URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sh64/] [kernel/] [process.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * arch/sh64/kernel/process.c * * Copyright (C) 2000, 2001 Paolo Alberelli * Copyright (C) 2003 Paul Mundt * * Started from SH3/4 version: * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima * * In turn started from i386 version: * Copyright (C) 1995 Linus Torvalds * */ /* * This file handles the architecture-dependent parts of process handling.. */ /* Temporary flags/tests. All to be removed/undefined. BEGIN */ #define IDLE_TRACE #define VM_SHOW_TABLES #define VM_TEST_FAULT #define VM_TEST_RTLBMISS #define VM_TEST_WTLBMISS #undef VM_SHOW_TABLES #undef IDLE_TRACE /* Temporary flags/tests. All to be removed/undefined. END */ #define __KERNEL_SYSCALLS__ #include <stdarg.h> #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/interrupt.h> #include <linux/unistd.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/init.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/io.h> #include <asm/processor.h> /* includes also <asm/registers.h> */ #include <asm/mmu_context.h> #include <asm/elf.h> #include <asm/page.h> #include <linux/irq.h> struct task_struct *last_task_used_math = NULL; #ifdef IDLE_TRACE #ifdef VM_SHOW_TABLES /* For testing */ static void print_PTE(long base) { int i, skip=0; long long x, y, *p = (long long *) base; for (i=0; i< 512; i++, p++){ if (*p == 0) { if (!skip) { skip++; printk("(0s) "); } } else { skip=0; x = (*p) >> 32; y = (*p) & 0xffffffff; printk("%08Lx%08Lx ", x, y); if (!((i+1)&0x3)) printk("\n"); } } } /* For testing */ static void print_DIR(long base) { int i, skip=0; long *p = (long *) base; for (i=0; i< 512; i++, p++){ if (*p == 0) { if (!skip) { skip++; printk("(0s) "); } } else { skip=0; printk("%08lx ", *p); if (!((i+1)&0x7)) printk("\n"); } } } /* For testing */ static void print_vmalloc_first_tables(void) { #define PRESENT 0x800 /* Bit 11 */ /* * Do it really dirty by looking at raw addresses, * raw offsets, no types. If we used pgtable/pgalloc * macros/definitions we could hide potential bugs. * * Note that pointers are 32-bit for CDC. */ long pgdt, pmdt, ptet; pgdt = (long) &swapper_pg_dir; printk("-->PGD (0x%08lx):\n", pgdt); print_DIR(pgdt); printk("\n"); /* VMALLOC pool is mapped at 0xc0000000, second (pointer) entry in PGD */ pgdt += 4; pmdt = (long) (* (long *) pgdt); if (!(pmdt & PRESENT)) { printk("No PMD\n"); return; } else pmdt &= 0xfffff000; printk("-->PMD (0x%08lx):\n", pmdt); print_DIR(pmdt); printk("\n"); /* Get the pmdt displacement for 0xc0000000 */ pmdt += 2048; /* just look at first two address ranges ... */ /* ... 0xc0000000 ... */ ptet = (long) (* (long *) pmdt); if (!(ptet & PRESENT)) { printk("No PTE0\n"); return; } else ptet &= 0xfffff000; printk("-->PTE0 (0x%08lx):\n", ptet); print_PTE(ptet); printk("\n"); /* ... 0xc0001000 ... */ ptet += 4; if (!(ptet & PRESENT)) { printk("No PTE1\n"); return; } else ptet &= 0xfffff000; printk("-->PTE1 (0x%08lx):\n", ptet); print_PTE(ptet); printk("\n"); } #else #define print_vmalloc_first_tables() #endif /* VM_SHOW_TABLES */ static void test_VM(void) { void *a, *b, *c; #ifdef VM_SHOW_TABLES printk("Initial PGD/PMD/PTE\n"); #endif print_vmalloc_first_tables(); printk("Allocating 2 bytes\n"); a = vmalloc(2); print_vmalloc_first_tables(); printk("Allocating 4100 bytes\n"); b = vmalloc(4100); print_vmalloc_first_tables(); printk("Allocating 20234 bytes\n"); c = vmalloc(20234); print_vmalloc_first_tables(); #ifdef VM_TEST_FAULT /* Here you may want to fault ! */ #ifdef VM_TEST_RTLBMISS printk("Ready to fault upon read.\n"); if (* (char *) a) { printk("RTLBMISSed on area a !\n"); } printk("RTLBMISSed on area a !\n"); #endif #ifdef VM_TEST_WTLBMISS printk("Ready to fault upon write.\n"); *((char *) b) = 'L'; printk("WTLBMISSed on area b !\n"); #endif #endif /* VM_TEST_FAULT */ printk("Deallocating the 4100 byte chunk\n"); vfree(b); print_vmalloc_first_tables(); printk("Deallocating the 2 byte chunk\n"); vfree(a); print_vmalloc_first_tables(); printk("Deallocating the last chunk\n"); vfree(c); print_vmalloc_first_tables(); } extern unsigned long volatile jiffies; int once = 0; unsigned long old_jiffies; int pid = -1, pgid = -1; void idle_trace(void) { _syscall0(int, getpid) _syscall1(int, getpgid, int, pid) if (!once) { /* VM allocation/deallocation simple test */ test_VM(); pid = getpid(); printk("Got all through to Idle !!\n"); printk("I'm now going to loop forever ...\n"); printk("Any ! below is a timer tick.\n"); printk("Any . below is a getpgid system call from pid = %d.\n", pid); old_jiffies = jiffies; once++; } if (old_jiffies != jiffies) { old_jiffies = jiffies - old_jiffies; switch (old_jiffies) { case 1: printk("!"); break; case 2: printk("!!"); break; case 3: printk("!!!"); break; case 4: printk("!!!!"); break; default: printk("(%d!)", (int) old_jiffies); } old_jiffies = jiffies; } pgid = getpgid(pid); printk("."); } #else #define idle_trace() do { } while (0) #endif /* IDLE_TRACE */ static int hlt_counter = 1; #define HARD_IDLE_TIMEOUT (HZ / 3) void disable_hlt(void) { hlt_counter++; } void enable_hlt(void) { hlt_counter--; } static int __init nohlt_setup(char *__unused) { hlt_counter = 1; return 1; } static int __init hlt_setup(char *__unused) { hlt_counter = 0; return 1; } __setup("nohlt", nohlt_setup); __setup("hlt", hlt_setup); static inline void hlt(void) { if (hlt_counter) return; /* * FIXME: Is there any reason why we can't just do a "sleep" * instead of this crap? */ __asm__ __volatile__ ( ".int %0\n\t" : /* no outputs */ : "g" (le32_to_cpu(0x6ff7fff0)) : "memory" ); } /* * The idle loop on a uniprocessor SH.. */ void cpu_idle(void *unused) { /* endless idle loop with no priority at all */ init_idle(); current->nice = 20; current->counter = -100; while (1) { while (!current->need_resched) { if (hlt_counter) continue; __sti(); idle_trace(); hlt(); } schedule(); check_pgt_cache(); } } void machine_restart(char * __unused) { extern void phys_stext(void); phys_stext(); } void machine_halt(void) { for (;;); } void machine_power_off(void) { enter_deep_standby(); } void show_regs(struct pt_regs * regs) { unsigned long long ah, al, bh, bl, ch, cl; printk("\n"); ah = (regs->pc) >> 32; al = (regs->pc) & 0xffffffff; bh = (regs->regs[18]) >> 32; bl = (regs->regs[18]) & 0xffffffff; ch = (regs->regs[15]) >> 32; cl = (regs->regs[15]) & 0xffffffff; printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->sr) >> 32; al = (regs->sr) & 0xffffffff; asm volatile ("getcon " __c13 ", %0" : "=r" (bh)); asm volatile ("getcon " __c13 ", %0" : "=r" (bl)); bh = (bh) >> 32; bl = (bl) & 0xffffffff; asm volatile ("getcon " __c17 ", %0" : "=r" (ch)); asm volatile ("getcon " __c17 ", %0" : "=r" (cl)); ch = (ch) >> 32; cl = (cl) & 0xffffffff; printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[0]) >> 32; al = (regs->regs[0]) & 0xffffffff; bh = (regs->regs[1]) >> 32; bl = (regs->regs[1]) & 0xffffffff; ch = (regs->regs[2]) >> 32; cl = (regs->regs[2]) & 0xffffffff; printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[3]) >> 32; al = (regs->regs[3]) & 0xffffffff; bh = (regs->regs[4]) >> 32; bl = (regs->regs[4]) & 0xffffffff; ch = (regs->regs[5]) >> 32; cl = (regs->regs[5]) & 0xffffffff; printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[6]) >> 32; al = (regs->regs[6]) & 0xffffffff; bh = (regs->regs[7]) >> 32; bl = (regs->regs[7]) & 0xffffffff; ch = (regs->regs[8]) >> 32; cl = (regs->regs[8]) & 0xffffffff; printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[9]) >> 32; al = (regs->regs[9]) & 0xffffffff; bh = (regs->regs[10]) >> 32; bl = (regs->regs[10]) & 0xffffffff; ch = (regs->regs[11]) >> 32; cl = (regs->regs[11]) & 0xffffffff; printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[12]) >> 32; al = (regs->regs[12]) & 0xffffffff; bh = (regs->regs[13]) >> 32; bl = (regs->regs[13]) & 0xffffffff; ch = (regs->regs[14]) >> 32; cl = (regs->regs[14]) & 0xffffffff; printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[16]) >> 32; al = (regs->regs[16]) & 0xffffffff; bh = (regs->regs[17]) >> 32; bl = (regs->regs[17]) & 0xffffffff; ch = (regs->regs[19]) >> 32; cl = (regs->regs[19]) & 0xffffffff; printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[20]) >> 32; al = (regs->regs[20]) & 0xffffffff; bh = (regs->regs[21]) >> 32; bl = (regs->regs[21]) & 0xffffffff; ch = (regs->regs[22]) >> 32; cl = (regs->regs[22]) & 0xffffffff; printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[23]) >> 32; al = (regs->regs[23]) & 0xffffffff; bh = (regs->regs[24]) >> 32; bl = (regs->regs[24]) & 0xffffffff; ch = (regs->regs[25]) >> 32; cl = (regs->regs[25]) & 0xffffffff; printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[26]) >> 32; al = (regs->regs[26]) & 0xffffffff; bh = (regs->regs[27]) >> 32; bl = (regs->regs[27]) & 0xffffffff; ch = (regs->regs[28]) >> 32; cl = (regs->regs[28]) & 0xffffffff; printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[29]) >> 32; al = (regs->regs[29]) & 0xffffffff; bh = (regs->regs[30]) >> 32; bl = (regs->regs[30]) & 0xffffffff; ch = (regs->regs[31]) >> 32; cl = (regs->regs[31]) & 0xffffffff; printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[32]) >> 32; al = (regs->regs[32]) & 0xffffffff; bh = (regs->regs[33]) >> 32; bl = (regs->regs[33]) & 0xffffffff; ch = (regs->regs[34]) >> 32; cl = (regs->regs[34]) & 0xffffffff; printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[35]) >> 32; al = (regs->regs[35]) & 0xffffffff; bh = (regs->regs[36]) >> 32; bl = (regs->regs[36]) & 0xffffffff; ch = (regs->regs[37]) >> 32; cl = (regs->regs[37]) & 0xffffffff; printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[38]) >> 32; al = (regs->regs[38]) & 0xffffffff; bh = (regs->regs[39]) >> 32; bl = (regs->regs[39]) & 0xffffffff; ch = (regs->regs[40]) >> 32; cl = (regs->regs[40]) & 0xffffffff; printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[41]) >> 32; al = (regs->regs[41]) & 0xffffffff; bh = (regs->regs[42]) >> 32; bl = (regs->regs[42]) & 0xffffffff; ch = (regs->regs[43]) >> 32; cl = (regs->regs[43]) & 0xffffffff; printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[44]) >> 32; al = (regs->regs[44]) & 0xffffffff; bh = (regs->regs[45]) >> 32; bl = (regs->regs[45]) & 0xffffffff; ch = (regs->regs[46]) >> 32; cl = (regs->regs[46]) & 0xffffffff; printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[47]) >> 32; al = (regs->regs[47]) & 0xffffffff; bh = (regs->regs[48]) >> 32; bl = (regs->regs[48]) & 0xffffffff; ch = (regs->regs[49]) >> 32; cl = (regs->regs[49]) & 0xffffffff; printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[50]) >> 32; al = (regs->regs[50]) & 0xffffffff; bh = (regs->regs[51]) >> 32; bl = (regs->regs[51]) & 0xffffffff; ch = (regs->regs[52]) >> 32; cl = (regs->regs[52]) & 0xffffffff; printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[53]) >> 32; al = (regs->regs[53]) & 0xffffffff; bh = (regs->regs[54]) >> 32; bl = (regs->regs[54]) & 0xffffffff; ch = (regs->regs[55]) >> 32; cl = (regs->regs[55]) & 0xffffffff; printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[56]) >> 32; al = (regs->regs[56]) & 0xffffffff; bh = (regs->regs[57]) >> 32; bl = (regs->regs[57]) & 0xffffffff; ch = (regs->regs[58]) >> 32; cl = (regs->regs[58]) & 0xffffffff; printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[59]) >> 32; al = (regs->regs[59]) & 0xffffffff; bh = (regs->regs[60]) >> 32; bl = (regs->regs[60]) & 0xffffffff; ch = (regs->regs[61]) >> 32; cl = (regs->regs[61]) & 0xffffffff; printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[62]) >> 32; al = (regs->regs[62]) & 0xffffffff; bh = (regs->tregs[0]) >> 32; bl = (regs->tregs[0]) & 0xffffffff; ch = (regs->tregs[1]) >> 32; cl = (regs->tregs[1]) & 0xffffffff; printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[2]) >> 32; al = (regs->tregs[2]) & 0xffffffff; bh = (regs->tregs[3]) >> 32; bl = (regs->tregs[3]) & 0xffffffff; ch = (regs->tregs[4]) >> 32; cl = (regs->tregs[4]) & 0xffffffff; printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[5]) >> 32; al = (regs->tregs[5]) & 0xffffffff; bh = (regs->tregs[6]) >> 32; bl = (regs->tregs[6]) & 0xffffffff; ch = (regs->tregs[7]) >> 32; cl = (regs->tregs[7]) & 0xffffffff; printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); /* * If we're in kernel mode, dump the stack too.. */ if (!user_mode(regs)) { extern void show_task(unsigned long *sp); unsigned long sp = regs->regs[15] & 0xffffffff; show_task((unsigned long *)sp); } } struct task_struct * alloc_task_struct(void) { /* Get task descriptor pages */ return (struct task_struct *) __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE)); } void free_task_struct(struct task_struct *p) { free_pages((unsigned long) p, get_order(THREAD_SIZE)); } /* * Create a kernel thread */ /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be free'd until both the parent and the child have exited. */ int arch_kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { /* A bit less processor dependent than older sh ... */ unsigned int reply; static __inline__ _syscall2(int,clone,unsigned long,flags,unsigned long,newsp) static __inline__ _syscall1(int,exit,int,ret) reply = clone(flags | CLONE_VM, 0); if (!reply) { /* Child */ reply = exit(fn(arg)); } return reply; } /* * Free current thread data structures etc.. */ void exit_thread(void) { /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC. The SH-5 FPU save/restore approach relies on last_task_used_math pointing to a live task_struct. When another task tries to use the FPU for the 1st time, the FPUDIS trap handling (see arch/sh64/kernel/fpu.c) will save the existing FPU state to the FP regs field within last_task_used_math before re-loading the new task's FPU state (or initialising it if the FPU has been used before). So if last_task_used_math is stale, and its page has already been re-allocated for another use, the consequences are rather grim. Unless we null it here, there is no other path through which it would get safely nulled. */ #ifndef CONFIG_NOFPU_SUPPORT if (last_task_used_math == current) { last_task_used_math = NULL; } #endif } void flush_thread(void) { /* As far as I can tell, this function isn't actually called from anywhere. So why does it have a non-null body for most architectures?? -- RPC */ /* Look closer, this is used in fs/exec.c by flush_old_exec() which is used by binfmt_elf and friends to remove leftover traces of the previously running executable. -- PFM */ #ifndef CONFIG_NOFPU_SUPPORT if (last_task_used_math == current) { last_task_used_math = NULL; } #endif /* if we are a kernel thread, about to change to user thread, * update kreg */ if(current->thread.kregs==&fake_swapper_regs) { current->thread.kregs= ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); } } void release_thread(struct task_struct *dead_task) { /* do nothing */ } /* Fill in the fpu structure for a core dump.. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) { #ifndef CONFIG_NOFPU_SUPPORT int fpvalid; struct task_struct *tsk = current; fpvalid = tsk->used_math; if (fpvalid) { if (current == last_task_used_math) { grab_fpu(); fpsave(&tsk->thread.fpu.hard); release_fpu(); last_task_used_math = 0; regs->sr |= SR_FD; } memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu)); } return fpvalid; #else return 0; /* Task didn't use the fpu at all. */ #endif } asmlinkage void ret_from_fork(void); int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; unsigned long long se; /* Sign extension */ #ifndef CONFIG_NOFPU_SUPPORT if(last_task_used_math == current) { grab_fpu(); fpsave(¤t->thread.fpu.hard); release_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; } #endif childregs = ((struct pt_regs *)(THREAD_SIZE + (unsigned long) p)) - 1; *childregs = *regs; if (user_mode(regs)) { childregs->regs[15] = usp; p->thread.kregs = childregs; } else { childregs->regs[15] = (unsigned long)p+THREAD_SIZE; p->thread.kregs = &fake_swapper_regs; } childregs->regs[9] = 0; /* Set return value for child */ childregs->sr |= SR_FD; /* Invalidate FPU flag */ p->thread.sp = (unsigned long) childregs; p->thread.pc = (unsigned long) ret_from_fork; /* * Sign extend the edited stack. * Note that thread.pc and thread.pc will stay * 32-bit wide and context switch must take care * of NEFF sign extension. */ se = childregs->regs[15]; se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se; childregs->regs[15] = se; return 0; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs * regs, struct user * dump) { dump->magic = CMAGIC; dump->start_code = current->mm->start_code; dump->start_data = current->mm->start_data; dump->start_stack = regs->regs[15] & ~(PAGE_SIZE - 1); dump->u_tsize = (current->mm->end_code - dump->start_code) >> PAGE_SHIFT; dump->u_dsize = (current->mm->brk + (PAGE_SIZE-1) - dump->start_data) >> PAGE_SHIFT; dump->u_ssize = (current->mm->start_stack - dump->start_stack + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Debug registers will come here. */ dump->regs = *regs; dump->u_fpvalid = dump_fpu(regs, &dump->fpu); } /* * switch_to(x,y) should switch tasks from x to y. * */ struct task_struct * __switch_to(struct task_struct *prev, struct task_struct *next) { /* * Restore the kernel mode register * KCR0 = __c17 */ asm volatile("putcon %0, " __c17 "\n" : /* no output */ :"r" (next)); return prev; } asmlinkage int sys_fork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(SIGCHLD, pregs->regs[15], pregs,0); } asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { if (!newsp) newsp = pregs->regs[15]; return do_fork(clone_flags, newsp, pregs,0); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs,0); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char *ufilename, char **uargv, char **uenvp, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { int error; char *filename; lock_kernel(); filename = getname(ufilename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, uargv, uenvp, pregs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename); out: unlock_kernel(); return error; } /* * These bracket the sleeping functions.. */ extern void scheduling_functions_start_here(void); extern void scheduling_functions_end_here(void); extern void interruptible_sleep_on(wait_queue_head_t *q); #define first_sched ((unsigned long) scheduling_functions_start_here) #define mid_sched ((unsigned long) interruptible_sleep_on) #define last_sched ((unsigned long) scheduling_functions_end_here) unsigned long get_wchan(struct task_struct *p) { unsigned long schedule_frame; unsigned long pc; if (!p || p == current || p->state == TASK_RUNNING) return 0; /* * The same comment as on the Alpha applies here, too ... */ pc = thread_saved_pc(&p->thread); if (pc >= first_sched && pc < last_sched) { schedule_frame = (long) p->thread.sp; /* Should we unwind schedule_timeout() ? */ if (pc < mid_sched) /* according to disasm: ** 48 bytes in case of RH toolchain */ schedule_frame += 48; /* ** Unwind schedule(). According to disasm: ** 72 bytes in case of RH toolchain ** plus 304 bytes of switch_to additional frame. */ schedule_frame += 72 + 304; #ifdef CS_SAVE_ALL schedule_frame += 256; #endif /* * schedule_frame now according to SLEEP_ON_VAR. * Bad thing is that we have no trace of the waiting * address (the classical WCHAN). SLEEP_ON_VAR should * have saved q. From the linked list only we can't get * the object and first parameter is not saved on stack * by the ABI. The best we can tell is who called the * *sleep_on* by returning LINK, which is saved at * offset 64 on all flavours. */ return (unsigned long)((unsigned long *)schedule_frame)[16]; } return pc; } /* Provide a /proc/asids file that lists out the ASIDs currently associated with the processes. (If the DM.PC register is examined through the debug link, this shows ASID + PC. To make use of this, the PID->ASID relationship needs to be known. This is primarily for debugging.) */ #if defined(CONFIG_SH64_PROC_ASIDS) #include <linux/init.h> #include <linux/proc_fs.h> static int asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data) { int len=0; struct task_struct *p; read_lock(&tasklist_lock); for_each_task(p) { int pid = p->pid; struct mm_struct *mm; if (!pid) continue; mm = p->mm; if (mm) { unsigned long asid, context; context = mm->context; asid = (context & 0xff); len += sprintf(buf+len, "%5d : %02x\n", pid, asid); } else { len += sprintf(buf+len, "%5d : (none)\n", pid); } } read_unlock(&tasklist_lock); *eof = 1; return len; } static int __init register_proc_asids(void) { create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL); return 0; } __initcall(register_proc_asids); #endif
Go to most recent revision | Compare with Previous | Blame | View Log