
rcvd_rsp 64 Number of responses received 0 wo ro

Table B.5: Control

Field Bit Width
[Bits]

Description & Encoding Res HW SW

p_rst_n 0 1 Active low HMC reset 0 ro rw
hmc_init_cont_set 1 1 Allow descramblers to

lock
0 ro rw

set_hmc_sleep 2 1 Request HMC sleep
mode. Sleep mode
can be monitored by
the ’sleep_mode’ field
in the Status General
Register

0 ro rw

scrambler
_disable

3 1 Disable Scrambler and
Descrambler for testing
purposes

0 ro rw

run_length
_enable

4 1 Disable the run length
limiter in the TX scram-
bler logic

0 ro rw

first
_cube_ID

7:5 3 Set the Cube ID of the
first HMC connected.
Used in irtry packets

0 ro rw

debug
_dont_send_tret

8 1 Prohibit controller from
sending any TRET
packets

0 ro rw

debug
_halt_on
_error_abort

9 1 HALT tx_link after
rx_link entered error
abort

0 ro rw

debug
_halt_on
_tx_retry

10 1 HALT tx_link after per-
forming a retry

0 ro rw

rx_token
_count

16+:
LOG_MAX_RX_

TOKENS

10 Set the input buffer
space in the RX block

{LOG_MAX_RX_TOKENS{1’b1}} ro rw

irtry_received
_threshold

36:32 5 Set the number of irtry
packets to be received
to trigger retry

0x10 ro rw

irtry_to
_send

44:40 5 Set the number of irtry
to be sent

0x18 ro rw
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C » Revision History

1.5 Since the release 1.5 comes with a lot changes and optimizations the following listing

only summarizes some of the most important changes. In general it is recommended

to once again read the full documentation.

Controller

• Removed many obsolete reset values (in case target is an FPGA)

• Shift pointer extraction in RX link a stage towards the input to reduce pointer

delays

• Introduced new parameters to provide much more control over implementation

results

• Integrate Xilinx specific FIFOs and counters

• General optimization to ease timing closure

Testbench

• Added CAG HMC verification environment
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