URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [crypto/] [elliptic/] [p224.go] - Rev 867
Go to most recent revision | Compare with Previous | Blame | View Log
// Copyright 2012 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package elliptic// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,// section D.2.2.//// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.import ("math/big")var p224 p224Curvetype p224Curve struct {*CurveParamsgx, gy, b p224FieldElement}func initP224() {// See FIPS 186-3, section D.2.2p224.CurveParams = new(CurveParams)p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)p224.BitSize = 224p224FromBig(&p224.gx, p224.Gx)p224FromBig(&p224.gy, p224.Gy)p224FromBig(&p224.b, p224.B)}// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)func P224() Curve {initonce.Do(initAll)return p224}func (curve p224Curve) Params() *CurveParams {return curve.CurveParams}func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {var x, y p224FieldElementp224FromBig(&x, bigX)p224FromBig(&y, bigY)// y² = x³ - 3x + bvar tmp p224LargeFieldElementvar x3 p224FieldElementp224Square(&x3, &x, &tmp)p224Mul(&x3, &x3, &x, &tmp)for i := 0; i < 8; i++ {x[i] *= 3}p224Sub(&x3, &x3, &x)p224Reduce(&x3)p224Add(&x3, &x3, &curve.b)p224Contract(&x3, &x3)p224Square(&y, &y, &tmp)p224Contract(&y, &y)for i := 0; i < 8; i++ {if y[i] != x3[i] {return false}}return true}func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElementp224FromBig(&x1, bigX1)p224FromBig(&y1, bigY1)z1[0] = 1p224FromBig(&x2, bigX2)p224FromBig(&y2, bigY2)z2[0] = 1p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)return p224ToAffine(&x3, &y3, &z3)}func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {var x1, y1, z1, x2, y2, z2 p224FieldElementp224FromBig(&x1, bigX1)p224FromBig(&y1, bigY1)z1[0] = 1p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)return p224ToAffine(&x2, &y2, &z2)}func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {var x1, y1, z1, x2, y2, z2 p224FieldElementp224FromBig(&x1, bigX1)p224FromBig(&y1, bigY1)z1[0] = 1p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)return p224ToAffine(&x2, &y2, &z2)}func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {var z1, x2, y2, z2 p224FieldElementz1[0] = 1p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)return p224ToAffine(&x2, &y2, &z2)}// Field element functions.//// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.//// Field elements are represented by a FieldElement, which is a typedef to an// array of 8 uint32's. The value of a FieldElement, a, is:// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]//// Using 28-bit limbs means that there's only 4 bits of headroom, which is less// than we would really like. But it has the useful feature that we hit 2**224// exactly, making the reflections during a reduce much nicer.type p224FieldElement [8]uint32// p224Add computes *out = a+b//// a[i] + b[i] < 2**32func p224Add(out, a, b *p224FieldElement) {for i := 0; i < 8; i++ {out[i] = a[i] + b[i]}}const two31p3 = 1<<31 + 1<<3const two31m3 = 1<<31 - 1<<3const two31m15m3 = 1<<31 - 1<<15 - 1<<3// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can// subtract smaller amounts without underflow. See the section "Subtraction" in// [1] for reasoning.var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}// p224Sub computes *out = a-b//// a[i], b[i] < 2**30// out[i] < 2**32func p224Sub(out, a, b *p224FieldElement) {for i := 0; i < 8; i++ {out[i] = a[i] + p224ZeroModP31[i] - b[i]}}// LargeFieldElement also represents an element of the field. The limbs are// still spaced 28-bits apart and in little-endian order. So the limbs are at// 0, 28, 56, ..., 392 bits, each 64-bits wide.type p224LargeFieldElement [15]uint64const two63p35 = 1<<63 + 1<<35const two63m35 = 1<<63 - 1<<35const two63m35m19 = 1<<63 - 1<<35 - 1<<19// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section// "Subtraction" in [1] for why.var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}const bottom12Bits = 0xfffconst bottom28Bits = 0xfffffff// p224Mul computes *out = a*b//// a[i] < 2**29, b[i] < 2**30 (or vice versa)// out[i] < 2**29func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {for i := 0; i < 15; i++ {tmp[i] = 0}for i := 0; i < 8; i++ {for j := 0; j < 8; j++ {tmp[i+j] += uint64(a[i]) * uint64(b[j])}}p224ReduceLarge(out, tmp)}// Square computes *out = a*a//// a[i] < 2**29// out[i] < 2**29func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {for i := 0; i < 15; i++ {tmp[i] = 0}for i := 0; i < 8; i++ {for j := 0; j <= i; j++ {r := uint64(a[i]) * uint64(a[j])if i == j {tmp[i+j] += r} else {tmp[i+j] += r << 1}}}p224ReduceLarge(out, tmp)}// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.//// in[i] < 2**62func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {for i := 0; i < 8; i++ {in[i] += p224ZeroModP63[i]}// Eliminate the coefficients at 2**224 and greater.for i := 14; i >= 8; i-- {in[i-8] -= in[i]in[i-5] += (in[i] & 0xffff) << 12in[i-4] += in[i] >> 16}in[8] = 0// in[0..8] < 2**64// As the values become small enough, we start to store them in |out|// and use 32-bit operations.for i := 1; i < 8; i++ {in[i+1] += in[i] >> 28out[i] = uint32(in[i] & bottom28Bits)}in[0] -= in[8]out[3] += uint32(in[8]&0xffff) << 12out[4] += uint32(in[8] >> 16)// in[0] < 2**64// out[3] < 2**29// out[4] < 2**29// out[1,2,5..7] < 2**28out[0] = uint32(in[0] & bottom28Bits)out[1] += uint32((in[0] >> 28) & bottom28Bits)out[2] += uint32(in[0] >> 56)// out[0] < 2**28// out[1..4] < 2**29// out[5..7] < 2**28}// Reduce reduces the coefficients of a to smaller bounds.//// On entry: a[i] < 2**31 + 2**30// On exit: a[i] < 2**29func p224Reduce(a *p224FieldElement) {for i := 0; i < 7; i++ {a[i+1] += a[i] >> 28a[i] &= bottom28Bits}top := a[7] >> 28a[7] &= bottom28Bits// top < 2**4mask := topmask |= mask >> 2mask |= mask >> 1mask <<= 31mask = uint32(int32(mask) >> 31)// Mask is all ones if top != 0, all zero otherwisea[0] -= topa[3] += top << 12// We may have just made a[0] negative but, if we did, then we must// have added something to a[3], this it's > 2**12. Therefore we can// carry down to a[0].a[3] -= 1 & maska[2] += mask & (1<<28 - 1)a[1] += mask & (1<<28 - 1)a[0] += mask & (1 << 28)}// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),// i.e. Fermat's little theorem.func p224Invert(out, in *p224FieldElement) {var f1, f2, f3, f4 p224FieldElementvar c p224LargeFieldElementp224Square(&f1, in, &c) // 2p224Mul(&f1, &f1, in, &c) // 2**2 - 1p224Square(&f1, &f1, &c) // 2**3 - 2p224Mul(&f1, &f1, in, &c) // 2**3 - 1p224Square(&f2, &f1, &c) // 2**4 - 2p224Square(&f2, &f2, &c) // 2**5 - 4p224Square(&f2, &f2, &c) // 2**6 - 8p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1p224Square(&f2, &f1, &c) // 2**7 - 2for i := 0; i < 5; i++ { // 2**12 - 2**6p224Square(&f2, &f2, &c)}p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1p224Square(&f3, &f2, &c) // 2**13 - 2for i := 0; i < 11; i++ { // 2**24 - 2**12p224Square(&f3, &f3, &c)}p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1p224Square(&f3, &f2, &c) // 2**25 - 2for i := 0; i < 23; i++ { // 2**48 - 2**24p224Square(&f3, &f3, &c)}p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1p224Square(&f4, &f3, &c) // 2**49 - 2for i := 0; i < 47; i++ { // 2**96 - 2**48p224Square(&f4, &f4, &c)}p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1p224Square(&f4, &f3, &c) // 2**97 - 2for i := 0; i < 23; i++ { // 2**120 - 2**24p224Square(&f4, &f4, &c)}p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1for i := 0; i < 6; i++ { // 2**126 - 2**6p224Square(&f2, &f2, &c)}p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1p224Square(&f1, &f1, &c) // 2**127 - 2p224Mul(&f1, &f1, in, &c) // 2**127 - 1for i := 0; i < 97; i++ { // 2**224 - 2**97p224Square(&f1, &f1, &c)}p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1}// p224Contract converts a FieldElement to its unique, minimal form.//// On entry, in[i] < 2**29// On exit, in[i] < 2**28func p224Contract(out, in *p224FieldElement) {copy(out[:], in[:])for i := 0; i < 7; i++ {out[i+1] += out[i] >> 28out[i] &= bottom28Bits}top := out[7] >> 28out[7] &= bottom28Bitsout[0] -= topout[3] += top << 12// We may just have made out[i] negative. So we carry down. If we made// out[0] negative then we know that out[3] is sufficiently positive// because we just added to it.for i := 0; i < 3; i++ {mask := uint32(int32(out[i]) >> 31)out[i] += (1 << 28) & maskout[i+1] -= 1 & mask}// We might have pushed out[3] over 2**28 so we perform another, partial,// carry chain.for i := 3; i < 7; i++ {out[i+1] += out[i] >> 28out[i] &= bottom28Bits}top = out[7] >> 28out[7] &= bottom28Bits// Eliminate top while maintaining the same value mod p.out[0] -= topout[3] += top << 12// There are two cases to consider for out[3]:// 1) The first time that we eliminated top, we didn't push out[3] over// 2**28. In this case, the partial carry chain didn't change any values// and top is zero.// 2) We did push out[3] over 2**28 the first time that we eliminated top.// The first value of top was in [0..16), therefore, prior to eliminating// the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after// overflowing and being reduced by the second carry chain, out[3] <=// 0xf000. Thus it cannot have overflowed when we eliminated top for the// second time.// Again, we may just have made out[0] negative, so do the same carry down.// As before, if we made out[0] negative then we know that out[3] is// sufficiently positive.for i := 0; i < 3; i++ {mask := uint32(int32(out[i]) >> 31)out[i] += (1 << 28) & maskout[i+1] -= 1 & mask}// Now we see if the value is >= p and, if so, subtract p.// First we build a mask from the top four limbs, which must all be// equal to bottom28Bits if the whole value is >= p. If top4AllOnes// ends up with any zero bits in the bottom 28 bits, then this wasn't// true.top4AllOnes := uint32(0xffffffff)for i := 4; i < 8; i++ {top4AllOnes &= (out[i] & bottom28Bits) - 1}top4AllOnes |= 0xf0000000// Now we replicate any zero bits to all the bits in top4AllOnes.top4AllOnes &= top4AllOnes >> 16top4AllOnes &= top4AllOnes >> 8top4AllOnes &= top4AllOnes >> 4top4AllOnes &= top4AllOnes >> 2top4AllOnes &= top4AllOnes >> 1top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)// Now we test whether the bottom three limbs are non-zero.bottom3NonZero := out[0] | out[1] | out[2]bottom3NonZero |= bottom3NonZero >> 16bottom3NonZero |= bottom3NonZero >> 8bottom3NonZero |= bottom3NonZero >> 4bottom3NonZero |= bottom3NonZero >> 2bottom3NonZero |= bottom3NonZero >> 1bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)// Everything depends on the value of out[3].// If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p// If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,// then the whole value is >= p// If it's < 0xffff000, then the whole value is < pn := out[3] - 0xffff000out3Equal := nout3Equal |= out3Equal >> 16out3Equal |= out3Equal >> 8out3Equal |= out3Equal >> 4out3Equal |= out3Equal >> 2out3Equal |= out3Equal >> 1out3Equal = ^uint32(int32(out3Equal<<31) >> 31)// If out[3] > 0xffff000 then n's MSB will be zero.out3GT := ^uint32(int32(n<<31) >> 31)mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)out[0] -= 1 & maskout[3] -= 0xffff000 & maskout[4] -= 0xfffffff & maskout[5] -= 0xfffffff & maskout[6] -= 0xfffffff & maskout[7] -= 0xfffffff & mask}// Group element functions.//// These functions deal with group elements. The group is an elliptic curve// group with a = -3 defined in FIPS 186-3, section D.2.2.// p224AddJacobian computes *out = a+b where a != b.func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-blvar z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElementvar c p224LargeFieldElement// Z1Z1 = Z1²p224Square(&z1z1, z1, &c)// Z2Z2 = Z2²p224Square(&z2z2, z2, &c)// U1 = X1*Z2Z2p224Mul(&u1, x1, &z2z2, &c)// U2 = X2*Z1Z1p224Mul(&u2, x2, &z1z1, &c)// S1 = Y1*Z2*Z2Z2p224Mul(&s1, z2, &z2z2, &c)p224Mul(&s1, y1, &s1, &c)// S2 = Y2*Z1*Z1Z1p224Mul(&s2, z1, &z1z1, &c)p224Mul(&s2, y2, &s2, &c)// H = U2-U1p224Sub(&h, &u2, &u1)p224Reduce(&h)// I = (2*H)²for j := 0; j < 8; j++ {i[j] = h[j] << 1}p224Reduce(&i)p224Square(&i, &i, &c)// J = H*Ip224Mul(&j, &h, &i, &c)// r = 2*(S2-S1)p224Sub(&r, &s2, &s1)p224Reduce(&r)for i := 0; i < 8; i++ {r[i] <<= 1}p224Reduce(&r)// V = U1*Ip224Mul(&v, &u1, &i, &c)// Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*Hp224Add(&z1z1, &z1z1, &z2z2)p224Add(&z2z2, z1, z2)p224Reduce(&z2z2)p224Square(&z2z2, &z2z2, &c)p224Sub(z3, &z2z2, &z1z1)p224Reduce(z3)p224Mul(z3, z3, &h, &c)// X3 = r²-J-2*Vfor i := 0; i < 8; i++ {z1z1[i] = v[i] << 1}p224Add(&z1z1, &j, &z1z1)p224Reduce(&z1z1)p224Square(x3, &r, &c)p224Sub(x3, x3, &z1z1)p224Reduce(x3)// Y3 = r*(V-X3)-2*S1*Jfor i := 0; i < 8; i++ {s1[i] <<= 1}p224Mul(&s1, &s1, &j, &c)p224Sub(&z1z1, &v, x3)p224Reduce(&z1z1)p224Mul(&z1z1, &z1z1, &r, &c)p224Sub(y3, &z1z1, &s1)p224Reduce(y3)}// p224DoubleJacobian computes *out = a+a.func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {var delta, gamma, beta, alpha, t p224FieldElementvar c p224LargeFieldElementp224Square(&delta, z1, &c)p224Square(&gamma, y1, &c)p224Mul(&beta, x1, &gamma, &c)// alpha = 3*(X1-delta)*(X1+delta)p224Add(&t, x1, &delta)for i := 0; i < 8; i++ {t[i] += t[i] << 1}p224Reduce(&t)p224Sub(&alpha, x1, &delta)p224Reduce(&alpha)p224Mul(&alpha, &alpha, &t, &c)// Z3 = (Y1+Z1)²-gamma-deltap224Add(z3, y1, z1)p224Reduce(z3)p224Square(z3, z3, &c)p224Sub(z3, z3, &gamma)p224Reduce(z3)p224Sub(z3, z3, &delta)p224Reduce(z3)// X3 = alpha²-8*betafor i := 0; i < 8; i++ {delta[i] = beta[i] << 3}p224Reduce(&delta)p224Square(x3, &alpha, &c)p224Sub(x3, x3, &delta)p224Reduce(x3)// Y3 = alpha*(4*beta-X3)-8*gamma²for i := 0; i < 8; i++ {beta[i] <<= 2}p224Sub(&beta, &beta, x3)p224Reduce(&beta)p224Square(&gamma, &gamma, &c)for i := 0; i < 8; i++ {gamma[i] <<= 3}p224Reduce(&gamma)p224Mul(y3, &alpha, &beta, &c)p224Sub(y3, y3, &gamma)p224Reduce(y3)}// p224CopyConditional sets *out = *in iff the least-significant-bit of control// is true, and it runs in constant time.func p224CopyConditional(out, in *p224FieldElement, control uint32) {control <<= 31control = uint32(int32(control) >> 31)for i := 0; i < 8; i++ {out[i] ^= (out[i] ^ in[i]) & control}}func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {var xx, yy, zz p224FieldElementfor i := 0; i < 8; i++ {outZ[i] = 0}firstBit := uint32(1)for _, byte := range scalar {for bitNum := uint(0); bitNum < 8; bitNum++ {p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)bit := uint32((byte >> (7 - bitNum)) & 1)p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)p224CopyConditional(outX, inX, firstBit&bit)p224CopyConditional(outY, inY, firstBit&bit)p224CopyConditional(outZ, inZ, firstBit&bit)p224CopyConditional(outX, &xx, ^firstBit&bit)p224CopyConditional(outY, &yy, ^firstBit&bit)p224CopyConditional(outZ, &zz, ^firstBit&bit)firstBit = firstBit & ^bit}}}// p224ToAffine converts from Jacobian to affine form.func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {var zinv, zinvsq, outx, outy p224FieldElementvar tmp p224LargeFieldElementisPointAtInfinity := truefor i := 0; i < 8; i++ {if z[i] != 0 {isPointAtInfinity = falsebreak}}if isPointAtInfinity {return nil, nil}p224Invert(&zinv, z)p224Square(&zinvsq, &zinv, &tmp)p224Mul(x, x, &zinvsq, &tmp)p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)p224Mul(y, y, &zinvsq, &tmp)p224Contract(&outx, x)p224Contract(&outy, y)return p224ToBig(&outx), p224ToBig(&outy)}// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,// where buf is interpreted as a big-endian number.func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {var ret uint32for i := uint(0); i < 4; i++ {var b byteif l := len(buf); l > 0 {b = buf[l-1]// We don't remove the byte if we're about to return and we're not// reading all of it.if i != 3 || shift == 4 {buf = buf[:l-1]}}ret |= uint32(b) << (8 * i) >> shift}ret &= bottom28Bitsreturn ret, buf}// p224FromBig sets *out = *in.func p224FromBig(out *p224FieldElement, in *big.Int) {bytes := in.Bytes()out[0], bytes = get28BitsFromEnd(bytes, 0)out[1], bytes = get28BitsFromEnd(bytes, 4)out[2], bytes = get28BitsFromEnd(bytes, 0)out[3], bytes = get28BitsFromEnd(bytes, 4)out[4], bytes = get28BitsFromEnd(bytes, 0)out[5], bytes = get28BitsFromEnd(bytes, 4)out[6], bytes = get28BitsFromEnd(bytes, 0)out[7], bytes = get28BitsFromEnd(bytes, 4)}// p224ToBig returns in as a big.Int.func p224ToBig(in *p224FieldElement) *big.Int {var buf [28]bytebuf[27] = byte(in[0])buf[26] = byte(in[0] >> 8)buf[25] = byte(in[0] >> 16)buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)buf[23] = byte(in[1] >> 4)buf[22] = byte(in[1] >> 12)buf[21] = byte(in[1] >> 20)buf[20] = byte(in[2])buf[19] = byte(in[2] >> 8)buf[18] = byte(in[2] >> 16)buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)buf[16] = byte(in[3] >> 4)buf[15] = byte(in[3] >> 12)buf[14] = byte(in[3] >> 20)buf[13] = byte(in[4])buf[12] = byte(in[4] >> 8)buf[11] = byte(in[4] >> 16)buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)buf[9] = byte(in[5] >> 4)buf[8] = byte(in[5] >> 12)buf[7] = byte(in[5] >> 20)buf[6] = byte(in[6])buf[5] = byte(in[6] >> 8)buf[4] = byte(in[6] >> 16)buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)buf[2] = byte(in[7] >> 4)buf[1] = byte(in[7] >> 12)buf[0] = byte(in[7] >> 20)return new(big.Int).SetBytes(buf[:])}
Go to most recent revision | Compare with Previous | Blame | View Log
