OpenCores

WWWw.opencores.org

\X

openMSP430

Author: Olivier GIRARD
olgirard@gmail.com

Rev. 1.17
November 6, 2017

http://www.opencores.org/

(J
\> OpenCores Nov 6, 2017

WWW.Opencores.org Rev 1.17 ii

http://www.opencores.org/

Revision History

Rev. | Date Author Description
1.0 August 4th, 2009 GIRARD
1.1 August 30th, 2009 GIRARD
1.2 December 27", 2009 GIRARD
1.3 December 29" 2009 GIRARD
1.4 January 12", 2010 GIRARD
1.5 March 7%, 2010 GIRARD
1.6 August 1%, 2010 GIRARD
1.7 August 18" 2010 GIRARD
1.8 March 1%, 2011 GIRARD
1.9 June 6%, 2011 GIRARD
1.10 | March 20", 2012 GIRARD
1.11 July 15", 2012 GIRARD
1.12 | November 27", 2012 GIRARD
1.13 | February 24", 2013 GIRARD
1.14 | December 17%, 2013 GIRARD
1.15 | May 19" 2015 GIRARD
1.16 | Dec 5" 2016 GIRARD
1.17 | Nov 6™ 2017 GIRARD

Contents

1. OVERVIEW....irtinninnninnnnsnnsssnsssesssasssssssasss 1
2. CORE.eeerteenrenninsnenssenssesssnssssesssnessssssssssssssssassssssssssssasssssssssssssssssassssasssssssassssassssasssns 4
3. PERIPHERALS 22
4. DMA INTERFACE......uuinuinnninnnnnnsannsnnsssnsssnssssessssssssesssssssssssssssssssssssssasssssssssasssns 33
5. SERIAL DEBUG INTERFACEK........iiniiniennnsnensnnsnnssessncssesssessasssssssssssssssssaess 43
6. INTEGRATION AND CONNECTIVITY 59
7. ASIC IMPLEMENTATION ...ccouiiiiiensneinesrensacssanssesssessasssessaessassssssssssssssssssessassssssas 77
8. AREA AND SPEED ANALYSIS cuutrriinninninnsnensnensneessnssssessncsssesssssssssssssssssesssssssassss 94
9. SOFTWARE DEVELOPMENT TOOLS......cuoeverruerinrrensnesensaessanssnssaessaessessasssassns 98

10. FILE AND DIRECTORY DESCRIPTION 11

Introduction

1.

Overview

Support this project

—

LA

The openMSP430 is a synthesizable 16bit microcontroller core written in Verilog. It is
compatible with Texas Instruments' MSP430 microcontroller family and can execute the
code generated by an MSP430 toolchain in a near cycle accurate way.

The core comes with some peripherals (16x16 Hardware Multiplier, Watchdog, GPIO,
TimerA, generic templates), with a DMA interface, and most notably with a two-wire
Serial Debug Interface supporting the MSPGCC GNU Debugger (GDB) for in-system
software debugging.

While being fully FPGA friendly, this design is also particularly suited for ASIC
implementations (typically mixed signal ICs with strong area and low-power
requirements).

In a nutshell, the openMSP430 brings with it:

Low area (8k-Gates), without hidden extra infrastructure overhead (memory
backbone, IRQ controller and watchdog timer are already included).

Excellent code density.
Good performances.
Build-in power and clock management options.

Multiple times Silicon Proven.

http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://www.ti.com/litv/pdf/slau049f
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=K2VBGQU7C4ZQY
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=SD9F58JAMB8XA
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=QVSEARCQD88FQ
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=6CQD25UJLD2CY
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=EQFEFFJZFCXBW
http://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=MG8M87BXDL3K8

Download

Design

The complete tar archive of the project can be downloaded here (OpenCores account
required).

The following SVN command can be run from a console (or GUI):

svn export http://opencores.org/ocsvn/openmsp430/openmsp430/trunk/ openmsp430

Changelog

* The Core's Changel og lists the CPU updates
* The Tools' Changelog lists the Software development tools updates.

. Sugscribe to the following RSS feed to keep yourself informed about ALL
updaates.

Documentation

Being fully compatible with the original MSP430 architecture, TI's official
documentation is applicable: SLAU49F.PDF

In addition, the openMSP430 online documentation is also available in pdf.

Features & Limitations

Features

* Core:
» Full instruction set support.
 Interrupts: IRQs (x14, x30 or x62), NMI (x1).
* Low Power Modes (LPMx).
* Configurable memory size for both program and data.
» Scalable peripheral address space.
* DMA interface.
« Two-wire Serial Debug Interface (I°C or UART based) with GDB support
(Nexus class 3, w/o trace).
* FPGA friendly (option for single clock domain, no clock gate).
» ASIC friendly (options for full power & clock management support).
* Small size (Xilinx: 1650 LUTs / Altera: 1550 LEs / ASIC: 8k gates).

http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/doc/openMSP430.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://opencores.org/websvn,rss?repname=openmsp430&path=/openmsp430/&isdir=1
http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/ChangeLog_tools.txt
http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/ChangeLog_core.txt
http://www.syntevo.com/smartsvn/index.html
http://opencores.org/download,openmsp430

* Peripherals:
* 16x16 Hardware Multiplier.
» Basic Clock Module.
* Watchdog.
* Timer A (FPGA only).
* GPIO (FPGA only).
» Templates for 8 and 16 bit peripherals.
* Graphic Controller (openGFX430).

Limitations

* Core:
* Instructions can't be executed from the data memory.

Links

Development has been performed using the following freely available (excellent) tools:

 Icarus Verilog : Verilog simulator.

 GTKWave Analyzer : Waveform viewer.

* MSPGCC : GCC toolchain for the Texas Instruments MSP430 MCUs.
» ISE WebPACK : Xilinx's free FPGA synthesis tool.

A few MSP430 links:

e Wikipedia: MSP430

* TI: MSP430x1xx Family User's Guide

» TI: MSP430 Competitive Benchmarking
e TI: a list of available MSP430 Open Source projects out there on the web today.

Legal information

MSP430 is a trademark of Texas Instruments, Inc. This project is not affiliated in any
way with Texas Instruments. All other product names are trademarks or registered
trademarks of their respective owners.

http://processors.wiki.ti.com/index.php/Open_Source_Projects_-_MSP430
http://www.ti.com/lit/an/slaa205c/slaa205c.pdf
http://www.ti.com/litv/pdf/slau049f
http://en.wikipedia.org/wiki/MSP430
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://gtkwave.sourceforge.net/
http://iverilog.icarus.com/
http://opencores.org/project,opengfx430

Table of content

1. Intro
2. Core

duction

2.1 Design structure
2.2 Limitations
2.3 Configuration
» 2.3.1 Basic System Configuration
» 2.3.2 Advanced System Configuration

» 2.3.3 Expert System Configuration
e 2.3.4 Parameters For Multi-Core Systems

2.4 Memory mapping
2.5 Interrupt mapping
2.6 Pinout
2.7 Instruction Cycles and Lengths
2.8 Serial Debug Interface
2.9 Benchmark results
e 2.9.1 Dhrystone
e 2.9.2 CoreMark

Core

1. Introduction

The openMSP430 is a 16-bit microcontroller core compatible with TI's MSP430 family
(note that the extended version of the architecture, the MSP430X, isn't supported by this
IP). It is based on a Von Neumann architecture, with a single address space for
instructions and data.

Depending on the selected configuration, this design can either be:

* FPGA friendly: the core doesn't contain any clock gate and has only a single
clock domain. As a consequence, in this mode, the Basic Clock Module peripheral
has a few limitations.

* ASIC friendly: the core contains up to all clock management options (clock
muxes & low-power modes, fine grained clock gating, ...) and is also ready for
scan insertion. In this mode, the Basic Clock Module offers all features listed in
the official documentation.

It is to be noted that this IP doesn't contain the instruction and data memory blocks
internally (these are technology dependent hard macros which are connected to the IP
during chip integration). However the core is fully configurable in regard to the supported
RAM and/or ROM sizes.

http://www.ti.com/litv/pdf/slau049f
http://www.ti.com/litv/pdf/slau049f

2. Core

2.1 Design structure
The following diagram shows the openMSP430 design structure:

Program Memory interface

Data Memory interface

Peripheral bus

ERENER |

Peripherals

DMA controller,
Bootloader,
Memory-BIST,

* Frontend: This module performs the instruction Fetch and Decode tasks. It also
contains the execution state machine.

* Execution unit: Containing the ALU and the register file, this module executes
the current decoded instruction according to the execution state.

* Serial Debug Interface: Contains all the required logic for a Nexus class 3
debugging unit (without trace). Communication with the host is done with a
standard two-wire interface following either the UART 8N1 or I°C serial protocol.

* Memory backbone: This block performs a simple arbitration between the
frontend, execution-unit, DMA and Serial-Debug interfaces for program, data and
peripheral memory accesses.

* Basic Clock Module: Generates MCLK, ACLK, SMCLK and manage the low
power modes.

* SFRs: The Special Function Registers block contains diverse configuration
registers (NMI, Watchdog, ...).

* Watchdog: Although it is a peripheral, the watchdog is directly included in the
core because of its tight links with the NMI interrupts and the PUC reset
generation.

* 16x16 Multiplier: The hardware multiplier peripheral is transparently supported
by the GCC compiler and is therefore located in the core. It can be included or
excluded at will through a Verilog define.

2.2 Limitations

The known core limitations are the following:

* Instructions can't be executed from the data memory.

2.3 Configuration

It is possible to configure the openMSP430 core through the openMSP430 defines.v file
located in the r#l directory (see file and directory description).

In this section, three sets of adjustable user parameters are discussed in order to
customize the core. A fourth set is available for ASIC specific options and will be
discussed in the ASIC implementation section.

2.3.1 Basic System Configuration

The basic system can be adjusted with the following set of defines in order to match the
target system requirements.

// Note: the sum of program, data and peripheral memory spaces must not
// exceed 64 kB

// Program Memory Size:
// Uncomment the required memory size

// define PMEM_SIZE_CUSTOM
// define PMEM_SIZE 59 KB
// define PMEM_SIZE 55 KB
/7 define PMEM_SIZE 54 KB
// define PMEM_SIZE 51 KB
// define PMEM_SIZE_48 KB
// define PMEM_SIZE 41 KB
// define PMEM_SIZE 32 KB
// define PMEM_SIZE 24 KB

// define PMEM_SIZE_16_KB
// define PMEM_SIZE 12 KB
// define PMEM_SIZE 8 KB
// define PMEM_SIZE 4 KB
“define PMEM_SIZE_ 2 KB

// define PMEM_SIZE 1 KB

// Data Memory Size:

// Uncomment the required memory size
F e e T T
// define DMEM_SIZE_CUSTOM

// define DMEM_SIZE_32_ KB

// define DMEM_SIZE_ 24 KB

// define DMEM_SIZE_16_ KB

// define DMEM_SIZE_ 160 KB

// define DMEM_SIZE_8 KB

// define DMEM_SIZE_5 KB

// define DMEM_SIZE_ 4 KB

// define DMEM_SIZE 2p5 KB

// define DMEM_SIZE 2 KB

// define DMEM SIZE 1 KB

// define DMEM_SIZE_512_B

// define DMEM_SIZE_256_B

‘define DMEM_SIZE 128 B

// Include/Exclude Hardware Multiplier
“define MULTIPLIER

// Include/Exclude Serial Debug interface
“define DBG_EN

The only design considerations at this stage are:

* Make sure that the program and data memories have the correct size :-P

. g}‘lf Igum of program, data and peripheral memory space MUST NOT exceed

Note: when selected, full custom memory sizes can be specified in the “Expert System
Configuration” section.

2.3.2 Advanced System Configuration

In this section, some additional features are available in order to match the needs of more
experienced users.

// This 5 bit field can be freely used in order to allow
// custom identification of the system through the debug

// interface.
// (see CPU_ID.USER_VERSION field in the documentation)

// When excluded, the following functionality will be
// lost:

// - Watchog (both interval and watchdog modes)

// - NMI interrupt edge selection

// - Possibility to generate a software PUC reset
D e L LT
“define WATCHDOG
e e T T
// Include/Exclude DMA interface support
e e LT T

// Indicates the number of interrupt vectors supported
// (16 ,32 or 64).

“define IRQ_16
// define IRQ_32
// define IRQ_64

e e LT T
// Input synchronizers

R e e
// In some cases, the asynchronous input ports might

// already be synchronized externally.

// If an extensive CDC design review showed that this

// is really the case, the individual synchronizers

// can be disabled with the following defines.

//

// Notes:

// - all three signals are all sampled in the MCLK domain
//

// - the dbg_en signal reset the debug interface
// when 0. Therefore make sure it is glitch free.
//

“define SYNC_NMI

// define SYNC_CPU_EN
// define SYNC_DBG_EN

// Peripheral Memory Space:

//
//
//
//
//
//
//
//

7a
7a
/7"
/7"
/7"
e
/7"

The original MSP430 architecture map the peripherals
from 0x0000 to OxO1lFF (i.e. 512B of the memory space).
The following defines allow you to expand this space
up to 32 kB (i.e. from 0x0000 to Ox7fff).

As a consequence, the data memory mapping will be
shifted up and a custom linker script will therefore
be required by the GCC compiler.

define PER_SIZE CUSTOM

define PER_SIZE 32 KB

define PER_SIZE 16 KB

define PER_SIZE_8_ KB

define PER_SIZE 4 KB

define PER_SIZE 2 KB

define PER_SIZE 1 KB

“define PER_SIZE 512 B

//
//
//
//
//
//
//

Defines the debugger CPU_CTL.RST_BRK_EN reset value
(CPU break on PUC reset)

When defined, the CPU will automatically break after

a PUC occurrence by default. This is typically useful
when the program memory can only be initialized through
the serial debug interface.

“define DBG_RST_BRK_EN

Design consideration at this stage are:

Setting a peripheral memory space to something else than 512B will shift the data
memory mapping up, which in turn will require the use of a custom linker script.
If you don't know what a linker script is and if you don't want to know what it is,
you should probably not modify this section.

g‘f‘lﬁ Igum of program, data and peripheral memory space MUST NOT exceed

Note: when selected, full custom peripheral memory space can be specified in the
“Expert System Configuration” section.

2.3.3 Expert System Configuration

In this section, you will find configuration options which will be relevant for roughly
0.1% of the users (according to a highly reliable market analysis ;-)).

10

// IMPORTANT NOTE: Please update following configuration options ONLY if
// you have a good reason to do so... and if you know what
// you are doing :-P

//==

A e e
// Select serial debug interface protocol

J] mmm e e e oo
// DBG_UART -> Enable UART (8N1l) debug interface

// DBG_I2C -> Enable I2C debug interface

“define DBG_UART
// define DBG_I2C

// For multicore systems, a common I2C broadcast address
// can be given to all oMSP cores in order to

// synchronously RESET, START, STOP, or STEP all CPUs

// at once with a single I2C command.

// If you have a single openMSP430 in your system,

// this option can stay commented-out.

// Number of hardware breakpoint units (each unit contains
// two hardware address breakpoints):

// - DBG_HWBRK_O -> Include hardware breakpoints unit 0

// - DBG_HWBRK_1 -> Include hardware breakpoints unit 1

// - DBG_HWBRK_2 -> Include hardware breakpoints unit 2

// - DBG_HWBRK_ 3 -> Include hardware breakpoints unit 3

// Please keep in mind that hardware breakpoints only

// make sense whenever the program memory is not an SRAM
// (i.e. Flash/OTP/ROM/...) or when you are interested
// in data breakpoints (btw. not supported by GDB).

// define DBG_HWBRK_0
// define DBG_HWBRK_1
// define DBG_HWBRK_ 2
// define DBG_HWBRK_3

// When enabled this feature allows the hardware breakpoint
// units to stop the cpu whenever an instruction or data

// access lays within an address range.

// Note that this feature is not supported by GDB.

// Custom Program/Data and Peripheral Memory Spaces

11

// The following values are valid only if the
// corresponding *_SIZE_CUSTOM defines are uncommented:

//

// - *_SIZE : size of the section in bytes.

// - *_AWIDTH : address port width, this value must allow
// to address all WORDS of the section

// (i.e. the *_SIZE divided by 2)
e e e
// Custom Program memory (enabled with PMEM_SIZE_ CUSTOM)
“define PMEM_CUSTOM_AWIDTH 10

‘define PMEM_CUSTOM_SIZE 2048

// Custom Data memory (enabled with DMEM_SIZE_CUSTOM)
“define DMEM_CUSTOM_AWIDTH 6

*define DMEM_CUSTOM_SIZE 128

// Custom Peripheral memory (enabled with PER_SIZE CUSTOM)
“define PER_CUSTOM_AWIDTH 8

“define PER_CUSTOM SIZE 512

R R e e L L LR
// ASIC version

F

// When uncommented, this define will enable the
// ASIC system configuration section (see below) and
// will activate scan support for production test.

//

// WARNING: if you target an FPGA, leave this define

// commented.
e e

// define ASIC

Design consideration at this stage are:
* This is the expert section... so you know what your are doing, right ;-)

All remaining defines located after the ASIC section in the openMSP430_defines.v file
are system constants and MUST NOT be edited.

2.3.4 Parameters For Multi-Core Systems

In addition to the define file, two Verilog parmaeters are available to facilitate software
development on multi-core systems.

For example, in a dual-core openMSP430 system, the cores can be instantiated as
following:

openMSP430 #(.INST_NR (@), .TOTAL_NR(1)) openMSP430 core 0 (
)
openMSP430 #(.INST_NR (1), .TOTAL_NR(1)) openMSP430_core_1 (

)

12

The values of these parameters are then directly accessible by software through the
CPU_NR register of the SFR peripheral.

For example, if both cores share the same program memory, the software can take
advantage of this information as following:

int main(void) {
if (CPU_NR==0x0100) {
main_core_0(); // Main routine call for core 0
}
if (CPU_NR==0x0101) {
main_core_1(); // Main routine call for core 1
}
}

2.4 Memory mapping

As discussed earlier, the openMSP430 memory mapping is fully configurable.

The basic system configuration section allows to adjust program and data memory sizes
while keeping 100% compatibility with the pre-existing linker scripts provided by
MSPGCC (or any other toolchain for that matter).

However, an increasing number of users saw the 512B space available for peripherals in
the standard MSP430 architecture as a limitation. Therefore, the advanced system
configuration section gives the possibility to up-scale the reserved peripheral address
space anywhere between 512B and 32kB. As a consequence, the data memory space will
be shifted up, which means that the linker script of your favorite toolchain will have to be
modified accordingly.

The following schematic should hopefully summarize this:

0x10000 0x10000

PFOQ) PMEM_SIZE Program PMEM_SIZE
Memory Memory
0x10000-PMEM _SIZE 0x10000- PMEM_SIZE
Unused Unused
0x02004+DMEM_SIZE PER_SIZE+DMEM SIZE
DMEM_SIZE DMEM_SIZE
0x0200 PER_SIEZE
Peripheral 2B Peripheral PER. SIZE
Space Space

0x0000 0x0000

Basic System Configuration
(standard MSP430 memory mapping)

Advanced System Configuration

(modified MSP430 memory mapping,
customized linker script reguired)

2.5 Interrupt mapping

The number of supported interrupts is configurable with the IRQ xx macros.

The interrupt vectors are then mapped as following:

0xFFFE
0xFFEFC
0xFFFA
0xFFF8
0xFFF&
0xFFF4
0xFFF2
0xFFFO
0xFFEE
0xFFEC
0xFFEA
0xFFES&
0xFFE&
0xFFE4
0xFFE2
0xFFEQ

16 IRQs:

“define TRO_16
/i define TRO_32
fdefine IR0 G4

0xFFFE
0xFFFC
0xFFFA
0xFFF&
0xFFF&
0xFFF4
0xFFF2
0xFFFO
0xFFEE
0xFFEC

0xFFDO
0xFFCE
0xFFCC
0xFFCA
0xFFCE
0xFFC&
0xFFC4
0xFFC2
0xFFCO

32 IRQS: /s define TRO_16
“define IRO_32
/4 define TRQ_64

0xFFFE
0xFFFC
0xFFFA
0xFFF&
0xFFF&
0xFFF4
0xFFF2
0xFFFO
0xFFEE
0xFFEC

0xFFC2
0xFFCO
0xFFEE
0xFFBC
0xFFBA
0xFFEE

0xFF20
0xFF8E
OxFF&C
0xFF8A
0xFF&E
0xFF&8&
0xFF&4
0xFFg82
0xFF&80

64 IRQS: // define IRO 16
A4 define TRE_32
“define IR0 64

14

2.6 Pinout

The full pinout of the openMSP430 core is provided in the following table:

Port Name D.l rect Width Cloclf Description
ion Domain
Clocks
Enable CPU code execution
<async> .
cpu_en Input 1 4 |(asynchronous and non-glitchy).
or mclk .
Set to 1 if unused.
dco_clk Input 1 - Fast oscillator (fast clock)
Low frequency oscillator (typ. 32kHz)
Iixt_clk Input ! ~ |Set to 0 if unused.
mclk Output 1 - Main system clock
aclk en Output 1 mclk |[FPGA ONLY: ACLK enable
smclk en Output 1 mclk |[FPGA ONLY: SMCLK enable
dco_enable Output 1 dco clk |JASIC ONLY: Fast oscillator enable
ASIC ONLY: Fast oscillator wakeup
dco_wkup Output 1 <async> (asynchronous)
Ifxt enable Output 1 1t clk ASIC ONLY: Low frequency oscillator
- — " |enable
It wkup Output 1 <async> ASIC ONLY: Low frequency oscillator
- wakeup (asynchronous)
aclk Output 1 - ASIC ONLY: ACLK
smclk Output 1 - ASIC ONLY: SMCLK
ASIC ONLY: System Wake-up
wkup Input 1 <async> |(asynchronous and non-glitchy)
Set 0 if unused.
Resets
puc_rst Output 1 mclk |Main system reset
reset 1 Input 1 <async> Reset Ifm (active low, asynchronous and
- non-glitchy)
Interrupts
irq Input ‘IRQINR_Z mclk |Maskable interrupts (one-hot signal)
nmi Input 1 <async> |[Non-maskable interrupt (asynchronous
or mclk? [and non-glitchy)

15

Set to 0 if unused.

irq_acc Output IRQ]NR-Z mclk |Interrupt request accepted (one-hot signal)
Program Memory interface
pmem_addr Output A:v}:,fx{‘l mclk |Program Memory address
pmem_cen Output 1 mclk |Program Memory chip enable (low active)
pmem_din Output| 16 mclk |Program Memory data input (optional?)
pmem_dout Input 16 mclk |Program Memory data output
pmem_wen Output| 2 melk Prqgram Mfamorzy write byte enable (low
active) (optional®)
Data Memory interface
dmem_addr Output ;Vl?,lleET]\:I] mclk |Data Memory address
dmem_cen Output 1 mclk |Data Memory chip enable (low active)
dmem_din Output| 16 mclk |Data Memory data input
dmem_dout Input 16 mclk |Data Memory data output
dmem_wen Output| 2 melk DaFa Memory write byte enable (low
active)
External Peripherals interface
per_addr Output| 14 mclk |Peripheral address
per_din Output| 16 mclk |Peripheral data input
per_dout Input 16 mclk |Peripheral data output
per_en Output 1 mclk |Peripheral enable (high active)
per_we Output| 2 mclk |Peripheral write enable (high active)
Direct Memory Access interface
dma_addr Input 15 mclk |Direct Memory Access address
dma_din Input 16 mclk |Direct Memory Access data input
dma_dout Output| 16 mclk |Direct Memory Access data output
Direct Memory Access enable
dma en Input 1 mclk (high active)
. Direct Memory Access priority
dma_priority Input 1 mclk (0:low / 1:high)
dma ready Output 1 mclk |Direct Memory Access is complete
Direct Memory Access response
dma_resp Output 1 mclk (0:Okay / 1: Error)
dma we Input 2 mclk |Direct Memory Access write byte enable

16

(high active)

ASIC ONLY: DMA Wake-up

dma_whkup Input ! ~async> (asynchronous and non-glitchy)

Serial Debug interface
dbg en Input 1 ;fzglcl; Debug interface enable (asynchronous) *
dbg freeze Output 1 mclk |Freeze peripherals

dbg uart_txd Output 1 mclk |Debug interface: UART TXD

Debug interface: UART RXD

dbg uart rxd Input 1 <async> (asynchronous)

dbg i2¢ addr Input 7 mclk |Debug interface: [2C Address

Debug interface: 12C Broadcast Address

dbg_i2¢_broadcast| Input 7 mclk (for multicore systems)

dbg i2¢ scl Input 1 <async> |Debug interface: 12C SCL (asynchronous)
dbe i2¢ sda in Input 1 <async> Debug interface: 12C SDA IN
— == (asynchronous)
dbg i2c sda out |Output 1 mclk |Debug interface: 2C SDA OUT
Scan

ASIC ONLY: Scan enable (active during

scan_enable Input 1 dco clk scan shifting)

scan_mode Input 1 <stable> |ASIC ONLY: Scan mode

1. This parameter is declared in the "openMSP430_defines.v" file and defines the
RAM/ROM size or the number of interrupts vectors (16, 32 or 64).

2. These two optional ports can be connected whenever the program memory is a RAM.
This will allow the user to load a program through the serial debug interface and to use
software breakpoints.

3. When disabled, the debug interface is hold into reset (and clock gated in ASIC mode).
As a consequence, the dbg en port can be used to reset the debug interface without
disrupting the CPU execution.

4: Clock domain is selectable through configuration in the “openMSP430 defines.v” file
(see Advanced System Configuration).

Note: in the FPGA configuration, the ASIC ONLY signals must be left unconnected (for
the outputs) and tied low (for the inputs).

17

2.7 Instruction Cycles and Lengths

Please note that a detailed description of the instruction and addressing modes can be
found in the MSP430x 1xx Family User's Guide (Chapter 3).

The number of CPU clock cycles required for an instruction depends on the instruction
format and the addressing modes used, not the instruction itself.

In the following tables, the number of cycles refers to the main clock (MCLK).
Differences with the original MSP430 are highlighted in green (the original value being

red).

* Interrupt and Reset Cycles

Action

No. of Cycles

Length of Instruction

Return from interrupt (RETI)

1

Interrupt accepted

WDT reset

Reset (!RST/NMI)

EE IS e O]

* Format-II (Single Operand) Instruction Cycles and Lengths

No. of Cycles
Addressing Mode Length of Instruction
RRA, RRC, SWPB, SXT |PUSH |CALL

Rn 3 34) 1

@Rn 4 4 1
@Rn+ 405) | 405 1

#N N/A 4 5 2

X(Rn) 4 5 5 2

EDE 5 5 2
&EDE 5 5 2

* Format-1II (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute,
regardless of whether the jump is taken or not.

18

http://www.ti.com/litv/pdf/slau049f

* Format-I (Double Operand) Instruction Cycles and Lengths

Addressing Mode

Src

Dst

No. of Cycles

Length of Instruction

Rm

PC

X(Rm)

EDE

&EDE

@Rn

PC

w

x(Rm)

EDE

&EDE

@Rn+

PC

X(Rm)

EDE

&EDE

#N

PC

x(Rm)

EDE

&EDE

X(Rn)

PC

N

X(Rm)

EDE

&EDE

EDE

PC

N

x(Rm)

EDE

&EDE

WIWIWIN| N W WIWININIW W WIN NI = =N =I =N —= -

19

Rm 3 2

PC 4 (3) 2

&EDE | x(Rm) 6 3
EDE 6 3

&EDE 6 3

2.8 Serial Debug Interface

All the details about the Serial Debug Interface are located here.

2.9 Benchmark results

2.9.1 Dhrystone (DMIPS/MHz)

Dhrystone is known for being susceptible to compiler optimizations (among other issues).
However, as it is still quite a popular metric, some results are provided here (ranging
from 0.30 to 0.45 DMIPS/MHz depending on the compiler version and options).

Note that the used C-code is available in the repository here and here.

Compiler options

Dhrystone flavor -Os -02 -03

Compiler version
mspgcc v4.4.5 0.30 0.32 0.33
Dhrystone v2.1 mspgcc v4.6.3 0.37 0.39 0.40
(common version) | gh0cc v4.7.2 037 037 @ 037
msp430-elf v4.9.1 0.26 0.36 0.37
mspgcc v4.4.5 0.30 0.30 0.31
Dhrystone v2.1 mspgcc v4.6.3 0.37 0.44 0.45
(MCU adapted) | ygp0cc v4.7.2 037 @ 044 045
msp430-elf v4.9.1 0.26 0.36 0.37

20

http://www.ecrostech.com/Other/Resources/Dhrystone.htm
http://ftp.unicamp.br/pub/unix-c/benchmark/system/
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fdhrystone_4mcu%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_dhrystone_4mcu_
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fdhrystone_v2.1%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_dhrystone_v2.1_

2.9.2 CoreMark (Coremark/MHz)

CoreMark tries to address most of Dhrystone's pitfall by preventing the compiler to
optimize some code away and using "real-life" algorithm.

Note that the used C-code is available in the repository here.

Compiler options
-Os -02 -03

Compiler version

mspgcc v4.4.5 0.78 0.85 0.83
CoreMark v1.0 mspgcc v4.6.3 0.74 0.91 0.87
(official version) mspgec v4.7.2 0.67 = 093 | 0.90
msp430-elf v4.9.1 0.58 0.67 n.a.

21

http://www.coremark.org/
http://opencores.org/websvn,listing?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2Fcore%2Fsim%2Frtl_sim%2Fsrc-c%2Fcoremark_v1.0%2F#path_openmsp430_trunk_core_sim_rtl_sim_src-c_coremark_v1.0_

3.

Peripherals

Table of content

e 1. Introduction
» 2. Peripherals
e 2.1 System Peripherals
* 2.1.1 Basic Clock Module: FPGA
* 2.1.2 Basic Clock Module: ASIC
« 2.1.3SFR
* 2.1.4 Watchdog Timer
* 2.1.5 16x16 Hardware Multiplier
e 2.2 External Peripherals
o 2.2.1 Digital I/O (FPGA ONLY)
e 232 Timer A (FPGA ONLY)

22

1. Introduction

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

2. Peripherals
2.1 System Peripherals

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration. The followings are directly integrated within the
core because of their tight links with the CPU.

It is to be noted that ALL system peripherals support both ASIC and FPGA versions.

2.1.1 Basic Clock Module: FPGA

In order to make an FPGA implementation as simple as possible (ideally, a non-
professional designer should be able to do it), clock gates are not used in the design
configuration and neither are clock muxes.

With these constrains, the Basic Clock Module is implemented as following:

openMSP430
Basic Clock Module (FPGA)
DIVAX
OSCOFF
re
Low Frequency T__D .
LFXT_CLK Divider
clock source -~ sync 4 ?dgtr_e 112145 -3 ACLK_EN
(F,,=32,768-H2) etection
y
1
High Frequency DCO_CLK
clock source - - MCLK
(=== CPU clock)
‘F
Divider
1— 1/2/4/8 =M SMCLK_EN
Ll scet
SELS DIVSx

23

Note: CPUOFF doesn't switch MCLK off and will instead bring the CPU state machines
in an IDLE state while MCLK will still be running.

In order to 'clock' a register with ACLK or SMCLK, the following structure needs to be

implemented:
w0
] Q

MCLE

For example, the following Verilog code would implement a counter clocked with
SMCLK:

reg [7:0] test_cnt;

always @ (posedge mclk or posedge puc_rst)
if (puc_rst) test_cnt <= 8'h00;
else if (smclk_en) test _cnt <= test_cnt + 8'h01;

Register Description (FPGA)

Register Bit Fields

lfl%“;: Address 716|15]| 4 3 211 0
DCOCTL | 0x0056 not implemented
BCSCTL1 | 0x0057 | unused | DIVAX unused
BCSCTL2 | 0x0058 unused SELS | DIVSx unused

* BCSCTL1.DIVAx :ACLK _EN divider (1/2/4/8)
* BCSCTL2.SELS : SMCLK_EN clock selection (0:DCO_CLK / 1:LFXT_CLK)
« BCSCTL2.DIVSx :SMCLK EN divider (1/2/4/8)

24

2.1.2 Basic Clock Module: ASIC

When targeting an ASIC, up to all clock management options available in the

MSP430x1xx Family User's Guide (Chapter 4) can be included:

openMSP430
Basic Clock Module (ASIC)
D VAX
LFXT_CLK Divider
Low Frequency - v2i4i8 > ACLK
clock source |LFXT_ENABLE . OSCOEE
(LFXT)
LFXT_WKUP m -
- 1 o
Divider
DCO_WKUP olo || L2/ai ?}——PI MCLK
High Frequency /f
clock source |PCO_ENABLE L CPUOFF
(DCO) - 2 5CGo SELMX[L] DIVMx
DCO_CLK
- 1 .
Divider
olo 1/2/4/8 ?}——Fl SMCLK
T e
SELS DIVSx

Additional info can be found in the ASIC implementation section.

25

http://www.ti.com/litv/pdf/slau049f

Register Description (ASIC)

i Bit Fields
Register Address ek
Name 7 6 51 4 3 2 1 0
DCOCTL | 0x0056 not implemented
BCSCTLI1 | 0x0057 unused DIVAx | VA | DV | oaeaie | covas
BCSCTL2 | 0x0058 | SELMXx | unused | DIVMx | SELS DIVSx unused
e BCSCTLI1.DIVAX : ACLK divider (1/2/4/8)

*+ BCSCTL1.DMA_SCG1 : Restore SMCLK with DMA wakeup

* BCSCTL1I.DMA_SCGO : Restore DCO oscillator with DMA wakeup
* BCSCTLI1.DMA_OSCOFF : Restore LFXT oscillator with DMA wakeup
* BCSCTL1.DMA_CPUOFF : Restore MCLK with DMA wakeup

 BCSCTL2.SELMXx
 BCSCTL2.DIVMXx
 BCSCTL2.SELS

* BCSCTL2.DIVSx

: MCLK clock selection (0:DCO_CLK / 1:LFXT_CLK)

: MCLK clock divider (1/2/4/8)

: SMCLK clock selection (0:DCO_CLK / 1:LFXT_CLK)
: SMCLK clock divider (1/2/4/8)

26

2.1.3 SFR

Following the MSP430x1xx Family User's Guide, this peripheral implements flags and
interrupt enable bits for the Watchdog Timer and NMI:

Register
Name

Address

Bit Fields

716151 4 [|3]2]1 0

IE1 0x0000 Reserved NMIIE ! Reserved WDTIE ?

IFG1 0x0002 Reserved |NMIIFG!| Reserved WDTIFG ?

1. These fields are not available if the NMI is excluded (see openMSP430 defines.v)

2: These fields are not available if the Watchdog is excluded (see
openMSP430 defines.v)

In addition, two 16-bit read-only registers have been added in order to let the software
know with which version of the openMSP430 it is running:

Register Bit field
g Address
Name 15014} 13 | 12111 110}9 1 8 171654 3 2 1 0
CPU ID LO 0x0004 PER_SPACE USER_VERSION | ASIC| CPU_VERSION
CPU _ID HI 0x0006 PMEM SIZE | DMEM_SIZE MPY

CPU_NR 0x0008

CPU_TOTAL NR | CPU_INST NR

* CPU_VERSION: Current CPU version.

* ASIC

* USER_VERSION

* PER_SPACE

c MPY

* DMEM_SIZE

* PMEM_SIZE

« CPU_INST_NR
« CPU_TOTAL_NR

: Defines if the ASIC specific features are enabled in the
current openMSP430 implementation.

: Reflects the value defined in the openMSP430_defines.v
file.

: Peripheral address space for the current implementation
(byte size = PER_SPACE*512)

: This bit is set if the hardware multiplier is inclued in the
current implementation.

: Data memory size for the current implementation
(byte size= DMEM_SIZE*128)

: Program memory size for the current implementation
(byte size= PMEM_SIZE*1024)

: Current oMSP instance number (for multicore systems)

: Total number of oMSP instances-1 (for multicore systems)

27

http://www.ti.com/litv/pdf/slau049f

Note: attentive readers will have noted that CPU ID LO, CPU ID HI and CPU_NR are
identical to the Serial Debug Interface register counterparts.

2.1.4 Watchdog Timer

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 10)
have been implemented.

The following parameter in the openMSP430 defines.v file controls if the watchdog timer
should be included or not:

D D e L L L
// Include/Exclude Watchdog timer

f] = mm e e e e e e e e e
// When excluded, the following functionality will be

// lost:

// - Watchdog (both interval and watchdog modes)
// - NMI interrupt edge selection

// - Possibility to generate a software PUC reset
A e e L L

“define WATCHDOG

2.1.5 16x16 Hardware Multiplier

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 7)
have been implemented.

The following parameter in the openMSP430 _defines.v file controls if the hardware
multiplier should be included or not:

// Include/Exclude Hardware Multiplier
“define MULTIPLIER

28

http://www.ti.com/litv/pdf/slau049f
http://www.ti.com/litv/pdf/slau049f

2.2 External Peripherals

The external peripherals labeled with the “FPGA ONLY” tag do not contain any clock
gate nor clock muxes and are clocked with MCLK only. This mean that they don't
support any of the low power modes and therefore are most likely not suited for an ASIC

implementation.

2.2.1 Digital I/0 (FPGA ONLY)

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 9)

have been implemented.

The following Verilog parameters will enable or disable the corresponding ports in order

to save area (i.e. FPGA utilization):

parameter P1_EN =
parameter P2_EN =
parameter P3_EN =
parameter P4_EN =
parameter P5_EN =
parameter P6_EN =

They can be updated as following during the module instantiation (here port 1, 2 and 3

are enabled):

'bl;
'bl;
'b0;
'b0;
'b0;
'b0;

e e Y

gpio #(.P1_EN(1),
.P2_EN(1),
.P3_EN(1),
.P4_EN(0),
.P5_EN(0),
.P6_EN(0)) gpio 0 (

// Enable
// Enable
// Enable
// Enable
// Enable
// Enable

Port
Port
Port
Port
Port
Port

o U A W N

The full pinout of the GPIO module is provided in the following table:

Port Name | Direction | Width Description
Clocks & Resets
mclk Input 1 [Main system clock
puc_rst Input 1 Main system reset
Interrupts

29

http://www.ti.com/litv/pdf/slau049f

irq_portl Output 1 |Port I interrupt
irq_port2 Output 1 [Port 2 interrupt
External Peripherals interface

per_addr Input 8 |Peripheral address

per_din Input 16 |Peripheral data input

per_dout Output 16 |Peripheral data output

per_en Input 1 [Peripheral enable (high active)

per_we Input 2 |Peripheral write enable (high active)
Port 1

pl din Input 8 |Port 1 data input

pl dout Output 8 |Port 1 data output

pl dout en | Output 8 |Port 1 data output enable

pl sel Output 8 |Port 1 function select
Port 2

p2 din Input 8 |Port 2 data input

p2_dout Output 8 |Port 2 data output

p2 dout en | Output 8 |Port 2 data output enable

p2 sel Output 8 |Port 2 function select
Port 3

p3_din Input 8 |Port 3 data input

p3_dout Output 8 |Port 3 data output

p3 _dout en | Output 8 |Port 3 data output enable

p3_sel Output 8 |Port 3 function select
Port 4

p4 din Input 8 |Port 4 data input

p4 _dout Output 8 |Port 4 data output

p4 dout en | Output 8 |Port 4 data output enable

p4 sel Output 8 |Port 4 function select
Port 5

pS_din Input 8 |Port 5 data input

p5_dout Output 8 |Port 5 data output

pS_dout en | Output 8 |Port 5 data output enable

pS_sel Output 8 |Port 5 function select

Port 6

30

p6_din Input 8 |Port 6 data input
p6_dout Output 8 |Port 6 data output

p6 _dout en | Output 8 |Port 6 data output enable
p6_sel Output 8 |Port 6 function select

2.2.2 Timer A (FPGA ONLY)

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 11)
have been implemented.

The full pinout of the Timer A module is provided in the following table:

Port Name | Direction | Width Description
Clocks, Resets & Debug
mclk Input 1 |Main system clock
aclk en Input 1 |ACLK enable (from CPU)
smclk _en Input 1 |SMCLK enable (from CPU)
inclk Input 1 |INCLK external timer clock (SLOW)
taclk Input 1 |TACLK external timer clock (SLOW)
puc_rst Input 1 Main system reset
dbg_freeze Input 1 |Freeze Timer A counter
Interrupts
irq_ta0 Output 1 |Timer A interrupt: TACCRO
irq tal Output 1 |Timer A interrupt: TAIV, TACCR1, TACCR2
irq ta0_acc Input 1 |Interrupt request TACCRO accepted
External Peripherals interface

per_addr Input 8 |Peripheral address
per_din Input 16 |Peripheral data input
per_dout Output 16 |Peripheral data output
per_en Input 1 |Peripheral enable (high active)
per_we Input 2 |Peripheral write enable (high active)

Capture/Compare Unit 0

ta_ccila Input 1 Timer A capture 0 input A
ta_cciOb Input 1 Timer A capture 0 input B
ta_out0 Output 1 Timer A output 0
ta_out0_en Output 1 Timer A output 0 enable

31

http://www.ti.com/litv/pdf/slau049f

Capture/Compare Unit 1

ta ccila Input 1 |Timer A capture 1 input A
ta ccilb Input 1 |Timer A capture 1 input B
ta_outl Output 1 |Timer A output 1

ta_outl en Output 1 |Timer A output 1 enable

Capture/Compare Unit 2

ta cci2a Input 1 |Timer A capture 2 input A
ta_cci2b Input 1 |Timer A capture 2 input B
ta_out2 Output 1 |Timer A output 2

ta out2 en Output 1 |Timer A output 2 enable

Note: for the same reason as with the Basic Clock Module FPGA version, the two
additional clock inputs (TACLK and INCLK) are internally synchronized with the
MCLK domain. As a consequence, TACLK and INCLK should be at least 2 times
slowlier than MCLK, and if these clock are used toghether with the Timer A output unit,
some jitter might be observed on the generated output. If this jitter is critical for the
application, ACLK and INCLK should idealy be derivated from DCO_CLK.

32

4 .
DMA Interface

Table of content

1. Introduction
2. Signal list
3. Protocol
* 3.1 Simple transfer
* 3.2 Transfer with wait states
* 3.3 Multiple transfers
* 3.4 Transfer response
e 3.5 Priority control
* 3.5.1 Data rate control
* 3.5.2 Bootloader case

4 ASIC Implementation
e 4.1 Clock domains
e 4.2 DMA wakeup

33

1. Introduction

The openMSP430 Direct-Memory-Access interface acts as a gateway to the whole logical
64kB memory space and can be enabled be uncommenting the DMA _IF _EN macro in
the "openMSP430 defines.sv" file:

/7 define DMA_IF_EN

It supports the efficient connection of Bootloader, DMA controller, Memory-BIST or any
other hardware unit requiring direct read/write access to the CPU memory space.

The interface is also designed as to reuse the existing arbitration logic within the
memory-backbone and thus minimize to timing costs of its physical implementation (i.e.
no additional muxing layer on an already critical timing path).

An simple system using the DMA interface typically consists of a DMA master directly
connected to openMSP430 core:

DMA
controller

DMA
interface

openMSP430

Program Memory
interface

Data Memory
interface

|

ROM

or

RAM

RAM

L _Perbnira netace 3

Peripheral interface

Peripherals

Boot-
Loader

DMA
interface

openMSP430

Program Memory
interface

Data Memory
interface

i1

ROM
or
RAM

RAM

Peripheral interface

I

Peripherals

34

However, it is also possible to combine different DM A masters using a custom arbitration

logic:
ROM
.
Bootloader RAM
Custom RAM
o e Arbiter \ ALY openMSP430 ’
Memory
BIST <~ 1
Peripherals |
2. Signal list
Name Source Type Description
MCLK This clock times all DMA transfers. All
Svster clock openMSP430| System [signal timings are related to the rising
Y edge of MCLK.
PUC RST The system reset is active HIGH and is
Svstern reset openMSP430| System |used to reset the sytem, including the
Y DMA master(s).
When HIGH in a Low-Power-Mode, the
DMA_WKUP DMA Master | ¢ o wakeup signal restores the clocks
Wakeup (Asynchronous) y necessary for the DMA transfer
(see ASIC Implementation section).
This is the 15-bit address bus allowing to
DMA_ADDR[15:1]) DMA Master | Adress |access the 64kB address space (16b
Address bus
words).
The write data bus is used to transfer
DMA _DINJ[15:0] data from the DMA master to
Write data bus DMA Master | Data openMSP430 system during write
operations.
The read data bus is used to transfer data
DMA_DOUT]15:0] openMSP430| Data |from the openMSP430 system to the
Read data bus . .
DMA master during read operations.
DMA_ EN DMA Master | Control Indicates that the current DMA transfer

Transfe? enable

1S active.

35

When HIGH, this signal indicates a write
DMA—WE[.I’O] DMA Master | Control [transfer on the selected byte, and a read
Transfer direction transfer when LOW

When HIGH, this signal indicates a high

priority DMA transfer (i.e. CPU is
lT)rrS‘A‘fe?PrligiORITY DMA Master | Control [stopped). When LOW, low priority DMA

priority transfer have to wait for the CPU to free

the accessed ressource.

When HIGH the DMA READY signal
DMA _READY openMSP430 | Response indicates that a transfer has finished on
Transfer done p p the bus. This signal may be driven LOW

to add wait states to the transfer.

The transfer response provides additional
g?:;‘?e?gifse openMSP430 | Response |information on the status of a transfer

P (OKAY if LOW, ERROR when HIGH).

3. Protocol

3.1 Simple transfers

The following figure shows the simplest transfer, one with no wait states.

DMA_ADDR[15:1]

DMA_DIN[15:0]

DMA_READY

DMA_DOUT[15:0]

[

Control
(~)

Data
(A)

A

SISl

=

Data
(A)

36

In a simple transfer with no wait states:

* The DMA master drives the address, control signals and write data onto the bus
after the rising edge of MCLK.

* The openMSP430 ressource (pmem/dmem/peripheral) then samples the address,
control and write data information on the next rising edge of the clock.

* For read access, after the openMSP430 ressource has sampled the address and
control it can start to drive the read data and this is sampled by the DMA master
on the third rising edge of the clock.

3.2 Transfer with wait states

The openMSP430 can insert wait states into any transfer, as shown in the following
figure, which extends the transfer by two clock cycles, thus taking additional time for
completion.

MCLK —\—

DMA_ADDR[15:1] A
Control Ccégt)ml
DMA_DIN[15:0] [Eﬁt)a

DMA_READY

A [/
4 S

DMA_DOUT[15:0]

TQ@@H
SEE==

Ds e

For both read and write operations the DMA master must hold the address, control and
write data stable throughout the extended cycles.

Note: wait states are inserted by the openMSP430 if the CPU is currently busy reading or
writing to the same ressource that the DMA controller also wants to access.

37

3.3 Multiple transfers

The following figure shows three transfers to unrelated addresses, A, B & C.

MCLK

DMA_ADDR[15:1] X:X A

Control
Control ><:X ®)

B >O< c
Control ><:>< Control
(B) ©)
DMA_DIN[15:0] X:X Ezz‘)a Ezg;a >O< [zgt)a

DMA_READY L/ L/
DMA_DOUT[15:0] X:X [}it)a >O< [zgt)a >O< [Egt)a

fééé
RRER=

Tiéiéié

We can here observe:
e the transfers to addresses A and C are both zero wait state.
e the transfer to address B is one wait state.

* the read data from A is available during the first clock cycle when the address and
control B are applied.

* the read data from B is available during the clock cycle when the address and
control C are applied.

3.4 Transfer response

The following figure shows two transfers to unrelated addresses, A & B.

MCLK ‘
~ D= [
Control Control
(R) (8)
Data Data
A) (8)

Invalid Data Data
A (B)

DMA_ADDR[15:1]

-

Control

DMA_DIN[15:0]

4
!
DMA?READY‘L/
L/
A

DMA_RESP

DMA_DOUT[15:0]

=p
QSEQQQ

38

We can here observe:

* the transfer to address A returns an ERROR response (note that transfer returning
an ERROR response never have wait states).

* the transfer to address B is a regular transfer (i.e. OKAY response) without wait
state.

Note: an ERROR response are generated if the transfer address lays between the program
and data memories, where nothing is mapped.

3.5 Priority control

3.5.1 Data rate control

The DMA_ PRIORITY control signal is available to the DMA master for controlling the
application data rate requirements.

* When CLEARED, DMA transfers have a fixed lower priority than the CPU. This
means that depending on the exact kind of instructions currently executed by the
CPU, the completion time of the DMA transfers cannot be predicted (i.e. DMA
transfers are completed only when the CPU is not accessing the trageted
ressource).

* When SET, DMA transfers have a fixed higher priority over the CPU. This
means that the CPU will will stop execution and give the full bandwidth to the
DMA controller. In that scenario, DMA transfers complete in a single clock cycle
(i.e. without any wait states), as the targeted ressources are always available (i.e.
the CPU is not executing).

* If'the application requirements need something in between (namely a minimum
DMA transfer data-rate with reduced effect on the firmware exection), then the
DMA master can dynamically change the DMA_ PRIORITY as required.

These scenario are illustrated in the following figure.

MCLK

DMA_PRIORITY | L L] L
oma_reaoy | [[[[[[[[[][I L 1V {1

RUN Run
CPU STATUS RUNNING X OFF XRUNNINGX OFF OFF { RUNNING OFF WG

A B =

We can here observe:

* Phase A illustrates LOW-PRIORITY transfers. Less DMA transfer are completed
during that time as shown by the number of wait states.

39

* Phase B illustrates HIGH-PRIORITY transfers. DMA transfers are completed
with each clock cycle (i.e. no wait state).

* Phase C illustrates MIXED-PRIORITY transfers where the DMA controller is
dynamically adjusting the priority to achieve its target minimum data-rate.

3.5.2 Bootloader case

In general, the purpose of a bootloader is to initialize the program memory at startup (i.e

after Power-On-Reset).

DMA transfers driven by the bootloader should therefore be performed in HIGH-
PRIORITY mode, as the CPU should not start executing instructions on a non-initialized

memory.

Once the memory initialization is completed, a reset pulse should be generated by the
bootloader to make sure the CPU re-fetches the new RESET vector from the program

memory.

A bootloader could be for example be connected as following:

Power-On-Reset RESET_N PUC_RST
. B
Boot-
openMSP430
loader
The bootloading sequence is illustrated in the following figure:
MCLK
Power-On-Reset
RESET_N |
PUC_RST _’7
DMA_PRIORITY /] \\
DMA STATUS RESET X FIRMWARE UPLOAD X RESET X OFF
CPU STATUS RESET B oFF WG

40

4. ASIC Implementation
4.1 Clock domains

If the ASIC low power options are enabled, it is possible to perform DMA accesses when
the main CPU is in any Low-Power-Mode (LPMXx).

However, in order to avoid unnecessary power consumption while restoring the clocks
for the DMA transfer, the MCLK system clock has been split into two clock domains.

* MCLK CPU : clocks the CPU core itself, namely the frontend and execution
logic. When the CPU is in LPMx mode, this clock is ALWAYS OFF, even if a
DMA transfer is currently on going.

* MCLK DMA : clocks the rest of the system (excluding the DBG interface) and
gives access to the 64kB memory adddress range to the DMA master. This clock
is restored in LPMx modes by asserting the DMA_ WKUP pin.

This table summarizes the clock operating modes:

CPU in Low-Power-Mode
DMA WKUP=0 | DMA WKUP=1
MCLK CPU ON OFF OFF
MCLK DMA ON OFF ON

Clock Name CPU is Active

Clock domains are illustrated in the following diagram:

openMSP430
| ROM
<:_Pmsm_> or
RAM
Frontend
% 1 Daia Memory interface ™
sDI % RAM
(serial Debug < BCM 16Xx16
Interface) m (Basic Clock Multipli
Z\ Module) ultiplier
o
o R i
= « Peripheral bus — >
Execution Unit r @ @ @ ||
7
SFRs | f Watchdog [V |
N Peripherals
Y A4
DMA controller,
Debugger Bootloader, T T T T T T |
Memory-BIST, | MCLK cPU !
: = MCLK DMA !
| |

| = DBG_CLK

41

4.2 DMA wakeup

As shown in the "Peripherals" chapter, the Basic-Clock-Module has several control
registers giving some flexibility to the firmware as to which clocks are restored when the
DMA_ WKUP pin is asserted.

i Bit Fields
Register Address
Name 7 6 51 4 3 2 1 0
BCSCTL1 | 0x0057 unused DIVAX 2?31‘ I;zléo- OI;I(\:/I&;F C]1)>1I\J/[(I)‘13F
* DMA_SCG1 : Restore SMCLK with DMA wakeup
* DMA_SCGO : Restore DCO oscillator with DMA wakeup

* DMA_OSCOFF : Restore LFXT oscillator with DMA wakeup
* DMA_CPUOFF : Restore MCLK DMA with DMA wakeup

Note that the DMA_WKUP functionality can be disabled by keeping all these
bitfields CLEARED.

42

5.

Serial Debug Interface

Table of content

e 1. Introduction
* 2. Debug Unit
* 2.1 Register Mapping
* 2.2 CPU Control/Status Registers
« 2.2.1CPU_ID
« 2.2.2 CPU_CTL
* 2.2.3 CPU_STAT
 2.2.4 CPU_NR
* 2.3 Memory Access Registers
« 23.1 MEM_CTL
« 232 MEM ADDR
« 2.3.3 MEM_DATA
« 234MEM CNT
e 2.4 Hardware Breakpoint Unit Registers
* 24.1 BRKx CTL
* 2.4.2 BRKx STAT
* 2.4.3 BRKx ADDRO
* 2.4.4BRKx ADDRI

* 3. Debug Communication Interface: UART
* 3.1 Serial communication protocol: 8N1

» 3.2 Synchronization frame
¢ 3.3 Read/Write access to the debug registers

e 3.3.1 Command Frame
* 3.3.2 Write access
* 3.3.3 Read access
¢ 3.4 Read/Write burst implementation for the CPU Memory access
* 3.4.1 Write Burst access
* 3.4.2 Read Burst access

43

* 4. Debug Communication Interface: 12C
* 4.1 12C communication protocol

* 4.2 Synchronization frame
¢ 4.3 Read/Write access to the debug registers

* 4.3.1 Command Frame
* 4.3.2 Write access
* 4.3.3 Read access
* 4.4 Read/Write burst implementation for the CPU Memory access
* 4.4.1 Write Burst access
* 4.4.2 Read Burst access

1. Introduction

The original MSP430 from TI provides a serial debug interface to allow in-system
software debugging. In that case, the communication with the host computer is typically
built on a JTAG or Spy-Bi-Wire serial protocol. However, the global debug architecture
from the MSP430 is unfortunately poorly documented on the web (and is also probably
tightly linked with the internal core architecture).

A custom module has therefore been implemented for the openMSP430. The
communication with the host is done with a simple two-wire cable following either the
UART or I°C serial protocol (interface is selectable in the Expert System Configuration
section).

The debug unit provides all required features for Nexus Class 3 debugging (beside trace),
namely:

Debug unit features

* CPU control (run, stop, step, reset).

* Software & hardware breakpoint support.

* Hardware watchpoint support.

* Memory read/write on-the-fly (no need to halt
execution).

* CPU registers read/write on-the-fly (no need to halt
execution).

Depending on the selected serial interface, the following features are available:

44

Debug unit features

UART

I’C

Strengths:

No extra hardware required for
most FPGA boards (almost all
come with a UART interface,
either RS232 or USB based.
Possibility to use USB to serial

TTL cables.

‘Weaknesses:

Need to reset the debug interface
after cable insertion.
For ASICs, no possibility to
change the MCLK frequency
during a debug session.

Strengths:

Very stable interface (synchronous
protocol, no synchronization frame
required).

Multi-core chip support with a single
12C interface (i.e. TWO pins)... in

such a system, each openMSP430
instance has its own 12C device
address.

Possibility to combine the

openMSP430 debug interface with an

already existing “functional” 12C
interface... effectively creating a

ZERO wire serial debug interface.
Affordable USB-ISS adapter (=23€).

Weaknesses:

Extra 12C adapter required (USB-ISS

currently supported).

2. Debug Unit
2.1 Register Mapping

The following table summarize the complete debug register set accessible through the
debug communication interface:

X Bit Field

Register Name | Address 15|u4fis{izfufrofols|] 7 | 6 | 5 | 4 3 2 | 1 0
CPU_ID_ LO 0x00 PER_SPACE USER_VERSION ASIC CPU_VERSION
CPU_ID_HI 0x01 PMEM_SIZE I DMEM_SIZE MPY
CPU_CTL 0x02 Reserved CPU_RST RST_BRK_EN | FRZ_BRK_EN SW—?\IRK—E ISTEP RUN HALT
CPU_STAT 0x03 Reserved IHWBRK}J’ND HWBRK2_PND HWBRS(I—PN HWBRS(O—PN SWB]EK—PN PUC_PND Res. HALT_RUN
MEM_CTL 0x04 Reserved B/W MEM/REG | RD/WR START
MEM_ADDR 0x05 MEM_ADDR[15:0]

MEM_DATA 0x06 MEM_DATA[15:0]

MEM_CNT 0x07 MEM_CNT[15:0]

BRKO CTL 0x08 Reserved RANG%MOD INST EN |BREAK EN| ACCESS MODE
BRKO STAT 0x09 Reserved RANGE_WR | RANGE RD |ADDRI_WR |ADDRI_RD ADD§°—W ADDRO_RD
BRKO_ADDRO| 0x0A BRK_ADDRO[15:0]
BRKO ADDRI1| 0x0B BRK_ADDRI[15:0]

45

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBRS232.htm

BRKI_CTL | 0x0C Reserved RANG:;MOD INST EN | BREAK EN| ACCESS MODE
BRK1 STAT 0x0D Reserved I RANGE_WR | RANGE RD |ADDRI_WR |ADDRI_RD ADDII:O—W IADDRO_RD
BRK1 ADDRO| O0x0OE BRK_ADDRO[15:0]
BRK1 ADDRI1| 0xOF BRK_ADDRI[15:0]

BRK2 CTL 0x10 Reserved RANGE—MOD INST_EN |BREAK_EN ACCESS_MODE
BRK2 STAT Ox11 Reserved I RANGE_WR | RANGE RD |ADDRI_WR |ADDRI_RD ADDII:O—W |ADDRO_RD
BRK2 ADDRO| 0x12 BRK_ADDRO[15:0]
BRK2 ADDRI1| 0x13 BRK_ADDRI[15:0]

BRK3 CTL 0x14 Reserved RANGE—MOD INST_EN |BREAK_EN ACCESS_MODE
BRK3_STAT 0x15 Reserved IRANGE_WR RANGE RD |ADDRI_WR JADDRI_RD ADD::OfW ADDRO_RD
BRK3 ADDRO| 0x16 BRK_ADDRO[15:0]
BRK3_ADDRI1| 0x17 BRK_ADDRI[15:0]

CPU_NR 0x18 CPU_TOTAL_NR CPU_INST_NR

2.2 CPU Control/Status Registers

2.2.1 CPU_ID

This 32 bit read-only register holds the program and data memory size information of the

implemented openMSP430.
Bit Field
Register Name Address
5|14 1312111091876 |5)14|3|12|1]0
CPU _ID LO 0x00 PER_SPACE USER_VERSION ASIC | CPU_VERSION
CPU_ID_HI 0x01 PMEM_SIZE | DMEM_SIZE |MPY

* CPU_VERSION

* ASIC

« USER_VERSION
« PER_SPACE

* MPY

* DMEM_SIZE

* PMEM_SIZE

: Current CPU version

: Defines if the ASIC specific features are enabled in the current
openMSP430 implementation.

: Reflects the value defined in the openMSP430 defines.v file

: Peripheral address space for the current implementation
(byte size=PER_SPACE*512)

: This bit is set if the hardware multiplier is included in the
current implementation.

: Data memory size for the current implementation
(byte size = DMEM_SIZE * 128)

: Program memory size for the current implementation
(byte size=PMEM SIZE * 1024)

2.2.2 CPU_CTL

46

This 8 bit read-write register is used to control the CPU and to configure some basic
debug features. After a POR, this register is set to 0x10 or 0x30 (depending on the
DBG_RST BRK_EN configuration option).

Bit Field
Register Name | Address
7 6 5 4 3 2 1 0
CPU _CTL 0x02 Res. | CPU RST | RST BRK EN | FRZ BRK EN | SW BRK EN | ISTEP | RUN | HALT
* CPU_RST : Setting this bit to 1 will activate the PUC reset. Setting it back to

0 will release it.

* RST_BRK _EN :Ifsetto I, the CPU will automatically break after a PUC
occurrence.

* FRZ BRK EN :Ifsetto I, the timers and watchdog are frozen when the CPU is
halted.

*SW_BRK EN : Enables the software breakpoint detection.

« ISTEP! : Writing 1 to this bit will perform a single instruction step if the
CPU is halted.

¢ RUN! : Writing 1 to this bit will get the CPU out of halt state.

e HALT! : Writing 1 to this bit will put the CPU in halt state.

Uthis field is write-only and always reads back 0.

2.2.3 CPU_STAT

This 8 bit read-write register gives the global status of the debug interface. After a POR,
this register is set to 0x00.

Bit Field
Register Name| Address
7 6 5 4 3 2 1 0
CPU_STAT 0x03 HWBRK3 PND | HWBRK2 PND | HWBRKI PND | HWBRKO PND | SWBRK PND | PUC PND | Res. | HALT RUN

* HWBRK3 PND : This bit reflects if one of the Hardware Breakpoint Unit 3 status
bit is set (i.e. BRK3 STAT#0).

* HWBRK2 PND : This bit reflects if one of the Hardware Breakpoint Unit 2 status
bit is set (i.e. BRK2 STAT#0).

* HWBRK1_PND : This bit reflects if one of the Hardware Breakpoint Unit 1 status
bit is set (i.e. BRK1 STAT#0).

* HWBRKO _PND : This bit reflects if one of the Hardware Breakpoint Unit O status
bit is set (i.e. BRKO STAT#0).

47

* SWBRK PND : This bit is set to 1 when a software breakpoint occurred. It can be
cleared by writing 1 to it.

* PUC_PND : This bit is set to 1 when a PUC reset occurred. It can be cleared
by writing 1 to it.

* HALT RUN : This read-only bit gives the current status of the CPU:

0 - CPU is running.
1 - CPU is stopped.

2.2.4 CPU_NR

This 16 bit read only register gives useful information for multi-core systems.

Bit Field
15014 ffufo|ofsf7|e6|s5f4)3f2f1]0

CPU_NR 0x18 CPU_TOTAL_NR CPU_INST_NR

Register Name Address

* CPU_TOTAL_NR : Total number of oMSP instances — 1 (for multicore systems).

* CPU_INST _NR : Current oMSP instance number (for multicore systems).

2.3 Memory Access Registers

The following four registers enable single and burst read/write access to both CPU-
Registers and full memory address range.

In order to perform an access, the following sequences are typically done:

* single read access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be read
2. set MEM_CTL (in particular RD/WR=0 and START=1)
3. read MEM_DATA
* single write access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be
written
2. set MEM_DATA with the data to be written
3. set MEM_CTL (in particular RD/WR=1 and START=1)
* burst read/write access (MEM_CNT=#0):
° burst access are optimized for the communication interface used (i.e. for
the UART). The burst sequence are therefore described in the corresponding section (3.4
Read/Write burst implementation for the CPU Memory access)

48

2.3.1 MEM_CTL

This 8 bit read-write register is used to control the Memory and CPU-Register read/write
access. After a POR, this register is set to 0x00.

Bit Field
Register Name Address
7l6|5[4] 3 2 1 0
MEM_CTL 0x04 Reserved B/W MEM/REG RD/WR START

* B/'W : 0 - 16 bit access.

1 - 8 bit access (not valid for CPU-Registers).
* MEM/REG : 0 - Memory access.

1 - CPU-Register access.
* RD/WR : 0 - Read access.

1 - Write access.
* START : 0- Do nothing

1 - Initiate memory transfer.

2.3.2 MEM_ADDR

This 16 bit read-write register specifies the Memory or CPU-Register address to be used
for the next read/write transfer. After a POR, this register is set to 0x0000.

Note: in case of burst (i.e. MEM_CNT=#0), this register specifies the first address of the
burst transfer and will be incremented automatically as the burst goes (by 1 for 8-bit

access and by 2 for 16-bit access).

Resister N dd Bit Field
cgister Name res 1501413 12{1fofofs|7|e6|s|4|3|2]1]0
MEM_ADDR 0x05 MEM_ADDR([15:0]

* MEM_ADDR : Memory or CPU-Register address to be used for the next

read/write transfer.

2.3.3 MEM_DATA
This 16 bit read-write register gives (wr) or receive (rd) the Memory or CPU-Register

data for the next transfer. After a POR, this register is set to 0x0000.

49

Bit Field
150141312 fiofofs|7|6|5|4f3|2]1]0

Register Name Address

MEM_ DATA 0x06 MEM _DATA[15:0]
* MEM_DATA :if MEM_CTL.WR - data to be written during the next write
transfer.

if MEM_CTL.RD - updated with the data from the read transfer

2.3.4 MEM_CNT

This 16 bit read-write register controls the burst access to the Memory or CPU-Registers.
If set to 0, a single access will occur, otherwise, a burst will be performed. The burst
being optimized for the communication interface, more details are given there. After a
POR, this register is set to 0x0000.

Bit Field
Register Name Address
151141312711 }110|9|817)6|5|4]1312|1]|0
MEM_CNT 0x07 MEM_CNT[15:0]

* MEM_CNT : =0 - a single access will be performed with the next transfer.

#0 - specifies the burst size for the next transfer (i.e number of data
access). This field will be automatically decremented as the burst goes.

2.4 Hardware Breakpoint Unit Registers

Depending on the defines located in the "openMSP430 defines.v" file, up to four
hardware breakpoint units can be included in the design. These units can be individually
controlled with the following registers.

2.4.1 BRKx_CTL

This 8 bit read-write register controls the hardware breakpoint unit x. After a POR, this
register is set to 0x00.

Bit Field
Register Name Address
706|5 4 3 2 1| 0
BRKx CTL 0x03, 0x0C, Reserved RANGE_MODE INST_EN | BREAK_EN ACCESS_MODE
- 0x10, 0x14

* RANGE_MODE : 0 - Address match on BRK_ADDRO or BRK_ADDRI1 (normal
mode)

50

« INST_EN

* BREAK _EN

* ACCESS_MODE

1 - Address match on BRK_ ADDRO—BRK ADDRI range
(range mode)

Note: range mode is not supported by the core unless the

‘DBG_HWBRK RANGE define is set to 1'b1 in the

openMSP430 define.v file.

: 0 - Checks are done on the execution unit (data flow).

1 - Checks are done on the frontend (instruction flow).

1 - Breakpoint mode enable (stop on address match).

01 - Detect read access.

10 - Detect write access.

: 00 - Disabled

11 - Detect read/write access

: 0 - Watchpoint mode enable (don't stop on address match).

Note: '10' & '11' modes are not supported on the instruction flow

2.4.2 BRKx_STAT

This 8 bit read-write register gives the status of the hardware breakpoint unit x. Each
status bit can be cleared by writing 1 to it. After a POR, this register is set to 0x00.

Bit Field
Register Name | Address
7|6 5 4 3 2 1 0
BRKx STAT 00X0191’ %XOI]?’ Reserved | RANGE_WR | RANGE RD | ADDR1_WR | ADDRI_RD | ADDRO_WR | ADDRO_RD
- x11, 0x

* RANGE_WR : This bit is set whenever the CPU performs a write access within the
BRKx ADDRO—BRKx ADDRI range (valid if RANGE MODE=1
and ACCESS MODE[1]=1).

« RANGE_RD

« ADDR1_WR

: This bit is set whenever the CPU performs a read access within the

BRKx ADDRO—BRKx ADDRI range (valid if RANGE_ MODE=1
and ACCESS_MODE[0]=1).

Note: range mode is not supported by the core unless the

‘DBG_ HWBRK RANGE define is set to 1'b1 in the

openMSP430 _define.v file.

BRKx ADDRI address (valid if RANGE MODE=0 and

51

: This bit is set whenever the CPU performs a write access at the

* ADDR1_RD

* ADDRO_WR

« ADDRO_RD

ACCESS MODE[1]=1).

: This bit is set whenever the CPU performs a read access at the
BRKx ADDRI address (valid if RANGE MODE=0 and
ACCESS_MODEJ[0]=1).

: This bit is set whenever the CPU performs a write access at the
BRKx ADDRO address (valid if RANGE _MODE=0 and
ACCESS _MODE[1]=1).

: This bit is set whenever the CPU performs a read access at the
BRKx_ADDRO address (valid if RANGE_MODE=0 and
ACCESS_MODE[0]=1).

2.4.3 BRKx_ADDRO

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is

set to 0x0000.
Resister N Add Bit Field
egister (Name ress
i 1501413 12| 11|10]9|8]|7|6|5[4|3]|2|1]0
0x0A, 0xOE, _
BRKx ADDRO 0x12. 0x16 BRK_ADDRO[15:0]
* BRK_ADDRO : Value compared against the address value currently present on the

program or data address bus.

2.4.4 BRKx_ADDRI1

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is

set to 0x0000.
Resister N Add Bit Field
egister Name resses
& 15/ 1413 12|11 |10|9]8|7]6|5|4]3|2]1]0
0x0B, 0xOF, .
BRKx_ ADDRI1 0x13. 0x17 BRK_ADDRI[15:0]
* BRK_ADDRI1 : Value compared against the address value currently present on the

program or data address bus.

52

3. Debug Communication Interface:
UART

With its UART interface, the openMSP430 debug unit can communicate with the host
computer using a simple RS232 cable (connected to the dbg_uart_txd and dbg_uart_rxd
ports of the IP).

Typically, a USB to RS232 or USB to serial TTL cable will provide a reliable
communication link between your host PC and the openMSP430 (speed being typically
limited by the cable length).

3.1 Serial communication protocol: 8N1

There are plenty tutorials on Internet regarding RS232 based protocols. However, here is
quick recap about 8N1 (1 Start bit, 8 Data bits, No Parity, 1 Stop bit):

LSB MSB

1
o Plofafz[s]e]s]e]

As you can see in the above diagram, data transmission starts with a Start bit, followed by
the data bits (LSB sent first and MSB sent last), and ends with a "Stop" bit.

3.2 Synchronization frame

After a POR, the Serial Debug Interface expects a synchronization frame from the host
computer in order to determine the communication speed (i.e. the baud rate).

The synchronization frame looks as following:

LSE M5B

1
0 |5IEU't o 1 2 3 4 5 6 | 7 Stop

time
g - P

As you can see, the host simply sends the 0x80 value. The openMSP430 will then
measure the time between the falling and rising edge, divide it by 8 and automatically
deduce the baud rate it should use to properly communicate with the host.

Important note: if you want to change the communication speed between two debugging
sessions, the Serial Debug Interface needs to go through a reset cycle (i.e. through the
reset_n or dbg en pins) and a new synchronization frame needs to be send.

53

http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.google.com/search?q=usb+to+rs232+converter

3.3 Read/Write access to the debug registers

In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

3.3.1 Command Frame

The command frame looks as following:

Tl |&5|4]13|2)1]0

WR | BMW Atdress
* WR : Perform a Write access when set. Read otherwise.
* B/'W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise

(two data frame).

* Address : Debug register address.

3.3.2 Write access

A write access transaction looks like this:

* 8-bit:
Host TX: | 1 | 1 | Address ” Data |
Host RX:
* 16-bit
Host TX: | 1 | 0 | Address ” Data[7:0] ” Data[15:8]
Host RX:
3.3.3 Read access

A read access transaction looks like this:

* 8-bit:
Host TX: | 0 | 1 | Address |
Host RX: | Data |
+ 16-bit
Host TX: | 0 | 0 | Address |
Host RX: | Data[7:0] | | Data[15:8]

54

3.4 Read/Write burst implementation for the CPU
Memory access

In order to optimize the data burst transactions for the UART, read/write access are not
done by reading or writing the MEM_DATA register.

Instead, the data transfer starts immediately after the MEM_CTL.START bit has been set.

3.4.1 Write Burst access

A write burst transaction looks like this:

Command frame Data frame Burst Frames
Host TX: | 1 | 1 | Ox4 (MEM_CTL) ” 0 |a.'w|“ﬁ§g'ﬂ| 1 | 1 ” Data n'|-|
Host RK: e
—

X MEM_CNT x (2MEM_CTL BW)

3.4.2 Read Burst access

A read burst transaction looks like this:

Command frame Data frame BurstFrames
Host TX: | 1 | 1 | Ox4 (MEM_CTL) ” 0 |BrW|“,’§g‘nl 0 | 1 |
Host RX: | Data n]-l
.
—

X MEM_CIT x (2MEM_CTL BW)

55

4. Debug Communication Interface: 12C

With its 12C interface, the openMSP430 debug unit can communicate with the host
computer using an [2C adapter (connected to the dbg_i2¢_scl and
dbg_i2¢_sda_in/dbg_i2¢c_sda out ports of the IP).

Currently, the USB-ISS adapter from Devantech (Robot Electronics) is supported by the
software development tools and provides a reliable communication link between your
host PC and the openMSP430.

4.1 12C communication protocol

There are plenty tutorials on Internet regarding the 12C protocol (see the official 12C
specification for more info).

A simple byte read or write frame looks as following:

MSB LSB MSB LSB

C Start Device Address R/W | ACK Data ACK !

SDA | ‘A6|A5‘A4‘A3‘AQ‘Al‘AO‘R/W|ACK|D7|D6|D5‘D4‘D3‘D2‘D1‘DO‘ACK| ‘

4.2 Synchronization frame
Unlike the UART interface, the 12C is a synchronous communication protocol.

A synchronization frame is therefore not required.

4.3 Read/Write access to the debug registers

In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

56

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.robot-electronics.co.uk/acatalog/USB_I2C.html

4.3.1 Command Frame

The command frame looks as following:

MSB LsB MSE LsB

EC Start OMSP core Address WR | ACK Command Frame ACK

SDA \ ‘A6|A5‘A4‘A3‘A2|A1|AD‘ ‘WR|BIW‘ L Addfess | | \

SCL

* WR : Perform a Write access when set. Read otherwise.

* B/'W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise
(two data frame).

* Address : Debug register address.

4.3.2 Write access

A write access transaction looks like this:

« 8-bit:
MSB LSE MSB Lse MSB Lse
Fc WR |ACK‘ Command Frame ‘ACK| Write Data |ACK.
DA [#6 [as [Jaa [[a]a] [1 1]} lawessi [] [o7[os[os|ps[os|o2]os]oo] ’7
scl
« 16-bit:
MSB LsSB MSB LsB MSB Lse MSB Lse
rc _ WR |ACK‘ Command Frame ‘ACK| Write Data[7:0] |ACK| Write Data[15:8] |ACK.
SDA [#6 [as [Jaa]ee [a[a| ’T‘n‘ i ladfess] 7] [o7[ps[os[pefos[p2]ot]oo] [oi5]o14]p1a]pe [pu [pro oo [oe | ,7
scL
4.3.3 Read access
A read access transaction looks like this:
* 8-bit:
K] LSB L5} LSB M5B LSB M5B L58
[- e LT .

SDA [as [s [aa JasJaz Jar]a] o [T [Tames i | | [|[#[ss]aasae[ar]m] | [o7]os]0s 040302 0L]00]
scL

= 16-bit:

NSB LSB LK} LSB M5B L5B M5B L58 MSE L5B
. 2 R o) e R) T N

SDA [as [s [aa JasJaz Jar]a] o o[| Taues | i | [|[m[ms]mssme]ar]m] | [o7]osos 04030z]01]oo] [018[0w]01s]0w2 [0u[0w] 09 |06 |

SCL

57

4.4 Read/Write burst implementation for the CPU

Memory access

In order to optimize the data burst transactions for the 12C, read/write access are not done

by reading or writing the MEM DATA register.

Instead, the data transfer starts immediately after the MEM_CTL.START bit has been set.

4.4.1 Write Burst access

A write burst transaction looks like this:

MSB LSB MSB LSB MSB LSB MSB LSB
I’c Start WR | ACK| Cmd Frame gwrite to MEM_CTL) |ACK| Write Data (to MEM_CTL) |ACK| ‘Write Data Burst ‘ACK .
: AcK [T
SDA | [as Jas [ae]as]az]a]no] [+ 1]e o of1]o o ewlpee| + o |
see LU UL e eI It eI eI e i e Iege It o
\ J
Y
MEM_CNT* (2 - MEM_CTL.B/W)
4.4.2 Read Burst access
A read burst transaction looks like this:
MSB LSB M5B LSB MSB LSB MSB LSB MSB LSB
I ACK
SDA [[os [m [[m2]ar]m| [T 1] o ﬂ’l—‘ﬂ o Ecwéé‘n 1 [5 [[m w5 [r2]a]n] L ‘

scL

58

\

MEM_CNT * (2 - MEM_CTL.B/W)

6.

Integration and
Connectivity

Table of content

e 1. Overview

e 2. Clocks

* 3. Resets

* 4. Program Memory
* 5. Data Memory

e 6. Peripherals
e 7. Direct Memory Access Interface

» 8. Interrupts

* 9, Serial Debug Interfaces
* 9.1 UART Configuration
* 9.2 12C Configuration

59

1. Overview

This chapter aims to give a comprehensive description of all openMSP430 core interfaces
in order to facilitate its integration within an ASIC or FPGA.

The following diagram shows an overview of the openMSP430 core connectivity in an
FPGA system (i.e. all ASIC specific pins are left unused):

Program Memory
i1
ROM !
ar P MEM_MSE
RAM 5
H L b
M e mctk =* Peripheral
1 = #0 -—
RAM 1 “DMEN_MSE P —
AR
R & o
R}

Fush-button Reset

&

o
¢° *w e'* \"P
n RN
e Ciotionals
—1 Peripheral
<open
-—

<open:
<open

1
<open

E irq_acc[x]
0 Fushrbutton,
Peripheral, ...
=constant=
=constant= "+15
DE [: SCL s
' SDA y 7T Dl:‘.ﬂcomroller,
MemoryBIST, ...
7z

60

The full pinout of the core is summarized in the following table.

Port Name Dl.rec- Width Cloc!(Description
tion Domain
Clocks
<async> Enable CPU code executiqn
cpu_en Input 1 4 (asynchronous and non-glitchy).
OrMEX1Set to 1 if unused.
dco_clk Input 1 - Fast oscillator (fast clock)
Low frequency oscillator (typ. 32KHz)
Iixt el Tnput ! ~ |Set to 0 if unused.
mclk Output 1 - Main system clock
aclk en Output 1 mclk |FPGA ONLY: ACLK enable
smclk_en Output 1 mclk |[FPGA ONLY: SMCLK enable
dco_enable Output 1 dco_clk |ASIC ONLY: Fast oscillator enable
ASIC ONLY: Fast oscillator wakeup
dco_wkup Output 1 <async> (asynchronous)
Ifxt_enable Output 1 It clk ASIC ONLY: Low frequency oscillator
enable
ASIC ONLY: Low frequency oscillator
Ifxt wkup Output 1 <async> wakeup (asynchronous)
aclk Output 1 - ASIC ONLY: ACLK
smclk Output 1 - ASIC ONLY: SMCLK
ASIC ONLY: System Wake-up
wkup Input 1 <async> |(asynchronous and non-glitchy)
Set to 0 if unused.
Resets
puc_rst Output 1 mclk |Main system reset
reset n Tnput 1 <async> Reset Pin (active low, asynchronous and

non-glitchy)

61

Program Memory interface

‘PMEM
pmem_addr Output | AWIDT | mclk |Program Memory address
Hl

mem_cen Output 1 melk Prqgram Memory chip enable (low
pmem_cen active)
pmem_din Output | 16 melk |Program Memory data input (optional?)
pmem_dout Input 16 mclk |Program Memory data output

Program Memory write byte enable (low

p Output 2 1k)

TOeH_well wpd e active) (optlonalz)

Data Memory interface
"DMEM
dmem_addr Output — mclk |Data Memory address
- AWIDT
Hl
dmem cen Output 1 mclk |Data Memory chip enable (low active)
dmem_din Output 16 mclk |Data Memory data input
dmem_dout Input 16 mclk |Data Memory data output
dmem_wen Output) melk DaFa Memory write byte enable (low
- active)
External Peripherals interface

per_addr Output 14 mclk |Peripheral address

er_din Output 16 mclk |Peripheral data input
per_dout Input 16 mclk |Peripheral data output
per_en Output 1 mclk |Peripheral enable (high active)

or we Output) melk Per_lpheral write byte enable (high

= active)
Direct Memory Access interface

dma_addr Input 15 mclk |Direct Memory Access address
dma_din Input 16 mclk |Direct Memory Access data input

62

dma_dout Output 16 mclk |Direct Memory Access data output
dma_en Tnput 1 melk Dlr_ect Memory Access enable (high
- active)
dma_priority Input 1 mclk [Direct Memory Access (0:low / 1:high)
dma_ready Output 1 mclk |Direct Memory Access is complete
dma_res Output 1 melk D.1rect Memory Access (0:Okay /
Gha_Iesp 1:Error)
dma_we Tnput) melk Dl'rect Memory Access write byte enable
- = (high active)
ASIC ONLY: DMA Wake-up
dma_whup Input ! ~async= (asynchronous and non-glitchy)
Interrupts
irq Input IRQTN mclk |Maskable interrupts (one-hot signal)
R-2
< >
nmi Input 1 0:::114 Non-maskable interrupt (asynchronous)
. 'IRQ_N Interrupt request accepted (one-hot
irq_acc Output RO mclk signal)
Serial Debug interface
<async> ' 3
dbg_en Input 1 4|Debug interface enable (asynchronous)
or mclk
dbg_freeze Output 1 mclk |Freeze peripherals
dbg uart txd Output 1 mclk |Debug interface: UART TXD
Debug interface: UART RXD
dbg_uart rxd Input 1 <async> (asynchronous)
dbg_i2¢ addr Input 7 mclk |Debug interface: 12C Address
dbg_i2¢ broadcast| Input 7 melk Debug 1n‘terface: 12C Broadcast Address
(for multicore only)
dbg_i2¢ scl Input 1 <async>|Debug interface: 2C SCL
dbg_i2¢ sda in Input 1 <async>|Debug interface: 2C SDA input

63

dbg_i2¢ sda out | Output 1 mclk |Debug interface: 12C SDA output

Scan
scan enable Tnput 1 deo clk ASIC QNLY: Scyn enable (active during
- — |scan shifting)
scan_mode Input 1 <stable>|ASIC ONLY: Scan mode

1. This parameter is declared in the openMSP430 defines.v file and defines the
RAM/ROM size or the number of interrupts vectors (16, 32 or 64).

2. These two optional ports can be connected whenever the program memory is a RAM.
This will allow the user to load a program through the serial debug interface and to use
software breakpoints.

3: When disabled, the debug interface is hold into reset (and clock gated in ASIC mode).
As a consequence, the dbg en port can be used to reset the debug interface without
disrupting the CPU execution.

4: Clock domain is selectable through configuration in the openMSP430 _defines.v file
(see Advanced System Configuration).

2. Clocks

The different clocks in the design are managed by the Basic Clock Module as following
in the FPGA configuration:

openMSP430
Basic Clock Module (FPGA)
OSCOFF e
N re
Low Frequency LEXT CLK Divider
clock source " sync | de?ggieon 12148 Bl ACLK_EN
(F, =32,768-Hz)
* Iy
3
High Frequency DCO_CLK
clock source - N MCLK
(=== CPU clock)
Y
Divider
1—»] 1/2/4/8 M SMCLK_EN
Ll scet
SELS DIVSx

64

or as following in the ASIC configuration:

openMSP430

Basic Clock Module (ASIC)
D IVAx

Tt

LFXT_CLK Divider
1/2/4/8 > ACLK

Low Frequency
clock source |LFXT_ENABLE

(LFXT)

& OSCOFF

Divider
1yz/a/8 ?:)——.‘. MCLK

LEXT_WKUP

DCO_WKUP

Y

High Frequency
clock source |DCO_EHNABLE - Ld cruorF
(DCO) EEE SELMx[L] DIVMx
DCO_CLK
—- 1 .
Divider
0 1/2/4/8 ?}——PI SMCLK
{0 s

SELS DIVSx

* CPU_EN: this input port provides a hardware mean to stop or resume CPU
execution. When unused, this port should be set to 1.

* DCO_CLK: this input port is typically connected to a PLL, RC oscillator or any
clock resource the target FPGA/ASIC might provide.
From a synthesis tool perspective (ISE, Quartus, Libero, Design Compiler...), this
the only port where a clock needs to be declared.

* LFXT_CLK: in an FPGA system, if ACLK EN or SMCLK EN are going to be
used in the project (for example through the Watchdog or TimerA peripherals),
then this port needs to be connected to a clock running at least two time slower as
DCO_CLK (typically 32kHz). It can be connected to 0 or 1 otherwise.

In an ASIC, if ACLK or SMCLK are used and if the clock muxes are included,
then this port can be connected to any kind of clock source (it doesn't need to be
low-frequency. The name was just kept to be consistent with TI's documentation).

¢ MCLK: the main system clock drives the complete openMSP430 clock domain,
including program/data memories and the peripheral interfaces.

65

* ACLK EN/SMCLK EN: these two clock enable signals can be used in order to
emulate the original ACLK and SMCLK from the MSP430 specification when the
core is targeting an FPGA.

An example of this can be found in the Watchdog and TimerA modules, where it

is implemented as following:
] Q

MCLE

* ACLK/SMCLK: ACLK and MCLK are available through these two ports when
targeting an ASIC.

* DCO_ENABLE /DCO_WKUP: ASIC specific signals controlling the fast
clock generator for low power mode support (SCGO bit in the status register).

* LFXT ENABLE / LFXT WKUP: ASIC specific signals controlling the low
frequency clock generator for low power mode support (OSCOFF bit in the status
register).

* WKUP: When activated, this signal allows a peripheral to restore all CPU clocks
(i.e. wakeup the cpu) prior IRQ generation. Note that IRQs MUST always be
generated from the MCLK clock domain.

As an FPGA system illustration, the following waveform shows the different clocks
where the software running on the openMSP430 configures the BCSCTL1 and
BCSCTL2 registers so that ACLK EN and SMCLK EN are respectively running at
LFXT CLK/2 and DCO CLK/4.

Signals Waves

Time
dco_clk
1fxt_clk
bhcsctll[7:0]
bcsctl12[7:0]
mclk
aclk_en
smclk_en

66

3. Resets

* RESET _N: this input port is typically connected to a board push button and is
generally combined with the system power-on-reset.

* PUC_RST: the Power-Up-Clear signal is asynchronously set with the reset pin
(RESET N), the watchdog reset or the serial debug interface reset. In order to get
clean timings, it is synchronously cleared with MCLK. As a general rule, this
signal should be used as the reset of the MCLK clock domain.

The following waveform illustrates this:

Signals Waves
Time i
reset_n

mc 1k
puc

4. Program Memory

Depending on the project needs, the program memory can be either implemented as a
ROM or RAM.

If a ROM is selected then the PMEM DIN and PMEM_WEN ports won't be connected.
In that case, the software debug capabilities are limited because the serial debug interface
can only use hardware breakpoints in order to stop the program execution. In addition,

updating the software will require a reprogramming of the FPGA.... or a new ROM mask
for an ASIC.

If the program memory is a RAM, the developer gets full flexibility regarding software
debugging. The serial debug interface can be used to update the program memory and
software breakpoints can be used.

67

That said, the protocol between the openMSP430 and the program memory is quite
standard. Signal description goes as following:

PMEM _CEN: when this signal is active, the read/write access will be executed
with the next MCLK rising edge. Note that this signal is LOW ACTIVE.

PMEM _ ADDR: Memory address of the 16 bit word which is going to be
accessed.
Note: in order to calculate the core logical address from the program memory

physical address, the formula goes as following:
LOGICAL@=2*PHYSICAL@+0x10000-PMEM SIZE

PMEM_DOUT: the memory output word will be updated with every valid
read/write access (i.e. PMEM DOUT is not updated if PMEM_CEN=1).

PMEM_WEN: this signal selects which byte should be written during a valid
access. PMEM_WEN][0] will activate a write on the lower byte, PMEM_WEN][1]
a write on the upper byte. Note that these signals are LOW ACTIVE.

PMEM_DIN: the memory input word will be written with the valid write access
according to the PMEM WEN value.

The following waveform illustrates some read accesses of the program memory (write
access are illustrated in the data memory section):

Signals

Time
pc_nxt[15:0]
mc Lk

pmem_addr[10:0]
pmem_dout[15:0]
pmem_wen[1:0]
pmem_din[15:0]

pmem_cen 3

Waves

68

S. Data Memory

The data memory is always implemented as a RAM.

The protocol between the openMSP430 and the data memory is the same as the one of
the program memory. Therefore, the signal description is the same:

DMEM_CEN: when this signal is active, the read/write access will be executed
with the next MCLK rising edge. Note that this signal is LOW ACTIVE.

DMEM _ ADDR: Memory address of the 16 bit word which is going to be
accessed.

Note: in order to calculate the core logical address from the data memory physical
address, the formula goes as following: LOGICAL@=2*PHYSICAL@+0x200

DMEM_DOUT: the memory output word will be updated with every valid
read/write access (i.e. DMEM DOUT is not updated if DMEM CEN=1).

DMEM_WEN: this signal selects which byte should be written during a valid
access. DMEM_WENTJ0] will activate a write on the lower byte, DMEM_WEN][1]
a write on the upper byte. Note that these signals are LOW ACTIVE.

DMEM_DIN: the memory input word will be written with the valid write access
according to the DMEM WEN value.

The following waveform illustrates some read/write access to the data memory:

Signals

Time
mclk S
dmem_cen 5
dmem_addr[5:0] F
dmem_dout [15:0]
dmem_wen[1]
dmem_wen [©]
dmem_din[15:0@]
mem204[15:0]
mem206[15:0]

Waves
ns

69

6. Peripherals

The protocol between the openMSP430 core and its peripherals is the exactly same as the
one with the data and program memories in regard to write access and differs slightly for
read access.

On the connectivity side, the specificity is that the read data bus of all peripherals should
be ORed together before being connected to the core, as showed in the diagram of the
Overview section.

From the logical point of view, during a read access, each peripheral outputs the
combinatorial value of its read mux and returns 0 if it doesn't contain the addressed
register. On the waveforms, this translates by seeing the register value on PER_ DOUT
while PER _EN is valid and not one clock cycle afterward as it is the case with the
program and data memories.

In any case, it is recommended to use the templates provided with the core in order to
develop your own custom peripherals.

The signal description therefore goes as following:

* PER_EN: when this signal is active, read access are executed during the current
MCLK cycle while write access will be executed with the next MCLK rising edge.
Note that this signal is HIGH ACTIVE.

* PER_ADDR: peripheral register address of the 16 bit word which is going to be
accessed. It is to be noted that a 14 bit address will always be provided from the
openMSP430 to the peripheral in order to accommodate the biggest possible
PER_SIZE Verilog configuration option (i.e. 32kB as opposed to 512B by
default).

Note: in order to calculate the core logical address from the peripheral register
physical address, the formula goes as following: LOGICAL@=2*PHYSICAL@

* PER_DOUT: the peripheral output word will be updated with every valid
read/write access, it will be set to 0 otherwise.

* PER_WE: this signal selects which byte should be written during a valid access.
PER_WE[0] will activate a write on the lower byte, PER_ WE[1] a write on the
upper byte. Note that these signals are HIGH ACTIVE.

* PER_DIN: the peripheral input word will be written with the valid write access
according to the PER WE value.

70

The following waveform illustrates some read/write access to the peripheral registers:

Signals

Time
melk
per_en
per_addr[7:0]
per_dout[15:@]
per_wen([1]
per_wen[0]
per_din[15:0]
pl_dout[7:0]
pldir[7:0]
tar[15:0]

Waves

7. Direct Memory Access Interface

Before moving on, please note that further details about the DMA interface can be found
in its dedicated section.

The protocol between the DMA interface master (DMA controller, bootloader, ...) and the
openMSP430 core is similar to the one followed between the openMSP430 and its data
memory.

However, it comes with a few additional features to support wait states, error response,
priority and wakeup (for LPMx modes).

The signal description goes as following:

DMA_EN: this signal enables a DMA transfer and can be released once the
transfer is completed, as signaled by DMA READY.

DMA_ ADDR: Logical address of the 16bit word currently accessed by the
interface. The address must stay valid until the transfer is completed, as signaled
by DMA READY.

Note: the integrated oMSP memory backbone module decode the
specified logical DMA address and maps it accordingly to the physical address of
the Program, Data or Peripheral memory.

DMA DOUT: When performing a read acces, the DMA data output is valid
during the MCLK cycle immediately following the end of the transfer, as signaled
by DMA READY.

71

* DMA_WE: This signal, asserted together with DMA_EN, allows to selects which
byte should be written during the transfer. DMA_ WEJ[0] activates a write on the
lower byte, DMA_WE][1] a write on the upper byte.

* DMA_DIN: When performing a write access, the DMA data input must stay valid
until the transfer is completed, as signaled by DMA ready.

* DMA PRIORITY: When SET, the oMSP memory backbone gives highest
priority to the DMA transfer and stops CPU execution.

When CLEARED, the oMSP memory backbone gives highest priority to CPU
execution and the DMA transfer is completed only when the CPU doesn't access
the targeted ressource (pmem, dmem or peripheral).

Note: a DMA controller can control the DMA data rate without stalling the CPU
by dynamically asserting/deasserting the DMA PRIORITY port between
transfers.

* DMA READY: This port signals that the current DMA transfer is completed.
Note: DMA READY is typically hold low when the CPU owns the interface of
the target ressource.

* DMA RESP: This port signals if the current transfer was successful (0) or if an
error occured (1) and is valid together with DMA READY.

Note: an error is typically signaled when an access is performed outside of any
memory mapped area (for example between Program and Data memory).

* DMA_WKUP: For ASIC implementations supporting the Low-Power-Modes,
this port is used to asynchronously restore the clocks before performing a DMA
transfer.

Note: it is possible to control which clocks are restored during a DMA wakeup
using the BCSCTL1 register of the Basic Clock Module.

The following waveform illustrates some read/write access using the DMA interface:

Signals Wa
Time :

mc Lk
dma_priority
dma_en
dma_we[1:0]
dma_addr[15:1]
dma_din[15:0]
dma_dout[15:0]
dma_ready
dma_resp

72

8. Interrupts

As with the original MSP430, the interrupt priorities of the openMSP430 are fixed in
hardware accordingly to the connectivity of the NMI and IRQ ports.

If two interrupts are pending simultaneously, the higher priority interrupt will be serviced
first.
The following table summarize this:

Interrupt Port | Vector address Priority
RESET N OxFFFE 15 (highest)
NMI OxFFFC 14
IRQ[13] O0xFFFA 13
IRQ[12] OxFFF8 12
IRQ[11] OxFFF6 11
IRQ[10] OxFFF4 10
IRQ[9] OxFFF2 9
IRQI[8] O0xFFFO 8
IRQ[7] OxFFEE 7
IRQ[6] OxFFEC 6
IRQ[5] OxFFEA 5
IRQ[4] OxFFES 4
IRQ[3] O0xFFE6 3
IRQ[2] OxFFE4 2
IRQ[1] O0xFFE2 1
IRQJ[0] O0xFFEO 0 (lowest)

The signal description goes as following:

* NMI: The Non-Maskable Interrupt has higher priority than other IRQs and is
masked by the NMIIE bit instead of GIE.
It is internally synchronized to the MCLK domain and can therefore be connected
to any asynchronous signal of the chip (which could for example be a pin of the
FPGA). If unused, this signal should be connected to 0.

* IRQ: The standard interrupts can be connected to any signal coming from the
MCLK domain (typically a peripheral). Priorities can be chosen by selecting the
proper bit of the /RQ bus as shown in the table above. Unused interrupts should be

73

Signals

connected to 0.
Note: /RQ/10] is internally connected to the Watchdog interrupt. If this bit is also
used by an external peripheral, they will both share the same interrupt vector.

IRQ ACC: Whenever an interrupt request is serviced, some peripheral
automatically clear their pending flag in hardware. In order to do so, the

IRQ ACC bus can be used by using the bit matching the corresponding /RQ bit.
An example of this is shown in the implementation of the TACCRO Timer A
interrupt.

The following waveform illustrates a TAIV interrupt issued by the Timer-A, which is
connected to /RQ/S]:

Time

mclk
nmi
irq[l13:0]

irq_acc[13:0]

irq[8]
irg_acc[8]
gie

inst_full[255:0]

tact1[0]

SUB+/INE SUB+ INE

74

9. Serial Debug Interface

The serial debug interface module provides a two-wires communication bus for remote
debugging and an additional freeze signal which might be useful for some peripherals
(typically timers).

* DBG_EN: this signal allows the user to enable or disable the serial debug
interface without interfering with the CPU execution. It is to be noted that when
disabled (i.e. DBG_EN=0), the debug interface is held into reset.

* DBG FREEZE: this signal will be set whenever the debug interface stops the
CPU (and if the FRZ BRK EN field of the CPU_CTL debug register is set). As its
name implies, the purpose of DBG FREEZE is to freeze a peripheral whenever
the CPU is stopped by the software debugger.

For example, it is used by the Watchdog timer in order to stop its free-running
counter. This prevents the CPU from being reseted by the watchdog every times
the user stops the CPU during a debugging session.

9.1 UART Configuration

* DBG _UART _TXD /DBG_UART_RXD: these signals are typically connected

to an RS-232 transceiver and will allow a PC to communicate with the
openMSP430 core.

The following waveform shows some communication traffic on the serial bus :

Signals

Time

dbg_uart_rxd

dbg uart_txd
dbg freeze

wdtcnt[15:0]

75

9.2 12C Configuration

DBG_I12C_ADDR: I2C Device address of the oMSP core (between 8 and 119). In
a multi-core configuration, each core has its own address.

DBG_12C_BROADCAST: I2C Device broadcast address of the oMSP core
(between 8 and 119). In a multi-core configuration, all cores have the same

broadcast address.

DBG_I2C_SCL: 12C bus clock input (SCL).
DBG 12C SDA OUT /DBG_I2C_SDA_IN: these signals are connected to the

SDA 1/0O cell as following:

ASIC | FPGA

DBG I2C_SDA OUT ﬂb_.wl

ouT

1/0 Cell vbD

J_ I

DBG_I2C_SDA_IN

[y
‘

10
! ._E@ SDA

The following waveform shows some communication traffic on the I12C bus:

Time
dbg_i2c_addr([6:0]
dbg_i2c_broadcast[6:0]
dbg_i2c_scl
dbg_i2c_sda_in
dbg_i2c_sda_out

dbg_scl
dbg_sda
dbg_freeze
Wdtcnt[15: 8]

76

T .
ASIC Implementation

Table of content

e 1. Introduction

* 2. RTL Configuration
¢ 2.1 Basic Clock Module

* 2.1.1 Low-frequency clock domain
e 2.1.2 Clock muxes
* 2.1.3 Clock dividers
e 2.1.4 Low-Power modes
e 2.1.4.1 Internal clocks (MCLK /SMCIK)
* 2.1.4.2 Clock oscillators (DCO_CLK / LEXT CLK)
e 2.2 Other configuration options
* 2.2.1 Fine grained clock gating
* 2.2.2 Watchdog clock mux
e 3. DFT considerations
e 3.1 Resets
e 3.2 Clock Gates
* 3.3 Clock Muxes
* 3.4 Coverage
* 4. Sensitive modules
* 4.1 AND Gate (omsp _and_gate.v)
* 4.2 Clock Gate (omsp_clock gate.v)
* 4.3 Clock Mux ((omsp_clock_mux.v)
* 4.4 Scan Mux (omsp_scan_mux.v)
* 4.5 Sync Cell (omsp_sync_cell.v)
* 4.6 Sync Reset (omsp_sync_reset.v)
* 4.7 Wakeup Cell (omsp wakeup cell.v)

77

1. Introduction

This section covers specific points of the openMSP430 ASIC implementation, in
particular:

* The ASIC specific RTL configuration options.
* Some DFT considerations.
* A description of each ASIC sensitive module.

Keep in mind that as no exotic design technique were used in the openMSP430,
following a standard implementation flow from Synthesis to P&R is the best way to go.

2. RTL Configuration

Whenever the "'define ASIC" statement of the Expert System Configuration section is
uncommented, all ASIC specific configuration options are enabled.

2.1 Basic Clock Module

In its ASIC configuration, the Basic clock module of the openMSP430 can support up to
all features described in the MSP430x1xx Family User's Guide (Chapter 4).

In particular, the ASIC_CLOCKING option activates all advancd clocking options (note
that formal equivalence with the FPGA version is achieved by commenting this option
out):

// When uncommented, this define will enable the ASIC

// architectural clock gating as well as the advanced low
// power modes support (most common).

// Comment this out in order to get FPGA-like clocking.

“define ASIC_CLOCKING

78

http://www.ti.com/litv/pdf/slau049f
http://opencores.org/project,openmsp430,core#2.1.3.3%20Expert%20System%20Configuration

All these advanced clocking options are highlighted in the following diagram and
discussed below:

openMSP430
Basic Clock Module (ASIC)
D IVAX
LFXT_DOMAIN "
Dco_cuc_.:' E
LFXT_CLK ! : Divider
Low Frequency = } 1] 1/2/4/8 >l ACLK
clock source |LFXT_ENABLE S
(LFXT)
LFXT_WKUP TN
- Glitch free logi i -+ WKUP
SENe MCLK_MuX
p .
1Y o
: |1 .| Divider
DCO_WKUP i, |30 121408 —»=H MCLK
High Frequency /.(:
clock source |DCO_ENABLE . SCC0 { ' il CPUOFF
(DCO) - = ..S_E_L-rwi{[ﬂ‘ DIVMX
DCO_CLK =R
> : !
Lipl 1 Divid
! 3 ivider |
L il || /24 —»=M SMCLK
! H
:]
: /I/ : il SCG1
i SELS! DIVSX
SMCLK_MUX

2.1.1 Low-Frequency Clock Domain

The LFXT clock domain can be enabled thanks to the following configuration option:

// When uncommented, this define will enable the 1fxt_clk
// clock domain.
// When commented out, the whole chip is clocked with dco_clk.

“define LFXT_DOMAIN

Note 1: When commented-out:

* ACLK is running on DCO_CLK
* MCLK MUX and SMCLK MUX options are not supported
* OSCOFF_EN low power mode is not supported

Note 2: Unlike its name suggest, there is no frequency limitation on LFXT CLK. The
name was simply kept in order to be consistent with the original MSP430 documentation,
where LFXT CLK is typically connected to a 32 kHz crystal oscillator.

79

2.1.2 Clock Muxes

The MCLK and SMCLK clock muxes can be enabled or disabled with the following
options:

// When uncommented, this define will enable the

// MCLK clock MUX allowing the selection between

// DCO_CLK and LFXT_CLK with the BCSCTL2.SELMx register.
// When commented, DCO_CLK is selected.

// When uncommented, this define will enable the

// SMCLK clock MUX allowing the selection between

// DCO_CLK and LFXT_CLK with the BCSCTL2.SELS register.
// When commented, DCO_CLK is selected.

“define SMCLK_MUX

Note 1: When a MUX is excluded, the concerned clock (MCLK and/or SMCLK) is
running with DCO_CLK.

Note 2: If a MUX is included, the implementation and sign-off tools (in particular CTS
and STA) must be aware that a new clock needs to be defined on the MUX output.

2.1.3 Clock Dividers

The MCLK, SMCLK and ACLK clock dividers can be enabled or disabled with the
following options:

// When uncommented, this define will enable the
// MCLK clock divider (/1/2/4/8)

// When uncommented, this define will enable the
// SMCLK clock divider

“define SMCLK_DIVIDER

80

// When uncommented, this define will enable the
// ACLK clock divider

‘define ACLK_DIVIDER

The clock dividers instantiate a clock gate on the clock tree and are implemented as
following:

DIVxx

k|

Counter
1/2/4/8

KCLK

xCLK_NODIV

omsp_dock_gate

2.1.4 Low-Power Modes

2.1.4.1 Internal clocks (MCLK /SMCLK)

Two bit fields in the status register (R2) allow to control the system clocks:

* CPUOFTF allows to switch-off MCLK
¢ SCG1 allows to switch-off SMCLK

These control bits are supported by the openMSP430 and can be included in the design
with the following defines:

// LOW POWER MODE: CPUOFF
// When uncommented, this define will include the

// clock gate allowing to switch off MCLK in
// all low power modes: LPMO, LPM1, LPM2, LPM3, LPM4

// LOW POWER MODE: SCG1

// When uncommented, this define will include the
// clock gate allowing to switch off SMCLK in

// the following low power modes: LPM2, LPM3, LPM4

“define SCG1_EN

81

In order to keep the clock tree as flat as possible, the CPUOFF and SCG1 low power
options share the same clock gate with the clock divider:

CPUOFF
DIVxx SCEL
Counter

1/2/4/8

*CLK

xCLIK_NODIV I

onsp_dock_gate

2.1.4.2 Clock oscillators (DCO_CLK /LFXT_CLK)

There are two bit fields in the status register (R2) allowing to control the clock
oscillators:

¢ SCGO allows to switch-off the DCO oscillator
e OSCOFF allows to switch-off the LFXT oscillator

These control bits are supported by the openMSP430 and can be included in the design
with the following defines:

// LOW POWER MODE: SCGO

// When uncommented, this define will enable the

// DCO_ENABLE/WKUP port control (always 1 when commented).
// This allows to switch off the DCO oscillator in the

// following low power modes: LPM1, LPM3, LPM4

// LOW POWER MODE: OSCOFF

// When uncommented, this define will include the

// LFXT_CLK clock gate and enable the LFXT_ENABLE/WKUP

// port control (always 1 when commented).

// This allows to switch off the low frequency oscillator
// in the following low power modes: LPM4

“define OSCOFF_EN
The control logic of both DCO and LFXT oscillators is identical.

82

When disabled, the * WKUP signal is used to asynchronously wake up the oscillator.
Once the oscillator is awake (and therefore a clock is available), the ¥ ENABLE signal
will take over and synchronously keep the oscillator enabled until the CPU clears the
SCGO or OSCOFF bit again.

The following two waveforms illustrate the CPU entering the LPM1 mode, and in
particular the DCO oscillator being switched-oft:

* Entering LPM1 through a BIS #N, R2 instruction:

80 hs [o[5] ns

100 us 100108 hs 108200 ns 180300 ns 164

Time
pmem_dout[15:0] =4138 4 403F 40 a D)

inst_pc[l5:8] =F802
inst_Tull[255:8] =JNE

dco_wkup =8
dco_enable =1
dco_clk =1

Ccpuoff =@
oscoff =8
scgh =8
scgl =0

wkup([2] =@
mclk =1
irq[2] =@

irg_detect =08
gie=1

* Entering LPM1 through a RETI instruction:

— 125 T 25 s 26 us 126180 hs
pmem_dout [15:8] 1] 1
inst_full[255:8] 3 o

inst_pc[l5:8]

dco_wkup
dco_enable
dco_clk

cpuoff
oscoff
scgl

wWkup[2]
mclk
irql2]

irg_detect
gie

Note: the DCO oscillator is enabled until the BIS and RETI instruction are fully executed
(i.e. until the CPU state machines reach their IDLE state).

83

At last, this waveform shows the CPU going out of LPM1 mode and in particular the
DCO oscillator wake-up sequence:

Time
pmem_dout[15:8]
inst_full[255:8]
inst_pc[l5:0]

dco_wkup
dco_enable
dco_clk

cpuoff
oscoff
scgh
scgl

wkup[2]
mcli
irql2]

irq_detect
gie

In order to wake-up the CPU from ANY low power mode, the system MUST ALWAYS
go through the following chain of events (as illustrated in the previous waveform):

1. The peripheral (for example a timer) asserts the WKUP input of the
openMSP430 in order to asynchronously restore the clocks. At this
stage, DCO_WKUP is activated and DCO_ENABLE is still
cleared.

2. Once MCLK is available, the peripheral generates a synchronous
IRQ signal in order to re-activate the CPU state machines.

3. The CPU state machines activated, DCO_ENABLE is
synchronously set.

4. When the global interrupt enable flag (GIE) is cleared,

DCO _WKUP is released two clock cycles later (i.e. same behavior
as a reset synchronizer).

Important note: the peripheral should release the WKUP input
when its interrupt pending flag is cleared. Otherwise the

DCO _WKUP signal will be set again as soon as the GIE flag is
restored by the RETI instruction... which is probably not the
intended behavior :-P

5. The DCO oscillator is now enabled until SCGO is set again.

84

2.2 Other configuration options

2.2.1 Fine Grained Clock Gating

Nowadays, all synthesis tools support automatic (fine grained) clock gating insertion.
However, as some design houses still prefer to have the clock gates directly instantiated
in the RTL, there is the possibility to include the ‘manual' fine grained clock gates in the
design with the following define:

// When uncommented, this define will enable the fine
// grained clock gating of all registers in the core.

“define CLOCK_GATING

2.2.2 Watchdog Clock Mux

The watchdog clock mux allows to select between ACLK and SMCLK. It can be enabled
or disabled with the WATCHDOG_MUX define.

When excluded, the additional WATCHDOG_NOMUX_ACLK option allows the user
to decide if the watchdog clock should be hard-wired to ACLK (if uncommented) or
SMCLK (if commented-out)

// When uncommented, this define will enable the

// Watchdog clock MUX allowing the selection between
// ACLK and SMCLK with the WDTCTL.WDTSSEL register.

// When commented out, ACLK is selected if the

// WATCHDOG_NOMUX_ACLK define 1is uncommented, SMCLK is
// selected otherwise.

“define WATCHDOG_MUX
// define WATCHDOG_NOMUX_ACLK

85

3. DFT Considerations

The openMSP430 is designed to be fully scan friendly. During production, the ATE
controls the core through the scan_mode and scan_enable signals. The scan_mode port
is always asserted during scan testing and is used to switch between functional and scan
mode.

3.1 Resets

When in scan mode (i.e. scan_mode input port is set), ALL internal resets of the
openMSP430 are connected the reset _n input port.

Taking the POR generation as an example, it is implemented using the omsp_scan_mux
module as following:

omsp_clock_module
oIMEp_Scan_imux

RESET N -—Dc]] 1

e - N - B
L&

———m POR

SCAN_MODE Il

3.2 Clock Gates

When in scan mode (i.e. scan_mode input port is set), ALL clock gates instantiated in the
design must be enabled during scan shifting. This is can be achieved by setting the
scan_enable input port during the shift phase.

On the other hand, during the capture phase, the scan_enable port must be cleared in
order to restore the functional behavior of the clock gate.

This feature is implemented in the omsp_clock gate module as following:
SCAM_EMAELE ::DL
EMABLE
Clock gate
CLK ll——

—H# GCLK

onsp_dock_gate

86

3.3 Clock Muxes

When in scan mode (i.e. scan_mode input port is set), the MCLK and SMCLK clock
muxes are both running on DCO_CLK. The watchdog mux is running SMCLK (i.e.
DCO_CLK).

This feature is implemented in the omsp_clock_mux module as following:

CLK_ Nl l————1
CLK_IN0 l———0

—— 1l GCLK

SELECT

SCAN_MODE
omsp_clock_mux

Note: if the LFXT clock domain is enabled, the LFXT CLK input port should also be
connected to the scan clock when in scan mode.

3.4 Coverage

After synthesizing the openMSP430 in its maximum configuration (in particular with
ALL clock domains available and ALL clock muxes included), the core reaches 99.7%
stuck-at fault coverage:

3 Teiranx - Symorsys e, 2
File Edit View Netlist Rules Scan Primitives Fauls Paterns Buses Constraints Loops Run Analyze Report Help
= =] & A A = %
Cmd Save Transcript Transefipt |ncrease Font Decrease Font | SchematicView | Hierarchy Browser | Waveform View
Messages | Netlist ~Build DRC | Summary | ATPG | \Wrie Pat | Write Testbench | Simulation | FaultSim. = Analyze | Diagnosis = Exit
5
Uncollapsed Stuck Fault Summary Report
fault class code #faults
Detected DT 53781
pPossibly detected PT 0
Undetectable UD 63
ATPG untestable AU 109
Not detected D 19
total faults 53972
test coverage 99.76%
Pattern Summary Report
#internal patterns 283
#basic_scan patterns 277
#fast_sequential patterns 6
CPU Usage Summary Report
Total CPU time 3.90
Create report
redirect -file "./results/report.tmax_summary" {report_summaries]
#quit =
« | ol
TEST-T> H
Ready . Stop Euild| DRC|| Test

87

4. Sensitive Modules

ALL modules discussed in this section have a simple and well defined functionality but
nonetheless lay on sensitive parts of the design (clock tree, wake-up path, ...).

In the industry, it is common place for companies to have policies recommending
designers to use textbook structures or specific standard cells when implementing circuits
considered as 'sensitive'.

This section will hopefully help to quickly identify these 'sensitive' circuits and adapt
them to your requirements if necessary.

4.1 AND Gate (omsp _and_gate.v)

This module implements a simple AND2 gate and is instantiated several times on the
wake-up paths in order to ensure a glitch free generation of the wake-up signals. The idea
behind this block is to prevent the synthesis tool from optimizing the combinatorial wake-
up path and potentially generate a glitchy logic.

There are three different ways to handle this block:

1. Do nothing

2. Modify the RTL by directly instantiating an AND2 cell from the target library and
applying a don't touch or size only attribute on it before proceeding to the
synthesis compile step

3. Keep the RTL unchanged and when running synthesis, first compile this module
separately before going to the top down compile (don't forget the don't touch or
size only attribute)

Note that the first option is actually acceptable because in low power mode, there are no
clocks available, which means no glitch... However, in active mode, the wake-up line
could see a lot of glitches, which is functionally not a problem (since the core is awake
anyway) but could be considered as not really elegant...

88

4.2 Clock Gate (omsp_clock gate.v)

Almost every company has a different policy for handling clock gates. Therefore, this
module is probably the most likely to be modified.

So here are the facts:

* There are only rising edge flip-flop in the design’
— as a consequence clock gates can indifferently park the clock high or low
without affecting functionality.

* The enable signal of ALL clock gates in the openMSP430 are generated with the

rising edge of the clock
— this leaves the door open for both LATCH and NAND?2 based clock gates.

I beside for the DCO_ENABLE and LFEXT ENABLE signals and the clock MUXes. However, these can be
safely ignored

As a consequence, you can feel free to use:

* A LATCH based clock gate. For example:

ENABLE I

T GCLK
clk

* Or a NAND?2 based clock gate:

ENABLE
GCLK
CLK

89

4.3 Clock Mux (omsp clock mux.v)

The clock muxes of the openMSP430 are implemented as following:

omsp_clock_mux

SELECT .—‘Din Ll .
FAN .
CLK IND bi l
CLK_OUT
qun 1 ? |
A N |
CLKINL 7 1

In order to make this implementation 100% bullet proof, the RTL could be modified by
manually instantiating the NAND2 and AND?2 cells directly from the target library (with
the associated don't touch or size only attributes of course).

However, if you decide to compile this module as it is, the synthesis tool should normally
be smart enough and not mess it up (but PLEASE PLEASE PLEASE double check
manually the resulting gate netlist).

90

4.4 Scan Mux (omsp _scan_mux.v)

As illustrated in the section 3.1, the scan mux cell allows ALL internal resets to be
controllable with the reset_n input port in scan mode.
In addition, the scan mux is also used by the omsp wakeup cell (see section 4.7 below).

4.5 Sync Cell (omsp _sync cell.v)

The following synchronization cell is instantiated on all clock domain crossing data
paths:

rsT I}
rs rt
para_in [l—— | — MW DATA_OUT
cik I} l

omsp_sync_cell

4.6 Sync Reset (omsp_sync reset.v)

Internal resets are generated using the following standard reset synchronizer:

rsT_A B

0 —| - - W RST S

ck I} l

oms_sync_resst

91

4.7 Wakeup Cell (omsp wakeup cell.v)

The wakeup cell is the most unconventional module of the openMSP430 design as it
contains a flip-flop whose clock and reset are both coming from a data path.

In the openMSP430 core, it is instantiated a single time in the watchdog timer but can
also be reused in external custom peripherals.

The implementation of the block looks as following:

OMSp_56AN_mix

SCAN RST I ——— 1)
WEKUP_CLEAR B

] B wWKUP_oUT
SCAN_IODE

SCAN_CLK —— |
WEUP_EVENT i1

OMSP_S6 An_mu

The basic idea here is simply to set the WKUP OUT signal with a rising edge on the
WKUP_EVENT port, and clear it when WKUP_CLEAR is active (i.e. level sensitive
clear).

92

In order to give a better perspective from a system point of view, the following diagram
shows how the wakeup cell has been used in the particular case of the watchdog timer
(note that WDTIFG_CLR REG and WDTQN EDGE REG are both output of a flip-flop
and therefore glitch-free):

WKUP

openMSP430
WOTIFG_CLR Clearthe
WDTIFG flag
Watchdog IR Q acknowledge
WOTIFG_CLR_REG
Glitch free
Software clear logic
g SET| [SET
] 8 DCO_WKUP
MELE A A
DCO_CLK
15 WATCHDOG_COLNTER l]‘ reser WHLP_OUT D .
- = Glitch free
: 1 R R logic
WDT_CLK VDT VLR SET| [SET
0 B LEXT_WKUP
WDTQN_EDGE_REQ : L 'S
WDTISx I

WKUP_EVENT LEXT_CLK

omsp_wakeup_cell

CPUCFF
WOT_CLK
WDTQN_EDGE

. Tointemrupt or generation
reset generation HODIV_MCLE

omsp_watchdog

Note: Wake-up signals can of course be generated in a different way as long as they
directly come from a flip-flop (or are certified to be non-glitchy).

For example a simple handshake between the WDT CLK and MCLK clock domains
could have been used to clear the WDT WKUP signal in a fully synchronous manner.
However, it is to be noted that this handshake would introduce some synchronization
delay, which might not be negligible if MCLK and WDT CLK frequencies are orders of
magnitude apart (i.e. several MHz for MCLK and 32kHz for WDT CLK).

As getting the oscillators back to sleep as fast as possible might prove to be extremely
important for low-power designs, this asynchronous solution was selected for the
omsp_watchdog implementation.

93

8.
Area and Speed Analysis

Table of content

e 1. Overview
1.1 FPGAs
* 1.2ASICs
¢ 2. Detailed results

Warning: the results presented here might vary depending on the tool versions, applied
timing constraints and exact configuration of the openMSP430 core.

The FPGA results were obtained using the free tool versions provided by the vendors (i.e
ISE 11.1, QuartusII 9.1 & Libero 8.5).

The ASIC synthesis was run with Synopsys Design Compiler 2007.12 (without dc_ultra
or any special feature).

94

1. Overview

1.1 FPGAs

Xilinx

Spartan 3
Spartan 3E
Spartan 3A
Spartan 3A

DSP
Virtex 4

4-inputs
LUTs

1620

+200

+ 520

+ 80

Spartan 6
Virtex 5
Virtex 6

6-inputs
LUTs

1240

+ 150

+ 350

+70

Altera

Cyclone 11
Cyclone IIT
Cyclone IV GX
Stratix

LEs

1550

+210

+ 480

+ 110

Arria GX
Arria II GX
Stratix 11
Stratix II1

ALUTs

1030

+ 115

+ 380

+90

Actel

ProASIC3E
ProASIC3L
ProASIC3
Fusion
IGLOOe

Tiles

3550

+1 060

+1200

+ 220

Registers

470

+ 75

+ 140

+ 45

95

Spartan 3

Spartan 3E
Spartan 3A 30 - 40 25-35
Spartan 3A
DSP
Xilinx Spartan 6 40 - 65 35-60
Virtex 4 50-70 45 - 60
Virtex 5 75-100 65 - 85
Virtex 6 90 - 115 75 -100
Cyclone IT 35-45 30-45
Cyclone IIT
Cyclone IV GX e SoIeE
sl Arria I1 GX 65 - 85 60 - 80
Stratix I1 55-75 50 - 65
Stratix 111 75 - 95 70 - 90
ProASIC3E
ProASIC3L
Actel ProASIC3 15-25 15-25
Fusion

IGLOOe

96

1.2 ASICs

50 MHz | kGates 8 +2.5 +2 +0.8
180 nm

100 MHz | kGates 10 +4.4 +2 +1.2
2. Detailed results

Detailed results can be found in the PDF documentation (see the online download

section).

http://opencores.org/usercontent,doc,1321215271

9.

Software Development
Tools

Table of content

1. Introduction

* 2. openmsp430-loader
* 3. openmsp430-minidebug

¢ 4. openmsp430-gdbproxy
5. MSPGCC Toolchain
e 5.1 Compiler options
* 5.2 MCU selection

* 5.3 Custom linker script

98

1. Introduction

Building on the serial debug interface capabilities provided by the openMSP430, three
utility programs are provided:

* openmsp430-loader: a simple command line boot loader.

* openmsp430-minidebug: a minimalistic debugger with simple GUI.

* openmsp430-gdbproxy: GDB Proxy server to be used together with MSP430-
GDB and the Eclipse, DDD, or Insight graphical front-ends.

All these software development tools have been developed in TCL/TK and were
successfully tested on both Linux and Windows (XP/Vista/7).

Note: to be able to execute the scripts, TCL/TK needs to be installed on your system.

In order to connect the host PC to the openMSP430 serial debug interface, a UART or
12C serial cable/adapter is required.

Typically, the following solutions will suit any kind of development board:

UART I’C

USB to RS232 converter: Devantech USB-ISS adapter:

-
2N

USB to Serial TTL converter:

99

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBRS232.htm
http://www.tcl.tk/software/tcltk/

2. openmsp430-loader

This simple program allows the user to load the openMSP430 program memory with an
executable file (ELF or Intel-HEX format) provided as argument.

It is typically used in conjunction with 'make' in order to automatically load the program
after the compile step (see 'Makefile' from software examples provided with the project's
FPGA implementation).

The program can be called with the following syntax:

USAGE : openmsp430-loader.tcl [-device <communication port>]
[-adaptor <adaptor type>]
[-speed <communication speed>]
[-i2c_addr <cpu address>] <elf/ihex-file>
DEFAULT : <communication port> = /dev/ttyUSBO
<adaptor type> = uart_generic
<communication speed> = 115200 (for UART) / I2C_ S 100KHZ (for I2C)
<core address> = 42

EXAMPLES: openmsp430-loader.tcl -device /dev/ttyUSBO -adaptor uart generic -speed 9600 leds.elf

openmsp430-loader.tcl -device COM2: -adaptor i2c_usb-iss -speed I2C_S_100KHZ
-i2c_addr 75 ta_uart.ihex

These screenshots show the script in action under Linux and Windows:

File Edit %iew Bookmarks Seftings Help

< >

] leds : bash

sopenmnspddB@stoolsshin
C:wopenmspd43B@stoolsshin
C:sopenmsp43B@stoolsshin
C:wopenmzpd3fstoolssbin>
C:wopenmzpd3B@stoolssbin>
C:wopenmspdlB@stoolssbin>
C:sopenmspddB@stoolssbin2tclsh8SY openmsp43dB—loader.tcl —device COM4: -baudrate 115288 leds.elf
Connecting with the openM8P438 (COM4:,. 11528@ hps>... done
Connected: target device has 4896B ROM and 1824B RAM

Load ROM... done
Verify ROM... done

C:sopenmspdlB@stoolssbin?

C:wopenmspd4dB@stoolsshin

C:sopenmspd43B@stoolssbhinopennsp43B-loader.exe —device GCOM4: —baudrate 1152688 leds.elf
Connecting with the openMS8P438 (COM4:, 115288 hps>... done

Connected: target device has 4896B ROM and 1824B RAM

C:sopenmspd43B@stoolsshin?
C:wopenmsp43@stoolsshin
C:wopenmspd3Bitoolssbin>
C:wopenmzpd3B@stoolssbin>
C:openmspd3@stoolsshin

100

3. openmsp430-minidebug

This small program provides a minimalistic graphical interface enabling simple

interaction with the openMSP430:

X @

e [omo _cont | _con2]

openMSP430 mini debugger 2 &

openMSP430 mini debugger

Device Port: =] speea: | Advanced.. ‘ ‘ 1353616627856616.e1F: file format elf32-msp430
CPU Info: Connected to Avnet Spartanf LX8 Microboard Maore Disassenbly of section . text:
B008FO00 <_ watchdog_supports:
FO00: 55 42 20 01 mov.b &0x0120,r5
ELF file: |fhm| i i 430 (_avnet_IxGmi ri Browse fo04; 35 d0 08 5a bis #23048, r5 i#0x5a08
fO08: 82 45 04 02 mov r5, &0x0204
Load ELF File ! | Open ELF File ! Read Program Memory | B00BTA0C < init stacks:
fO0c: 31 40 00 06 mov #1536, rl #0X0600
Firmware info: Binary file successfully loaded
B008TOL0 <__do_copy_data>:
f010: 3f 40 00 00 mov %0, rlS #0x0000
fol4: @f 93 tst r1s
fO16: B8 24 jz $+18 sjabs 0xf828
CPU Control. Reset Run PU Status: TO18: 92 42 84 02 mov &Bx0204,80x0120
folc: 20 01
fole: 2f 83 decd rl5
CPU Breakpaints: 0xf000 [~ Enahle [~ Enable 0xf000 [~ Enable f820: 9F 4f cc f1 mov -3636(rlS5),512(rl5);0xflcc(rls), @x0208(rl5)
024 80 02
f026: f8 23 inz $-14 ;abs 0xfO18
Status register (r2/sr): [~V [8CG1 [OSCOFF [CPUOFF [T GIE TN [Z [C 50007028 < do_clear bssa:
f028: 3f 40 04 00 mov #4, rl5 J#0%0004
Registers Address Data fo2c: Of 93 tst rls
10 (pe): 0xf000 0x0200 0x0000 fo2e: 87 24 jz §+16 jabs Dxf@3e
f030: 92 42 04 02 mov &0x0204,&0x0120
r (sp): 0x0000 0x0202 0x0000 f034: 20 01
r2 (sn): 0x0000 0x0204 0x5228 fO36: 1f 83 dec rlS
f038: cf 43 00 02 mov.b #0, 512(rl5);r3 As==00, 0x0200(rl5)
[(RHII XIEHE ey fo3c; f9 23 inz §-12 ;abs 0xf30
4 0x0000 0x0208 0x0000
= 00 CrfZa a0 ww;z::@?:; 62 02 mov #0, &Ox0202 jr3 As==08
18 0X0000 “ues® 0020 * %, [0x0000 £842; 82 43 80 02 mov #0, &0x0208 ;r3 As==08
7 0x0000 no2e [By § o000 f046: b2 40 80 Sa mov #23168, &0x0120 ;#0x5280
) f04a: 20 01
8 0x0000 0x0210 \ j 0x0000 f84c: c2 43 21 00 mov.b #0, &Ox0821 ;r3 As==08
ra 0x0000 0x0212 - 0x0000 f050: c2 43 29 00 mov.b #0, &Ox0029 ;r3 As==0@
f054: c2 43 22 00 mov.b #0, &0x0022 ;r3 As==0@
s P BRI ERIE0 f058: f2 43 2a 00 mov.b #-1, &0x002a ;r3 As==11
1 0x0000 0x0216 0x0000 fO5c: c2 43 24 00 mov.b #0, &0x0024 ;r3 As==0@
M2 0x0000 0x0218 0x0000 fO60: c2 43 2c 00 mov.b #0, &0x002c ;r3 As==08
f064: c2 43 25 00 mov.b #0, &O0x0025 ;r3 As==08
"3 0x0000 0x021a 0x0000 f068: c2 43 2d 00 mov.b %0, &O0x002d ;r3 As==0@
4 0x0000 Dx021¢ 0x0000 fO6c: d2 43 29 00 mov.b #1, &0x0029 ;r3 As==0l
f070: 3e 43 mov #-1, ri4 Jr3 As==11
s [0 RO [£872; 3T 40 87 00 mov #7, rl5 [#0x0007
f076: bB 12 ca @ call #0xfica
Refresh Registers Refresh Memory ‘ f@7a: e2 43 29 00 mov.b #2, &0x0029 :r3 As==1@
f07e: 3e 43 mov #-1, rl4 Jr3 As==11
f080: 3f 40 07 00 mov #7, rlS #0%0007
fog4: bd 12 ca f@ call #0xfoca
f0BB: T2 40 06 00 mov.b #6, &0x0829 ;#0xB006
TCLscript | Browse ToBc: 29 00
foge: 3e 43 mov #-1, rld ir3 As==11
Source TCL script ! £ N

Code View: IHEX

* Assembler © C &Assembler ‘ ,

As you can see from the screenshot, it allows the following actions:

* (1) Connect to the openMSP430 Serial Debug Interface
* (2) Load the program memory with an ELF or Intel-HEX file
* (3) Control the CPU: Reset, Stop, Start and Single-Step and Software breakpoints

* (4) Read/Write access of the CPU registers

* (5) Read/Write access of the whole memory range (program, data, peripherals)
* (6) Basic disassembled view of the loaded program (current PC location is
highlighted in green, software breakpoints in yellow, pink and violet)

* (7) Choose the disassembled view type
* (8) Source a custom external TCL script.

101

4. openmsp430-gdbproxy

The purpose of this program is to replace the 'msp430-gdbproxy' utility provided by the

mspgcc toolchain.

Typically, a GDB proxy creates a local port for GDB to connect to, and handles the
communication with the target hardware. In our case, it is basically a bridge between the
RSP communication protocol from GDB and the serial debug interface from the

openMSP430.

Schematically the communication flow looks as following:

Graphical Interface
(Eclipse, DDD, Insight)

A

v

GDB
(msp430-gdb)

TCP/IP port
v

GDB Proxy
(openmsp430-gdbproxy)

Serial port (

openMSP430

(RSP protocal)

RS232)

Like the original 'msp430-gdbproxy' program, 'openmsp430-gdbproxy' can be controlled
from the command line. However, it also provides a simple graphical interface:

X & opentSP430 GDB Proxy INES
Exit openMSP430 GDB proxy
Serial Debug Interface: =l Adapter selection =l
Device Port = Spead =
Proxy Server Port 12C Address Connectto CPU(s)
an
== = Start Proxy Server(s)
[2o00— EE]
=
oo]
=
[2o00]
=
CPU Info: Connected to Avnet Spartan6 LX8 Microboard More
ServerInfo: Running
INFO: Sucessfully connected with the openMSP430 target.]
INFO: CPU Version - 3/ FPGA
INFO: User Version =3
INFO: Hardware Multiplier - Yes
INFO: Program Memory Size - 4096 B
INFO: Data Memory Size - lez24 B
INFO: Peripheral Address Space - 512 B
INFO: @ Hardware Break/Watch-point unit(s) detected
Open socket on port 2008 ... done
INFO: Waiting on TCP port 2000
Clear log [Verbose
TCLscript: | Browse
Source TCL script!

These two additional screenshots show the script in action together with the Eclipse and

DDD graphical frontends:

] Debug - coucoulsre/coucou ¢ - Eclise RS
File Edit Source Refaclor Mavigale Search Project Run Window Help
v @@ e & 0var | ® 3 9| 4 8|8y iy e av oy 7 Ecices F5Debug
35 Debug 53 & & e 0B 3 @ e F | B Y 70| «-vanables 8 @g Breskpmmﬂﬁg‘Expressmns\} i Reaisters -\Mnnu\es} =0
= [c] coucou mspd30 debua [CIC++ Application] & + g‘-f ® 8& =
~ & gdbserver (1118011 10:14 PM) (Suspended) e i
@ Thread [1] (S ded: Breakpoint hit H
i H
00 B
sl msp430-gdb (11/8/1110:14 PM) :
5 mor kspace_ niSp430/coucou.elf (1118111 10:14 PM) <[! 'i
b4
<[] >
[¢] 7seq.c] [€] hardware.h] adb-target.ini WEJESEL\/E:IMﬁO W = B || 8z outline (lm EmbSys Registers §2 =g
i . H ~ Arch: msp430 Vendor: OpenCores Chip: openmsp430_xilink_diligent_s3board Board: -
P20UT = Ox00; 1 Register Hex Bin -
PIDIR = 8x00; /{ Port direction register = [System peripherals
P2DIR @x00; P (= Basic Clock Module
P3DIR = éxff; [> (= Special Function Registers
UART_BAUD = ©x1234; 1Y (71000
UART TXD = Oxaa; WDTCTL 0x6910 0110100100010000
UART_BAUD = 0x5678; [E] WDTPW (bits 8-15) 0x69 01101001
E:g_giib = gxgiés [5] WOTHOLD (it 7) 0x0 0
= 0x78 H "
UART BAUD = axz4la: [5] WDTNMIES (bit 6) 0x0 0
- [5] WDTTMSEL (bit 4) 0x1 1
PLIES = @x00; /4 Port interrupt enable (@=¢is l=enabled) EWDTCNTCL(I:M) 0x0 0
P2IES 0x00; [5] WDTSSEL (hit 2) 0x0 0
;gé - g;gg: // Port interrupt Edge Select (8=pos l=nsg) [WOTIsx (ot 0-1) = e
! = (= Hardware Math units
WDTCTL = WDTPW | WDTTMSEL | WOTCNTCL;// | WDTIS1 | WDTISG ; /1 Configure watghdpg interrupt [[> (= 16x16 Hardware multiplier
161 |- oxel; ~ (= Digital 10
eint(); fienable interrupts b & Port
P = Port2
~ @ Por3
whﬂfe (1) { // Main loop. never ends. .. 0x00 00000000
or (1=8; 1<8; 1++, o++) |
P30UT = (1<<i) | (Bx80>>(0&7)); 0x24 00100100
| delay (8xB003, OxTTff); 0xFF LARRAARY
} ﬂ [P3sEL 0x00 00000000
} v P = Timers v
<[] > <[B
El Consale (E,Tasks (& Problems (0 Executables |27 Disassembly 53 Enter location here vil &gy th B T =8
oa0efeda: mov.b rls, &Ox0819 ~
083 delay (0x0003, OXTTTT);
> eeeefede: | mov #3, ris S #OXB003
0806Te52: mov #-1, ri4 ir3 As==11
0806fe54: call #oxfcee
81 for (1=6; 1<8; i++, o++) { v
<] >
J e Writable Smartinsert | 83:1
Fy®) 000 aigert_s EIRL)
File Edit View Program Commands Status Source Data Help
0i| main.c:67 | B o B e Dt
s Run
int main{veid) { Interrupt
1n1trv1tyo =0; Step | Stepi
irg_counter = 0; Next | Nexti
offser = @3 Unil | Finish
WDTCTL = WOTPW | WDTHOLD; // Disable watchdog timer Cont | Kil
PLOUT = Ox00; // Port data output Up | Down
P20UT = 0x00; Undo | Red
(X© opentSP430 DB Proxy ©®
PIDIR = Ox00; // Port direction register E
Egg%; 8){%% Exit openMSP430 GDB proxy
X}
P1IES 0x00; // Port interrupt enable (O=dis l=enab Serial Port:
P2IES = Ox00; ——
PLIE 0x00; // Port interrupt Edge Select (O=pos 1.
PEIE = @803 Prow Serer Port
WDTCTL = WDTPW | WDTTMSEL | WDTCNTCL;// | WDTIS1 | WDTISO ; Ve
IEL |= 0x01; GPUInfa: Gonnected to oMSP-Xilinx Example-CPUVZ
eint(); ’ //enable interrupts RIS (U]
while (1) ¢ 20 Em 1639, RVEF EéBooo TNFD: SucessTully comnected with fhe aperWsPdss target =
for (i=0; i<8; i++, o++) { INFO: User Version -1
P30UT = (l<<i) | (0X80>>(0&7)); INFO: Harduare Multiplier
ke delay(0x0007, OxFFff; INFO: Progran Menory Size - 4096 B
INFO: Data Menory S 1024 5
INFO: Peripheral Address Space - 512 B
¥ INFO: 1 Harduare Brea/Vatch-point unit(s) detected
: Open socket on port 2000 ... done
INFO: Waiting on TCP port 2000
Accept client: 127.0.0.1 (41515)
=T
log_openMSP| log_ez430] Connect_2000| Connect_200 1| Erase| Load| Resst|
Breakpoint 1, main () at main.c:67 Glearlog Verbosa | | |
(gdb) step
delay (c=7, d=65535) at main.c:9
(gdb) cont TeLseript | Browse
?gzg;plowmt 1, main () at main.c:67 L
_\ Breakpoint 1, main () at main.c:67

103

Tip 1: There are several tutorials on Internet explaining how to configure Eclipse for the
MSP430. As an Eclipse newbie, I found the followings quite helpful (the msp430-
gdbproxy sections should of course be ignored as we are using our own openmsp430-
gdbproxy program :-)):

* A Step By Step Guide To MSP430 Programming Under Linux (English)
* MSP430 eclipse helios mspgec4 (German)

Tip 2: You probably want to install this excellent Eclipse plugin (see screenshot above):
- EmbSysRegView

5. MSPGCC Toolchain

5.1 Compiler options

The msp430-gcc compiler accepts the following MSP430 specific command line
parameters (copied from the MSPGCC manual page):

-mmcu= Specify the MCU name

-mno-volatile-workaround |Do not perform a volatile workaround for bitwise operations.

-mno-stack-init Do not initialize the stack as main()starts.
-minit-stack= Specify the initial stack address.

-mendup-at= Jump to the specified routine at the end of main().
-mforce-hwmul Force use of a hardware multiplier.
-mdisable-hwmul Do not use the hardware multiplier.

Issue inline code for 32-bit integer operations for devices

-minline-hwmul with a hardware multiplier.

Do not disable and enable interrupts around hardware
multiplier operations. This makes multiplication faster when
you are certain no hardware multiplier operations will occur
at deeper interrupt levels.

-mnoint-hwmul

Use subroutine calls for shift operations. This may save some

-mcall-shifts space for shift intensive applications.

104

http://mspgcc.sourceforge.net/manual/c745.html
https://sourceforge.net/projects/embsysregview/
http://www.mikrocontroller.net/articles/MSP430_eclipse_helios_mspgcc4_gdb-proxy
http://www.43oh.com/2010/11/a-step-by-step-guide-msp430-programming-under-linux/

5.2 MCU selection

The following table aims to help selecting the proper MCU name for the -mmecu option
during the msp430-gcc call:

_mmen option Program | Data Hard.wzfre
Memory | Memory | Multiplier
Program Memory Size: 1 kB
msp430x110 1 kB 128 B No
msp430x1101 1 kB 128 B No
msp430x2001 1 kB 128 B No
msp430x2002 1 kB 128 B No
msp430x2003 1 kB 128 B No
msp430x2101 1 kB 128 B No
Program Memory Size: 2 kB
msp430x1111 2 kB 128 B No
msp430x2011 2 kB 128 B No
msp430x2012 2 kB 128 B No
msp430x2013 2 kB 128 B No
msp430x2111 2 kB 128 B No
msp430x2112 2 kB 128 B No
msp430x311 2 kB 128 B No
Program Memory Size: 4 kB
msp430x112 4 kB 256 B No
msp430x1121 4 kB 256 B No
msp430x1122 4 kB 256 B No
msp430x122 4 kB 256 B No
msp430x1222 4 kB 256 B No
msp430x2122 4 kB 256 B No
msp430x2121 4 kB 256 B No
msp430x312 4 kB 256 B No
msp430x412 4 kB 256 B No

105

http://mspgcc.sourceforge.net/manual/c745.html

Program Memory Size: 8 kB

msp430x123 8 kB 256 B No
msp430x133 8 kB 256 B No
msp430x313 8 kB 256 B No
msp430x323 8 kB 256 B No
msp430x413 8 kB 256 B No
msp430x423 8 kB 256 B Yes
msp430xE423 8 kB 256 B Yes
msp430xE4232 8 kB 256 B Yes
msp430xW423 8 kB 256 B No
msp430x1132 8 kB 256 B No
msp430x1232 8 kB 256 B No
msp430x1331 8 kB 256 B No
msp430x2131 8 kB 256 B No
msp430x2132 8 kB 256 B No
msp430x2232 8 kB 512B No
msp430x2234 8 kB 512B No
msp430x233 8 kB 1024 B Yes
msp430x2330 8 kB 1024 B Yes
Program Memory Size: 12 kB
msp430xE4242 12 kB 512B Yes
msp430x314 12 kB 512 B No
Program Memory Size: 16 kB
msp430x4250 16 kB 256 B No
msp430xG4250 16 kB 256 B No
msp430x135 16 kB 512B No
msp430x1351 16 kB 512 B No
msp430x155 16 kB 512B No
msp430x2252 16 kB 512B No
msp430x2254 16 kB 512 B No
msp430x315 16 kB 512B No
msp430x325 16 kB 512B No
msp430x415 16 kB 512B No
msp430x425 16 kB 512B Yes

106

msp430xE425 16 kB 512B Yes
msp430xW425 16 kB 512B No
msp430xE4252 16 kB 512B Yes
msp430x435 16 kB 512B No
msp430x4351 16 kB 512B No
msp430x235 16 kB 2048 B Yes
msp430x2350 16 kB 2048 B Yes
Program Memory Size: 24 kB
msp430x4260 24 kB 256 B No
msp430xG4260 | 24 kB 256 B No
msp430x156 24 kB 512B No
msp430x4361 24 kB 1024 B No
msp430x436 24 kB 1024 B No
msp430x336 24 kB 1024 B Yes
Program Memory Size: 32 kB
msp430x4270 32 kB 256 B No
msp430xG4270 | 32 kB 256 B No
msp430x147 32 kB 1024 B Yes
msp430x1471 32 kB 1024 B Yes
msp430x157 32 kB 1024 B No
msp430x167 32 kB 1024 B Yes
msp430x2272 32 kB 1024 B No
msp430x2274 32 kB 1024 B No
msp430x337 32 kB 1024 B Yes
msp430x417 32 kB 1024 B No
msp430x427 32 kB 1024 B Yes
msp430xE427 32 kB 1024 B Yes
msp430xE4272 32 kB 1024 B Yes
msp430xW427 32 kB 1024 B No
msp430x437 32 kB 1024 B No
msp430xG437 32 kB 1024 B No
msp430x4371 32 kB 1024 B No
msp430x447 32 kB 1024 B Yes
msp430x2370 32 kB 2048 B Yes

107

msp430x247 32 kB 4096 B Yes
msp430x2471 32 kB 4096 B Yes
msp430x1610 32 kB 5120 B Yes
Program Memory Size: 41 kB
msp430x5438 41kB |16384B No
msp430x5437 41kB | 16384 B No
msp430x5436 41kB | 16384 B No
msp430x5435 41kB | 16384 B No
msp430x5419 41kB |16384B No
msp430x54 41kB |16384B No
Program Memory Size: 48 kB
msp430x1611 48kB | 10240 B Yes
msp430x248 48 kB 4096 B Yes
msp430x2481 48 kB 4096 B Yes
msp430x4783 48 kB 2048 B Yes
msp430xG438 48 kB 2048 B No
msp430x4784 48 kB 2048 B
msp430x148 48 kB 2048 B Yes
msp430x168 48 kB 2048 B Yes
msp430x1481 48 kB 2048 B Yes
msp430x448 48 kB 2048 B Yes
Program Memory Size: 51 kB
msp430xG4617 | 51 kB 8192 B Yes
msp430x2418 51 kB 8192 B Yes
msp430x2618 51 kB 8192 B Yes
msp430x2417 51 kB 8192 B Yes
msp430xG4618 | 51 kB 8192 B Yes
msp430x2617 51 kB 8192 B Yes
Program Memory Size: 54 kB
msp430x1612 54 kB 5120B Yes
Program Memory Size: 55 kB
msp430x2619 55kB 4096 B Yes
msp430xG4619 | 55kB 4096 B Yes
msp430xG4616 | 55kB 4096 B Yes

108

msp430x2416 55kB 4096 B Yes
msp430x2419 55kB 4096 B Yes
msp430x2616 55kB 4096 B Yes
msp430x2410 55kB 4096 B Yes
Program Memory Size: 59 kB
msp430x4794 59 kB 2560 B Yes
msp430x4793 59 kB 2560 B Yes
msp430x2491 59 kB 2048 B Yes
msp430x1491 60 kB 2048 B Yes
msp430x149 60 kB 2048 B Yes
msp430xG439 59 kB 2048 B No
msp430x249 59 kB 2048 B Yes
msp430x449 59 kB 2048 B Yes
msp430x169 59 kB 2048 B Yes

Note: the program memory size should imperatively match the openMSP430
configuration.

5.3 Custom linker script

The use of the -mmcu switch is of course NOT mandatory. It is simply a convenient way
to use the pre-existing linker scripts provided with the MSPGCC4 toolchain.

However, if the peripheral address space is larger than the standard 512B of the original
MSP430 (see the Advanced System Configuration section), a customized linker script
MUST be provided.

To create a custom linker script, the simplest way is to start from an existing one:

* The MSPGCC(4) toolchain provides a wide range of examples for all supported
MSP430 models (see “msp430/lib/ldscripts/”’ sub-directory in the MSPGCC(4)
installation directory).

* The openMSP430 project also provide a simple linker script example:
ldscript_example.x

From there, the script can be modified to match YOUR openMSP430 configuration:

109

http://opencores.org/websvn,filedetails?repname=openmsp430&path=/openmsp430/trunk/core/sim/rtl_sim/src/ldscript_example.x

* In the fext (rx) section definition, update the ORIGIN and LENGTH fields to
match the PROGRAM MEMORY configuration.

* In the data (rwx) section definition, update the ORIGIN field to match the
PERIPHERAL SPACE configuration and the LENGTH field to match the DATA
MEMORY configuration.

110

10.

File and Directory

Table of content

1. Introduction
2. Directory structure: openMSP430 core

Description

3. Directory structure: FGPA projects

* 3.1 Xilinx Spartan 3 example
* 3.2 Altera Cyclone II example

3.3 Actel ProASIC3 example

4. Directory structure: Software Development Tools

1. Introduction

To simplify the integration of this IP, the directory structure is based on the OpenCores
recommendations.

2. Directory structure: openMSP430 core

core

openMSP430 Core top level directory

bench

Top level testbench directory

verilog

tb_openMSP430.v

Testbench top level module

ram.v

RAM verilog model

111

http://cdn.opencores.org/downloads/opencores_coding_guidelines.pdf

registers.v

Connections to Core internals for easy
debugging

dbg uart tasks.v

UART tasks for the serial debug interface

dbg i2c¢ tasks.v

12C tasks for the serial debug interface

dma tasks.v

DMA tasks for direct memory accesses

io_cell.v

Generic I/0O cell model for building the
serial debug interface 12C bus

msp_debug.v

Testbench instruction decoder and ASCII
chain generator for easy debugging

timescale.v

Global time scale definition for simulation.

doc Diverse documentation
slau049f.pdf MSP430x1xx Family User's Guide
rtl RTL sources
verilog

openMSP430 defines.v

openMSP430 core configuration file
(Program and Data memory size definition,
Debug Interface configuration)

openMSP430 undefines.v

openMSP430 Verilog "undef file

openMSP430.v

openMSP430 top level

omsp_frontend.v

Instruction fetch and decode

omsp_execution_unit.v

Execution unit

omsp alu.v ALU
omsp_register_file.v Register file
omsp_mem_backbone.v Memory backbone

omsp_clock module.v

Basic Clock Module

omsp_sfr.v

Special function registers

omsp watchdog.v

Watchdog Timer

omsp_multiplier.v

16x16 Hardware Multiplier

omsp_dbg.v

Serial Debug Interface main block

omsp _dbg hwbrk.v

Serial Debug Interface hardware breakpoint
unit

omsp_dbg uart.v

Serial Debug Interface UART
communication block

omsp dbg i2c.v

Serial Debug Interface I2C communication
block

omsp _sync_cell.v

Simple synchronization module (double flip-

112

flop).

omsp_sync_reset.v

Generic Reset synchronizer (double flip-

flop).

omsp clock gate.v

Generic Clock gate (NAND2 or LATCH-
AND based).

omsp clock mux.v

Standard Clock Mux (used in the clock
module & watchdog timer).

omsp_and_gate.v

AND gate module used on sensitive glitch
free data paths.

omsp_wakeup cell.v

Generic Wake-up module.

omsp_scan_mux.v

Scan MUX.

periph

Peripherals directory

omsp_gpio.v

Digital 1/0 (Port I to 6)

omsp_timerA_defines.
v

Timer A configuration file

omsp_timerA undefin
es.v

Timer A Verilog 'undef file

omsp_timerA.v

Timer A

template periph 16b.v

Verilog template for 16 bit peripherals

template periph 8b.v

Verilog template for 8 bit peripherals

sim

Top level simulations directory
rtl_sim RTL simulations
bin RTL simulation scripts
msp430sim Main simulation script for assembler vector

sources (located in the src directory)

msp430sim_c

Main simulation script for C vector sources
(located in the src-c directory).

asm2ihex.sh

Assembly file compilation (Intel HEX file
generation)

thex2mem.tcl

Verilog program memory file generation

rtlsim.sh

Verilog Icarus simulation script

template.x

ASM linker definition file template

template defs.asm

Common ASM definition file included in all
“543” files

omsp_config.sh

oMSP configuration file.

parse_results

Script parsing all regression log files and

generating a combined regression report.

113

parse_summaries

Script parsing several regression reports
and generating a summary report..

Code coverage scripts for NC-Verilog and

%
cov_ 1CM
run For running RTL simulations
un Run single simulation of a given assembler
vector
run_c Run single simulation of a given C vector
run_all Run regression of all vectors
Run regression of all hardware multiplier
run_all mpy . S
- = vectors (!!! very long simulation time !!!)
. Disassemble the program memory content
run_disassemble e prog 4
- of the latest simulation
Performs the coverage report merging of
run_coverage analysis |the regression run and starts ICM for the
analysis.
load waveform.sav SAV file for gtkWave
sre RTL simulation vectors sources (ASM

based)

ldscript_example.x

MSPGCC toolchain linker script example

submit.prj ISIM simulator verilog command file
submit.f Verilog simulator command file
core.f Command file listing the CPU files only.

sing-op_*.s43

Single-operand assembler vector files

sing-op_*.v Single-operand verilog stimulus vector files
two-op_*.s43 Tiwo-operand assembler vector files
two-op_*.v Two-operand verilog stimulus vector files
c-jump_ *.s43 Jump assembler vector files

c-jump_ *.v Jump verilog stimulus vector files

nmi.s43 NMI assembler vector files

nmi.v NMI verilog stimulus vector files

irq*.s43 IRQ assembler vector files

irq*.v IRQ verilog stimulus vector files

cpu_startup asic.s43

CPU startup assembler vector files

cpu_startup asic.v

CPU startup stimulus vector files

op_modes*.s43

CPU operating modes assembler vector

114

files (CPUOFF, OSCOFF, SCGI)

op_modes*.v

CPU operating modes verilog stimulus
vector files (CPUOFF, OSCOFF, SCG1)

clock module*.s43

Basic Clock Module assembler vector files

clock module*.v

Basic Clock Module verilog stimulus vector
files

Ip modes *.s43

Low Power modes assembler vector files

Ip modes *.v

Low Power modes verilog stimulus vector
files

dma_ *.s43 DMA assembler vector files
dma *.v DMA verilog stimulus vector files
dbg * 543 Serial Debug Interface assembler vector
files
Serial Debug Interface verilog stimulus
dbg *.v
vector files
sfr.s43 SFR assembler vector files
sfr.v SER verilog stimulus vector files
gpio *.s43 Digital I/0 assembler vector files
gpio_*.v Digital I/0 verilog stimulus vector files

template periph *.s43

Peripheral templates assembler vector files

template periph_*.v

Peripheral templates verilog stimulus
vector files

wdt *.s43 Watchdog timer assembler vector files
wdt *.v Watchdog timer verilog stimulus vector files
tA *.s43 Timer A assembler vector files
tA *v Timer A verilog stimulus vector files
mpy_*.s43 16x16 Multiplier assembler vector files
mpy *.v 16x16 Multiplier verilog stimulus vector
files

scan.s43 Scan test assembler vector files
scan.v Scan test verilog stimulus vector files

src-¢ RTL simulation vectors sources (C based)

coremask v1.0

CoreMark benchmark

dhrystone v2.1

Dhrystone benchmark (“official” version)

dhrystone 4mcu

Dhrystone benchmark (MCU adapted)

sandbox

Small playground :-)

115

synthesis Top level synthesis directory
synopsys Synopsys (Design Compiler) directory
run_syn Run synthesis
run_tmax Run ATPG

synthesis.tcl

Main synthesis TCL script

library.tcl

Load library, set operating conditions and
wire load models

read.tcl

Read RTL

constraints.tcl

Set design constrains

tmax.tcl Main TetraMax (ATPG) script
results Results directory
Actel synthesis setup for area & speed
actel .
analysis
Y ;
altera ltera ;yntheszs setup for area & speed
analysis
Xili thesis set & d
xilinx ilinx synthesis setup for area & spee

analysis

3. Directory structure: FGPA projects
3.1 Xilinx Spartan 3 example

fpga

openMSP430 FPGA Projects top level
directory

xilinx_diligent_s3board

Xilinx FPGA Project based on the
Diligent Spartan-3 board

bench

Top level testbench directory

verilog

tb_openMSP430 fpga.v |FPGA testbench top level module

registers.v

Connections to Core internals for easy
debugging

msp_debug.v

Testbench instruction decoder and ASCII
chain generator for easy debugging

glbl.v

Xilinx "glbl.v" file

timescale.v

Global time scale definition for
simulation.

116

doc Diverse documentation
board user guide.pdf ‘gl;plzztean-.? FPGA Starter Kit Board User
msp430f1121a.pdf msp430f1121a Specification
xappd62.pdf iégj}; Ll;;(g;ital Clock Managers (DCMs)
rtl RTL sources
verilog
openMSP430 fpga.v FPGA top level file
driver Tsegment.v g Z.ﬁi;Di git, Seven-Segment LED Display
i0_mux.v 1/O mux for port function selection.
Local copy of the openMSP430 core.
openmsp430 The *define.v file has been adjusted to the
requirements of the project.
coregen Xilinx's coregen directory
ram_8x512 hi.* 512 Byte RAM (upper byte)
ram_8x512 lo.* 512 Byte RAM (lower byte)
ram_8x2k hi.* 2 kByte RAM (upper byte)
ram_8x2k lo.* 2 kByte RAM (lower byte)
sim Top level simulations directory
rtl_sim RTL simulations
bin RTL simulation scripts
msp430sim Main simulation script
thex2mem.tcl Verilog program memory file generation
rtlsim.sh Verilog Icarus simulation script
run For running RTL simulations
un Ru@ simulation of a given software
project
n_dsasentle Pl e o
sre RTL simulation verilog stimulus
submit.f Verilog simulator command file
%y SS(t)}n;ZZ: ;igjtgg tfor the corresponding
software Software C programs to be loaded in

117

Iprogram memory

LEDs blinking application (from the

feds CDK4MSP project)
makefile
hardware.h
main.c
7seg.h
Tseg.c

ta uart Software UART with Timer A (from the

— CDK4MSP project)
synthesis Top level synthesis directory
xilinx

0 _create_bitstream.sh

Run Xilinx ISE synthesis in a Linux
environment

1 _initialize pmem.sh

Update bitstream's program memory with
a given software ELF file

2 generate_prom_file.sh

Generate PROM file

3 program_fpga.sh

Program FPGA and on-board flash
memory

bitstreams
* bit Bitstream files
*.mcs PROM files
README jpg README file
scripts

ithex2mem.tcl

TCL script converting Intel-HEX format
to Verilog memory file.

om_file.batch

impact_generate pr

iMPACT TCL script for PROM file
generation.

ga.batch

impact_program_fp

iMPACT TCL script for programing
FPGA and on-board flash memory.

memory.bmm

FPGA memory description for bitstream's
program memory update

ucf

openMSP430 fpga.

UCF file

P1j

openMSP430 fpga.

RTL file list to be synthesized

xst_verilog.opt

Verilog Option File for XST. Among other

118

things, the search path to the include files
is specified here.

3.2

Altera Cyclone II example

fpga

openMSP430 FPGA Projects top level
directory

altera_del_board

Altera FPGA Project based on Cyclone
11 Starter Development Board

README README file
bench Top level testbench directory
verilog
tb_openMSP430 fpga.v |FPGA testbench top level module
. Connections to Core internals for easy
registers.v .
debugging
Testbench instruction decoder and
msp_debug.v ASCII chain generator for easy
debugging
altsyncram.v Altera verilog model of the altsyncram
module..
timescale.v Global ‘tzme scale definition for
simulation.
doc Diverse documentation

DE1 Board Schematic.pdf

Cyclone Il FPGA Starter Development
Board Schematics

DE1 Reference Manual.pdf

Cyclone Il FPGA Starter Development
Board Reference Manual

DE1 User Guide.pdf

Cyclone Il FPGA Starter Development
Board User Guide

rtl

RTL sources

verilog

OpenMSP430 fpga.v

FPGA top level file

driver 7segment.v

Four-Digit, Seven-Segment LED

119

Display driver

i0_mux.v

1/O mux for port function selection.

ext del sram.v

Interface with altera DE1's external
async SRAM (256kwords x 16bits)

raml6x512.v

Single port RAM generated with the
megafunction wizard

rom16x2048.v

Single port ROM generated with the
megafunction wizard

openmsp430

Local copy of the openMSP430 core.
The *define.v file has been adjusted to

the requirements of the project.

sim

Top level simulations directory

rtl_sim

RTL simulations

bin

RTL simulation scripts

msp430sim

Main simulation script

ihex2mem.tcl

Verilog program memory file
generation

rtlsim.sh

Verilog Icarus simulation script

run

For running RTL simulations

Run simulation of a given sofiware
project

run_disassemble

Disassemble the program memory
content of the latest simulation

Src

RTL simulation verilog stimulus

submit.f

Verilog simulator command file

*v

Stimulus vector for the corresponding
software project

software

Software C programs to be loaded in
the program memory

bin

Specific binaries required for software
development.

mifwrite.cpp

This prog is taken from
http://www.johnloomis.org/ece595c/not
es/isa/mifwrite.html and slightly
changed to satisfy quartus6.1 *.mif
eating engine.

mifwrite.exe

Windows executable.

mifwrite

Linux executable.

120

memledtest éllf)l[);4l;/l[z;1£i;)1§0;z£c];)lication (from the
synthesis Top level synthesis directory
altera
main.qsf Global Assignments file
main.sof SOF file
OpenMSP430 fpga.qpf |Quartus Il project file
openMSP430 fpga top.v |RTL file list to be synthesized

3.3

Actel ProASIC3 example

fpga

openMSP430 FPGA Projects top level
directory

actel_mla3pl_dev_Kkit

Actel FPGA Project based on the
ProASIC3 M1A3PL development kit

bench Top level testbench directory
verilog
tb_openMSP430 fpga.v |FPGA testbench top level module
. Connections to Core internals for easy
registers.v .
debugging
Testbench instruction decoder and ASCII
msp_debug.v . .
chain generator for easy debugging
dbg uart_tasks.v QART tasks for the serial debug
- = interface.
timescale.v Qlobal .time scale definition for
simulation.
proasic3l.v Actel ProASIC3L library file.
Verilog model of National's DAC1215101
DACI121S101.v 12 bit DAC
doc Diverse documentation
MI1A3PL DEV KIT QS.pdf |Development Kit Quickstart Card
MIIGLOO _StarterKit vl 5 . , .
UG.pdf Development Kit User's Guide
rtl RTL sources
verilog
openMSP430 fpga.v FPGA top level file
dac_spi if.v SPI interface to National's DAC121S5101

121

12 bit DAC

openmsp430

Local copy of the openMSP430 core.
The *define.v file has been adjusted to the
requirements of the project.

smartgen

Xilinx's coregen directory

dmem_128B.v

128 Byte RAM (for data memory)

pmem 2kB.v

2 kByte RAM (for program memory)

sim

Top level simulations directory

rtl_sim

RTL simulations

bin

RTL simulation scripts

msp430sim

Main simulation script

thex2mem.tcl

Verilog program memory file generation

rtlsim.sh

Verilog Icarus simulation script

run

For running RTL simulations

Run simulation of a given software
project

run_disassemble

Disassemble the program memory
content of the latest simulation

Src

RTL simulation verilog stimulus

submit.f

Verilog simulator command file

* v

Stimulus vector for the corresponding
software project

software

Software C programs to be loaded in
program memory

spacewar

SpaceWar oscilloscope game.

synthesis

Top level synthesis directory

actel

122

prepare_implementation.t|Generate required files prior synthesis

cl and P&R.

synplify.tcl Synplify template for the synthesis run.

libero_designer.tcl Libero Designer template for the P&R
run.

design_files.v RTL file list to be synthesized

design_constraints.pre.sd

c Synthesis timing constraints.

design_constraints.post.s

de P&R timing constraints.

design constraints.pdc |P&R physical constraints.

123

4. Directory structure: Software

Development Tools

tools

openMSP430 Software Development
Tools top level directory

omsp_alias.xml

This XML file allows the software
development tools to identify a
openMSP430 implementation, and add

customized extra information (Alias,
URL, ...).

bin

Contains the main TCL scripts (and the
windows executable files if generated)

openmsp430-loader.tcl

Simple command line boot loader

openmsp430-minidebug.tcl

Minimalistic debugger with simple GUI

openmsp430-gdbproxy.tcl

GDB Proxy server to be used together with
MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends

README file regarding the use of TCL

README.TXT scripts in a Windows environment.
lib Common library
tcl-lib Common TCL library

dbg_uart_generic.tcl

Low level Generic UART communication
functions

dbg i2¢ usb-iss.tcl

Low level I12C communication functions for
the USB-ISS adapter

dbg_utils.tcl

Low level “COMx:" “/dev/tty”
communication functions

dbg_functions.tcl

Main utility functions for the openMSP430
serial debug interface

combobox.tcl

A combobox listbox widget written in pure
tcl (from Bryan Oakley)

xml.tcl

Simple XML parser (from Keith Vetter).

openmsp430-gdbproxy

GDB Proxy server main project directory

openmsp430-gdbproxy.tcl

GDB Proxy server main TCL Script
(symbolic link with the script in the bin
directory)

server.tcl

TCP/IP Server utility functions.

124

Send/Receive RSP packets from GDB.

commands.tcl

RSP command execution functions.

doc

Some documentation regarding GDB and
the RSP protocol.

ew_GDB_RSP.pdf

Document from Bill Gatliff: Embedding
with GNU: the gdb Remote Serial Protocol

Howto-

Document from Jeremy Bennett

GDB_Remote Serial Protoc|(Embecosm): Howto: GDB Remote Serial

ol.pdf

Protocol - Writing a RSP Server

125

