
Howto: GDB Remote Serial Protocol
Writing a RSP Server

Jeremy Bennett
Embecosm

Application Note 4. Issue 2
Published November 2008

http://www.embecosm.com

ii Copyright © 2008 Embecosm Limited

Legal Notice
This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
• to copy, distribute, display, and perform the work

• to make derivative works

under the following conditions:
• Attribution. You must give the original author, Jeremy Bennett of Embecosm

(www.embecosm.com), credit;

• For any reuse or distribution, you must make clear to others the license terms of this
work;

• Any of these conditions can be waived if you get permission from the copyright holder,
Embecosm; and

• Nothing in this license impairs or restricts the author's moral rights.

The software for the GNU Debugger, including the code to support the OpenRISC 1000 written
by Embecosm and used in this document is licensed under the GNU General Public License
(GNU General Public License). For detailed licensing information see the files COPYING, COPY-
ING3, COPYING.LIB and COPYING3.LIB in the source code.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com
http://www.gnu.org/licenses/gpl.html

iii Copyright © 2008 Embecosm Limited

Table of Contents
1. Introduction .. 1

1.1. Rationale .. 1
1.2. Target Audience .. 1
1.3. Further Sources of Information ... 1

1.3.1. Written Documentation .. 1
1.3.2. Other Information Channels ... 2

1.4. About Embecosm .. 2
2. Overview of the Remote Serial Protocol .. 3

2.1. Client-Server Relationship ... 3
2.2. Session Layer: The Serial Connection ... 3
2.3. Presentation Layer: Packet Transfer .. 4

2.3.1. Packet Acknowledgment ... 4
2.3.2. Interrupt .. 5

2.4. Application Layer: Remote Serial Protocol ... 5
2.5. Putting it All Together to Build a Server .. 5

2.5.1. Using gdbserver ... 6
2.5.2. Implementing Server Code on the Target .. 6
2.5.3. Implementing Server Code for Simulators ... 7
2.5.4. Implementing a Custom Server for JTAG .. 7

3. Mapping GDB Commands to RSP ... 8
3.1. Remote Debugging in GDB ... 8

3.1.1. Standard Remote Debugging .. 8
3.1.2. Extended Remote Debugging .. 8
3.1.3. Asynchronous Remote Debugging ... 9

3.2. GDB Standard Remote Command Dialogs ... 9
3.2.1. The target remote Command .. 9
3.2.2. The load Command .. 11
3.2.3. Examining Registers ... 12
3.2.4. Examining Memory ... 12
3.2.5. The stepi Command ... 13
3.2.6. The step Command .. 15
3.2.7. The cont Command .. 17
3.2.8. The break Command .. 18
3.2.9. The watch Command ... 19
3.2.10. The detach and disconnect Commands ... 19

3.3. GDB Extended Remote Command Dialogs ... 21
3.3.1. The target extended-remote Command .. 21

3.4. GDB Asynchronous Remote Command Dialogs ... 22
4. RSP Server Implementation Example ... 23

4.1. The OpenRISC 1000 Architectural Simulator, Or1ksim 23
4.1.1. The OpenRISC 1000 Architecture ... 23
4.1.2. The OpenRISC 1000 Debug Unit .. 23
4.1.3. The OpenRISC 1000 JTAG Interface ... 24
4.1.4. Application Binary Interface (ABI) ... 25
4.1.5. Or1ksim: the OpenRISC 1000 Architectural Simulator 25

4.2. OpenRISC 1000 GDB Architectural Specification ... 25
4.3. Overview of the RSP Server Implementation .. 25

4.3.1. External Code Interface .. 25
4.3.2. Global Data Structures .. 26
4.3.3. Top Level Behavior ... 27

4.4. The Serial Connection ... 29

iv Copyright © 2008 Embecosm Limited

4.4.1. Establishing the Server Listener Socket .. 29
4.4.2. Establishing the Client Connection ... 30
4.4.3. Communicating with the Client .. 30

4.5. The Packet Interface ... 30
4.5.1. Packet Representation .. 30
4.5.2. Getting Packets .. 30
4.5.3. Sending Packets ... 31

4.6. Convenience Functions ... 31
4.6.1. Convenience String Packet Output ... 31
4.6.2. Conversion Between Binary and Hexadecimal Characters 31
4.6.3. Conversion Between Binary and Hexadecimal Character Registers 31
4.6.4. Data "Unescaping" .. 32
4.6.5. Setting the Program Counter .. 32

4.7. High Level Protocol Implementation .. 32
4.7.1. Deprecated Packets .. 32
4.7.2. Unsupported Packets .. 32
4.7.3. Simple Packets ... 33
4.7.4. Reporting the Last Exception .. 33
4.7.5. Continuing ... 33
4.7.6. Reading and Writing All Registers ... 34
4.7.7. Reading and Writing Memory ... 34
4.7.8. Reading and Writing Individual Registers .. 35
4.7.9. Query Packets .. 35
4.7.10. Set Packets .. 37
4.7.11. Restart the Target .. 37
4.7.12. Stepping ... 37
4.7.13. v Packets .. 38
4.7.14. Binary Data Transfer .. 39
4.7.15. Matchpoint Handling .. 39

5. Summary .. 41
Glossary ... 42
References .. 44
Index .. 45

v Copyright © 2008 Embecosm Limited

List of Figures
2.1. OSI Layers in the Remote Serial Protocol ... 3
2.2. RSP Packet Format .. 4
3.1. RSP packet exchanges for the GDB target remote command 10
3.2. RSP packet exchanges for the GDB load command ... 11
3.3. RSP packet exchanges for the GDB disassemble command 13
3.4. RSP packet exchanges for the GDB stepi command .. 14
3.5. RSP packet exchanges for the GDB step command ... 16
3.6. RSP packet exchanges for the GDB continue command .. 17
3.7. RSP packet exchanges for the GDB break and continue commands 18
3.8. RSP packet exchanges for the GDB detach command ... 20
3.9. RSP packet exchanges for the GDB target remote command 21

1 Copyright © 2008 Embecosm Limited

Chapter 1. Introduction
This document complements the existing documentation for GDB ([3], [4]). It is intended to
help software engineers implementing a server for the GDB Remote Serial Protocol (RSP) for
the first time.

This application note is based on the author's experience to date. It will be updated in future
issues. Suggestions for improvements are always welcome.

1.1. Rationale
The GDB User Guide [3] documents the Remote Serial Protocol (RSP) for communicating with
remote targets. The target must act as a server for the RSP, and the source distribution in-
cludes stub implementations for architectures such as the Motorola 680xx and Sun SPARC.
The User Guide offers advice on how these stubs can be modified and integrated for new tar-
gets.

However the examples have not been changed for several years, and the advice on using the
stubs is now out of date. The documentation also lacks any explanation of the dynamics of the
protocol—the sequence of commands/responses used to effect the various GDB commands.

This document aims to fill that gap, by explaining how the RSP works today and how it can
be used to write a server for a target to be debugged with GDB.

Throughout, examples are provided from the author's experience implementing a RSP server
for the OpenRISC 1000 architecture. This document captures the learning experience, with
the intention of helping others.

1.2. Target Audience
If you are about to start a port of GDB to a new architecture, this document is for you. If at
the end of your endeavors you are better informed, please help by adding to this document.

If you have already been through the porting process, please help others by adding to this
document.

1.3. Further Sources of Information

1.3.1. Written Documentation
The main user guide for GDB [3] explains how remote debugging works and provides the
reference for the various RSP packets.

The main GDB code base is generally well commented, particularly in the headers for the major
interfaces. Inevitably this must be the definitive place to find out exactly how a particular
function behaves. In particular the source code for the RSP client side in gdb/remote.c provides
the definitive guide on the expected dynamics of the protocol.

The files making up the RSP server for the OpenRISC 1000 are comprehensively commented,
and can be processed with Doxygen [5]. Each function's behavior, its parameters and any
return value is described.

This application note complements the Embecosm Application Note 3, "HOWTO: Porting the
GNU Debugger" [2]. Details of the OpenRISC 1000 can be found in its Architecture Manual
[6]. The OpenRISC 1000 architectural simulator and tool chain is documented in Embecosm
Application Note 2 [1].

2 Copyright © 2008 Embecosm Limited

1.3.2. Other Information Channels
The main GDB website is at sourceware.org/gdb/. It is supplemented by the less formal GDB
Wiki at sourceware.org/gdb/wiki/.

The GDB developer community communicate through the GDB mailing lists and using IRC
chat. These are always good places to find solutions to problems.

IRC is channel #gdb on irc.freenode.net.

The main mailing list for discussion is gdb@sourceware.org, although for detailed insight, take
a look at the patches mailing list, gdb-patches@sourceware.org. See the main GDB website
for details of subscribing to these mailing lists.

1.4. About Embecosm
Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services.

• Customization of open source tools and software, including porting to new architectures.

• Support, tutorials and training for open source tools and software.

• Custom software development for the embedded market, including bespoke software
models of hardware.

• Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

http://sourceware.org/gdb/
http://sourceware.org/gdb/wiki/
http://www.embecosm.com/

3 Copyright © 2008 Embecosm Limited

Chapter 2. Overview of the Remote Serial
Protocol
The GDB Remote Serial Protocol (RSP) provides a high level protocol allowing GDB to connect
to any target remotely. If a target's architecture is defined in GDB and the target implements
the server side of the RSP protocol, then the debugger will be able to connect remotely to that
target.

The protocol supports a wide range of connection types: direct serial devices, UDP/IP, TCP/IP
and POSIX pipes. Historically RSP has only required 7-bit clean connections. However more
recent commands added to the protocol assume an 8-bit clean connection. It is also worth
noting, that although UDP/IP is supported, lost packets with unreliable transport methods
such as this may lead to GDB reporting errors.

RSP is most commonly of value in embedded environments, where it is not possible to run
GDB natively on the target.

The protocol is layered, approximately following the OSI model as shown in Figure 2.1.

Packet Transfer

Serial Connection

Remote Serial Protocol

TCP, UDP, pipe etc

Operating System

7. Application Layer

6. Presentation Layer

5. Session Layer

4. Transport Layer

1-3. Media Layers

Figure 2.1. OSI Layers in the Remote Serial Protocol

2.1. Client-Server Relationship
The GDB program acts as the RSP client with the target acting as the RSP server. The client
issues packets which are requests for information or action. Depending on the nature of the
client packet, the server may respond with a packet of its own.

This is the only circumstance under which the server sends a packet: in reply to a packet from
the client requiring a response.

2.2. Session Layer: The Serial Connection
The serial connection is established in response to a target remote or target extended-re-
mote command from the GDB client. The way the server handles this depends on the nature
of the serial connection:

• Connection via a serial device. The target should be listening for connections on the
device. This may either be via routine polling or via an event driven interface. Once the
connection is established, packets are read from and written to the device.

4 Copyright © 2008 Embecosm Limited

• Connection via TCP/IP or UDP/IP. The target should be listening on a socket connected to
the specified port. This may either be via routine polling or via an event driven interface.
Accepting a new connection (the POSIX accept () function) will yield a file descriptor,
which can be used for reading and writing packets.

• Connection via a pipe. The target will be created, with standard input and output as the
file descriptors for packet reading and writing.

In each case there is no specific requirement that the target be either running or stopped. GDB
will establish via RSP commands the state of the target once the connection is established.

GDB is almost entirely non-preemptive, which is reflected in the sequence of packet exchanges
of RSP. The exception is when GDB wishes to interrupt an executing program (typically via
ctrl-C). A single byte, 0x03, is sent (no packet structure). If the target is prepared to handle
such interrupts it should recognize such bytes. Unless the target is routinely polling for input
(which may be the case for simulators), a prompt response typically will require an event driven
reader for the connection.

2.3. Presentation Layer: Packet Transfer
The basic format of a RSP packet is shown in Figure 2.2.

$ #

packet data checksum

h h

Figure 2.2. RSP Packet Format

For almost all packets, binary data is represented as two hexadecimal digits per byte of data.
The checksum is the unsigned sum of all the characters in the packet data modulo 256. It is
represented as a pair of hexadecimal digits.

Where the characters '#' or '$' appear in the packet data, they must be escaped. The escape
character is ASCII 0x7d ('}'), and is followed by the original character XORed with 0x20. The
character '}' itself must also be escaped.

The small number of packets which transmit data as raw binary (thus requiring an 8-bit clean
connection) must also escape the characters '#', '$' and '}' if they occur in the binary data.

Reply packets sent by the server may use run-length encoding. The format is to follow the
character being repeated by '*' and then the character whose ASCII code is 28 greater than
the total repeat, so long as it remains a printable ASCII character (i.e. not greater than 126).
Thus the string "XXXXX" would be represented as "X*!" ('!' is ASCII 33).

This feature is suitable for run-lengths of 4, 5 and 8-97. Run lengths of 6 and 7 cannot be
used, since the repeat characters would be '#' and '$' and interfere with the recognition of the
packet itself before decoding. For these cases, a run length of 5 is used, followed by 1 or 2
instances of the repeated character as required. '*' and '}' cause no problem, since they are
part of decoding, and their use in a run-length would be recognized as such.

Note
There is no requirement for a server to use run length encoding.

2.3.1. Packet Acknowledgment
Each packet should be acknowledged with a single character. '+' to indicate satisfactory re-
ceipt, with valid checksum or '-' to indicate failure and request retransmission.

5 Copyright © 2008 Embecosm Limited

Retransmission should be requested until a satisfactory packet is received.

2.3.2. Interrupt
The GDB client may wish to interrupt the server (e.g. when the user has pressed ctrl-C). This
is indicated by transmitting the character 0x03 between packets.

If the server wishes to handle such interrupts, it should recognize such characters and process
as appropriate. However not all servers are capable of handling such requests. The server is
free to ignore such out-of-band characters.

2.4. Application Layer: Remote Serial Protocol
RSP commands from the client to the server are textual strings, optionally followed by argu-
ments. Each command is sent in its own packet. The packets fall into four groups:

1. Packets requiring no acknowledgment. These commands are: f, i, I, k, R, t and vFlash-
Done.

2. Packets requiring a simple acknowledgment packet. The acknowledgment is either OK,
Enn (where nn is an error number) or for some commands an empty packet (mean-
ing "unsupported"). These commands are: !, A, D, G, H, M, P, Qxxxx, T, vFlashErase,
vFlashWrite, X, z and Z.

3. Packets that return result data or an error code.. These commands are: ?, c, C, g, m, p,
qxxxx, s, S and most vxxxx.

4. Deprecated packets which should no longer be used. These commands are b, B, d and r.

This application note does not document all these commands, except where clarification is
needed, since thy are all documented in Appendix D of the main GDB user guide ([3]).

Tip
Many commands come in pairs: for example g and G. In general the lower case is
used for the command to read or delete data, or the command in its simpler form.
The upper case is used to write or install data, or for a more complex form of the
command.

The RSP was developed over several years, and represents an evolved standard, but one which
had to keep backward compatibility. As a consequence the detailed syntax can be inconsistent.
For example most commands are separated from their arguments by ':', but some use ',' for
this purpose.

2.5. Putting it All Together to Build a Server
There are three approaches to adding a RSP server to a target.

1. Run the gdbserver program on the target. A variant of this uses a custom server program
to drive a physical interface to real hardware. This is most commonly seen with programs,
running on the host, which drive a JTAG link connected via a parallel port or USB.

2. Implement code on the target to establish a connection, recognize the packets and im-
plement the behavior.

3. For simulators, add code to the simulator to establish a connection, recognize the pack-
ets and implement the behavior in the simulator.

When remote debugging, GDB assumes that the target server will terminate the connection
if the target program exits. However there is a variant, invoked by target extended-remote,
which makes the server persistent, allowing the user to restart a program, or run an alternative
program. This is discussed in more detail later (see Section 3.1.2).

6 Copyright © 2008 Embecosm Limited

In general GDB assumes that when it connects to a target via RSP, that target will be stopped.
However there are new features in GDB allowing it to work asynchronously while some or
all threads in the target continue executing. This is discussed in more detail later (see Sec-
tion 3.1.3).

2.5.1. Using gdbserver
The gdbserver command is well documented in the GDB User Guide [3]. This approach is
suitable for powerful targets, where it is easy to invoke a program from the command line.

Generally this approach is not suitable for embedded systems.

2.5.2. Implementing Server Code on the Target
This is the usual approach for embedded systems, and is the strategy encapsulated in the
server stubs supplied with the GDB source code.

There are two key components of the code:

1. Code to establish the serial connection with the client GDB session.

2. Code for the target's interrupt handlers, so all exceptions are routed through the RSP
server.

In the stub code, the user must implement the serial connection by supplying functions get-
DebugChar () and putDebugChar (). The user must supply the function exceptionHandler ()
to set up exception handling.

The serial connection is usually established on the first call to getDebugChar (). This is stan-
dard POSIX code to access either the serial device, or to listen for a TCP/IP or UDP/IP con-
nection. The target may choose to block here, if it does not wish to run without control from
a GDB client.

If the serial connection chooses not to block on getDebugChar () then the exception handler
should be prepared for this response, allowing the exception to be processed as normal.

Note
The stub RSP server code supplied with the GDB source distribution assumes get-
DebugChar () blocks until the connection is established.

In general the server interacts with the client only when it has received control due to a target
exception.

At start up, the first time this occurs, the target will be waiting for the GDB client to send
a packet to which it can respond. These dialogs will continue until the client GDB session
wishes to continue or step the target (c, C, i, I, s or S packet).

Thereafter control is received only when another exception has occurred, following a continue
or step. In this case, the first action of the target RSP server should be to send the reply packet
back to the client GDB session.

!
Caution
The key limitation in the stub RSP server code supplied with the GDB source dis-
tribution is that it only deals with the second case. In other words, it always sends
a reply packet to the client, even on first execution.

This causes two problems. First, the putDebugChar () is called before getDe-
bugChar (), so it must be able to establish the connection.

Secondly, the initial reply is sent without a request packet from the client GDB
session. As a result this reply will typically be queued and appear as the reply to

7 Copyright © 2008 Embecosm Limited

the first request packet from GDB. The client interface is quite robust and usually
quietly rejects unexpected packets, but there is potential for client requests and
server responses to get out of step. It certainly does not represent good program
design.

The final issue that server code needs to address is the issue of BREAK signaling from the
client. This is a raw 0x03 byte sent from the client between packets. Typically this is in response
to a ctrl-C from the client GDB session.

If the target server wishes to handle such signaling, it must provide an event driven getDe-
bugChar (), triggered when data is received, which can act on such BREAK signals.

2.5.3. Implementing Server Code for Simulators
Simulators are commonly integrated separately into GDB, and accessed using the target sim
command.

However it can also be useful to connect to them by using the RSP. This allows the GDB
experience to be identical whether simulator or real silicon is used.

The general approach is the same as that for implementing code on a target (see Section 2.5.2).
However the code forms part of the simulator, not the target. The RSP handler will be attached
to the simulators handling of events, rather than the events themselves.

In general the simulator will use the same form of connection as when debugging real silicon.
Where the RSP server for real silicon is implemented on the target, or gdbserver is used,
connection via a serial device, TCP/IP or UDP/IP is appropriate. Where the RSP interface for
real silicon is via a pipe to a program driving JTAG a pipe interface should be used to launch
the simulator.

The example used in Chapter 4 is based on a simulator for the OpenRISC 1000.

2.5.4. Implementing a Custom Server for JTAG
Many embedded systems will offer JTAG ports for debugging. Most commonly these are con-
nected to a host workstation running GDB via the parallel port or USB.

In the past users would implement a custom target interface in GDB to drive the JTAG interface
directly. However with RSP it makes more sense to write a RSP server program, which runs
standalone on the host. This program maps RSP commands and responses to the underlying
JTAG interface.

Logically this is rather like a custom gdbserver, although it runs on the host rather than
the target. The implementation techniques are similar to those required for interfacing to a
simulator.

This is one situation, where using the pipe interface is sensible. The pipe interface is used
to launch the program which will talk to the JTAG interface. If this approach is used, then
debugging via a simulator should also use a pipe interface to launch the simulator, thus
allowing the debugging experience to be the same whether real silicon or a simulator is used.

8 Copyright © 2008 Embecosm Limited

Chapter 3. Mapping GDB Commands to RSP
3.1. Remote Debugging in GDB
GDB provides two flavors of remote debugging via the RSP

1. target remote. This is the GDB command documented in the GDB User Guide ([3]).

2. target extended-remote. The RSP server is made persistent. When the target exits, the
server does not close the connection. The user is able to restart the target program, or
load and run an alternative program.

3.1.1. Standard Remote Debugging

A RSP server supporting standard remote debugging (i.e. using the GDB target remote com-
mand) should implement at least the following RSP packets:

• ?. Report why the target halted.

• c, C, s and S. Continue or step the target (possibly with a particular signal). A minimal
implementation may not support stepping or continuing with a signal.

• D. Detach from the client.

• g and G. Read or write general registers.

• qC and H. Report the current thread or set the thread for subsequent operations. The
significance of this will depend on whether the target supports threads.

• k. Kill the target. The semantics of this are not clearly defined. Most targets should
probably ignore it.

• m and M. Read or write main memory.

• p and P. Read or write a specific register.

• qOffsets. Report the offsets to use when relocating downloaded code.

• qSupported. Report the features supported by the RSP server. As a minimum, just the
packet size can be reported.

• qSymbol:: (i.e. the qSymbol packet with no arguments). Request any symbol table data.
A minimal implementation should request no data.

• vCont?. Report what vCont actions are supported. A minimal implementation should
return an empty packet to indicate no actions are supported.

• X. Load binary data.

• z and Z. Clear or set breakpoints or watchpoints.

3.1.2. Extended Remote Debugging

A RSP server supporting standard remote debugging (i.e. using the GDB target remote com-
mand) should implement at least the following RSP packets in addition to those required for
standard remote debugging:

9 Copyright © 2008 Embecosm Limited

• !. Advise the target that extended remote debugging is being used.

• R. Restart the program being run.

• vAttach. Attach to a new process with a specified process ID. This packet need not be
implemented if the target has no concept of a process ID, but should return an error code.

• vRun. Specify a new program and arguments to run. A minimal implementation may
restrict this to the case where only the current program may be run again.

3.1.3. Asynchronous Remote Debugging

The most recent versions of GDB have started to introduce the concept of asynchronous de-
bugging. This is primarily for use with targets capable of "non-stop" execution. Such targets
are able to stop the execution of a single thread in a multithreaded environment, allowing it
to be debugged while others continue to execute.

This still represents technology under development. In GDB 6.8, the commands target async
and target extended-async were provided to specify remote debugging of a non-stop target
in asynchronous fashion.

The mechanism will change in the future, with GDB flags set to specify asynchronous inter-
pretation of commands, which are otherwise unchanged. Readers particularly interested in
this area should look at the current development version of GDB and the discussions in the
various GDB newsgroups.

Asynchronous debugging requires that the target support packets specifying execution of par-
ticular threads. The most significant of these are:

• H. To specify which thread a subsequent command should apply to.

• q (various packets). The query packets related to threads, qC, qfThreadInfo, qsThread-
Info, qGetTLSAddr and qThreadExtraInfo will need to be implemented.

• T. To report if a particular thread is alive.

• vCont. To specify step or continue actions specific to one or more threads.

In addition, non-stop targets should also support the T response to continue or step com-
mands, so that status of individual threads can be reported.

3.2. GDB Standard Remote Command Dialogs
The following sections show diagrammatically how various GDB commands map onto RSP
packet exchanges. These implement the desired behavior with standard remote debugging (i.e
when connecting with target remote).

3.2.1. The target remote Command

The RSP packet exchanges to implement the GDB target remote command are shown as a
sequence diagram in Figure 3.1.

10 Copyright © 2008 Embecosm Limited

qSupported

PacketSize=119

?

S05

Hc-1

OK

qC

(empty)

qOffsets

Text=0;Data=0;Bss=0;

Hg-1

OK

g

0000 ... 10080000

qSymbol::

OK

GDB
(RSP Client)

Target
(RSP Server)

Report packet size supported

Report we stopped due to signal
5 (TRAP exception)

Future step/continue operations
on all threads

Current thread is -1

Report offsets to be used when
loading code

All other future operations
should apply to all threads

Report all general register
values

Offer to provide symbol values
(none required)

Figure 3.1. RSP packet exchanges for the GDB target remote command

This is the initial dialog once the connection has been established. The first thing the client
needs to know is what this RSP server supports. The only feature that matters is to report the
packet size that is supported. The largest packet that will be needed is to hold a command
with the hexadecimal values of all the general registers (for the G packets). In this example,
there are a total of 35 32-bit registers, each requiring 8 hex characters + 1 character for the
'G', a total of 281 (hexadecimal 0x119) characters.

The client then asks why the target halted. For a standard remote connection (rather than
extended remote connection), the target must be running, even if it has halted for a signal. So
the client will verify that the reply is not W (exited) or X (terminated with signal). In this case
the target reports it has stopped due to a TRAP exception.

The next packet is an instruction from the client that any future step or continue commands
should apply to all threads. This is followed by a request (qC) for information on the thread
currently running. In this example the target is "bare metal", so there is no concept of threads.
An empty response is interpreted as "use the existing value", which suits in this case—since
it is never set explicitly, it will be the NULL thread ID, which is appropriate.

11 Copyright © 2008 Embecosm Limited

The next packet (qOffsets) requests any offsets for loading binary data. At the minimum this
must return offsets for the text, data and BSS sections of an executable—in this example all
zero.

Note
The BSS component must be specified, contrary to the advice in the GDB User
Guide.

The client then fetches the value of all the registers, so it can populate its register cache. It
first specifies that operations such as these apply to all threads (Hg-1 packet), then requests
the value of all registers (g packet).

Finally the client offers to supply any symbolic data required by the server. In this example,
no data is needed, so a reply of "OK" is sent.

Through this exchange, the GDB client shows the following output:

(gdb) target remote :51000
Remote debugging using :51000
0x00000100 in _start ()
(gdb)

3.2.2. The load Command

The RSP packet exchanges to implement the GDB load command are shown as a sequence
diagram in Figure 3.2. In this example a program with a text section of 4752 (0x1290) bytes
at address 0x0 and data section of 15 (0xe) bytes at address 0x1290 is loaded.

X0,0:

OK

X0,100:<binary data>

OK

X1200,90:<binary data>

OK

P21=00000100

OK

GDB
(RSP Client)

Target
(RSP Server)

Empty load to test if binary
write is supported

Load first 256 bytes of text
section

Load final block of text section

Set program counter to start
of loaded code

X0,e:<binary data>

OK Load data section

Figure 3.2. RSP packet exchanges for the GDB load command

12 Copyright © 2008 Embecosm Limited

The first packet is a binary write of zero bytes (X0,0:). A reply of "OK" indicates the target
supports binary writing, an empty reply indicates that binary write is not supported, in which
case the data will be loaded using M packets.

Note
This initial dialog is 7-bit clean, even though it uses the X packet. It can therefore
safely be used with connections that are not 8-bit clean.

!
Caution
The use of a null reply to indicate that X packet transfers are not supported is not
documented in the GDB User Guide.

Having established in this case that binary transfers are permitted, each section of the loaded
binary is transmitted in blocks of up to 256 binary data bytes.

Had binary transfers not been permitted, the sections would have been transferred using M
packets, using pairs of hexadecimal digits for each byte.

Finally the client sets the value of the program counter to the entry point of the code using
a P packet. In this example the program counter is general register 33 and the entry point
is address 0x100.

Through this exchange, the GDB client shows the following output:

(gdb) load hello
Loading section .text, size 0x1290 lma 0x0
Loading section .rodata, size 0xe lma 0x1290
Start address 0x100, load size 4766
Transfer rate: 5 KB/sec, 238 bytes/write.
(gdb)

3.2.3. Examining Registers

Examining registers in GDB causes no RSP packets to be exchanged. This is because the GDB
client always obtains values for all the registers whenever it halts and caches that data. So for
example in the following command sequence, there is no RSP traffic.

(gdb) print $pc
$1 = (void (*)()) 0x1264 <main+16>
(gdb)

3.2.4. Examining Memory

All GDB commands which involve examining memory are mapped by the client to a series of m
packets. Unlike registers, memory values are not cached by the client, so repeated examination
of a memory location will lead to multiple m packets for the same location.

The packet exchanges to implement the GDB disassemble command for a simple function
are shown as a sequence diagram in Figure 3.3. In this example the simputc () function is
disassembled.

13 Copyright © 2008 Embecosm Limited

m1020,4

9c21fff8

m1038,4

44004800

GDB
(RSP Client)

Target
(RSP Server)

Read first instruction from
memory (l.addi)

m103c,4

9c210008

Read penultimate instruction
from memory (l.jr)

Read final instruction from
memory (l.addi)

Figure 3.3. RSP packet exchanges for the GDB disassemble command

The disassemble command in the GDB client generates a series of RSP m packets, to obtain
the instructions required one at a time.

Through this exchange, the GDB client shows the following output:

(gdb) disas simputc
Dump of assembler code for function simputc:
0x00001020 <simputc+0>: l.addi r1,r1,-8
0x00001024 <simputc+4>: l.sw 0(r1),r2
0x00001028 <simputc+8>: l.addi r2,r1,8
0x0000102c <simputc+12>: l.sw -4(r2),r3
0x00001030 <simputc+16>: l.nop 4
0x00001034 <simputc+20>: l.lwz r2,0(r1)
0x00001038 <simputc+24>: l.jr r9
0x0000103c <simputc+28>: l.addi r1,r1,8
End of assembler dump.
(gdb)

3.2.5. The stepi Command

The RSP offers two mechanisms for stepping and continuing programs. The original mecha-
nism has the thread concerned specified with a Hc packet, and then the thread stepped or
continued with a s, S, c or C packet.

The newer mechanism uses the vCont: packet to specify the command and the thread ID in
a single packet. The availability of the vCont: packet is established using the vCont? packet.

The simplest GDB execution command is the stepi command to step the target a single ma-
chine instruction. The RSP packet exchanges to implement the GDB stepi command are
shown as a sequence diagram in Figure 3.4. In this example the instruction at address 0x100
is executed.

14 Copyright © 2008 Embecosm Limited

m0,4

00000000

vCont?

(empty)

Hc0

OK

s

S05

g

0000 ... 10080000

m100,4

9c207f00

GDB
(RSP Client)

Target
(RSP Server)

Word (instruction) at previous
program counter address

vCont packets are not supported

Future step/continue operations
on any thread

Single step. Return control with
signal 5 (TRAP)

Report all general register
values

Word (instruction) at previous
program counter address

Figure 3.4. RSP packet exchanges for the GDB stepi command

The first exchange is related to the definition of the architecture used in this exam-
ple. Before stepping any instruction, GDB needs to know if there is any special be-
havior due to this instruction occupying a delay slot. This is achieved by calling the
gdbarch_single_step_through_delay () function. In this example, that function reads the
instruction at the previous program counter (in this case address 0x0) to see if it was an in-
struction with a delay slot. This is achieved by using the m packet to obtain the 4 bytes of
instruction at that address.

The next packet, vCont? from the client seeks to establish if the server supports the vCont
packet. A null response indicates that it is not.

Note
The vCont? packet is used only once, and the result cached by the GDB client.
Subsequent step or continue commands will not result in this packet being reis-
sued.

The client then establishes the thread to be used for the step with the Hc0 packet. The value
0 indicates that any thread may be used by the server.

Note
Note the difference to the earlier use of the Hc packet (see Section 3.2.1), where a
value of -1 was used to mean all threads.

Note
The GDB client remembers the thread currently in use. It does not issue further
Hc packets unless the thread has to change.

15 Copyright © 2008 Embecosm Limited

The actual step is invoked by the s packet. This does not return a result to the GDB client until
it has completed. The reply indicates that the server stopped for signal 5 (TRAP exception).

!
Caution
In the RSP, the s packet indicates stepping of a single machine instruction, not a
high level statement. In this way it maps to GDB's stepi command, not its step
command (which confusingly can be abbreviated to just s).

The last two exchanges are a g and m packet. These allow GDB to reload its register cache
and note the instruction just executed.

Through this exchange, the GDB client shows the following output:

(gdb) stepi
0x00000104 in _start ()
(gdb)

3.2.6. The step Command

The GDB step command to step the target a single high level instruction is similar to the stepi
instruction, and works by using multiple s packets. However additional packet exchanges are
also required to provide information to be displayed about the high level data structures, such
as the stack.

The RSP packet exchanges to implement the GDB step command are shown as a sequence
diagram in Figure 3.5. In this example the first instruction of a C main () function is executed.

16 Copyright © 2008 Embecosm Limited

0000 ... 0008411

m0,4

00000000

s

S05

g

s

S05

g

m1254,4

9c21fff4

GDB
(RSP Client)

Target
(RSP Server)

Word (instruction) at previous
program counter address

Single step. Return control with
signal 5 (TRAP)

Report all general register
values

First function prologue
instruction

0000 ... 00008011

m1258,4

d4011004
Second function prologue
instruction

m7ef4,4

00000118
Return address within
current stack frame

Single step. Return control with
signal 5 (TRAP)

Report all general register
values

Figure 3.5. RSP packet exchanges for the GDB step command
The exchanges start similarly to the stepi, although, since this is not the first step, there are
no vCont? or Hc packets.

The high level language step is mapped by the client GDB session into a series of s packets,
after each of which the register cache is refreshed by a g packet.

After the step, are a series of reads of data words, using m packets. The first group are from
the code. This is the first execution in a new function, and the frame analysis functions of the
GDB client are analyzing the function prologue, to establish the location of key values (stack
pointer, frame pointer, return address).

The second group access the stack frame to obtain information required by GDB. In this
example the return address from the current stack frame.

Through this exchange, the GDB client shows the following output:

(gdb) step
main () at hello.c:41

17 Copyright © 2008 Embecosm Limited

41 simputs("Hello World!\n");
(gdb)

3.2.7. The cont Command
The packet exchange for the GDB continue is very similar to that for the step (see Sec-
tion 3.2.6). The difference is that in the absence of a breakpoint, the target program may com-
plete execution. A simple implementation need not trap the exit—GDB will handle the loss of
connection quite cleanly.

The RSP packet exchanges to implement the GDB continue command are shown as a se-
quence diagram in Figure 3.6. In this example the target executes to completion and exits,
without returning a reply packet to the GDB client.

m0,4

00000000

vCont?

(empty)

Hc0

OK

s

S05

g

0000 ... 10080000

m100,4

9c207f00

GDB
(RSP Client)

Target
(RSP Server)

Instruction at previous program
counter address is l.j

vCont packets are not supported

Future step/continue operations
on any thread

Single step past delay slot. Return
control with signal 5 (TRAP)

Report all general register
values

Instruction at previous program
counter address is l.addi

c

(packet read fails)

Target executes to completion

Figure 3.6. RSP packet exchanges for the GDB continue command

The packet exchange is initially the same as that for a GDB step or stepi command (see
Figure 3.4).

In this example the gdbarch_single_step_through_delay () function finds that the previously
executed instruction is a jump instruction (m packet). Since the target may be in a delay slot,
it executes a single step (s packet) to step past that slot, followed by notification of the TRAP
exception (S05 packet) and register cache reload (g packet).

The next call to gdbarch_single_step_through_delay () determines that the previous instruc-
tion did not have a delay slot (m packet), so the c packet can be used to resume execution
of the target.

18 Copyright © 2008 Embecosm Limited

Since the target exits, there is no reply to the GDB client. However it correctly interprets the
loss of connection to the server as target execution. Through this exchange, the GDB client
shows the following output:

(gdb) continue
Continuing.
Remote connection closed
(gdb)

3.2.8. The break Command
The GDB command to set breakpoints, break does not immediately cause a RSP interaction.
GDB only actually sets breakpoints immediately before execution (for example by a continue
or step command) and immediately clears them when a breakpoint is hit. This minimizes the
risk of a program being left with breakpoints inserted, for example when a serial link fails.

The RSP packet exchanges to implement the GDB break command and a subsequent continue
are shown as a sequence diagram in Figure 3.7. In this example a breakpoint is set at the
start of the function simputs ().

m114,4

OK

GDB
(RSP Client)

Target
(RSP Server)

Instruction at previous program
counter address is l.mtspr

m1298,8

726c64210a00daec
Read static data value (string
"rld!\n")

c0001811

Z0,1150,4

Set memory breakpoint at
address 0x1150 (simputs)OK

c

Continue execution until
breakpoint TRAP (signal 5)S05

g

Read back the value of all
registers0000 ... 00008001

z0,1150,4

m113c,4

9c21ffc8
Read memory for prologue
analysis

Clear memory breakpoint at
address 0x1150 (simputs)

Figure 3.7. RSP packet exchanges for the GDB break and continue commands
The command sequence is very similar to that of the plain continue command (see Sec-
tion 3.2.7). With two key differences.

19 Copyright © 2008 Embecosm Limited

First, immediately before the c packet, the breakpoint is set with a Z0 packet. Secondly, as
soon as the register cache has been refreshed (g packet) when control returns, the program
counter is stepped back to re-execute the instruction at the location of the TRAP with a P
packet and the breakpoint is cleared with a z0 packet. In this case only a single breakpoint (at
location 0x1150, the start of function simputs ()) is set. If there were multiple breakpoints,
they would all be set immediately before the c packet and cleared immediately after the g
packet.

In this example, the client ensures that the program counter is set to point to the TRAP in-
struction just executed, not the instruction following.

An alternative to adjusting the program counter in the target is to use the GDB architecture
value decr_pc_after_break () value to specify that the program counter should be wound
back. In this case an additional P packet would be used to reset the program counter register.
Whichever approach is used, it means that when execution resumes, the instruction which
was replaced by a trap instruction will be executed first.

Note
Perhaps rather surprisingly, it is the responsibility of the target RSP server, not the
GDB client to keep track of the substituted instructions.

Through this exchange, the GDB client shows the following output:

(gdb) break simputs
Breakpoint 1 at 0x1150: file utils.c, line 90.
(gdb) c
Continuing.

Breakpoint 1, simputs (str=0x1290 "Hello World!\n") at utils.c:90
90 for(i = 0; str[i] != '\0' ; i++) {
(gdb)

The example here showed the use of a memory breakpoint (also known as a software break-
point). GDB also supports use of hardware watchpoints explicitly through the hbreak com-
mand. These behave analogously to memory breakpoints in RSP, but using z1 and Z1 packets.

If a RSP server implementation does not support hardware breakpoints it should return an
empty packet to any request for insertion or deletion.

3.2.9. The watch Command
If hardware watchpoints are supported (the default assumption in GDB), then the setting and
clearing of watchpoints is very similar to breakpoints, but using z2 and Z2 packets (for write
watchpoints), z3 and Z3 packets (for read watchpoints) and z4 and Z4 packets (for access
watchpoints)

GDB also supports software write watchpoints. These are implemented by single stepping the
target, and examining the watched value after each step. This is painfully slow when GDB
is running native. Under RSP, where each step involves an number of packet exchanges, the
performance drops ever further. Software watchpointing should be restricted to the shortest
section of code possible.

3.2.10. The detach and disconnect Commands
The rules for detach mandate that it breaks the connection with the target, and allows the
target to resume execution. By contrast, the disconnect command simply breaks the connec-

20 Copyright © 2008 Embecosm Limited

tion. A reconnection (using the target remote command) should be able to resume debugging
at the point where the previous connection was broken.

The disconnect command just closes the serial connection. It is up to the target server to
notice the connection has broken, and to try to re-establish a connection.

The detach command requires a RSP exchange with the target for a clean shutdown. The RSP
packet exchanges to implement the command are shown as a sequence diagram in Figure 3.8.

D

GDB
(RSP Client)

Target
(RSP Server)

Detach from the clientOK

Figure 3.8. RSP packet exchanges for the GDB detach command

The exchange is a simple D packet to which the target responds with an OK packet, before
closing the connection.

Through this exchange, the GDB client shows the following output:

(gdb) detach
Ending remote debugging.
(gdb)

The disconnect command has no dialog of itself. The GDB client shows the following output
in a typical session. However there are no additional packet exchanges due to the disconnect.

(gdb) target remote :51000
Remote debugging using :51000
0x00000100 in _start ()
(gdb) load hello
Loading section .text, size 0x1290 lma 0x0
Loading section .rodata, size 0xe lma 0x1290
Start address 0x100, load size 4766
Transfer rate: 5 KB/sec, 238 bytes/write.
(gdb) break main
Breakpoint 1 at 0x1264: file hello.c, line 41.
(gdb) c
Continuing.

Breakpoint 1, main () at hello.c:41
41 simputs("Hello World!\n");
(gdb) disconnect
Ending remote debugging.
(gdb) target remote :51000
Remote debugging using :51000
main () at hello.c:41
41 simputs("Hello World!\n");
(gdb) c
Continuing.
Remote connection closed

21 Copyright © 2008 Embecosm Limited

(gdb)

Unlike with the detach command, when debugging is reconnected through target remote,
the target is still at the point where execution terminated previously.

3.3. GDB Extended Remote Command Dialogs
The following sections show diagrammatically how various GDB commands map onto RSP
packet exchanges to implement the desired behavior with extended remote debugging (i.e when
connecting with target extended-remote).

3.3.1. The target extended-remote Command
The RSP packet exchanges to implement the GDB target extended-remote command are
shown as a sequence diagram in Figure 3.9.

qSupported

PacketSize=119

?

S05

Hc-1

OK

qC

(empty)

qOffsets

Text=0;Data=0;Bss=0;

Hg-1

OK

g

0000 ... 10080000

qSymbol::

OK

GDB
(RSP Client)

Target
(RSP Server)

Report packet size supported

Report we stopped due to signal
5 (TRAP exception)

Future step/continue operations
on all threads

Current thread is -1

Report offsets to be used when
loading code

All other future operations
should apply to all threads

Report all general register
values

Offer to provide symbol values
(none required)

!

OK
This is an extended remote
debugging connection

Figure 3.9. RSP packet exchanges for the GDB target remote command

22 Copyright © 2008 Embecosm Limited

The dialog is almost identical to that for standard remote debugging (see Section 3.2.1). The
difference is the penultimate ! packet, notifying the target that this is an extended remote
connection.

Through this exchange, the GDB client shows the following output:

(gdb) target extended-remote :51000
Remote debugging using :51000
0x00000100 in _start ()
(gdb)

3.4. GDB Asynchronous Remote Command Dialogs
The dialogs for asynchronous debugging in general parallel their synchronous equivalents.
The only differences are in those commands which can specify a particular thread to execute
or stop.

23 Copyright © 2008 Embecosm Limited

Chapter 4. RSP Server Implementation Example
The examples used are based on the RSP server implementation for the OpenRISC 1000 ar-
chitectural simulator, Or1ksim.

The target is "bare metal". There is no operating system infrastructure necessarily present.
In this context, commands relating to threads or the file system are of no meaning and not
implemented.

4.1. The OpenRISC 1000 Architectural Simulator, Or1ksim

4.1.1. The OpenRISC 1000 Architecture
The OpenRISC 1000 architecture defines a family of free, open source RISC processor cores.
It is a 32 or 64-bit load and store RISC architecture designed with emphasis on performance,
simplicity, low power requirements, scalability and versatility.

The OpenRISC 1000 is fully documented in its Architecture Manual [6].

From a debugging perspective, there are three data areas that are manipulated by the instruc-
tion set.

1. Main memory. A uniform address space with 32 or 64-bit addressing. Provision for sep-
arate or unified instruction and data and instruction caches. Provision for separate or
unified, 1 or 2-level data and instruction MMUs.

2. General Purpose Registers (GPRs). Up to 32 registers, 32 or 64-bit in length.

3. Special Purpose Registers (SPRs). Up to 32 groups each with up to 2048 registers, up
to 32 or 64-bit in length. These registers provide all the administrative functionality
of the processor: program counter, processor status, saved exception registers, debug
interface, MMU and cache interfaces, etc.

The Special Purpose Registers (SPRs) represent a challenge for GDB, since they represent
neither addressable memory, nor have the characteristics of a register set (generally modest
in number).

A number of SPRs are of particular significance to the GDB implementation.

• Configuration registers. The Unit Present register (SPR 1, UPR), CPU Configuration register
(SPR 2, CPUCFGR) and Debug Configuration register (SPR 7, DCFGR) identify the features
available in the particular OpenRISC 1000 implementation. This includes the instruction
set in use, number of general purpose registers and configuration of the hardware debug
interface.

• Program counters. The Previous Program Counter (SPR 0x12, PPC) is the address of the
instruction just executed. The Next Program Counter (SPR 0x10, NPC) is the address of
the next instruction to be executed. The NPC is the value reported by GDBs $pc variable.

• Supervision Register. The supervision register (SPR 0x11, SR) represents the current sta-
tus of the processor. It is the value reported by GDBs status register variable, $ps.

4.1.2. The OpenRISC 1000 Debug Unit
Of particular importance are the SPRs in group 6 controlling the debug unit (if present). The
debug unit can trigger a trap exception in response to any one of up to 10 watchpoints. Watch-

24 Copyright © 2008 Embecosm Limited

points are logical expressions built by combining matchpoints, which are simple point tests of
particular behavior (has a specified address been accessed for example).

• Debug Value and Control registers. There are up to 8 pairs of Debug Value (SPR 0x3000–
0x3007, DVR0 through DVR7) and Debug Control (SPR 0x3008–0x300f, DCR0 through DCR7)
registers. Each pair is associated with one hardware matchpoint. The Debug Value reg-
ister in each pair gives a value to compare against. The Debug Control register indicates
whether the matchpoint is enabled, the type of value to compare against (instruction
fetch address, data load and/or store address data load and/or store value) and the
comparison to make (equal, not equal, less than, less than or equal, greater than, greater
than or equal), both signed and unsigned. If the matchpoint is enabled and the test met,
the corresponding matchpoint is triggered.

• Debug Watchpoint counters. There are two 16-bit Debug Watchpoint Counter registers
(SPR 0x3012–0x3013, DWCR0 and DWCR1), associated with two further matchpoints. The
upper 16 bits are a value to match, the lower 16 bits a counter. The counter is incre-
mented when specified matchpoints are triggered (see Debug Mode register 1). When the
count reaches the match value, the corresponding matchpoint is triggered.

!
Caution
There is potential ambiguity in that counters are incremented in response to
matchpoints and also generate their own matchpoints. It is not good practice
to set a counter to increment on its own matchpoint!

• Debug Mode registers. There are two Debug Mode registers to control the behavior of the
the debug unit (SPR 0x3010–0x3011, DMR1 and DMR2). DMR1 provides a pair of bits for
each of the 10 matchpoints (8 associated with DVR/DCR pairs, 2 associated with coun-
ters). These specify whether the watchpoint is triggered by the associated matchpoint,
by the matchpoint AND-ed with the previous watchpoint or by the matchpoint OR-ed
with the previous watchpoint. By building chains of watchpoints, complex logical tests
of hardware behavior can be built up.
Two further bits in DMR1 enable single step behavior (a trap exception occurs on comple-
tion of each instruction) and branch step behavior (a trap exception occurs on comple-
tion of each branch instruction).

DMR2 contains an enable bit for each counter, 10 bits indicating which watchpoints are
assigned to which counter and 10 bits indicating which watchpoints generate a trap ex-
ception. It also contains 10 bits of output, indicating which watchpoints have generated
a trap exception.

• Debug Stop and Reason registers. In normal operation, all OpenRISC 1000 exceptions
are handled through the exception vectors at locations 0x100 through 0xf00. The Debug
Stop register (SPR 0x3014, DSR) is used to assign particular exceptions instead to the
JTAG interface. These exceptions stall the processor, allowing the machine state to be
analyzed through the JTAG interface. Typically a debugger will enable this for trap ex-
ceptions used for breakpointing.
Where an exception has been diverted to the development interface, the Debug Reason
register (SPR 0x3021, DRR) indicates which exception caused the diversion. Note that
although single stepping and branch stepping cause a trap, if they are assigned to the
JTAG interface, they do not set the TE bit in the DRR. This allows an external debugger
to distinguish between breakpoint traps and single/branch step traps.

4.1.3. The OpenRISC 1000 JTAG Interface
In a physical OpenRISC 1000 chip, debugging would be via the JTAG interface. However since
the examples used here are based on the architectural simulator, the JTAG interface is not
described further here.

25 Copyright © 2008 Embecosm Limited

4.1.4. Application Binary Interface (ABI)
The ABI for the OpenRISC 1000 is described in Chapter 16 of the Architecture Manual [6].
However the actual GCC compiler implementation differs very slightly from the documented
ABI. Since precise understanding of the ABI is critical to GDB, those differences are docu-
mented here.

• Register Usage: R12 is used as another callee-saved register. It is never used to return
the upper 32 bits of a 64-bit result on a 32-bit architecture. All values greater than 32-
bits are returned by a pointer.

• Although the specification requires stack frames to be double word aligned, the current
GCC compiler implements single word alignment.

• Integral values more than 32 bits (64 bits on 64-bit architectures), structures and unions
are returned as pointers to the location of the result. That location is provided by the
calling function, which passes it as a first argument in GPR 3. In other words, where a
function returns a result of this type, the first true argument to the function will appear
in R4 (or R5/R6 if it is a 64-bit argument on a 32-bit architecture).

4.1.5. Or1ksim: the OpenRISC 1000 Architectural Simulator
Or1ksim is an instruction set simulator (ISS) for the OpenRISC 1000 architecture. At present
only the 32-bit architecture is modeled. In addition to modeling the core processor, Or1ksim
can model a number of peripherals, to provide the functionality of a complete System-on-Chip
(SoC).

Or1ksim implements the RSP server side. It is the implementation of this RSP server which
forms the example for this application note.

4.2. OpenRISC 1000 GDB Architectural Specification
The GDB architectural specification (gdbarch) for OpenRISC 1000 is fully documented in Em-
becosm Application Note 3 ([2]). This section notes some important features, which will be of
relevance to the RSP server implementation.

• All data sizes are specified to match the ABI for the OpenRISC 1000

• All memory breakpoints are implemented at the program counter using the l.trap 1
opcode, which like all OpenRISC 1000 instructions is 4 bytes long.
This means that after a trap due to a breakpoint, the program counter must be stepped
back, to allow re-execution on resumption of the instruction that was replaced by l.trap

• A total of 35 registers are defined to GDB: The 32 general purpose registers, the previous
program counter, the next program counter (colloquially known as the program counter)
and the supervision register. There are no pseudo-registers.

4.3. Overview of the RSP Server Implementation
All the code for the OpenRISC 1000 RSP server interface can be found in debug/rsp-server.c.
The interface is specified in the header file, debug/rsp-server.h.

The code is commented for post-processing with doxygen ([5]).

4.3.1. External Code Interface
The external interface to the RSP server code is through three void functions.

26 Copyright © 2008 Embecosm Limited

1. rsp_init (). Called at start up to initialize the RSP server. It initializes global data
structures (discussed in Section 4.3.2) and then sets up a TCP/IP listener on the con-
figured RSP port.

2. handle_rsp (). Called repeatedly when the processor is stalled to read packets from any
GDB client and process them.

3. rsp_exception (). Called from the simulator to record any exceptions that occur, for
subsequent use by handle_rsp (). It takes a single argument, the OpenRISC 1000 ex-
ception handler entry address, which is mapped by the RSP server to the equivalent
GDB target signal.

4.3.2. Global Data Structures
The RSP server has one data structure, rsp, shared amongst its implementing functions (and
is thus declared static in rsp-server.c).

static struct
{
 int client_waiting;
 int proto_num;
 int server_fd;
 int client_fd;
 int sigval;
 unsigned long int start_addr;
 struct mp_entry *mp_hash[MP_HASH_SIZE];
} rsp;

The fields are:

• client_waiting. A flag to indicate if the target has previously been set running (by a
GDB continue or step) instruction, in which case the client will be waiting for a response
indicating when and why the server has stopped.

• proto_num. The number of the communication protocol used (in this case TCP/IP).

• server_fd. File handle of the server connection to the RSP port, listening for connections.
Set to -1 if it is not open.

• client_fd. File handle of the current client connection to the RSP port, on which all
packet transfers take place. Set to -1 if it is not open.

• sigval. The last exception raised by the target as a GDB target signal number. Set by
the simulator calling rsp_exception ().

• start_addr. The start address of the last run. Needed to support the restart function of
extended remote debugging.

• mp_hash. Pointer to the hash table of matchpoints set (see Section 4.3.2.1).

The RSP server also draws on several Or1ksim data structures. Most notably config for con-
figuration data and cpu_state for all the CPU state data.

4.3.2.1. The Matchpoint Hash Table
The matchpoint hash table is implemented as an open hash table, where the hash table entry
is calculated as the address of the matchpoint modulo the size of the hash table (MP_HASH_SIZE)

27 Copyright © 2008 Embecosm Limited

and the key is formed from the address and the matchpoint type. Matchpoint types are defined
for memory and hardware breakpoints and hardware write, read and access watchpoints:

enum mp_type {
 BP_MEMORY = 0,
 BP_HARDWARE = 1,
 WP_WRITE = 2,
 WP_READ = 3,
 WP_ACCESS = 4
};

Each entry in the table holds the instruction at the location of the matchpoint, which in the
case of memory breakpoints will have been replaced by l.trap

struct mp_entry
{
 enum mp_type type;
 unsigned long int addr;
 unsigned long int instr;
 struct mp_entry *next;
};

Linking through the next field allows multiple entries with the same hash value to be stored.

Interface to the hash table is through four functions:

• mp_hash_init (). void function which sets all the hash table slots to NULL

• mp_hash_add (). void function which adds an entry to the hash table (if it is not already
there). It takes three arguments, the matchpoint type and address and the instruction
stored at that address. Repeated adding of the same entry has no effect, which provides
convenient behavior for debugging over noisy connections where packets may be dupli-
cated.

• mp_hash_lookup (). Function to look up a key in the hash table. It takes a matchpoint
type and address and returns a pointer to the entry (as a pointer to struct mp_entry)
or NULL if the key is not found.

• mp_hash_delete (). Function with the same behavior as mp_hash_lookup (), but also
deletes the entry from the hash table if it is found there. If the entry is not found, it
silently does nothing (and returns NULL).

Note
This function returns a pointer to the struct—mp_entry deleted from the hash
table if the key is found. To avoid memory leaks it is important that the caller
delete this structure (using free ()) when the data has been extracted.

4.3.3. Top Level Behavior
The RSP server initialization, rsp_init () is called from the main simulator initialization,
sim_init () in toplevel-support.c.

The main simulation initialization is also modified to start the processor stalled on a TRAP
exception if RSP debugging is enabled. This ensures that the handler will be called initially.

28 Copyright © 2008 Embecosm Limited

The main loop of Or1ksim, called after initialization, is in the function exec_main () in cpu/
or32/execute.c.

If RSP debugging is enabled in the Or1ksim configuration, the code to interact with the RSP
client (handle_rsp ()) is called at the start of each iteration, but only if the processor is stalled.
The handler is called repeatedly until an interaction with the client unstalls the processor (i.e.
a step or continue function.

void
exec_main ()
{
 long long time_start;

 while (1)
 {
 time_start = runtime.sim.cycles;
 if (config.debug.enabled)
 {
 while (runtime.cpu.stalled)
 {
 if (config.debug.rsp_enabled)
 {
 handle_rsp ();
 }

 ...

Since interaction with the client can only occur when the processor is stalled, BREAK signals
(i.e. ctrl-C) cannot be intercepted.

It would be possible to poll the connection on every instruction iteration, but the performance
overhead on the simulator would be unacceptable.

An implementation to pick up BREAK signals should use event driven I/O - i.e. with a signal
handler for SIGIO. An alternative is to poll the interface less frequently when the CPU is not
stalled. Since Or1ksim executes at several MIPS, polling every 100,000 cycles would mean a
response to ctrl-C of less than 100ms, while adding no significant overhead.

4.3.3.1. Exception handling
The RSP interface will only pick up those exceptions which cause the processor to stall. These
are the exceptions routed to the debug interface, rather than through their exception vectors,
and are specified in the Debug Stop Register (set during initialization). In the present imple-
mentation, only TRAP exceptions are picked up this way, allowing the debugger to process
memory based breakpoints. However an alternative implementation could allow the debugger
to see all exceptions.

Exceptions will be processed at the start of each iteration by handle_rsp (). However the han-
dler needs to know which signal caused the exception. This is achieved by modifying the main
debug unit exception handling function (debug_ignore_exception () in debug/debug-unit.c)
to call rsp_exception () if RSP is enabled for any exception handled by the debug unit. This
function stores the exception (translated to a GDB target signal) in rsp.sigval.

29 Copyright © 2008 Embecosm Limited

int
debug_ignore_exception (unsigned long except)
{
 int result = 0;
 unsigned long dsr = cpu_state.sprs[SPR_DSR];

 switch (except)
 {
 case EXCEPT_RESET: result = (dsr & SPR_DSR_RSTE); break;
 case EXCEPT_BUSERR: result = (dsr & SPR_DSR_BUSEE); break;

 ...

 cpu_state.sprs[SPR_DRR] |= result;
 set_stall_state (result != 0);

 if (config.debug.rsp_enabled && (0 != result))
 {
 rsp_exception (except);
 }

 return (result != 0);

} /* debug_ignore_exception () */

For almost all exceptions, this approach is suitable. However TRAP exceptions due to single
stepping are taken at the end of each instruction execution and do not use the standard
exception handling mechanism.

The exec_main () function already includes code to handle this towards the end of the main
loop. This is extended with a call to rsp_exception () if RSP debugging is enabled.

 if (config.debug.enabled)
 {
 if (cpu_state.sprs[SPR_DMR1] & SPR_DMR1_ST)
 {
 set_stall_state (1);

 if (config.debug.rsp_enabled)
 {
 rsp_exception (EXCEPT_TRAP);
 }
 }
 }

4.4. The Serial Connection

4.4.1. Establishing the Server Listener Socket
A TCP/IP socket to listen on the RSP port is created in rsp_init (), and its file descriptor
stored in rsp.server_fd. As a variant, if the port is configured to be 0, the socket uses the
port specified for the or1ksim-rsp service.

30 Copyright © 2008 Embecosm Limited

The setup uses standard POSIX calls to establish the socket and associate it with a TCP/IP
port. The interface is set to be non-blocking and marked as a passive port (using a call to
listen ()), with at most one outstanding client request. There is no meaning to the server
handling more than one client GDB connection.

The main RSP handler function handle_rsp () checks that the server port is still open. This
may be closed if there is a serious error. In the present implementation, handle_rsp () gives
up at this point, but a richer implementation could try reopening a new server port.

4.4.2. Establishing the Client Connection
If a client connection is yet to be established, then handle_rsp () blocks until a connection
request is made. A valid request is handled by rsp_server_request (), which opens a con-
nection to the client, saving the file descriptor in rsp.client_fd.

This connection is also non-blocking. Nagel's algorithm is also disabled, since all packet bytes
should be sent immediately, rather than being queued to build larger blocks.

4.4.3. Communicating with the Client
Having established a client connection if necessary, handle_rsp () blocks until packet data
is available. It then calls rsp_client_request () to read the packet, provide the required
behavior and generate any reply packets.

4.5. The Packet Interface

4.5.1. Packet Representation
Although packets are character based, they cannot simply be represented as strings, since bi-
nary packets may contain the end of string character (zero). Packets are therefore represented
as a simple struct, rsp_buf:

struct rsp_buf
{
 char data[GDB_BUF_MAX];
 int len;
};

For convenience, all packets have a zero added at location data[len], allowing the data field
of non-binary packets to be printed as a simple string for debugging purposes.

4.5.2. Getting Packets
The packet reading function is get_packet (). It looks for a well formed packet, beginning
with '$', with '#' at the end of data and a valid 2 byte checksum (see Figure 2.2 in Section 2.3
for packet representation details).

If a valid packet is found, '+' is returned using put_rsp_char () (see Section 4.5.3.1) and the
packet is returned as a pointer to a struct rsp_buf. Otherwise '-' is returned and the loop
repeated to get a new packet (presumably retransmitted by the client).

The buffer is statically allocated within get_packet (). This is acceptable, since two received
packets cannot be in use simultaneously.

31 Copyright © 2008 Embecosm Limited

In general errors are silently ignored (the connection could be poor quality). However bad
checksums are noted in a warning message. In the event of end of file being encountered,
get_packet () returns immediately with NULL as result.

4.5.2.1. Character Input
The individual characters are read using get_rsp_char (). The result is returned as an int,
allowing -1 to be used to indicate end of file, or other error. In the event of end of file, or error,
the client connection is closed and rsp.client_fd set to -1.

4.5.3. Sending Packets
The packet writing function is put_packet (). It takes as argument a struct rsp_buf and
creates a well formed packet, beginning with '$', with '#' at the end of data and a valid 2 byte
checksum (see Figure 2.2 in Section 2.3 for packet representation details).

The acknowledgment character is read using get_rsp_char () (see Section 4.5.2.1). If suc-
cessful ('+'), the function returns. Otherwise the packet is repeatedly resent until ('+') is re-
ceived as a response.

Errors on writing are silently ignored. If the read of the acknowledgment returns -1 (indicating
failure of the connection or end-of-file), put_packet () returns immediately.

4.5.3.1. Character Output
The individual characters are written by put_packet () using put_rsp_char (). In the event of
an error other than a retry request or interrupt a warning is printed and the connection closed.

4.6. Convenience Functions
A number of convenience functions are provided for RSP protocol behavior that is repeatedly
required.

4.6.1. Convenience String Packet Output
Many response packets take the form of a fixed string. As a convenience put_str_packet () is
provided. This takes a constant string argument, from which a struct rsp_buf is constructed.
This is then sent using put_packet ().

4.6.2. Conversion Between Binary and Hexadecimal Characters
The function hex () takes an ASCII character which is a valid hexadecimal digit (upper or
lower case) and returns its value (0-15 decimal). Any invalid digit returns -1.

The static array hexchars[] declared at the top level in rsp-server.c provides a mapping from
a hexadecimal digit value (in the range 0-15 decimal) to its ASCII character representation.

4.6.3. Conversion Between Binary and Hexadecimal Character Registers
For several packets, register values must be represented as strings of characters in target
endian order. For convenience, the functions reg2hex () and hex2reg () are provided. Each
takes a pointer to a buffer for the characters. For reg2hex () a value to be converted is passed.
For hex2reg () the value represented is returned as a result.

32 Copyright © 2008 Embecosm Limited

4.6.4. Data "Unescaping"
The function rsp_unescape () takes a pointer to a data buffer and a length and "unescapes"
the buffer in place. The length is the size of the data after all escape characters have been
removed.

4.6.5. Setting the Program Counter
The program counter (i.e. the address of the next instruction to be executed) is held in Special
Purpose Register 16 (next program counter). Within Or1ksim this is cached in cpu_state.pc.

When changing the next program counter in Or1ksim it is necessary to change associ-
ated data which controls the delay slot pipeline. If there is a delayed transfer, the flag
cpu_state.delay_insn is set. The address of the next instruction to be executed (which is af-
fected by the delay slot) is held in the global variable, pc_next.

The utility function set_npc () takes an address as argument. If that address is different to
the current value of NPC, then the NPC (in cpu_state.pc) is updated to the new address, the
delay slot pipeline is cleared (cpu_state.delay_insn is set to zero) and the following instruction
(pcnext) is set to cpu_state.pc+4.

4.7. High Level Protocol Implementation
The high level protocol is driven from the function rsp_client_request (), which is called
from handle_rsp () once a client connection is established.

This function calls get_packet () to get the next packet from the client, and then switches on
the first character of the packet data to determine the action to be taken.

The following sections discuss the implementation details of the various packet types that
must be supported.

4.7.1. Deprecated Packets
Packets requesting functionality that is now deprecated are ignored (possibly with an error
response if that is expected) and a warning message printed. The packets affected are: b (set
baud rate), B (set a breakpoint), d (disable debug) and r (reset the system).

In each case the warning message indicates the recommended way to achieve the desired
functionality.

4.7.2. Unsupported Packets
The development of an interface such as RSP can be incremental, where functionality is added
in stages. A number of packets are not supported. In a few cases this is because the function-
ality is meaningless for the current target, but in the majority of cases, the functionality can
be supported as the server is developed further in the future.

The unsupported packets are:

• A. Specifying the arguments for a program is hard on "bare metal". It requires determin-
ing whether the code has yet entered its main () function and if not patching in pointers
to the new arguments.

• C and S. Continuing or stepping with a signal is currently not supported. Implementing
this would require insertion of an exception, which is not difficult, so this will be an
enhancement for the near future.

33 Copyright © 2008 Embecosm Limited

• F. File I/O is not meaningful with a bare metal target, where a file-system may not be
present.

• i and I. The target is an architectural simulator, executing one instruction at a time. So
cycle accurate stepping is not available.

• t. The meaning (or use) of the search command is not clear, so this packet is not currently
implemented.

4.7.3. Simple Packets
Some packets are very simple to handle, either requiring no response, or a simple fixed text
response.

• !. A simple reply of "OK" indicates the target will support extended remote debugging.

• D. The detach is acknowledged with a reply packet of "OK" before the client connection is
closed and rsp.client_fd set to -1. The semantics of detach require the target to resume
execution, so the processor is unstalled using set_stall_state (0).

• H. This sets the thread number of subsequent operations. Since thread numbers are of
no relevance to this target, a response of "OK" is always acceptable.

• k. The kill request is used in extended mode before a restart or request to run a new
program (vRun packet). Since the CPU is already stalled, it seems to have no additional
semantic meaning. Since it requires no reply it can be silently ignored.

• T. Since this is a bare level target, there is no concept of separate threads. The one
thread is always active, so a reply of "OK" is always acceptable.

4.7.4. Reporting the Last Exception
The response to the ? packet is provided by rsp_report_exception (). This is always a S
packet. The signal value (as a GDB target signal) is held in rsp.sigval, and is presented as
two hexadecimal digits.

4.7.5. Continuing
The c packet is processed by rsp_continue (). Any address from which to continue is broken
out from the packet using sscanf (). If no address is given, execution continues from the
current program counter (in cpu_state.pc).

The continue functionality is provided by the function rsp_continue_generic () which takes
an address and an Or1ksim exception as arguments, allowing it to be shared with the process-
ing of the C packet (continue with signal) in the future. For the c packet, EXCEPT_NONE is used.

rsp_continue_generic () at present ignores its exception argument (the C packet is not
supported). It sets the program counter to the address supplied using set_npc () (see Sec-
tion 4.6.5).

The control registers of the debug unit must then be set appropriately. The Debug Reason
Register and watchpoint generation flags in Debug Mode Register 2 are cleared. The Debug
Stop Register is set to trigger on TRAP exceptions (so memory breakpoints are picked up), and
the single step flag is cleared in Debug Mode Register 1.

 cpu_state.sprs[SPR_DRR] = 0;
 cpu_state.sprs[SPR_DMR2] &= ~SPR_DMR2_WGB;
 cpu_state.sprs[SPR_DMR1] &= ~SPR_DMR1_ST;

34 Copyright © 2008 Embecosm Limited

 cpu_state.sprs[SPR_DSR] |= SPR_DSR_TE;

The processor is then unstalled (set_stall_state (0)) and the client waiting flag
(rsp.client_waiting) set. This latter means that when handle_rsp () is next entered, it will
know that a reply is outstanding, and return the appropriate stop packet required when the
processor stalls after a continue or step command.

4.7.6. Reading and Writing All Registers
The g and G packets respectively read and write all registers, and are handled by the functions
rsp_read_all_regs () and rsp_write_all_regs ().

4.7.6.1. Reading All Registers
The register data is provided in a reply packet as a stream of hexadecimal digits for each reg-
ister in GDB register order. For the OpenRISC 1000 this is the 32 GPRs followed by the Pre-
vious Program Counter, Next Program Counter and Supervision Register SPRs. Each register
is presented in target endian order, using the convenience function reg2hex ().

4.7.6.2. Writing All Registers
The register data follows the G as a stream of hexadecimal digits for each register in GDB
register order. For the OpenRISC 1000 this is the 32 GPRs followed by the Previous Program
Counter, Next Program Counter and Supervision Register SPRs. Each register is supplied in
target endian order and decoded using the utility function hex2reg ().

The corresponding values are set in the Or1ksim data structures. For the GPRs this is in
the cpu_state.regs array. For the Previous Program Counter and Supervision Register it is
the relevant entry in the cpu_state.sprs array. The Next Program Counter is set using the
set_npc () convenience function (see Section 4.6.5), which ensures associated variables, con-
trolling the delay pipeline are also updated appropriately.

4.7.7. Reading and Writing Memory
The m and M packets respectively read and write blocks of memory, with the data rep-
resented as hexadecimal characters. The processing is provided by rsp_read_mem () and
rsp_write_mem ().

4.7.7.1. Reading Memory
The syntax of the packet is m,addr,len:. sscanf () is used to break out the address and length
fields (both in hex).

The reply packet is a stream of bytes, starting from the lowest address, each represented
as a pair of hex characters. Each byte is read from memory using the simulator function
eval_direct8 (), having first verified the memory area is valid using verify_memoryarea ().

The packet is only sent if all bytes are read satisfactorily. Otherwise an error packet, "E01" is
sent. The actual error number does not matter—it is not used by the client.

!
Caution
The use of eval_direct8 () is not correct, since it ignores any caching or memory
management. As a result the current implementation is only correct for configura-
tions with no MMU or cache.

35 Copyright © 2008 Embecosm Limited

4.7.7.2. Writing Memory
The syntax of the packet is m,addr,len: followed by the data to be written as a stream of bytes,
starting from the lowest address, each represented as a pair of hex characters. sscanf () is
used to break out the address and length fields (both in hex).

Each byte is written to memory using set_program8 () (which ignores any read only con-
straints on the modeled memory), having first verified that the memory address is valid using
verify_memoryarea ().

If all bytes are written successfully, a reply packet "OK" is sent. Otherwise an error reply, "E01"
is sent. The actual error number does not matter—it is not used by the client.

!
Caution
The use of set_program8 () is not correct, since it ignores any caching or memory
management. As a result the current implementation is only correct for configura-
tions with no MMU or cache.

4.7.8. Reading and Writing Individual Registers
The p and P packets are implemented respectively by rsp_read_reg () and rsp_write_reg ().

These functions are very similar in implementation to rsp_read_all_regs () and
rsp_write_all_regs () (see Section 4.7.6).

The two differences are that the packet data must be parsed to identify the register affected,
and (clearly) only one register is read or written.

4.7.9. Query Packets
Query packets all start with q. The functionality is all provided in the function rsp_query ().

4.7.9.1. Deprecated Query Packets
The qL and qP packets to obtain information about threads are now obsolete, and are ignored
with a warning. An empty reply (meaning not supported) is sent to each.

These packets have been replaced by qC, qfThreadInfo, qsThreadInfo, qThreadExtraInfo
and qGetTLSAddr packets (see Section 4.7.9.3).

4.7.9.2. Unsupported Query Packets
A number of query packets are not needed in an initial implementation, or make no sense
for a "bare metal" target.

• qCRC. This can be implemented later by writing the code to compute a CRC for a memory
area. A warning is printed and an error packet ("E01") returned.

• qGetTLSAddr. This is a highly operating system dependent function to return the loca-
tion of thread local storage. It has no meaning in a simple "bare metal" target. An empty
reply is used to indicate that the feature is not supported.

• qRcmd. This packet is used to run a remote command. Although this does not have
a direct meaning, it is a useful way of passing arbitrary requests to the target. In the
current implementation two commands readspr and writespr are provided to read and
write values from and to Special Purpose Registers (needed for the GDB info spr and spr
commands). These commands cannot be implemented using the main packets, since
SPRs do not appear in either the memory map or the register file.

36 Copyright © 2008 Embecosm Limited

A side effect of this mechanism is that the remote commands are directly visible to the
user through the GDB monitor command. Thus there are two ways to view a SPR. The
"official" way:

(gdb) info spr npc
SYS.NPC = SPR0_16 = 256 (0x100)
(gdb)

And the unofficial way:

(gdb) monitor readspr 10
 100(gdb)

For this reason, defining and using a new qXfer packet type (see below) might be pre-
ferred as a way of accessing custom information such as SPR values.

• qXfer:. This packet is used to transfer "special" data to and from the target. A number
of variants are already defined, to access particular features, some specific to certain
targets and operating systems.
This is the alternative way to provide SPR access, by providing a new variant qXfer
specific to the OpenRISC 1000. However any new qXfer does demand integration within
GDB.

qXfer functionality must be specifically enabled using the qSupported packet (see Sec-
tion 4.7.9.5). For the present this is not provided.

4.7.9.3. Queries About Threads
Although threads are not meaningful on the "bare metal" target, sensible replies can be given
to most of the thread related queries by using -1 to mean "all threads".

• qC. An empty reply is used, which is interpreted as "use the previously selected thread".
Since no thread is ever explicitly selected by the target, this will allow the client GDB
session to use its default NULL thread, which is what is wanted.

• qfThreadInfo and qsThreadInfo. These packets are used to report the currently active
threads. qfThreadInfo is used to report the first set of information and qsThreadInfo
for all subsequent information, until a reply packet of "l" indicates the last packet.
In this implementation, a reply packet of "m-1" (all packets are active is used for
qfThreadInfo and a reply packet of "l" is used for qsThreadInfo to indicate there is
no more information.

• qThreadExtraInfo. This should return a printed string, encoded as ASCII characters as
hexadecimal digits with attributes of the thread specified as argument.
The argument is always ignored (this target only has one thread), and the reply
"Runnable" is sent back

4.7.9.4. Query About Executable Relocation
The qOffsets packet requests a reply string of the format "Text=xx;Data=yy;Bss=zz" to identify
the offsets used in relocating the sections of code to be downloaded.

No relocation is used in this target, so the fixed string "Text=0;Data=0;Bss=0" is sent as a
reply.

37 Copyright © 2008 Embecosm Limited

!
Caution
The GDB User Guide ([3]) suggests the final ";Bss=zz" is optional. This is not the
case. It must be specified.

4.7.9.5. Query About Supported Functionality
The qSupported packet asks the client for information about features for which support is
optional. By default, none are supported. The features are maximum packet size and support
for the various qXfer packets and the QPassSignals packet.

Of these only the packet size is of relevance to this target, so a reply of "PacketSize=xx", where
"xx" is the maximum packet size (GDB_BUF_MAX) is sent.

4.7.9.6. Query About Symbol Table Data
A qSymbol:: packet (i.e. a qSymbol packet with no data) is used as an offer from the
client to provide symbol table information. The server may respond with packets of the form
qSymbol:name to request information about the symbol name.

A reply of "OK" is used to indicate that no further symbol table information is required. For the
current implementation, no information is required, so "OK" is always sent as the response.

4.7.10. Set Packets
Set packets all start with Q. The functionality is all provided in rsp_set ().

The QPassSignals packet is used to pass signals to the target process. This is not supported,
and not reported as supported in a qSupported packet (see Section 4.7.9.5), so should never
be received.

If a QPassSignals packet is received, an empty response is used to indicate no support.

4.7.10.1. Tracepoint Packets
All the remaining set packets (QTDP, QFrame, QTStart, QTStop, QTinit and QTro) are con-
cerned with tracepoints. Tracepoints are not currently supported with the Or1ksim target, so
an empty reply packet is sent to indicate this.

4.7.11. Restart the Target
The functionality for the R packet is provided in rsp_restart (). The start address of the
current target is held in rsp.start_addr. The program counter is set to this address using
set_npc () (see Section 4.6.5).

The processor is not unstalled, since there would be no way to regain control if this happened.
It is up to the GDB client to restart execution (with continue or step if that is what is desired).

This packet should only be used in extended remote debugging.

4.7.12. Stepping
The step packet (s) requests a single machine instruction step. Its implementation is al-
most identical to that of the continue (c) packet, but using the functions rsp_step () and
rsp_step_generic ().

The sole difference is that the generic function sets, rather than clears the single stepping flag
in Debug Mode Register 1. This ensures a TRAP exception is raised after the next instruction
completes execution.

38 Copyright © 2008 Embecosm Limited

 cpu_state.sprs[SPR_DRR] = 0;
 cpu_state.sprs[SPR_DMR2] &= ~SPR_DMR2_WGB;
 cpu_state.sprs[SPR_DMR1] |= SPR_DMR1_ST;
 cpu_state.sprs[SPR_DSR] |= SPR_DSR_TE;

4.7.13. v Packets
The v packets provide additional flexibility in controlling execution on the target. Much of this
is related to non-stop targets with multithreading support and to flash memory control and
need not be supported in a simple implementation.

All the v packet functionality is provided in the function rsp_vpkt ().

4.7.13.1. Extended Debugging Support
The vAttach and vRun packets are only required for extended remote debugging.

vRun is used to specify a new program to be run, or if no program is specified that the existing
target program be run again. In the current implementation, only this latter option is support-
ed. Any program specified is ignored with a warning. The semantics of the vRun command are
that the target is left in the stopped state, and the stopped condition reported back to the client.

The vRun packet may also specify arguments to pass to the program to be run. In the current
implementation those arguments are ignored with a warning.

This behavior is identical to that of the R (restart) packet (see Section 4.7.11) with the addition
of a reply packet. The implementation uses exactly this functionality, with a reply packet
reporting a TRAP exception.

 rsp_restart ();
 put_str_packet ("S05");

The vAttach packet allows a client to attach to a new process. In this target, there is only one
process, so the process argument is ignored and no action taken. However a stop response is
required, so a reply packet indicating a TRAP exception is sent (put_str_packet ("S05").

4.7.13.2. Non-stop Support
The vCont packet provides a more fine grained control over individual threads than the c or
s packets.

Support for vCont packets is established with a vCont? packet which should always be sup-
ported. In the current implementation, vCont is not supported, so an empty response is pro-
vided to any vCont? packet.

4.7.13.3. File Handling
The vFile packet allows a file operation to be implemented on a target platform. In the absence
of any file system with the "bare metal" target, this packet is not supported. An empty response
is sent and a warning printed.

4.7.13.4. Flash Memory
The vFlashErase, vFlashWrite and vFlashDone packets provide support for targets with flash
memory systems.

39 Copyright © 2008 Embecosm Limited

At present these are not supported on the target and an error reply ("E01") is returned. However
Or1ksim can model flash memory, and these packets could be supported in the future.

4.7.14. Binary Data Transfer
The X provides for data to be written to the target in binary format. This is the mechanism of
choice for program loading (the GDB load command). GDB will first probe the target with an
empty X packet (which is 7-bit clean). If an "OK" response is received, subsequent transfers will
use the X packet. Otherwise M packets will be used. Thus even 7-bit clean implementations
should still support replying to an empty X packet.

The example implementation is found in rsp_write_mem_bin (). Even though the data is
binary, it must still be escaped so that '#', '$' and '}' characters are not mistaken for new
packets or escaped characters.

Each byte is read, and if escaped, restored to its original value. The data is written using
set_program8 (), having first verified the memory location with verify_memoryarea ().

If all bytes are successfully written, a reply packet of "OK" is sent. Otherwise and error packet
("E01") is sent. The error number does not matter—it is ignored by the target.

!
Caution
The use of set_program8 () is not correct, since it ignores any caching or memory
management. As a result the current implementation is only correct for configura-
tions with no instruction MMU or instruction cache.

4.7.15. Matchpoint Handling
Matchpoint is the general term used for breakpoints (both memory and hardware) and watch-
points (write, read and access). Matchpoints are removed with zcommand> packets and set
with Z packets. The functionality is provided respectively in resp_remove_matchpoint () and
resp_insert_matchpoint ().

The current implementation only supports memory (soft) breakpoints controlled by Z0 and Z0
packets. However the OpenRISC 1000 architecture and Or1ksim have hardware breakpoint
and watchpoint functionality within the debug unit, which will be supported in the future.

The target is responsible for keeping track of any memory breakpoints set. This is managed
through the hash table pointed to by rsp.mp_hash. Each matchpoint is recorded in a match-
point entry:

struct mp_entry
{
 enum mp_type type;
 unsigned long int addr;
 unsigned long int instr;
 struct mp_entry *next;
};

When an instruction is replaced by l.trap for a memory breakpoint, the replace instruction
is recorded in the hash table as a struct mp_entry with type BP_MEMORY. This allows it to be
replaced when the the breakpoint is cleared.

The hash table is accessed by the functions mp_hash_init (), mp_hash_add (),
mp_hash_lookup () and mp_hash_delete (). These are described in more detail in Sec-
tion 4.3.2.1

40 Copyright © 2008 Embecosm Limited

4.7.15.1. Setting Matchpoints
Only memory (soft) breakpoints are supported. The instruction is read from memory at the
location of the breakpoint and stored in the hash table (using mp_hash_add ()). A l.trap
instruction (OR1K_TRAP_INSTR) is inserted in its place using set_program32 () and a reply of
"OK" sent back.

 mp_hash_add (type, addr, eval_direct32 (addr, 0, 0));
 set_program32 (addr, OR1K_TRAP_INSTR);
 put_str_packet ("OK");

!
Caution
The use of eval_direct32 () with second and third arguments both zero and
set_program32 () is not correct, since it ignores any caching or memory manage-
ment. As a result the current implementation is only correct for configurations with
no instruction MMU or instruction cache.

4.7.15.2. Clearing Matchpoints
Only memory (soft) breakpoints are supported. The instruction that was substituted by l.trap
is retrieved and deleted from the hash table using mp_hash_delete (). The instruction is then
put back in its original location using set_program32 ().

mp_hash_delete () returns the struct mp_entry that was removed from the hash table.
Once the instruction information has been retrieved, its memory must be returned by calling
free ().

It is possible to receive multiple requests to delete a breakpoint if the serial connection is poor
(due to retransmissions). By checking that the entry is in the hash table, actual deletion of
the breakpoint and restoration of the instruction happens at most once.

 mpe = mp_hash_delete (type, addr);

 if (NULL != mpe)
 {
 set_program32 (addr, mpe->instr);
 free (mpe);
 }

 put_str_packet ("OK");

!
Caution
The use of set_program32 () is not correct, since it ignores any caching or memory
management. As a result the current implementation is only correct for configura-
tions with no instruction MMU or instruction cache.

41 Copyright © 2008 Embecosm Limited

Chapter 5. Summary
This application note has described in detail the steps required to implement a RSP server for
a new architecture. That process has been illustrated using the port for the OpenRISC 1000
architecture.

Suggestions for corrections or improvements are welcomed. Please contact the author at
jeremy.bennett@embecosm.com.

mailto:jeremy.bennett@embecosm.com

42 Copyright © 2008 Embecosm Limited

Glossary

big endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a big endian architecture, the least significant byte in a data word resides at
the highest byte address (of the bytes in the word) in memory.
The alternative is little endian addressing.

See also: little endian.

General Purpose Register (GPR)
In the OpenRISC 1000 architecture, one of between 16 and 32 general purpose integer
registers.
Although these registers are general purpose, some have specific roles defined by the ar-
chitecture and the ABI. GPR 0 is always 0 and should not be written to. GPR 1 is the stack
pointer, GPR 2 the frame pointer and GPR 9 the return address set by l.jal (known as the
link register) and l.jalr instructions. GPR 3 through GPR 8 are used to pass arguments
to functions, with scalar results returned in GPR 11.

See also: Application Binary Interface.

Joint Test Action Group (JTAG)
JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access
Port and Boundary-Scan Architecture for test access ports used for testing printed circuit
boards and chips using boundary scan.
This standard allows external reading of state within the board or chip. It is thus a natural
mechanism for debuggers to connect to embedded systems.

little endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a little endian architecture, the least significant byte in a data word resides at
the lowest byte address (of the bytes in the word) in memory.
The alternative is big endian addressing.

See also: big endian.

Memory Management Unit (MMU)
A hardware component which maps virtual address references to physical memory ad-
dresses via a page lookup table. An exception handler may be required to bring non-exis-
tent memory pages into physical memory from backing storage when accessed.
On a Harvard architecture (i.e. with separate logical instruction and data address spaces),
two MMUs are typically needed.

Real Time Executive for Multiprocessor Systems (RTEMS)
An operating system for real-time embedded systems offering a POSIX interface. It offers
no concept of processes or memory management.

Special Purpose Register (SPR)
In the OpenRISC 1000 architecture, one of up to 65536 registers controlling all aspects of
the processor. The registers are arranged in groups of 2048 registers. The present archi-
tecture defines 12 groups in total.

43 Copyright © 2008 Embecosm Limited

In general each group controls one component of the processor. Thus there is a group to
control the DMMU, the IMMU, the data and instruction caches and the debug unit. Group
0 is the system group and includes all the system configuration registers, the next and
previous program counters, supervision register and saved exception registers.

System on Chip (SoC)
A silicon chip which includes one or more processor cores.

44 Copyright © 2008 Embecosm Limited

References
[1] Embecosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain:

Installation Guide. Embecosm Limited, June 2008.

[2] Embecosm Application Note 3. Howto: Porting the GNU Debugger: Practical Experience
with the OpenRISC 1000 Architecture Embecosm Limited, August 2008.

[3] Debugging with GDB: The GNU Source-Level Debugger, Richard Stallman, Roland Pesch,
Stan Shebbs, et al, issue 9. Free Software Foundation 2008 . http://sourceware.org/
gdb/current/onlinedocs/gdb_toc.html

[4] GDB Internals: A guide to the internals of the GNU debugger, John Gillmore and Stan
Shebbs, issue 2. Cygnus Solutions 2006 . http://sourceware.org/gdb/current/on-
linedocs/gdbint_toc.html

[5] Doxygen: Source code documentation generator tool, Dimitri van Heesch, 2008 . http://
www.doxygen.org

[6] OpenRISC 1000 Architectural Manual, Damjan Lampret, Chen-Min Chen, Marko Mlinar,
Johan Rydberg, Matan Ziv-Av, Chris Ziomkowski, Greg McGary, Bob Gardner, Rohit
Mathur and Maria Bolado, November 2005 . http://www.opencores.org/cvsget.cgi/
or1k/docs/openrisc_arch.pdf

[7] OpenRISC 1000: ORPSoC Damjan Lampret et al. OpenCores http://opencores.org/
projects.cgi/web/or1k/orpsoc

[8] SoC Debug Interface Igor Mohor, issue 3.0. OpenCores 14 April, 2004 . http://
opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf

http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://www.doxygen.org
http://www.doxygen.org
http://www.opencores.org/cvsget.cgi/or1k/docs/openrisc_arch.pdf
http://www.opencores.org/cvsget.cgi/or1k/docs/openrisc_arch.pdf
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf

45 Copyright © 2008 Embecosm Limited

Index
Symbols
! packet (see RSP packet types)
7-bit clean, 3, 12, 39
8-bit clean, 3, 12, 39
? packet (see RSP packet types)

A
A packet (see RSP packet types)
ABI

OpenRISC 1000 (see OpenRISC 1000)
application layer (see OSI layers)
asynchronous remote debugging, 9, 22
awatch command (see GDB commands)

B
b packet (see RSP packet types)
B packet (see RSP packet types)
bare metal, 10, 23, 32, 35, 36, 38
binary data (see RSP packet)
BP_HARDWARE constant, 27
BP_MEMORY constant, 27, 39
break command (see GDB commands)
breakpoint

hardware, 19
memory (software), 28, 33, 40, 40

implementation for OpenRISC 1000, 25
memory (software) breakpoint, 18

C
c packet (see RSP packet types)
C packet (see RSP packet types)
cache (see memory cache)
checksum (see RSP packet)
continue command (see GDB commands)
control-C (see interrupt)
convenience functions, 31

binary to hex char conversion, 31
binary to hex char register conversion, 32,
34
data "unescaping", 32
fixed string reply packets, 31
hex char to binary conversion, 31
hex char to binary register conversion, 31,
34
next program counter, 32

cpu_state data structure, 26
cpu_state.delay_insn, 32

cpu_state.pc, 32, 33
cpu_state.regs, 34
cpu_state.sprs, 33, 34, 38

D
D packet (see RSP packet types)
d packet (see RSP packet types)
DCFGR (see Debug Configuration Register)
DCR (see Debug Control Register)
Debug Configuration Register (see Special
Purpose Register)
Debug Control Register (see Special Purpose
Register)
Debug Mode Register (see Special Purpose
Register)
Debug Reason Register (see Special Purpose
Register)
Debug Stop Register (see Special Purpose
Register)
Debug Unit, 24

JTAG interface, 25
Igor Mohor version, 44
ORPSoC version, 44

matchpoint, 24
registers (see Special Purpose Register)
watchpoint, 24
watchpoint counter, 24

Debug Value Register (see Special Purpose
Register)
Debug Watchpoint Counter Register (see
Special Purpose Register)
debug_ignore_exception function , 28
decr_pc_after_break function, 19
deprecated packet types (see RSP packet
types)
detach command (see GDB commands)
direct serial connection (see serial device
connection)
disassemble command (see GDB commands)
disconnect command (see GDB commands)
DMR (see Debug Mode Register)
Doxygen, 44

use with RSP server for OpenRISC 1000, 1
DRR (see Debug Reason Register)
DSR (see Debug Stop Register)
DVR (see Debug Value Register)
DWCR (see Debug Watchpoint Counter Reg-
ister)

46 Copyright © 2008 Embecosm Limited

E
Embecosm, 2
endianism, 42, 42
escaped characters (see RSP packet)
eval_direct32 function, 40
eval_direct8 function, 34
example

stub code for RSP server (see stub code for
RSP server)

exceptionHandler function (see stub code for
RSP server)
EXCEPT_NONE constant, 33
exec_main function, 28, 29
extended remote debugging, 6, 8, 21, 33, 37,
38

F
F packet (see RSP packet types)
fixed response packet types for Open-
RISC 1000 (see RSP packet)
flash memory, 38, 39
frame pointer

in OpenRISC 1000, 42
free function, 27, 40

G
g packet (see RSP packet types)
G packet (see RSP packet types)
GDB

built in variables
$pc, 23
$ps, 23

Internals document, 44
IRC, 2
mailing lists, 2
porting, 44

Howto, 2
register specification, 25, 34, 34
User Guide, 1, 44
website, 2
wiki, 2

GDB architecture specification, 14, 17, 19,
25
GDB commands

awatch, 19
break, 18
continue, 6, 9, 11, 17, 28, 33, 34, 37
detach, 20, 33
disassemble, 12
disconnect, 20
hbreak, 19
info spr, 36
load, 11, 39

monitor, 36
print, 12
rwatch, 19
spr, 36
step, 6, 9, 11, 15, 15, 28, 34, 37
stepi, 13
target extended-remote , 3, 6, 8, 21
target remote, 3, 6, 8, 9
watch, 19

gdbarch_single_step_through_delay func-
tion , 14, 17
gdbserver, 5, 6
GDB_BUF_MAX constant, 37
General Purpose Register, 23, 42
getDebugChar function (see stub code for
RSP server)
get_packet function, 30, 32
get_rsp_char function, 31, 31
GPRs (see General Purpose Register)

H
H packet (see RSP packet types)
handle_rsp function, 26, 28, 28, 30, 30, 30,
32, 34
hardware breakpoint (see breakpoint)
Harvard architecture, 42
hbreak command (see GDB commands)
hex2reg function, 32, 34
hexchars array, 31

I
i packet (see RSP packet types)
I packet (see RSP packet types)
interrupt

from client to server, 5, 7, 28
IRC (see GDB)

J
JTAG, 42 (see Debug Unit)

supporting with RSP server, 7

K
k packet (see RSP packet types)

L
listen function, 30
load command (see GDB commands)

M
m packet (see RSP packet types)
M packet (see RSP packet types)
mailing lists (see GDB)
matchpoint, 24, 39

47 Copyright © 2008 Embecosm Limited

(see also Debug Unit)
clearing for OpenRISC 1000, 40
setting for OpenRISC 1000, 40
types for OpenRISC 1000, 27, 39

memory (software) breakpoint (see break-
point)
memory cache

limitations with access for Open-
RISC 1000, 35, 35, 39, 40, 40

memory management unit
limitations with access for Open-
RISC 1000, 35, 35, 39, 40, 40

MMU (see memory management unit)
mp_entry data structure, 27, 27, 27, 39, 40
mp_hash_add function, 27, 40, 40
mp_hash_delete function, 27, 40, 40
mp_hash_init function, 27, 40
mp_hash_lookup function, 27, 40
MP_HASH_SIZE constant, 27

N
Nagel's algorithm, 30
non-blocking connection, 30
non-stop execution, 9, 38, 38

O
OpenRISC 1000

ABI, 25
argument passing, 25
result return register, 25
stack frame alignment, 25
variations from documented standard,
25

architecture, 23
GPRs (see General Purpose Register)
main memory, 23
manual, 44
SPRs (see Special Purpose Register)

link register, 42
tool chain, 44

OpenRISC 1000 example, 1
Or1ksim, 25
or1ksim-rsp TCP/IP service , 30
OR1K_TRAP_INSTR constant, 40
OSI layers, 3

application layer, 5
presentation layer, 4
session layer, 3

P
p packet (see RSP packet types)
P packet (see RSP packet types)
packet (see RSP packet)

data structure for OpenRISC 1000 (see
RSP packet)

packet acknowledgment (see RSP packet)
packet format (see RSP packet)
pc_next variable, 32
pipe connection, 3, 4, 7
presentation layer (see OSI layers)
program counter

as Special Purpose Register, 23
putDebugChar function (see stub code for
RSP server)
put_packet function, 31, 31, 31
put_rsp_char function, 30, 31
put_str_packet function, 31, 31, 38, 40, 40

Q
qC packet (see RSP packet types)
qCRC packet (see RSP packet types)
QFrame packet (see RSP packet types)
qfThreadInfo packet (see RSP packet types)
qGetTLSAddr packet (see RSP packet types)
qOffsets packet (see RSP packet types)
QPassSignals packet (see RSP packet types)
qRcmd packet (see RSP packet types)
qsThreadInfo packet (see RSP packet types)
qSupported packet (see RSP packet types)
qSymbol packet (see RSP packet types)
QTDP packet (see RSP packet types)
qThreadExtraInfo packet (see RSP packet
types)
QTinit packet (see RSP packet types)
QTro packet (see RSP packet types)
QTStart packet (see RSP packet types)
QTStop packet (see RSP packet types)
qXfer packet (see RSP packet types)

R
R packet, 38 (see RSP packet types)
r packet (see RSP packet types)
readspr, 36
reg2hex function, 32, 34
reply packet (see RSP packet)
resp_insert_matchpoint function , 39
resp_remove_matchpoint function , 39
rsp data structure, 26

(see also RSP server for OpenRISC 1000)
rsp.client_fd, 26, 30, 31, 33
rsp.client_waiting , 26, 34
rsp.mp_hash , 26, 39
rsp.proto_num , 26
rsp.server_fd , 26, 30
rsp.sigval , 26, 28, 33
rsp.start_addr , 26, 37

48 Copyright © 2008 Embecosm Limited

RSP GDB command dialogs
awatch, 19
break, 18
continue, 17
detach, 20
disassemble, 12
disconnect, 20
hbreak, 19
load, 11
rwatch, 19
step, 15
stepi, 13
target extended-remote , 21
target remote, 10
watch, 19

RSP packet
acknowledgment, 4, 30, 31
binary data, 4, 12, 39
checksum, 4, 31, 31
data structure for OpenRISC 1000, 30
deprecated packets, 35
error handling, 31, 31, 34, 35, 35, 39, 39,
40
escaped characters, 4, 39
fixed response for OpenRISC 1000, 33
format, 4, 30
maximum size, 37
reply packet, 4
run-length encoding, 4
types (see RSP packet types)

RSP packet types
! packet, 9, 22, 33
? packet, 8, 10, 33
A packet, 32
b packet, 32
B packet, 32
c packet, 6, 8, 13, 17, 19, 33, 37, 38
C packet, 6, 8, 13, 32, 33
D packet, 8, 20, 33
d packet, 32
deprecated packets, 5, 32
F packet, 33
g packet, 8, 10, 15, 15, 17, 19, 34
G packet, 8, 34
H packet, 8, 9, 10, 13, 16, 17, 33
i packet, 6, 33
I packet, 6, 33
k packet, 8, 33
m packet, 8, 12, 14, 15, 17, 19, 34, 34
M packet, 8, 12, 34, 35, 39
p packet, 8, 35
P packet, 8, 12, 19, 35
q packets, 35

deprecated query packets, 35
qC packet, 8, 10, 35, 36
qCRC packet, 35
qfThreadInfo packet, 9, 35, 36
qGetTLSAddr packet, 35, 35
qL packet, 35
qOffsets packet, 8, 10, 36
qP packet, 35
qRcmd packet, 36
qsThreadInfo packet, 9, 35, 36
qSupported packet, 8, 10, 36, 37, 37
qSymbol packet, 8, 10, 37
qThreadExtraInfo packet, 9, 35, 36
qXfer packet, 36, 37
unsupported for OpenRISC 1000, 35

Q packets, 37
QFrame packet, 37
QPassSignals packet, 37, 37
QTDP packet, 37
QTinit packet, 37
QTro packet, 37
QTStart packet, 37
QTStop packet, 37
unsupported for OpenRISC 1000, 37

R packet, 9, 37
r packet, 32
requiring no acknowledgment, 5
requiring simple acknowledgment, 5
returning data or error, 5
s packet, 6, 8, 13, 15, 15, 17, 37, 38
S packet, 6, 8, 13, 32
T packet, 9, 33
t packet, 33
unsupported for OpenRISC 1000, 35
unsupported for OpenRISC 1000, 32, 37,
38, 38, 39
v packets, 38

unsupported for OpenRISC 1000, 38,
38, 39
vAttach packet, 9, 38
vCont packet, 9, 13, 38
vCont? packet, 8, 13, 16, 17, 38
vFile packet, 38
vFlashDone packet, 39
vFlashErase packet, 39
vFlashWrite packet, 39
vRun packet, 9, 38

X packet, 8, 12, 39
z packets, 8, 19, 39

z0 packet (memory breakpoint) , 19, 39
z1 packet (memory breakpoint) , 19
z2 packet (write watchpoint) , 19
z3 packet (read watchpoint) , 19

49 Copyright © 2008 Embecosm Limited

z4 packet (access watchpoint) , 19
Z packets, 8, 19, 39

Z0 packet (memory breakpoint) , 19, 39
Z1 packet (memory breakpoint) , 19
Z2 packet (write watchpoint) , 19
Z3 packet (read watchpoint) , 19
Z4 packet (access watchpoint) , 19

RSP server for OpenRISC 1000
external code interface, 25
global data structures, 26

rsp data structure, 26
initialization, 27
location of source code, 25
matchpoint hash table, 26, 27

RSP stop packet types, 38
S stop packet, 10, 15, 15, 17, 19, 33
Sstop packet, 38
T stop packet, 9
W stop packet, 10
X stop packet, 10

rsp_buf data structure, 30, 31
rsp_client_request function, 30, 32
rsp_continue function, 33
rsp_continue_generic function, 33
rsp_exception function, 26, 28
rsp_init function, 26, 27, 30
rsp_query function, 35
rsp_read_all_regs function, 34, 35
rsp_read_mem function, 34, 34
rsp_read_reg function, 35
rsp_report_exception function, 33
rsp_restart function, 37
rsp_server_request function, 30
rsp_set function, 37
rsp_step function, 37
rsp_step_generic function, 37
rsp_unescape function, 32
rsp_vpkt function, 38
rsp_write_all_regs function, 34, 35
rsp_write_mem function, 34, 35
rsp_write_mem_bin function, 39
rsp_write_reg function, 35
run-length encoding (see RSP packet)
rwatch command (see GDB commands)

S
s packet (see RSP packet types)
S packet (see RSP packet types)
S stop packet (see RSP stop packet types)
serial device connection, 3, 3
server stub code (see for RSP)
session layer (see OSI layers)
set_npc function, 32, 33, 34, 37

set_program32 function, 40, 40
set_program8 function, 35, 39
set_stall_state function, 33, 34
SIGIO signal, 28
simulator

connecting via RSP, 7
sim_init function, 27
software (memory) breakpoint (see break-
point)
Special Purpose Register, 23, 43

configuration registers
CPU Configuration Register , 23
Debug Configuration Register , 23
Unit Present Register , 23

Debug Unit
Debug Control Registers , 24
Debug Mode Registers , 24, 33, 37
Debug Reason Register , 24, 33
Debug Stop Register , 24, 28, 33
Debug Value Registers , 24
Debug Watchpoint Counter Registers ,
24

program counters
Next Program Counter, 23
Previous Program Counter, 23

Supervision Register, 23
SPRs (see Special Purpose Register)
SR (see Supervision Register)
sscanf function, 33, 34
stack frame

alignment
for OpenRISC 1000, 25

stack pointer
in OpenRISC 1000, 42

step command (see GDB commands)
stepi command (see GDB commands)
struct rsp_buf data structure , 31, 31
stub code for RSP server, 1, 6

exceptionHandler, 6
getDebugChar, 6
limitations, 6
putDebugChar, 6

Supervision Register (see Special Purpose
Register)

T
T packet (see RSP packet types)
T stop packet (see RSP stop packet types)
target extended-remote command (see GDB
commands)
target remote command (see GDB com-
mands)
TCP/IP connection, 3, 4, 30

50 Copyright © 2008 Embecosm Limited

or1ksim-rsp service, 30
TRAP exception, 28, 33, 38, 38

using l.trap for OpenRISC 1000, 39, 40,
40

U
UDP/IP connection, 3, 4
unsupported packet types for Open-
RISC 1000 (see RSP packet types)

V
vAttach packet (see RSP packet types)
vCont packet (see RSP packet types)
vCont? packet (see RSP packet types)
verify_memoryarea function, 34, 35, 39
vRun packet (see RSP packet types)

W
W stop packet (see RSP stop packet types)
watch command (see GDB commands)
watchpoint

in OpenRISC 1000 (see Debug Unit)
software, 19

website (see GDB)
wiki (see GDB)
WP_ACCESS constant, 27
WP_READ constant, 27
WP_WRITE constant, 27
writespr, 36

X
X packet (see RSP packet types)
X stop packet (see RSP stop packet types)

Z
z packets (see RSP packet types)
Z packets (see RSP packet types)

	Howto: GDB Remote Serial Protocol
	Table of Contents
	Chapter 1. Introduction
	1.1. Rationale
	1.2. Target Audience
	1.3. Further Sources of Information
	1.3.1. Written Documentation
	1.3.2. Other Information Channels

	1.4. About Embecosm

	Chapter 2. Overview of the Remote Serial Protocol
	2.1. Client-Server Relationship
	2.2. Session Layer: The Serial Connection
	2.3. Presentation Layer: Packet Transfer
	2.3.1. Packet Acknowledgment
	2.3.2. Interrupt

	2.4. Application Layer: Remote Serial Protocol
	2.5. Putting it All Together to Build a Server
	2.5.1. Using gdbserver
	2.5.2. Implementing Server Code on the Target
	2.5.3. Implementing Server Code for Simulators
	2.5.4. Implementing a Custom Server for JTAG

	Chapter 3. Mapping GDB Commands to RSP
	3.1. Remote Debugging in GDB
	3.1.1. Standard Remote Debugging
	3.1.2. Extended Remote Debugging
	3.1.3. Asynchronous Remote Debugging

	3.2. GDB Standard Remote Command Dialogs
	3.2.1. The target remote Command
	3.2.2. The load Command
	3.2.3. Examining Registers
	3.2.4. Examining Memory
	3.2.5. The stepi Command
	3.2.6. The step Command
	3.2.7. The cont Command
	3.2.8. The break Command
	3.2.9. The watch Command
	3.2.10. The detach and disconnect Commands

	3.3. GDB Extended Remote Command Dialogs
	3.3.1. The target extended-remote Command

	3.4. GDB Asynchronous Remote Command Dialogs

	Chapter 4. RSP Server Implementation Example
	4.1. The OpenRISC 1000 Architectural Simulator, Or1ksim
	4.1.1. The OpenRISC 1000 Architecture
	4.1.2. The OpenRISC 1000 Debug Unit
	4.1.3. The OpenRISC 1000 JTAG Interface
	4.1.4. Application Binary Interface (ABI)
	4.1.5. Or1ksim: the OpenRISC 1000 Architectural Simulator

	4.2. OpenRISC 1000 GDB Architectural Specification
	4.3. Overview of the RSP Server Implementation
	4.3.1. External Code Interface
	4.3.2. Global Data Structures
	4.3.2.1. The Matchpoint Hash Table

	4.3.3. Top Level Behavior
	4.3.3.1. Exception handling

	4.4. The Serial Connection
	4.4.1. Establishing the Server Listener Socket
	4.4.2. Establishing the Client Connection
	4.4.3. Communicating with the Client

	4.5. The Packet Interface
	4.5.1. Packet Representation
	4.5.2. Getting Packets
	4.5.2.1. Character Input

	4.5.3. Sending Packets
	4.5.3.1. Character Output

	4.6. Convenience Functions
	4.6.1. Convenience String Packet Output
	4.6.2. Conversion Between Binary and Hexadecimal Characters
	4.6.3. Conversion Between Binary and Hexadecimal Character Registers
	4.6.4. Data "Unescaping"
	4.6.5. Setting the Program Counter

	4.7. High Level Protocol Implementation
	4.7.1. Deprecated Packets
	4.7.2. Unsupported Packets
	4.7.3. Simple Packets
	4.7.4. Reporting the Last Exception
	4.7.5. Continuing
	4.7.6. Reading and Writing All Registers
	4.7.6.1. Reading All Registers
	4.7.6.2. Writing All Registers

	4.7.7. Reading and Writing Memory
	4.7.7.1. Reading Memory
	4.7.7.2. Writing Memory

	4.7.8. Reading and Writing Individual Registers
	4.7.9. Query Packets
	4.7.9.1. Deprecated Query Packets
	4.7.9.2. Unsupported Query Packets
	4.7.9.3. Queries About Threads
	4.7.9.4. Query About Executable Relocation
	4.7.9.5. Query About Supported Functionality
	4.7.9.6. Query About Symbol Table Data

	4.7.10. Set Packets
	4.7.10.1. Tracepoint Packets

	4.7.11. Restart the Target
	4.7.12. Stepping
	4.7.13. v Packets
	4.7.13.1. Extended Debugging Support
	4.7.13.2. Non-stop Support
	4.7.13.3. File Handling
	4.7.13.4. Flash Memory

	4.7.14. Binary Data Transfer
	4.7.15. Matchpoint Handling
	4.7.15.1. Setting Matchpoints
	4.7.15.2. Clearing Matchpoints

	Chapter 5. Summary
	Glossary
	References
	Index

