URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [branches/] [stable_0_1_x/] [or1ksim/] [cpu/] [common/] [abstract.c] - Rev 1344
Go to most recent revision | Compare with Previous | Blame | View Log
/* abstract.c -- Abstract entities Copyright (C) 1999 Damjan Lampret, lampret@opencores.org This file is part of OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Abstract memory and routines that go with this. I need to add all sorts of other abstract entities. Currently we have only memory. */ #include <stdlib.h> #include <stdio.h> #include <ctype.h> #include <string.h> #include "config.h" #include "sim-config.h" #include "parse.h" #include "abstract.h" #include "labels.h" #include "arch.h" #include "execute.h" #include "sprs.h" #include "except.h" #include "debug_unit.h" #include "opcode/or32.h" #include "support/profile.h" #include "dmmu.h" #include "dcache_model.h" #include "icache_model.h" #include "debug.h" #include "stats.h" extern unsigned long reg[]; extern char *disassembled; /* This is an abstract+physical memory array rather than only physical memory array */ static unsigned long *simmem32; /* Pointer to memory area descriptions that are assigned to individual peripheral devices. */ struct dev_memarea *dev_list; /* Temporary variable to increase speed. */ struct dev_memarea *cur_area; /* Pointer to memory controller device descriptor. */ struct dev_memarea *mc_area = (struct dev_memarea *)0; /* These are set by mmu if cache inhibit bit is set for current acces. */ int data_ci, insn_ci; /* Virtual address of current access. */ unsigned long cur_vadd; /* Calculates bit mask to fit the data */ unsigned long bit_mask (unsigned long data) { int i = 0; data--; while (data >> i) data |= 1 << i++; return data; } /* Register read and write function for a memory area. addr is inside the area, if addr & addr_mask == addr_compare (used also by peripheral devices like 16450 UART etc.) */ void register_memoryarea_mask(unsigned long addr_mask, unsigned long addr_compare, unsigned long size, unsigned granularity, unsigned mc_dev, unsigned long (readfunc)(unsigned long), void (writefunc)(unsigned long, unsigned long)) { struct dev_memarea **pptmp; unsigned long size_mask = bit_mask (size); int found_error = 0; addr_compare &= addr_mask; debug(5, "addr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity); /* Go to the end of the list. */ for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next) if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size) || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) { if (!found_error) { fprintf (stderr, "ERROR: Overlapping memory area(s):\n"); fprintf (stderr, "\taddr & %08lx == %08lx to %08lx, size %08lx, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity); } found_error = 1; fprintf (stderr, "and\taddr & %08lx == %08lx to %08lx, size %08lx, gran %liB\n", (*pptmp)->addr_mask, (*pptmp)->addr_compare, (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size, (*pptmp)->granularity); } if (found_error) exit (-1); cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea)); if (mc_dev) mc_area = *pptmp; (*pptmp)->addr_mask = addr_mask; (*pptmp)->addr_compare = addr_compare; (*pptmp)->size = size; (*pptmp)->size_mask = size_mask; (*pptmp)->granularity = granularity; (*pptmp)->readfunc = readfunc; (*pptmp)->writefunc = writefunc; (*pptmp)->log = 0; (*pptmp)->delayr = 2; (*pptmp)->delayw = 2; (*pptmp)->next = NULL; } /* Register read and write function for a memory area. Memory areas should be aligned. Memory area is rounded up to fit the nearest 2^n aligment. (used also by peripheral devices like 16450 UART etc.) If mc_dev is 1, this means that this device will be checked first for match and will be accessed in case in overlaping memory spaces. Only one device can have this set to 1 (used for memory controller) */ void register_memoryarea(unsigned long addr, unsigned long size, unsigned granularity, unsigned mc_dev, unsigned long (readfunc)(unsigned long), void (writefunc)(unsigned long, unsigned long)) { unsigned long size_mask = bit_mask (size); unsigned long addr_mask = ~size_mask; register_memoryarea_mask (addr_mask, addr & addr_mask, size_mask + 1, granularity, mc_dev, readfunc, writefunc); } /* Check if access is to registered area of memory. */ inline struct dev_memarea *verify_memoryarea(unsigned long addr) { struct dev_memarea *ptmp; /* Check memory controller space first */ if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask)) return cur_area = mc_area; /* Check cached value */ if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask)) return cur_area; /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */ IFF (config.mc.enabled) { /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid) return cur_area = ptmp; } else { /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask)) return cur_area = ptmp; } return cur_area = NULL; } /* Finds the memory area for the address and adjust the read and write delays for it. */ void adjust_rw_delay(unsigned long memaddr, unsigned long delayr, unsigned long delayw) { if (verify_memoryarea(memaddr)) { cur_area->delayr = delayr; cur_area->delayw = delayw; } } /* for cpu accesses * * STATISTICS: check cpu/common/parse.c */ inline unsigned long evalsim_mem32(unsigned long memaddr) { return(evalsim_mem32_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline unsigned long evalsim_mem32_void(unsigned long memaddr) { return(evalsim_mem32_atomic(memaddr, 0)); } unsigned long evalsim_mem32_atomic(unsigned long memaddr, int cpu_access) { unsigned long temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 4: temp = cur_area->readfunc(memaddr); break; case 1: temp = cur_area->readfunc(memaddr) << 24; temp |= cur_area->readfunc(memaddr + 1) << 16; temp |= cur_area->readfunc(memaddr + 2) << 8; temp |= cur_area->readfunc(memaddr + 3); break; case 2: temp = cur_area->readfunc(memaddr) << 16; temp |= cur_area->readfunc(memaddr + 2); break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr * (4 / cur_area->granularity); } return temp; } /* for cpu accesses */ inline unsigned short evalsim_mem16(unsigned long memaddr) { return(evalsim_mem16_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline unsigned short evalsim_mem16_void(unsigned long memaddr) { return(evalsim_mem16_atomic(memaddr, 0)); } unsigned short evalsim_mem16_atomic(unsigned long memaddr, int cpu_access) { unsigned long temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: temp = cur_area->readfunc(memaddr) << 8; temp |= cur_area->readfunc(memaddr + 1); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr * 2; break; case 2: temp = cur_area->readfunc(memaddr); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr; break; case 4: temp = evalsim_mem32_atomic (memaddr & ~3ul, cpu_access); if (memaddr & 2) temp &= 0xffff; else temp >>= 16; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } return temp; } /* for cpu accesses */ inline unsigned char evalsim_mem8(unsigned long memaddr) { return(evalsim_mem8_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline unsigned char evalsim_mem8_void(unsigned long memaddr) { return(evalsim_mem8_atomic(memaddr, 0)); } unsigned char evalsim_mem8_atomic(unsigned long memaddr, int cpu_access) { unsigned long temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: temp = cur_area->readfunc(memaddr); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr; break; case 2: temp = evalsim_mem16_atomic (memaddr & ~1ul, cpu_access); if (memaddr & 1) temp &= 0xff; else temp >>= 8; break; case 4: temp = evalsim_mem32_atomic (memaddr & ~3ul, cpu_access); temp >>= 8 * (3 - (memaddr & 3)); temp &= 0xff; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } return temp; } /* Returns 32-bit values from mem array. Big endian version. * * this function is only used in dump_memory() below, so it's * safe to asume it's for simulator purposes access only, * hence the use of eval_mem32_void() * * STATISTICS OK. */ unsigned long read_mem(unsigned long memaddr,int* breakpoint) { unsigned long temp; cur_vadd = memaddr; if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ temp = evalsim_mem32_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } if (!pending.valid && cur_area->log) fprintf (cur_area->log, "[%08lx] -> read %08lx\n", memaddr, temp); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* Returns 32-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ unsigned long eval_mem32(unsigned long memaddr,int* breakpoint) { unsigned long temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_READ); if (memaddr & 3) { except_handle (EXCEPT_ALIGN, memaddr); return 0; } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (pending.valid) return 0; if (config.dc.enabled) temp = dc_simulate_read(memaddr, 4); else { temp = evalsim_mem32(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK */ unsigned long eval_direct32(unsigned long memaddr, int *breakpoint, int through_mmu, int through_dc) { unsigned long temp; if (memaddr & 3) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return 0; } cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = dc_simulate_read(memaddr, 4); else { temp = evalsim_mem32_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx) in eval_direct32()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* Returns 32-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ unsigned long eval_insn(unsigned long memaddr,int* breakpoint) { unsigned long temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_FETCH); // memaddr = simulate_ic_mmu_fetch(memaddr); cur_vadd = pc; // I think this does not belong into eval_insn() 2004-01-30 HP // if (config.debug.enabled) // *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ // We could place the CheckDebugUnit(DebugInstructionFetch) here, but it is currently done // in decode_execute_wrapper, so I leave it like this. 2004-01-30 HP if (config.ic.enabled) temp = ic_simulate_fetch(memaddr); else { temp = evalsim_mem32(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } // I think this does not belong into eval_insn() 2004-01-30 HP // if (config.debug.enabled) // *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* Returns 16-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ unsigned short eval_mem16(unsigned long memaddr,int* breakpoint) { unsigned short temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_16 | MPROF_READ); if (memaddr & 1) { except_handle (EXCEPT_ALIGN, memaddr); return 0; } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (pending.valid) return 0; if (config.dc.enabled) temp = (unsigned short)dc_simulate_read(memaddr, 2); else { temp = evalsim_mem16(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK. */ unsigned short eval_direct16(unsigned long memaddr, int *breakpoint, int through_mmu, int through_dc) { unsigned long temp; if (memaddr & 1) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return 0; } cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = dc_simulate_read(memaddr, 2); else { temp = evalsim_mem16_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx) in eval_direct16()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* Returns 8-bit values from mem array. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ unsigned char eval_mem8(unsigned long memaddr,int* breakpoint) { unsigned char temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_8 | MPROF_READ); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (pending.valid) return 0; if (config.dc.enabled) temp = (unsigned char)dc_simulate_read(memaddr, 1); else { temp = evalsim_mem8(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (8-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK. */ unsigned char eval_direct8(unsigned long memaddr, int *breakpoint, int through_mmu, int through_dc) { unsigned char temp; cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = (unsigned char)dc_simulate_read(memaddr, 1); else { temp = evalsim_mem8_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (8-bit access to %.8lx) in eval_direct8()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* for cpu accesses */ inline void setsim_mem32(unsigned long memaddr, unsigned long value) { return(setsim_mem32_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem32_void(unsigned long memaddr, unsigned long value) { return(setsim_mem32_atomic(memaddr, value, 0)); } void setsim_mem32_atomic(unsigned long memaddr, unsigned long value, int cpu_access) { if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 4: cur_area->writefunc(memaddr, value); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 1: cur_area->writefunc(memaddr , (value >> 24) & 0xFF); cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF); cur_area->writefunc(memaddr + 2, (value >> 8) & 0xFF); cur_area->writefunc(memaddr + 3, (value ) & 0xFF); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 4; break; case 2: cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF); cur_area->writefunc(memaddr + 2, value & 0xFFFF); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 2; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } else { PRINTF("EXCEPTION: write out of memory (32-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* for cpu accesses */ inline void setsim_mem16(unsigned long memaddr, unsigned short value) { return(setsim_mem16_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem16_void(unsigned long memaddr, unsigned short value) { return(setsim_mem16_atomic(memaddr, value, 0)); } void setsim_mem16_atomic(unsigned long memaddr, unsigned short value, int cpu_access) { unsigned long temp; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: cur_area->writefunc(memaddr, (value >> 8) & 0xFF); cur_area->writefunc(memaddr + 1, value & 0xFF); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 2; break; case 2: cur_area->writefunc(memaddr, value & 0xFFFF); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 4: temp = evalsim_mem32_void(memaddr & ~3ul); temp &= 0xffff << ((memaddr & 2) ? 16 : 0); temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16); setsim_mem32_atomic(memaddr & ~3ul, temp, cpu_access); break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } else { PRINTF("EXCEPTION: write out of memory (16-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* for cpu accesses */ inline void setsim_mem8(unsigned long memaddr, unsigned char value) { return(setsim_mem8_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem8_void(unsigned long memaddr, unsigned char value) { return(setsim_mem8_atomic(memaddr, value, 0)); } void setsim_mem8_atomic(unsigned long memaddr, unsigned char value, int cpu_access) { unsigned long temp; if (verify_memoryarea(memaddr)) { switch (cur_area->granularity) { case 1: cur_area->writefunc(memaddr, value); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 2: temp = evalsim_mem16_void (memaddr & ~1ul); temp &= 0xff << ((memaddr & 1) ? 8 : 0); temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8); setsim_mem16_atomic (memaddr & ~1ul, temp, cpu_access); break; case 4: temp = evalsim_mem32_void (memaddr & ~3ul); temp &= ~(0xff << (8 * (3 - (memaddr & 3)))); temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3))); setsim_mem32_atomic (memaddr & ~3ul, temp, cpu_access); break; } } else { PRINTF("EXCEPTION: write out of memory (8-bit access to %.8lx)\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* Set mem, 32-bit. Big endian version. * * STATISTICS OK. (the only suspicious usage is in toplevel.c, * where this instruction is used for patching memory, * wether this is cpu or architectual access is yet to * be decided) */ void set_mem32(unsigned long memaddr, unsigned long value,int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_WRITE); if (memaddr & 3) { except_handle (EXCEPT_ALIGN, memaddr); return; } cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (pending.valid) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, value, 4); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08lx] -> write %08lx\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct32(unsigned long memaddr, unsigned long value,int* breakpoint, int through_mmu, int through_dc) { if (memaddr & 3) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return; } cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 1, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 4); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08lx] -> DIRECT write %08lx\n", memaddr, value); } /* Set mem, 16-bit. Big endian version. */ void set_mem16(unsigned long memaddr, unsigned short value, int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_16 | MPROF_WRITE); if (memaddr & 1) { except_handle (EXCEPT_ALIGN, memaddr); return; } cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (pending.valid) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, (unsigned long)value, 2); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08lx] -> write %08x\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct16(unsigned long memaddr, unsigned short value, int* breakpoint, int through_mmu, int through_dc) { if (memaddr & 1) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return; } cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 0, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 2); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08lx] -> DIRECT write %08x\n", memaddr, value); } /* Set mem, 8-bit. */ void set_mem8(unsigned long memaddr, unsigned char value, int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_8 | MPROF_WRITE); cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (pending.valid) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, (unsigned long)value, 1); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08lx] -> write %08x\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct8(unsigned long memaddr, unsigned char value, int* breakpoint, int through_mmu, int through_dc) { cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 0, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 1); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%08x] -> DIRECT write %08x\n", memaddr, value); } void dumpmemory(unsigned int from, unsigned int to, int disasm, int nl) { unsigned int i, j; struct label_entry *tmp; int ilen = disasm ? 4 : 16; for(i = from; i < to; i += ilen) { PRINTF("%.8x: ", i); for (j = 0; j < ilen;) { int data = -1; if (!disasm) { tmp = NULL; if (verify_memoryarea(i+j)) { struct label_entry *entry; entry = get_label(i + j); if (entry) PRINTF("(%s)", entry->name); PRINTF("%02x ", data = evalsim_mem8(i+j)); } else PRINTF("XX "); j++; } else { int breakpoint; unsigned int _insn = read_mem(i, &breakpoint); int index = insn_decode (_insn); int len = insn_len (index); tmp = NULL; if (verify_memoryarea(i+j)) { struct label_entry *entry; entry = get_label(i + j); if (entry) PRINTF("(%s)", entry->name); PRINTF(": %08lx ", (unsigned long)_insn); if (index >= 0) { disassemble_insn (_insn); PRINTF(" %s", disassembled); } else PRINTF("<invalid>"); } else PRINTF("XXXXXXXX"); j += len; } } if (nl) PRINTF ("\n"); } } unsigned long simmem_read_word(unsigned long addr) { return simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2]; } void simmem_write_word(unsigned long addr, unsigned long value) { simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2] = value; } unsigned long simmem_read_zero(unsigned long addr) { if (config.sim.verbose) fprintf (stderr, "WARNING: memory read from non-read memory area 0x%08x.\n", addr); return 0; } void simmem_write_null(unsigned long addr, unsigned long value) { if (config.sim.verbose) fprintf (stderr, "WARNING: memory write to 0x%08lx, non-write memory area (value 0x%08lx).\n", addr, value); } /* Initialize memory table from a config struct */ void init_memory_table () { unsigned long memory_needed = 0; /* If nothing was defined, use default memory block */ if (config.memory.nmemories) { int i; for (i = 0; i < config.memory.nmemories; i++) { unsigned long start = config.memory.table[i].baseaddr; unsigned long length = config.memory.table[i].size; char *type = config.memory.table[i].name; int rd = config.memory.table[i].delayr; int wd = config.memory.table[i].delayw; int ce = config.memory.table[i].ce; if (config.sim.verbose) debug (1, "%08X %08X (%i KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n", start, length, length >> 10, type, ce, rd, wd); register_memoryarea(start, length, 4, 0, &simmem_read_word, &simmem_write_word); cur_area->misc = memory_needed; cur_area->chip_select = ce; cur_area->valid = 1; cur_area->delayw = wd; cur_area->delayr = rd; if (config.memory.table[i].log[0] != '\0') { if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL) fprintf (stderr, "WARNING: Cannot open '%s'.\n", config.memory.table[i].log); } else cur_area->log = NULL; memory_needed += cur_area->size; } PRINTF ("\n"); } else { if (config.sim.verbose) fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n"); register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0, &simmem_read_word, &simmem_write_word); cur_area->misc = memory_needed; cur_area->chip_select = 0; cur_area->valid = 1; cur_area->delayw = 1; cur_area->delayr = 1; cur_area->log = NULL; memory_needed += cur_area->size; } simmem32 = (unsigned long *) malloc (sizeof (unsigned long) * ((memory_needed + 3) / 4)); if (!simmem32) { fprintf (stderr, "Failed to allocate sim memory. Aborting\n"); exit (-1); } } /* Changes read/write memory in read/write only */ void lock_memory_table () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word) ptmp->readfunc = &simmem_read_zero; if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word) ptmp->writefunc = &simmem_write_null; /* If this mem area is not for memory chip under MC control then this area is valid all the time */ if (ptmp->readfunc != &simmem_read_word) { ptmp->valid = 1; ptmp->chip_select = -1; } } } /* Closes files, etc. */ void done_memory_table () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { if (ptmp->log) fclose (ptmp->log); } } /* Displays current memory configuration */ void memory_table_status () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { PRINTF ("addr & %08lx == %08lx to %08lx, size %08lx, gran %liB\n", ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size), ptmp->size, ptmp->granularity); PRINTF ("\t"); if (ptmp->delayr >= 0) PRINTF ("read delay = %i cycles, ", ptmp->delayr); else PRINTF ("reads not possible, "); if (ptmp->delayw >= 0) PRINTF ("write delay = %i cycles", ptmp->delayw); else PRINTF ("writes not possible"); if (ptmp->log) PRINTF (", (logged)\n"); else PRINTF ("\n"); } } /* Outputs time in pretty form to dest string */ char *generate_time_pretty (char *dest, long time_ps) { int exp3 = 0; if (time_ps) { while ((time_ps % 1000) == 0) { time_ps /= 1000; exp3++; } } sprintf (dest, "%li%cs", time_ps, "pnum"[exp3]); return dest; }
Go to most recent revision | Compare with Previous | Blame | View Log