URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [fs/] [jffs2/] [v2_0/] [src/] [nodelist.h] - Rev 219
Go to most recent revision | Compare with Previous | Blame | View Log
/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001, 2002 Red Hat, Inc. * * Created by David Woodhouse <dwmw2@cambridge.redhat.com> * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: nodelist.h,v 1.1.1.1 2004-02-14 13:29:19 phoenix Exp $ * */ #ifndef __JFFS2_NODELIST_H__ #define __JFFS2_NODELIST_H__ #include <linux/config.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/jffs2.h> #include <linux/jffs2_fs_sb.h> #include <linux/jffs2_fs_i.h> #ifdef __ECOS #include "os-ecos.h" #else #include <linux/mtd/compatmac.h> /* For min/max in older kernels */ #include "os-linux.h" #endif #ifndef CONFIG_JFFS2_FS_DEBUG #define CONFIG_JFFS2_FS_DEBUG 2 #endif #if CONFIG_JFFS2_FS_DEBUG > 0 #define D1(x) x #else #define D1(x) #endif #if CONFIG_JFFS2_FS_DEBUG > 1 #define D2(x) x #else #define D2(x) #endif /* This is all we need to keep in-core for each raw node during normal operation. As and when we do read_inode on a particular inode, we can scan the nodes which are listed for it and build up a proper map of which nodes are currently valid. JFFSv1 always used to keep that whole map in core for each inode. */ struct jffs2_raw_node_ref { struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref for this inode. If this is the last, it points to the inode_cache for this inode instead. The inode_cache will have NULL in the first word so you know when you've got there :) */ struct jffs2_raw_node_ref *next_phys; uint32_t flash_offset; uint32_t totlen; /* flash_offset & 3 always has to be zero, because nodes are always aligned at 4 bytes. So we have a couple of extra bits to play with. So we set the least significant bit to 1 to signify that the node is obsoleted by later nodes. */ #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */ #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */ #define REF_PRISTINE 2 /* Completely clean. GC without looking */ #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */ #define ref_flags(ref) ((ref)->flash_offset & 3) #define ref_offset(ref) ((ref)->flash_offset & ~3) #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE) #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0) }; /* Used for keeping track of deletion nodes &c, which can only be marked as obsolete when the node which they mark as deleted has actually been removed from the flash. */ struct jffs2_raw_node_ref_list { struct jffs2_raw_node_ref *rew; struct jffs2_raw_node_ref_list *next; }; /* For each inode in the filesystem, we need to keep a record of nlink, because it would be a PITA to scan the whole directory tree at read_inode() time to calculate it, and to keep sufficient information in the raw_node_ref (basically both parent and child inode number for dirent nodes) would take more space than this does. We also keep a pointer to the first physical node which is part of this inode, too. */ struct jffs2_inode_cache { struct jffs2_full_dirent *scan_dents; /* Used during scan to hold temporary lists of dirents, and later must be set to NULL to mark the end of the raw_node_ref->next_in_ino chain. */ struct jffs2_inode_cache *next; struct jffs2_raw_node_ref *nodes; uint32_t ino; int nlink; int state; }; /* Inode states for 'state' above. We need the 'GC' state to prevent someone from doing a read_inode() while we're moving a 'REF_PRISTINE' node without going through all the iget() nonsense */ #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */ #define INO_STATE_CHECKING 1 /* CRC checks in progress */ #define INO_STATE_PRESENT 2 /* In core */ #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */ #define INO_STATE_GC 4 /* GCing a 'pristine' node */ #define INO_STATE_READING 5 /* In read_inode() */ #define INOCACHE_HASHSIZE 128 struct jffs2_scan_info { struct jffs2_full_dirent *dents; struct jffs2_tmp_dnode_info *tmpnodes; /* Latest i_size info */ uint32_t version; uint32_t isize; }; /* Larger representation of a raw node, kept in-core only when the struct inode for this particular ino is instantiated. */ struct jffs2_full_dnode { struct jffs2_raw_node_ref *raw; uint32_t ofs; /* Don't really need this, but optimisation */ uint32_t size; uint32_t frags; /* Number of fragments which currently refer to this node. When this reaches zero, the node is obsolete. */ }; /* Even larger representation of a raw node, kept in-core only while we're actually building up the original map of which nodes go where, in read_inode() */ struct jffs2_tmp_dnode_info { struct jffs2_tmp_dnode_info *next; struct jffs2_full_dnode *fn; uint32_t version; }; struct jffs2_full_dirent { struct jffs2_raw_node_ref *raw; struct jffs2_full_dirent *next; uint32_t version; uint32_t ino; /* == zero for unlink */ unsigned int nhash; unsigned char type; unsigned char name[0]; }; /* Fragments - used to build a map of which raw node to obtain data from for each part of the ino */ struct jffs2_node_frag { struct rb_node rb; struct jffs2_full_dnode *node; /* NULL for holes */ uint32_t size; uint32_t ofs; /* Don't really need this, but optimisation */ }; struct jffs2_eraseblock { struct list_head list; int bad_count; uint32_t offset; /* of this block in the MTD */ uint32_t unchecked_size; uint32_t used_size; uint32_t dirty_size; uint32_t wasted_size; uint32_t free_size; /* Note that sector_size - free_size is the address of the first free space */ struct jffs2_raw_node_ref *first_node; struct jffs2_raw_node_ref *last_node; struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */ /* For deletia. When a dirent node in this eraseblock is deleted by a node elsewhere, that other node can only be marked as obsolete when this block is actually erased. So we keep a list of the nodes to mark as obsolete when the erase is completed. */ // MAYBE struct jffs2_raw_node_ref_list *deletia; }; #define ACCT_SANITY_CHECK(c, jeb) do { \ if (jeb->used_size + jeb->dirty_size + jeb->free_size + jeb->wasted_size + jeb->unchecked_size != c->sector_size) { \ printk(KERN_NOTICE "Eeep. Space accounting for block at 0x%08x is screwed\n", jeb->offset); \ printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + wasted %08x + unchecked %08x != total %08x\n", \ jeb->free_size, jeb->dirty_size, jeb->used_size, jeb->wasted_size, jeb->unchecked_size, c->sector_size); \ BUG(); \ } \ if (c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size + c->wasted_size + c->unchecked_size != c->flash_size) { \ printk(KERN_NOTICE "Eeep. Space accounting superblock info is screwed\n"); \ printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + erasing %08x + bad %08x + wasted %08x + unchecked %08x != total %08x\n", \ c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size, c->wasted_size, c->unchecked_size, c->flash_size); \ BUG(); \ } \ } while(0) #define ACCT_PARANOIA_CHECK(jeb) do { \ uint32_t my_used_size = 0; \ uint32_t my_unchecked_size = 0; \ struct jffs2_raw_node_ref *ref2 = jeb->first_node; \ while (ref2) { \ if (ref_flags(ref2) == REF_UNCHECKED) \ my_unchecked_size += ref2->totlen; \ else if (!ref_obsolete(ref2)) \ my_used_size += ref2->totlen; \ ref2 = ref2->next_phys; \ } \ if (my_used_size != jeb->used_size) { \ printk(KERN_NOTICE "Calculated used size %08x != stored used size %08x\n", my_used_size, jeb->used_size); \ BUG(); \ } \ if (my_unchecked_size != jeb->unchecked_size) { \ printk(KERN_NOTICE "Calculated unchecked size %08x != stored unchecked size %08x\n", my_unchecked_size, jeb->unchecked_size); \ BUG(); \ } \ } while(0) #define ALLOC_NORMAL 0 /* Normal allocation */ #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */ #define ALLOC_GC 2 /* Space requested for GC. Give it or die */ #define JFFS2_RESERVED_BLOCKS_BASE 3 /* Number of free blocks there must be before we... */ #define JFFS2_RESERVED_BLOCKS_WRITE (JFFS2_RESERVED_BLOCKS_BASE + 2) /* ... allow a normal filesystem write */ #define JFFS2_RESERVED_BLOCKS_DELETION (JFFS2_RESERVED_BLOCKS_BASE) /* ... allow a normal filesystem deletion */ #define JFFS2_RESERVED_BLOCKS_GCTRIGGER (JFFS2_RESERVED_BLOCKS_BASE + 3) /* ... wake up the GC thread */ #define JFFS2_RESERVED_BLOCKS_GCBAD (JFFS2_RESERVED_BLOCKS_BASE + 1) /* ... pick a block from the bad_list to GC */ #define JFFS2_RESERVED_BLOCKS_GCMERGE (JFFS2_RESERVED_BLOCKS_BASE) /* ... merge pages when garbage collecting */ /* How much dirty space before it goes on the very_dirty_list */ #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2)) /* check if dirty space is more than 255 Byte */ #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) #define PAD(x) (((x)+3)&~3) static inline int jffs2_raw_ref_to_inum(struct jffs2_raw_node_ref *raw) { while(raw->next_in_ino) { raw = raw->next_in_ino; } return ((struct jffs2_inode_cache *)raw)->ino; } static inline struct jffs2_node_frag *frag_first(struct rb_root *root) { struct rb_node *node = root->rb_node; if (!node) return NULL; while(node->rb_left) node = node->rb_left; return rb_entry(node, struct jffs2_node_frag, rb); } #define rb_parent(rb) ((rb)->rb_parent) #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb) #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb) #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb) #define frag_erase(frag, list) rb_erase(&frag->rb, list); /* nodelist.c */ D1(void jffs2_print_frag_list(struct jffs2_inode_info *f)); void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list); void jffs2_add_tn_to_list(struct jffs2_tmp_dnode_info *tn, struct jffs2_tmp_dnode_info **list); int jffs2_get_inode_nodes(struct jffs2_sb_info *c, ino_t ino, struct jffs2_inode_info *f, struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp, uint32_t *highest_version, uint32_t *latest_mctime, uint32_t *mctime_ver); void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state); struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, int ino); void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new); void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old); void jffs2_free_ino_caches(struct jffs2_sb_info *c); void jffs2_free_raw_node_refs(struct jffs2_sb_info *c); struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset); void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete); void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base); struct rb_node *rb_next(struct rb_node *); struct rb_node *rb_prev(struct rb_node *); void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); /* nodemgmt.c */ int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio); int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new); void jffs2_complete_reservation(struct jffs2_sb_info *c); void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw); void jffs2_dump_block_lists(struct jffs2_sb_info *c); /* write.c */ int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri); struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, uint32_t *writelen); struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, uint32_t *writelen); int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, unsigned char *buf, uint32_t offset, uint32_t writelen, uint32_t *retlen); int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen); int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f); int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen); /* readinode.c */ void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size); int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn); int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t ino, struct jffs2_raw_inode *latest_node); int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic); void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f); /* malloc.c */ int jffs2_create_slab_caches(void); void jffs2_destroy_slab_caches(void); struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize); void jffs2_free_full_dirent(struct jffs2_full_dirent *); struct jffs2_full_dnode *jffs2_alloc_full_dnode(void); void jffs2_free_full_dnode(struct jffs2_full_dnode *); struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void); void jffs2_free_raw_dirent(struct jffs2_raw_dirent *); struct jffs2_raw_inode *jffs2_alloc_raw_inode(void); void jffs2_free_raw_inode(struct jffs2_raw_inode *); struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void); void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *); struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void); void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *); struct jffs2_node_frag *jffs2_alloc_node_frag(void); void jffs2_free_node_frag(struct jffs2_node_frag *); struct jffs2_inode_cache *jffs2_alloc_inode_cache(void); void jffs2_free_inode_cache(struct jffs2_inode_cache *); /* gc.c */ int jffs2_garbage_collect_pass(struct jffs2_sb_info *c); /* read.c */ int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_full_dnode *fd, unsigned char *buf, int ofs, int len); int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, unsigned char *buf, uint32_t offset, uint32_t len); char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f); /* compr.c */ unsigned char jffs2_compress(unsigned char *data_in, unsigned char *cpage_out, uint32_t *datalen, uint32_t *cdatalen); int jffs2_decompress(unsigned char comprtype, unsigned char *cdata_in, unsigned char *data_out, uint32_t cdatalen, uint32_t datalen); /* scan.c */ int jffs2_scan_medium(struct jffs2_sb_info *c); void jffs2_rotate_lists(struct jffs2_sb_info *c); /* build.c */ int jffs2_do_mount_fs(struct jffs2_sb_info *c); /* erase.c */ void jffs2_erase_block(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); void jffs2_erase_pending_blocks(struct jffs2_sb_info *c); void jffs2_erase_pending_trigger(struct jffs2_sb_info *c); #ifdef CONFIG_JFFS2_FS_NAND /* wbuf.c */ int jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad); int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); int jffs2_nand_read_failcnt(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); #endif /* compr_zlib.c */ int jffs2_zlib_init(void); void jffs2_zlib_exit(void); #endif /* __JFFS2_NODELIST_H__ */
Go to most recent revision | Compare with Previous | Blame | View Log