URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [rtl/] [verilog/] [wb_ram_b3/] [wb_ram_b3.v] - Rev 363
Compare with Previous | Blame | View Log
// Version 5 //`define RANDOM_ACK_NEGATION module wb_ram_b3( wb_adr_i, wb_bte_i, wb_cti_i, wb_cyc_i, wb_dat_i, wb_sel_i, wb_stb_i, wb_we_i, wb_ack_o, wb_err_o, wb_rty_o, wb_dat_o, wb_clk_i, wb_rst_i); // Memory parameters parameter dw = 32; // 32MB memory by default parameter aw = 23; parameter mem_size = 8388608; input [aw-1:0] wb_adr_i; input [1:0] wb_bte_i; input [2:0] wb_cti_i; input wb_cyc_i; input [dw-1:0] wb_dat_i; input [3:0] wb_sel_i; input wb_stb_i; input wb_we_i; output wb_ack_o; output wb_err_o; output wb_rty_o; output [dw-1:0] wb_dat_o; input wb_clk_i; input wb_rst_i; // synthesis attribute ram_style of mem is block reg [dw-1:0] mem [ 0 : mem_size-1 ] /* verilator public */ /* synthesis ram_style = no_rw_check */; //reg [aw-1:2] wb_adr_i_r; reg [aw-1:0] adr; wire [31:0] wr_data; // Register to indicate if the cycle is a Wishbone B3-registered feedback // type access reg wb_b3_trans; wire wb_b3_trans_start, wb_b3_trans_stop; // Register to use for counting the addresses when doing burst accesses reg [aw-1:0] burst_adr_counter; reg [2:0] wb_cti_i_r; reg [1:0] wb_bte_i_r; wire using_burst_adr; wire burst_access_wrong_wb_adr; reg random_ack_negate; // Logic to detect if there's a burst access going on assign wb_b3_trans_start = ((wb_cti_i == 3'b001)|(wb_cti_i == 3'b010)) & wb_stb_i & !wb_b3_trans; assign wb_b3_trans_stop = (wb_cti_i == 3'b111) & wb_stb_i & wb_b3_trans & wb_ack_o; always @(posedge wb_clk_i) if (wb_rst_i) wb_b3_trans <= 0; else if (wb_b3_trans_start) wb_b3_trans <= 1; else if (wb_b3_trans_stop) wb_b3_trans <= 0; // Burst address generation logic always @* if (wb_rst_i) burst_adr_counter = 0; else if (wb_b3_trans_start) burst_adr_counter = {2'b00,wb_adr_i[aw-1:2]}; else if ((wb_cti_i_r == 3'b010) & wb_ack_o & wb_b3_trans) // Incrementing burst begin if (wb_bte_i_r == 2'b00) // Linear burst burst_adr_counter = adr + 1; if (wb_bte_i_r == 2'b01) // 4-beat wrap burst burst_adr_counter[1:0] = adr[1:0] + 1; if (wb_bte_i_r == 2'b10) // 8-beat wrap burst burst_adr_counter[2:0] = adr[2:0] + 1; if (wb_bte_i_r == 2'b11) // 16-beat wrap burst burst_adr_counter[3:0] = adr[3:0] + 1; end // if ((wb_cti_i_r == 3'b010) & wb_ack_o_r) else if (!wb_ack_o & wb_b3_trans) burst_adr_counter = adr; always @(posedge wb_clk_i) wb_bte_i_r <= wb_bte_i; // Register it locally always @(posedge wb_clk_i) wb_cti_i_r <= wb_cti_i; assign using_burst_adr = wb_b3_trans; assign burst_access_wrong_wb_adr = (using_burst_adr & (adr != {2'b00,wb_adr_i[aw-1:2]})); // Address registering logic always@(posedge wb_clk_i) if(wb_rst_i) adr <= 0; else if (using_burst_adr) adr <= burst_adr_counter; else if (wb_cyc_i & wb_stb_i) adr <= {2'b00,wb_adr_i[aw-1:2]}; parameter memory_file = "sram.vmem"; `ifdef verilator task do_readmemh; // verilator public $readmemh(memory_file, mem); endtask // do_readmemh `else initial begin $readmemh(memory_file, mem); end `endif // !`ifdef verilator // Function to access RAM (for use by Verilator). function [31:0] get_mem; // verilator public input [aw-1:0] addr; get_mem = mem[addr]; endfunction // get_mem // Function to write RAM (for use by Verilator). function set_mem; // verilator public input [aw-1:0] addr; input [dw-1:0] data; mem[addr] = data; endfunction // set_mem assign wb_rty_o = 0; // mux for data to ram, RMW on part sel != 4'hf assign wr_data[31:24] = wb_sel_i[3] ? wb_dat_i[31:24] : wb_dat_o[31:24]; assign wr_data[23:16] = wb_sel_i[2] ? wb_dat_i[23:16] : wb_dat_o[23:16]; assign wr_data[15: 8] = wb_sel_i[1] ? wb_dat_i[15: 8] : wb_dat_o[15: 8]; assign wr_data[ 7: 0] = wb_sel_i[0] ? wb_dat_i[ 7: 0] : wb_dat_o[ 7: 0]; // Address logic /* always @(posedge wb_clk_i) begin if (wb_rst_i) wb_adr_i_r <= 0; else if (wb_cyc_i & wb_stb_i) wb_adr_i_r <= wb_adr_i[aw-1:2]; end */ wire ram_we; assign ram_we = wb_we_i & wb_ack_o; assign wb_dat_o = mem[adr]; // Write logic always @ (posedge wb_clk_i) begin if (ram_we) mem[adr] <= wr_data; end // Ack Logic reg wb_ack_o_r; assign wb_ack_o = wb_ack_o_r & wb_stb_i; always @(posedge wb_clk_i) if (wb_rst_i) begin wb_ack_o_r <= 1'b0; end else if (wb_cyc_i) // We have bus begin if (wb_cti_i == 3'b111) begin // End of burst if (wb_ack_o_r) // ALWAYS de-assert ack after burst end wb_ack_o_r <= 0; else if (wb_stb_i & !random_ack_negate) wb_ack_o_r <= 1; else wb_ack_o_r <= 0; end else if (wb_cti_i == 3'b000) begin // Classic cycle acks if (wb_stb_i & !random_ack_negate) begin if (!wb_ack_o_r) wb_ack_o_r <= 1; else wb_ack_o_r <= 0; end else wb_ack_o_r <= 0; end // if (wb_cti_i == 3'b000) else if ((wb_cti_i == 3'b001) | (wb_cti_i == 3'b010)) begin // Increment/constant address bursts if (wb_stb_i & !random_ack_negate) wb_ack_o_r <= 1; else wb_ack_o_r <= 0; end else if (wb_cti_i == 3'b111) begin // End of cycle if (wb_stb_i & !random_ack_negate) wb_ack_o_r <= 1; else wb_ack_o_r <= 0; end end // if (wb_cyc_i) else wb_ack_o_r <= 0; assign wb_err_o = 1'b0;// wb_ack_o & (burst_access_wrong_wb_adr); // OR in other errors here // Random ACK negation logic `ifdef RANDOM_ACK_NEGATION reg [31:0] lfsr; always @(posedge wb_clk_i) if (wb_rst_i) lfsr <= 32'h273e2d4a; else lfsr <= {lfsr[30:0], ~(lfsr[30]^lfsr[6]^lfsr[4]^lfsr[1]^lfsr[0])}; always @(posedge wb_clk_i) random_ack_negate <= lfsr[26]; `else always @(wb_rst_i) random_ack_negate = 0; `endif endmodule // wb_ram_b3_v2