[image: image2.png]Open Cores

IEEE 1149.1 Test Access Port

1/30/2004

[image: image2.png]
IEEE 1149.1 Test Access Port
Author: Igor Mohor

IgorM@opencores.org

Rev. 2.0
January 30, 2004
Copyright (C) 2001 - 2004 OPENCORES.ORG and Authors.

This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Revision History

	Rev.
	Date
	Author
	Description

	0.1
	02/02/01
	Igor Mohor
	First Draft

	0.2
	05/04/01
	IM
	Trace port added

	0.3
	16/04/01
	IM
	WP and BP number changed, trace modified

	0.4
	01/05/01
	IM
	Title changed, DEBUG instruction added, scan chains changed, IO ports changed

	0.5
	05/05/01
	IM
	TSEL and QSEL register changed

	0.6
	06/05/01
	IM
	Ports connected to the OpenRISC changed

	0.7
	14/05/01
	IM
	MODER register changed, trace scan chain changed; SSEL register added

	0.8
	18/05/01
	IM
	RESET bit and signal added; STALLR changed to RISCOP

	0.9
	23/05/01
	IM
	RISC changed to OpenRISC; WISHBONE interface added, SPR and memory access added

	0.10
	01/06/01
	IM
	Meaning of Instruction status and Load/store status changed in all registers; more details added to Appendix A

	0.11
	10/09/01
	IM
	Register and OpenRISC scan chain operation changed

	1.0
	19/09/01
	IM
	Some registers deleted

	1.1
	15/10/01
	IM
	WISHBONE interface added; RISC Stall signal is set by breakpoint and reset by writing 0 to RISCOP register

	1.2
	03/12/01
	IM
	Chain length changed so additional CRC checking can be performed

	1.3
	21/01/02
	Jeanne Wiegelmann
	Document revised.

	1.4
	07/05/02
	IM
	Register MONCNTL added.

	1.5
	10/10/02
	IM
	WISHBONE Scan Chain changed to show state of the access.

	1.6
	06/11/02
	IM
	TRST_PAD_I changed from active low signal to active low signal.

	1.7
	23/09/03
	Simon Srot
	Mutliple CPU support added, WB 16-bit and 8-bit access possible through WBCNTL register use.

	2.0
	30/01/04
	IM
	JTAG and debug interface split into two different cores (and documents).

Contents

71

7Introduction

82

8IO Ports

82.1 JTAG Ports

82.2 Debug Ports

103

10Registers

103.1 Registers List

113.2 IR (Instruction Register)

113.3 IDCODE register

124

12Operation

124.2 JTAG Interface and the TAP Controller

134.2.1 EXTEST (IR=0000)

134.2.2 SAMPLE/PRELOAD (IR=0001)

134.2.3. IDCODE (IR=0010)

144.2.4 DEBUG (IR=1000)

144.2.5 MBIST (IR=1001)

144.2.6 BYPASS (IR=1111)

144.3 Scan Chains

164.3.1 ID Scan Chain

164.3.2 Debug Scan Chain

164.3.3 Global BS (Boundary Scan) Chain

164.3.4 Memory BIST Scan Chain

175

17Architecture

185.1 TAP Controller

195.1 TAP Controller in the system

List of Figures

18Figure 1: TAP Controller

19Figure 2: Complete System

List of Tables

8Table 1: JTAG Ports

9Table 2: Debug Ports

10Table 3: Register List

11Table 4: IR Register

11Table 5: IDCODE Register

Introduction

The JTAG TAP controller used for development purposes (Boundary Scan testing, Memory BIST and debugging) and is as such an interface between the processor(s), peripheral cores, and any commercial debugger/emulator or BS testing device. The external debugger or BS tester connects to the core via a fully IEEE 1149.1 compatible JTAG port. This core connects to the debug interface that is interface to the cores that are being debugged (see “dbg_interface” on Opencores web page).
IO Ports

2.1 JTAG Ports

	Port
	 Width
	 Direction
	Description

	tck_pad_i
	1
	input
	Test clock input

	tms_pad_i
	1
	input
	Test mode select input

	tdi_pad_i
	1
	input
	Test data input

	tdo_pad_o
	1
	output
	Test data output

	tdo_padoe_o
	1
	output
	TDO output enable

	trst_pad_i
	1
	input
	Test reset input (active high)

Table 1: JTAG Ports

2.2 Debug Ports

	Port
	 Width
	 Direction
	Description

	shift_dr_o
	1
	output
	TAP controller state “Shift DR”

	pause_dr_o
	1
	output
	TAP controller state “Pause DR”

	update_dr_o
	1
	output
	TAP controller state “Update DR”

	capture_dr_o
	1
	output
	TAP controller state “Capture DR”

	extest_select_o
	1
	output
	Boundary Scan external test select

	sample_preload_select_o
	1
	output
	Sample/Preload select

	mbist_select_o
	1
	output
	Memory BIST select

	debug_select_o
	1
	output
	Debug select

	tdo_o
	1
	output
	Tdo signals that connects to all TDI signals of sub-modules

	debug_tdi_i
	1
	input
	TDI signal from debug module

	bs_chain_tdi_i
	1
	input
	TDI signal from boundary scan chain module

	mbist_tdi_i
	1
	input
	TDI signal from memory BIST

Table 2: Debug Ports

Registers

This section specifies all registers in the JTAG Interface.

3.1 Registers List

	Name
	 Width
	 Access
	Description

	IR
	4
	R/W
	Instruction Register

	IDCODE
	32
	RO
	IDCODE Register

Table 3: Register List

3.2 IR (Instruction Register)

	Bit #
	 Access
	Description

	3:0
	R/W
	INSTR – Instruction
0000 = EXTEST
0001 = SAMPLE_PRELOAD
0010 = IDCODE
1000 = DEBUG
1001 = MBIST
1111 = BYPASS

Table 4: IR Register

Value from this register is always read as 0101b.

3.3 IDCODE register

	Bit #
	 Access
	Description

	31:0
	RO
	ID – Identification

Table 5: IDCODE Register

Default valueof the IDCODE register is written in tap_defines.v file.
Operation

This section describes the operation of the JTAG interface, TAP controller, supported instructions, and connection of the sub-modules.
4.2 JTAG Interface and the TAP Controller

The JTAG Interface and TAP Controller are fully IEEE Std.1149.1 compliant. JTAG interface consists of six signals:

· tck_pad_i (TCK)

· tms_pad_i (TMS)

· tdi_pad_i (TDI)

· trst_pad_i (TRST)

· tdo_pad_o (TDO)

· tdo_padoe_o

tdo_padoe_o is an enable signal for the TDO pad. tdo_pad_o and tdo_padoe_o should be combined together to the TDO signal on the higher layer.
trst_pad_i is a TRST reset but is active high and not low. This signal should be negated on the higher level. This is done because some pads have an internal inverter.

The following instructions are supported by the TAP (see section Table 3: Register List for instruction coding):

· EXTEST
· SAMPLE/PRELOAD

· IDCODE

· DEBUG

· MBIST

· BYPASS

All supported instructions are shifted to the instruction register with the LSB bit shifted first.

Supported instructions are described in the following sections.
4.2.1 EXTEST (IR=0000)

The EXTEST instruction connects the boundary scan chain, between the TDI and TDO. During EXTEST instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and to receive test data in-chip via the boundary inputs. The bit code of this instruction is defined as all zeroes by IEEE Std. 1149.1.

· CaptureDR state: The outputs from the system logic (test vector) are captured.

· ShiftDR state: The captured test vector is shifted out via TDO output while a new test vector is shifted in via the TDI input.

· UpdateDR state: The data shifted in via TDI is applied to Output and Control cells (output pins are driven with 0, 1, or highZ).

4.2.2 SAMPLE/PRELOAD (IR=0001)

The SAMPLE/PRELOAD instruction allows the IC to remain in its functional mode and to select the boundary-scan chain to be connected between TDI and TDO. During this instruction, you can access the boundary-scan chain registers via a data scan operation to take a sample of the functional data entering and leaving the IC. The instruction is also used to preload test data into the boundary-scan register before loading an EXTEST instruction. This instruction should only be used for production tests.

· CaptureDR state: The inputs from the system logic (test vector) are captured.

· ShiftDR state: The captured test vector is shifted out via TDO output while a new test vector is shifted in via TDI input.

· UpdateDR state: No changes.

4.2.3. IDCODE (IR=0010)

The IDCODE instruction allows the IC to remain in its functional mode and selects the device identification register (ID register) to be connected between TDI and TDO. The device identification register is a 32-bit read-only register containing information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available via a TAP data-scan operation, after power-up of the IC, or after the TAP has been reset by using the optional trst_pad_i pin or by otherwise moving to the Test-Logic-Reset state.

· CaptureDR state: The ID value is captured from the ID register.

· ShiftDR state: The captured ID value is shifted out via TDO output.

· UpdateDR state: The data shifted in via TDI is ignored (ID is a read-only register).

4.2.4 DEBUG (IR=1000)

The DEBUG instruction is used to enable debugging. In this case debug_tdi_i signal is connected to the TDO. Signal tdo_o must be connected to the TDI signal of the dbg_interface module. For more details see documentation for the dbg_interface available at opencores website.
4.2.5 MBIST (IR=1001)

The MBIST instruction is used for internal memory BIST. When active, mbist_tdi_i is connected to the TDO. Please refer to the MBIST documentation for more details about MBIST.
4.2.6 BYPASS (IR=1111)

The BYPASS instruction keeps the IC in a functional mode and selects that the bypass register will be connected between TDI and TDO. It allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC. The bit code of this instruction is defined as all ones by IEEE Std. 1149.1. Usage of an unimplemented instruction will result in the BYPASS instruction.

· CaptureDR state: A logical 0 is captured in the bypass register.

· ShiftDR state: Input data shifted in via TDI is shifted out via TDO after a one-clock delay.

· UpdateDR state: No changes.

4.3 Scan Chains

There are four scan chains connected to the TAP controller:

· ID scan chain

· Debug interface scan chain

· Global boundary scan chain
· Memory BIST scan chain
The last three scan chains are inputs to the TAP controller while ID scan chain is internal. Switching between these four scan chains is done automatically each time a new instruction is shifted into the Instruction Register (see section Table 4: IR Register for more details).

ID scan chain is connected to the TDO when the IDCODE instruction is previously shifted in the IR register. Debug interface scan chain is connected to the TDO when the DEBUG instruction is previously shifted in the IR register. Global BS chain is connected to the TDO when the EXTEST or SAMPLE/PRELOAD instructions are previously shifted in the IR register. Memory BIST scan chain is connected to the TDO when the MBIST instruction is previously shifted in the IR register.
All scan chains are operating at the falling edge of the TCK clock signal.

4.3.1 ID Scan Chain

The ID scan chain is a 32-bit chain used for reading out the internal IDCODE. LSB bit is shifted out first.

4.3.2 Debug Scan Chain

The Debug Interface scan chain is used for interfacing to the debug support (CPU, wishbone…). Please refer to the dbg_interface documentation for more information about this scan chain (length, etc.)

4.3.3 Global BS (Boundary Scan) Chain

This chain allows access to the entire SoC periphery and is used for the boundary scan testing (interconnect test). The chain is automatically selected after the reset.

4.3.4 Memory BIST Scan Chain

This chain allows access to the Memory built-in self test scan chain. MBIST is not part of this project, TAP only has connection ports for it.
Architecture

The TAP controller consists of several parts (blocks):

· JTAG interface with the TAP Controller

· Instruction register (described in section Table 3: Register List on page 9)

· Multiplexer that connects one of the scan chains to the TDO.
5.1 TAP Controller

The TAP controller connects to the external debugger or Boundary Scan testing equipment through the standard JTAG interface (fully IEEE Std. 1149.1 compliant), made of five signals (tck, tms, tdi, tdo and trst). It should be noted that the reset signal trst is active high signal and should be negated on the higher layer to satisfy the IEEE 1149.1 standard.

[image: image1.png]
Figure 1: TAP Controller

5.1 TAP Controller in the system

As seen on the following figure, TAP controller is just one part of the complete debugging system. For more information about the Debug Interface, go to the opencores web site. There is a complete IP core with test bench and documentation available.
[image: image3.wmf]

Figure 2: Complete System

Logic

Logic

MUX

FSM

CRC

Reg.

MUX

FSM

Optional sub-modules

WISHB. sub-module

CPU sub-module

MUX

ID

FSM

TAP Controller

MUX

MUX logic

CPU 1

CPU

+

CPU Development Interface

CPU n

CPU

+

CPU Development Interface

Debug Interface

TRSTn

TMS

TCK

TDO

TDI

Debug Scan Chain

Boundary Scan Chain

� EMBED Word.Picture.8 ���

MBIST Scan Chain

PAGE
http://www.opencores.org/
Rev 2.0
Page 3 of 19

[image: image4.wmf]

_1073147954.doc

