URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [mips/] [kernel/] [gdb-stub.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * arch/mips/kernel/gdb-stub.c * * Originally written by Glenn Engel, Lake Stevens Instrument Division * * Contributed by HP Systems * * Modified for SPARC by Stu Grossman, Cygnus Support. * * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> * * Copyright (C) 1995 Andreas Busse */ /* * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a BREAK instruction. * * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * */ #include <linux/string.h> #include <linux/signal.h> #include <linux/kernel.h> #include <asm/asm.h> #include <asm/mipsregs.h> #include <asm/segment.h> #include <asm/cachectl.h> #include <asm/system.h> #include <asm/gdb-stub.h> /* * external low-level support routines */ extern int putDebugChar(char c); /* write a single character */ extern char getDebugChar(void); /* read and return a single char */ extern void fltr_set_mem_err(void); extern void trap_low(void); /* * breakpoint and test functions */ extern void breakpoint(void); extern void breakinst(void); extern void adel(void); /* * local prototypes */ static void getpacket(char *buffer); static void putpacket(char *buffer); static void set_mem_fault_trap(int enable); static int computeSignal(int tt); static int hex(unsigned char ch); static int hexToInt(char **ptr, int *intValue); static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault); void handle_exception(struct gdb_regs *regs); static void show_gdbregs(struct gdb_regs *regs); /* * BUFMAX defines the maximum number of characters in inbound/outbound buffers * at least NUMREGBYTES*2 are needed for register packets */ #define BUFMAX 2048 static char input_buffer[BUFMAX]; static char output_buffer[BUFMAX]; static int initialized = 0; /* !0 means we've been initialized */ static const char hexchars[]="0123456789abcdef"; /* * Convert ch from a hex digit to an int */ static int hex(unsigned char ch) { if (ch >= 'a' && ch <= 'f') return ch-'a'+10; if (ch >= '0' && ch <= '9') return ch-'0'; if (ch >= 'A' && ch <= 'F') return ch-'A'+10; return -1; } /* * scan for the sequence $<data>#<checksum> */ static void getpacket(char *buffer) { unsigned char checksum; unsigned char xmitcsum; int i; int count; unsigned char ch; do { /* * wait around for the start character, * ignore all other characters */ while ((ch = (getDebugChar() & 0x7f)) != '$') ; checksum = 0; xmitcsum = -1; count = 0; /* * now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar() & 0x7f; if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } if (count >= BUFMAX) continue; buffer[count] = 0; if (ch == '#') { xmitcsum = hex(getDebugChar() & 0x7f) << 4; xmitcsum |= hex(getDebugChar() & 0x7f); if (checksum != xmitcsum) putDebugChar('-'); /* failed checksum */ else { putDebugChar('+'); /* successful transfer */ /* * if a sequence char is present, * reply the sequence ID */ if (buffer[2] == ':') { putDebugChar(buffer[0]); putDebugChar(buffer[1]); /* * remove sequence chars from buffer */ count = strlen(buffer); for (i=3; i <= count; i++) buffer[i-3] = buffer[i]; } } } } while (checksum != xmitcsum); } /* * send the packet in buffer. */ static void putpacket(char *buffer) { unsigned char checksum; int count; unsigned char ch; /* * $<packet info>#<checksum>. */ do { putDebugChar('$'); checksum = 0; count = 0; while ((ch = buffer[count]) != 0) { if (!(putDebugChar(ch))) return; checksum += ch; count += 1; } putDebugChar('#'); putDebugChar(hexchars[checksum >> 4]); putDebugChar(hexchars[checksum & 0xf]); } while ((getDebugChar() & 0x7f) != '+'); } /* * Indicate to caller of mem2hex or hex2mem that there * has been an error. */ static volatile int mem_err = 0; /* * Convert the memory pointed to by mem into hex, placing result in buf. * Return a pointer to the last char put in buf (null), in case of mem fault, * return 0. * If MAY_FAULT is non-zero, then we will handle memory faults by returning * a 0, else treat a fault like any other fault in the stub. */ static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault) { unsigned char ch; /* set_mem_fault_trap(may_fault); */ while (count-- > 0) { ch = *(mem++); if (mem_err) return 0; *buf++ = hexchars[ch >> 4]; *buf++ = hexchars[ch & 0xf]; } *buf = 0; /* set_mem_fault_trap(0); */ return buf; } /* * convert the hex array pointed to by buf into binary to be placed in mem * return a pointer to the character AFTER the last byte written */ static char *hex2mem(char *buf, char *mem, int count, int may_fault) { int i; unsigned char ch; /* set_mem_fault_trap(may_fault); */ for (i=0; i<count; i++) { ch = hex(*buf++) << 4; ch |= hex(*buf++); *(mem++) = ch; if (mem_err) return 0; } /* set_mem_fault_trap(0); */ return mem; } /* * This table contains the mapping between SPARC hardware trap types, and * signals, which are primarily what GDB understands. It also indicates * which hardware traps we need to commandeer when initializing the stub. */ static struct hard_trap_info { unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ unsigned char signo; /* Signal that we map this trap into */ } hard_trap_info[] = { { 4, SIGBUS }, /* address error (load) */ { 5, SIGBUS }, /* address error (store) */ { 6, SIGBUS }, /* instruction bus error */ { 7, SIGBUS }, /* data bus error */ { 9, SIGTRAP }, /* break */ { 10, SIGILL }, /* reserved instruction */ /* { 11, SIGILL }, */ /* cpu unusable */ { 12, SIGFPE }, /* overflow */ { 13, SIGTRAP }, /* trap */ { 14, SIGSEGV }, /* virtual instruction cache coherency */ { 15, SIGFPE }, /* floating point exception */ { 23, SIGSEGV }, /* watch */ { 31, SIGSEGV }, /* virtual data cache coherency */ { 0, 0} /* Must be last */ }; /* * Set up exception handlers for tracing and breakpoints */ void set_debug_traps(void) { struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) set_except_vector(ht->tt, trap_low); /* * In case GDB is started before us, ack any packets * (presumably "$?#xx") sitting there. */ putDebugChar ('+'); initialized = 1; breakpoint(); } /* * Trap handler for memory errors. This just sets mem_err to be non-zero. It * assumes that %l1 is non-zero. This should be safe, as it is doubtful that * 0 would ever contain code that could mem fault. This routine will skip * past the faulting instruction after setting mem_err. */ extern void fltr_set_mem_err(void) { /* FIXME: Needs to be written... */ } static void set_mem_fault_trap(int enable) { mem_err = 0; #if 0 if (enable) exceptionHandler(9, fltr_set_mem_err); else exceptionHandler(9, trap_low); #endif } /* * Convert the MIPS hardware trap type code to a unix signal number. */ static int computeSignal(int tt) { struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) if (ht->tt == tt) return ht->signo; return SIGHUP; /* default for things we don't know about */ } /* * While we find nice hex chars, build an int. * Return number of chars processed. */ static int hexToInt(char **ptr, int *intValue) { int numChars = 0; int hexValue; *intValue = 0; while (**ptr) { hexValue = hex(**ptr); if (hexValue < 0) break; *intValue = (*intValue << 4) | hexValue; numChars ++; (*ptr)++; } return (numChars); } /* * This function does all command processing for interfacing to gdb. It * returns 1 if you should skip the instruction at the trap address, 0 * otherwise. */ void handle_exception (struct gdb_regs *regs) { int trap; /* Trap type */ int sigval; int addr; int length; char *ptr; unsigned long *stack; #if 0 printk("in handle_exception()\n"); show_gdbregs(regs); #endif /* * First check trap type. If this is CPU_UNUSABLE and CPU_ID is 1, * the simply switch the FPU on and return since this is no error * condition. kernel/traps.c does the same. * FIXME: This doesn't work yet, so we don't catch CPU_UNUSABLE * traps for now. */ trap = (regs->cp0_cause & 0x7c) >> 2; /* printk("trap=%d\n",trap); */ if (trap == 11) { if (((regs->cp0_cause >> CAUSEB_CE) & 3) == 1) { regs->cp0_status |= ST0_CU1; return; } } /* * If we're in breakpoint() increment the PC */ if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst) regs->cp0_epc += 4; stack = (long *)regs->reg29; /* stack ptr */ sigval = computeSignal(trap); /* * reply to host that an exception has occurred */ ptr = output_buffer; /* * Send trap type (converted to signal) */ *ptr++ = 'T'; *ptr++ = hexchars[sigval >> 4]; *ptr++ = hexchars[sigval & 0xf]; /* * Send Error PC */ *ptr++ = hexchars[REG_EPC >> 4]; *ptr++ = hexchars[REG_EPC & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®s->cp0_epc, ptr, 4, 0); *ptr++ = ';'; /* * Send frame pointer */ *ptr++ = hexchars[REG_FP >> 4]; *ptr++ = hexchars[REG_FP & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®s->reg30, ptr, 4, 0); *ptr++ = ';'; /* * Send stack pointer */ *ptr++ = hexchars[REG_SP >> 4]; *ptr++ = hexchars[REG_SP & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®s->reg29, ptr, 4, 0); *ptr++ = ';'; *ptr++ = 0; putpacket(output_buffer); /* send it off... */ /* * Wait for input from remote GDB */ while (1) { output_buffer[0] = 0; getpacket(input_buffer); switch (input_buffer[0]) { case '?': output_buffer[0] = 'S'; output_buffer[1] = hexchars[sigval >> 4]; output_buffer[2] = hexchars[sigval & 0xf]; output_buffer[3] = 0; break; case 'd': /* toggle debug flag */ break; /* * Return the value of the CPU registers */ case 'g': ptr = output_buffer; ptr = mem2hex((char *)®s->reg0, ptr, 32*4, 0); /* r0...r31 */ ptr = mem2hex((char *)®s->cp0_status, ptr, 6*4, 0); /* cp0 */ ptr = mem2hex((char *)®s->fpr0, ptr, 32*4, 0); /* f0...31 */ ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*4, 0); /* cp1 */ ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*4, 0); /* frp */ ptr = mem2hex((char *)®s->cp0_index, ptr, 16*4, 0); /* cp0 */ break; /* * set the value of the CPU registers - return OK * FIXME: Needs to be written */ case 'G': { #if 0 unsigned long *newsp, psr; ptr = &input_buffer[1]; hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */ /* * See if the stack pointer has moved. If so, then copy the * saved locals and ins to the new location. */ newsp = (unsigned long *)registers[SP]; if (sp != newsp) sp = memcpy(newsp, sp, 16 * 4); #endif strcpy(output_buffer,"OK"); } break; /* * mAA..AA,LLLL Read LLLL bytes at address AA..AA */ case 'm': ptr = &input_buffer[1]; if (hexToInt(&ptr, &addr) && *ptr++ == ',' && hexToInt(&ptr, &length)) { if (mem2hex((char *)addr, output_buffer, length, 1)) break; strcpy (output_buffer, "E03"); } else strcpy(output_buffer,"E01"); break; /* * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ case 'M': ptr = &input_buffer[1]; if (hexToInt(&ptr, &addr) && *ptr++ == ',' && hexToInt(&ptr, &length) && *ptr++ == ':') { if (hex2mem(ptr, (char *)addr, length, 1)) strcpy(output_buffer, "OK"); else strcpy(output_buffer, "E03"); } else strcpy(output_buffer, "E02"); break; /* * cAA..AA Continue at address AA..AA(optional) */ case 'c': /* try to read optional parameter, pc unchanged if no parm */ ptr = &input_buffer[1]; if (hexToInt(&ptr, &addr)) regs->cp0_epc = addr; /* * Need to flush the instruction cache here, as we may * have deposited a breakpoint, and the icache probably * has no way of knowing that a data ref to some location * may have changed something that is in the instruction * cache. * NB: We flush both caches, just to be sure... */ sys_cacheflush((void *)KSEG0,KSEG1-KSEG0,BCACHE); return; /* NOTREACHED */ break; /* * kill the program */ case 'k' : break; /* do nothing */ /* * Reset the whole machine (FIXME: system dependent) */ case 'r': break; /* * Step to next instruction * FIXME: Needs to be written */ case 's': strcpy (output_buffer, "S01"); break; /* * Set baud rate (bBB) * FIXME: Needs to be written */ case 'b': { #if 0 int baudrate; extern void set_timer_3(); ptr = &input_buffer[1]; if (!hexToInt(&ptr, &baudrate)) { strcpy(output_buffer,"B01"); break; } /* Convert baud rate to uart clock divider */ switch (baudrate) { case 38400: baudrate = 16; break; case 19200: baudrate = 33; break; case 9600: baudrate = 65; break; default: baudrate = 0; strcpy(output_buffer,"B02"); goto x1; } if (baudrate) { putpacket("OK"); /* Ack before changing speed */ set_timer_3(baudrate); /* Set it */ } #endif } break; } /* switch */ /* * reply to the request */ putpacket(output_buffer); } /* while */ } /* * This function will generate a breakpoint exception. It is used at the * beginning of a program to sync up with a debugger and can be used * otherwise as a quick means to stop program execution and "break" into * the debugger. */ void breakpoint(void) { if (!initialized) return; __asm__ __volatile__(" .globl breakinst .set noreorder nop breakinst: break nop .set reorder "); } void adel(void) { __asm__ __volatile__(" .globl adel la $8,0x80000001 lw $9,0($8) "); } /* * Print registers (on target console) * Used only to debug the stub... */ void show_gdbregs(struct gdb_regs * regs) { /* * Saved main processor registers */ printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg0, regs->reg1, regs->reg2, regs->reg3, regs->reg4, regs->reg5, regs->reg6, regs->reg7); printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg8, regs->reg9, regs->reg10, regs->reg11, regs->reg12, regs->reg13, regs->reg14, regs->reg15); printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg16, regs->reg17, regs->reg18, regs->reg19, regs->reg20, regs->reg21, regs->reg22, regs->reg23); printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg24, regs->reg25, regs->reg26, regs->reg27, regs->reg28, regs->reg29, regs->reg30, regs->reg31); /* * Saved cp0 registers */ printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", regs->cp0_epc, regs->cp0_status, regs->cp0_cause); }