

OpenRISC 1000
Architecture Manual

1

July 13, 2004

Copyright (C) 2000, 2001, 2002, 2003, 2004 OPENCORES.ORG and Authors

This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 2 of 331

Table of Contents

1 ABOUT THIS MANUAL..6
1.1 INTRODUCTION ..6
1.2 AUTHORS ...6
1.3 REVISION HISTORY ..6
1.4 WORK IN PROGRESS ...6
1.5 FONTS IN THIS MANUAL...6
1.6 CONVENTIONS ...6
1.7 NUMBERING...6

2 ARCHITECTURE OVERVIEW6
2.1 FEATURES ..6
2.2 INTRODUCTION ..6

3 ADDRESSING MODES AND OPERAND CONVENTIONS ...6
3.1 MEMORY ADDRESSING MODES ..6

3.1.1 Register Indirect with Displacement...6
3.1.2 PC Relative ...6

3.2 MEMORY OPERAND CONVENTIONS ..6
3.2.1 Bit and Byte Ordering ...6
3.2.2 Aligned and Misaligned Accesses..6

4 REGISTER SET ...6
4.1 FEATURES ..6
4.2 OVERVIEW ..6
4.3 SPECIAL-PURPOSE REGISTERS ..6
4.4 GENERAL-PURPOSE REGISTERS (GPRS) ...6
4.5 SUPPORT FOR CUSTOM NUMBER OF GPRS ...6
4.6 SUPERVISION REGISTER (SR) ...6
4.7 EXCEPTION PROGRAM COUNTER REGISTERS (EPCR0 - EPCR15)6
4.8 EXCEPTION EFFECTIVE ADDRESS REGISTERS (EEAR0-EEAR15)6
4.9 EXCEPTION SUPERVISIO N REGISTERS (ESR0-ESR15)6
4.10 NEXT AND PREVIOUS PROGRAM COUNTER (NPC AND PPC)6
4.11 FLOATING POINT CONTR OL STATUS REGISTER (FPCSR)6

5 INSTRUCTION SET ...6
5.1 FEATURES ..6
5.2 OVERVIEW ..6
5.3 ORBIS32/64...6

6 EXCEPTION MODEL ...6
6.1 INTRODUCTION ..6
6.2 EXCEPTION CLASSES ..6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 3 of 331

6.3 EXCEPTION PROCESSING ...6
6.4 FAST CONTEXT SWITCHING (OPTIONAL) ..6

6.4.1 Changing Context in Supervisor Mode ...6
6.4.2 Context Switch Caused by Exception ...6
6.4.3 Accessing Other Contexts’ Registers...6

7 MEMORY MODEL ...6
7.1 MEMORY ...6
7.2 MEMORY ACCESS ORDERING ...6

7.2.1 Memory Synchronize Instruction ..6
7.2.2 Pages Designated as Weakly-Ordered-Memory................................6

7.3 ATOMICITY ...6

8 MEMORY MANAGEMENT ...6
8.1 MMU FEATURES ...6
8.2 MMU OVERVIEW ...6
8.3 MMU EXCEPTIONS ...6
8.4 MMU SPECIAL-PURPOSE REGISTERS ...6

8.4.1 Data MMU Control Register (DMMUCR) ..6
8.4.2 Data MMU Protection Register (DMMUPR)................................6
8.4.3 Instruction MMU Control Register (IMMUCR)..6
8.4.4 Instruction MMU Protection Register (IMMUPR) ...6
8.4.5 Instruction/Data TLB Entry Invalidate Registers (xTLBEIR)6
8.4.6 Instruction/Data Translation Lookaside Buffer Way y Match Registers
(xTLBWyMR0-xTLBWyMR127)..6
8.4.7 Data Translation Lookaside Buffer Way y Translate Registers (DTLBWyTR0 -
DTLBWyTR127) ..6
8.4.8 Instruction Translation Lookaside Buffer Way y Translate Registers
(ITLBWyTR0-ITLBWyTR127)...6
8.4.9 Instruction/Data Area Translation Buffer Match Registers (xATBMR0 -
xATBMR3)...6
8.4.10 Data Area Translation Buffer Translate Registers (DATBTR0-DATBTR3)6
8.4.11 Instruction Area Translation Buffer Translate Registers (IATBTR0 -IATBTR3)
 6

8.5 ADDRESS TRANSLATION MECHANISM IN 32-BIT IMPLEMENTATIONS6
8.6 ADDRESS TRANSLATION MECHANISM IN 64-BIT IMPLEMENTATIONS6
8.7 MEMORY PROTECTION MECHANISM...6
8.8 PAGE TABLE ENTRY DEF INITION...6
8.9 PAGE TABLE SEARCH OPERATION ...6
8.10 PAGE HISTORY RECORDING ...6
8.11 PAGE TABLE UPDATES6

9 CACHE MODEL & CACHE COHERENCY ..6
9.1 CACHE SPECIAL-PURPOSE REGISTERS ...6

9.1.1 Data Cache Control Register ..6
9.1.2 Instruction Cache Control Register ..6

9.2 CACHE MANAGEMENT...6
9.2.1 Data Cache Block Prefetch (Optional)...6
9.2.2 Data Cache Block Flush ..6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 4 of 331

9.2.3 Data Cache Block Invalidate ...6
9.2.4 Data Cache Block Write-Back ...6
9.2.5 Data Cache Block Lock (Optional)..6
9.2.6 Instruction Cache Block Prefetch (Optional)...6
9.2.7 Instruction Cache Block Invalidate ...6
9.2.8 Instruction Cache Block Lock (Optional)..6

9.3 CACHE/MEMORY COHERENCY ..6
9.3.1 Pages Designated as Cache Coherent Pages...6
9.3.2 Pages Designated as Caching-Inhibited Pages................................6
9.3.3 Pages Designated as Write -Back Cache Pages................................6

10 DEBUG UNIT (OPTIONAL) ..6
10.1 FEATURES ..6
10.2 DEBUG VALUE REGISTERS (DVR0 -DVR7)..6
10.3 DEBUG CONTROL REGISTERS (DCR0-DCR7)..6
10.4 DEBUG MODE REGISTER 1 (DMR1) ...6
10.5 DEBUG MODE REGISTER 2(DMR2) ..6
10.6 DEBUG WATCHPOINT COUNTER REGISTER (DWCR0-DWCR1)6
10.7 DEBUG STOP REGISTER (DSR)..6
10.8 DEBUG REASON REGISTER (DRR) ..6

11 PERFORMANCE COUNTERS UNIT (OPTIONAL)...6
11.1 FEATURES ..6
11.2 PERFORMANCE COUNTERS COUNT REGISTERS (PCCR0-PCCR7)6
11.3 PERFORMANCE COUNTERS MODE REGISTERS (PCMR0-PCMR7)6

12 POWER MANAGEMENT (OPTIONAL) ...6
12.1 FEATURES ..6
12.2 POWER MANAGEMENT REGISTER (PMR)..6

13 PROGRAMMABLE INTERRUPT CONTROLLER (OPTIONAL)6
13.1 FEATURES ..6
13.2 PIC MASK REGISTER (PICMR) ..6
13.3 PIC STATUS REGIS TER (PICSR)...6

14 TICK TIMER FACILITY (OPTIONAL) ..6
14.1 FEATURES ..6
14.2 TICK TIMER MODE REGISTER (TTMR) ...6
14.3 TICK TIMER COUNT REG ISTER (TTCR)................................6

15 OPENRISC 1000 IMPLEM ENTATIONS ..6
15.1 OVERVIEW ..6
15.2 VERSION REGISTER (VR) ...6
15.3 UNIT PRESENT REGISTE R (UPR) ...6
15.4 CPU CONFIGURATION REGISTER (CPUCFGR) ..6
15.5 DMMU CONFIGURATION REGISTER (DMMUCFGR) ...6
15.6 IMMU CONFIGURATION REGISTER (IMMUCFGR)6
15.7 DC CONFIGURATION REGISTER (DCCFGR)...6
15.8 IC CONFIGURATION REGISTER (ICCFGR) ...6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 5 of 331

15.9 DEBUG CONFIGURATION REGISTER (DCFGR) ..6
15.10 PERFORMANCE COUNTERS CONFIGURATION REGIS TER (PCCFGR)............6

16 APPLICATION BINARY INTERFACE ...6
16.1 DATA REPRESENTATION ...6

16.1.1 Fundamental Types ..6
16.1.2 Aggregates and Unions................................6
16.1.3 Bit-fields ...6

16.2 FUNCTION CALLING SEQUENCE ..6
16.2.1 Register Usage ...6
16.2.2 The Stack Frame...6
16.2.3 Parameter Passing................................6
16.2.4 Functions Returning Scalars or No Value...6
16.2.5 Functions Returning Structures or Unions...6

16.3 OPERATING SYSTEM INTERFACE................................6
16.3.1 Exception Interface ...6
16.3.2 Virtual Address Space ..6
16.3.3 Page Size ..6
16.3.4 Virtual Address Assignments ...6
16.3.5 Stack...6
16.3.6 Processor Execution Modes...6

16.4 POSITION-INDEPENDENT CODE ..6
16.5 ELF................................6

16.5.1 Header Convention ...6
16.5.2 Sections................................6
16.5.3 Relocation...6

16.6 COFF...6
16.6.1 Sections................................6
16.6.2 Relocation...6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 6 of 331

Table Of Figures
Figure 3-1. Register Indirect with Displacement Addressing ...6
Figure 3-2. PC Relative Addressing ...6
Figure 5-1. Instruction Set ...6
Figure 8-1. Translation of Effective to Physical Address – Simplified block diagram for 32-bit

processor implementations ..6
Figure 8-2. Memory Divided Into L1 and L2 pages ..6
Figure 8-3. Address Translation Mechanism using Two -Level Page Table..................................6
Figure 8-4. Address Translation Mechanism using only L1 Page Table6
Figure 8-5. Memory Divided Into L0, L1 and L2 pages ...6
Figure 8-6. Address Translation Mechanism using Three-Level Page Table6
Figure 8-7. Address Translation Mechanism using Two -Level Page Table..................................6
Figure 8-8. Selection of Page Protection Attributes for Data Accesses6
Figure 8-9. Selection of Page Protection Attributes for Instruction Fetch Accesses6
Figure 8-10. Page Table Entry Format ...6
Figure 10-1. Block Diagram of Debug Support ..6
Figure 13-1. Programmable Interrupt Controller Block Diagram ..6
Figure 14-1. Tick Timer Block Diagram ...6
Figure 16-1. Byte aligned, sizeof is 1................................6
Figure 16-2. No padding, sizeof is 8...6
Figure 16-3. Padding, sizeof is 18 ..6
Figure 16-4. Storage unit sharingand alignment padding, sizeof is 12...6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 7 of 331

Table Of Tables
Table 1-1. Acronyms and Abbreviations ...6
Table 1-1. Authors of this Manual...6
Table 1-2. Revision History ..6
Table 1-3. Conventions ...6
Table 3-1. Memory Operands and their sizes..6
Table 3-2. Default Bit and Byte Ordering in Halfwords ...6
Table 3-3. Default Bit and Byte Ordering in Singlewords and Single Precision Floats6
Table 3-4. Default Bit and Byte Ordering in Doublewords, Double Precision Floats and all Vector

Types...6
Table 3-5. Memory Operand Alignment ..6
Table 4-1. Groups of SPRs ..6
Table 4-2. List of All Special-Purpose Registers................................6
Table 4-3. General-Purpose Registers ...6
Table 4-4. SR Field Descriptions ..6
Table 4-5. EPCR Field Descriptions ...6
Table 4-6. EEAR Field Descriptions ...6
Table 4-7. ESR Field Descriptions ...6
Table 4-8. FPCSR Field Descriptions ...6
Table 5-1. OpenRISC 1000 Instruction Classes6
Table 6-1. Exception Classes ..6
Table 6-2. Exception Types and Causal Conditions...6
Table 6-3. Values of EPCR and EEAR After Exception ..6
Table 8-1. MMU Exceptions ..6
Table 8-2. List of MMU Special -Purpose Registers ...6
Table 8-3. DMMUCR Field Descriptions ...6
Table 8-4. DMMUPR Field Descriptions ...6
Table 8-5. IMMUCR Field Descriptions...6
Table 8-6. IMMUPR Field Descriptions ...6
Table 8-7. xTLBEIR Field Descriptions ...6
Table 8-8. xTLBMR Field Descriptions ...6
Table 8-9. DTLBTR Field Descriptions ...6
Table 8-10. ITLBWyTR Field Descriptions6
Table 8-11. xATBMR Field Descriptions ...6
Table 8-12. DATBTR Field Descriptions ...6
Table 8-13. IATBTR Field Descriptions...6
Table 8-14. Protection Attributes ..6
Table 8-15. PTE Field Descriptions ..6
Table 9-1. Cache Registers ...6
Table 9-2. DCCR Field Descriptions...6
Table 9-3. ICCR Field Descriptions ..6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 8 of 331

Table 9-4. DCBPR Field Descriptions ...6
Table 9-5. DCBFR Field Descriptions ...6
Table 9-6. DCBIR Field Descriptions6
Table 9-7. DCBWR Field Descriptions ..6
Table 9-8. DCBLR Field Descriptions ...6
Table 9-9. ICBPR Field Descriptions6
Table 9-10. ICBIR Field Descriptions................................6
Table 9-11. ICBLR Field Descriptions ...6
Table 10-1. DVR Field Descriptions ...6
Table 10-2. DCR Field Descriptions ...6
Table 10-3. DMR1 Field Descriptions ...6
Table 10-4. DMR2 Field Descri ptions ...6
Table 10-5. DWCR Field Descriptions ..6
Table 10-6. DSR Field Descriptions ...6
Table 10-7. DRR Field Descriptions ...6
Table 11-1. PCCR0 Field Descriptions ...6
Table 11-2. PCMR Field Descriptions ...6
Table 12-1. PMR Field Descriptions ...6
Table 13-1. PICMR Field Descriptions ..6
Table 13-2. PICSR Field Descriptions ..6
Table 14-1. TTMR Field Descriptions ...6
Table 14-2. TTCR Field Descriptions................................6
Table 15-1. VR Field Descriptions ..6
Table 15-2. UPR Field Descriptions ...6
Table 15-3. CPUCFGR Field Descriptions6
Table 15-4. DMMUCFGR Field Descriptions...6
Table 15-5. IMMUCFGR Field Descriptions ..6
Table 15-6. DCCFGR Field Descriptions ..6
Table 15-7. ICCFGR Field Descriptions ..6
Table 15-8. DCFGR Field Descriptions...6
Table 15-9. PCCFGR Field Descriptions ..6
Table 16-1. Scalar Types ...6
Table 16-2. Vector Types ...6
Table 16-3. Bit-Field Types and Ranges ..6
Table 16-4. General-Purpose Registers ...6
Table 16-5. Stack Frame...6
Table 16-6. Hardware Exceptions and Signals..6
Table 16-7. Virtual Address Configuration6
Table 16-8. e_ident Field Values ...6
Table 16-9. e_flags Field Values ...6

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 9 of 331

Acronyms & Abbreviations
ALU Arithmetic Logic Unit

ATB Area Translation Buffer

BIU Bus Interface Unit

BTC Branch Target Cache

CPU Central Processing Unit

DC Data Cache

DMMU Data MMU

DTLB Data TLB

DU Debug Unit

EA Effective address

FPU Floating-Point Unit

GPR General -Purpose Register

IC Instruction Cache

IMMU Instruction MMU

ITLB Instruction TLB

MMU Memory Management Unit

OR1K OpenRISC 1000 Architecture

ORBIS OpenRISC Basic Instruction Set

ORFPX OpenRISC Floating-Point eXtension

ORVDX OpenRISC Vector/DSP eXtension

PC Program Counter

PCU Performance Counters Unit

PIC Programmable Interrupt Controller

PM Power Management

PTE Page Table Entry

R/W Read/Write

RISC Reduced Instruction Set Computer

SMP Symmetrical Multi-Processing

SMT Simultaneous Multi-Threading

SPR Special-Purpose Register

SR Supervison Register

TLB Translation Lookaside Buffer

Table 1-1. Acronyms and Abbreviations

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 10 of 331

1 About this Manual
1.1 Introduction

The OpenRISC 1000 system architecture manual defines the architecture for a
family of open-source, synthesizable RISC microprocessor cores. The OpenRISC 1000
architecture allows for a spectrum of chip and system implementations at a variety of
price/performance points for a range of applications. It is a 32/64-bit load and store RISC
architecture designed with emphasis on performance, simplicity, low power
requirements, and scalability. The OpenRISC 1000 architecture targets medium and high
performance networking and embedded computer environments.

This manual covers the instruction set, register set, cache management and
coherency, memory model, exception model, addressing modes, operands conventions,
and the application binary interface (ABI).
This manual does not specify implementation-specific details such as pipeline depth,
cache organization, branch prediction, instruction timing, bus interface etc.

1.2 Authors
If you have contributed to this manual but your name isn't listed here, it is not meant

as a slight – We simply don't know about it. Send an email to the maintainer(s), and we'll
correct the situation.

Name E-mail Contribution

Damjan Lampret damjanl@opencores.org Initial document

Chen-Min Chen jimmy@ee.nctu.edu.tw Some notes

Marko Mlinar markom@opencores.org Fast context switches

Johan Rydberg jrydberg@opencores.org ELF section

Matan Ziv-Av matan@svgalib.org Several suggestions

Chris Ziomkowski chris@opencores.org Several suggestions

Greg McGary greg@mcgary.org l.cmov, trap exception

Bob Gardner Native Speaker Check

Rohit Mathur rohitmathurs@opencores.org Technical review and
corrections

Maria Bolado mbolado@teisa.unican.es Technical review and
corrections

Table 1-1. Authors of this Manual

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 11 of 331

1.3 Revision History
The revision history of this manual is presented in the table below.

Revision Date By Modifications

15/Mar/2000 Damjan Lampret Initial document

7/Apr/2001 Damjan Lampret First public release

22/Apr/2001 Damjan Lampret Incorporated changes from Johan and
Matan

16/May/2001 Damjan Lampret Changed SR, Debug, Exceptions, TT,
PM. Added l.cmov, l.ff1, etc.

23/May/2001 Damjan Lampret Added SR[SUMRA], configuration
registerc etc.

24/May/2001 Damjan Lampret Changed virtually almost all chapters in
some way – major change is addition of

configuration registers.

28/May/2001 Damjan Lampret Changed addresses of some SPRs,
removed group SPR group 11, added

DCR[CT]=7.

24/Jan/2002 Marko Mlinar Major check and update

9/Apr/2002 Marko Mlinar PICPR register removed; l.sys convention
added; mtspr/mfspr now use bitwise OR

instead of sum

28/July/2002 Jeanne Wiegelmann First overall review & layout adjustment

20/Spetember/2002 Rohit Mathur Second overall review

12/January/2003 Damjan Lampret Synchronization with or1ksim and
OR1200 RTL. Not all chapters have been

checked.

26/January/2003 Damjan Lampret Synchronization with or1ksim and
OR1200 RTL. From this revision on the
manual carries revision number 1.0 and

parts of the architecture that are
implemented in OR1200 will no longer

change because OR1200 is being
implemented in silicon. Major parts that
are not implemented in OR1200 and

could change in the future include
ORFPX, ORVDX, PCU, fast context

switching, and 64-bit extension.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 12 of 331

Revision Date By Modifications

26/June/2004 Damjan Lampret Fixed typos in instruction set description
reported by Victor Lopez, Giles Hall and

Luís Vitório Cargnini. Fixed typos in
various chapters reported by Matjaz

Breskvar. Changed description of PICSR.
Updated ABI chapter based on agreed

ABI from the openrisc mailing list.
Removed DMR1[ETE], clearly defined

watchpoints&breakpoint, split long
watchpoint chain into two, removed
WP10 and removed DMR1[DXFW],
updated DMR2. Fixed FP definition

(added FP exception. FPCSR register).

Table 1-2. Revision History

1.4 Work in Progress
This document is work in progress. Anything in the manual could change until we

have made our first silicon. The latest version is always available from OPENCORES
CVS. See details about how to get it on www.opencores.org.

We are currently looking for people to work on and maintain this document. If you
would like to contribute, please send an email to one of the authors.

1.5 Fonts in this Manual
In this manual, fonts are used as follows:

• Typewriter font is used for programming examples.

• Bold font is used for emphasis.
• UPPER CASE items may be either acronyms or register mode fields that can be

written by software. Some common acronyms appear in the glossary.
• Square brackets [] indicate an addressed field in a register or a numbered register

in a register file.

1.6 Conventions
l.mnemonic Identifies an ORBIS32/64 instruction.

lv.mnemonic Identifies an ORVDX32/64 instruction.

lf.mnemonic Identifies an ORFPX32/64 instruction.

0x Indicates a hexadecimal number.

rA Instruction syntax used to identify a general purpose register

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 13 of 331

REG[FIELD] Syntax used to identify specific bit(s) of a general or special purpose
register. FIELD can be a name of one bit or a group of bits or a

numerical range constructed from two values separated by a colon.

X In certain contexts, this indicates a ‘don't care’.

N In certain contexts, this indicates an undefined numerical value.

Implementation An actual processor implementing the OpenRISC 1000 architecture.

Unit Sometimes referred to as a coprocessor. An implemented unit
usually with some special registers and controlling instructions. It

can be defined by the architecture or it may be custom.

Exception A vectored transfer of control to supervisor software through an
exception vector table. A way in which a processor can request

operating system assistance (division by zero, TLB miss, external
interrupt etc).

Privileged An instruction (or register) that can only be executed (or accessed)
when the processor is in supervisor mode (when SR[SM]=1).

Table 1-3. Conventions

1.7 Numbering
All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x

indicates a hexadecimal number. Decimal numbers don't have a special prefix. Binary
and other numbers are marked with their base.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 14 of 331

2 Architecture Overview
This chapter introduces the OpenRISC 1000 architecture and describes the general

architectural features.

2.1 Features
The OpenRISC 1000 architecture includes the following principal features:
• A completely free and open architecture.
• A linear, 32-bit or 64-bit logical address space with implementation-specific

physical address space.
• Simple and uniform- length instruction formats featuring different instruction set

extensions:

• OpenRISC Basic Instruction Set (ORBIS32/64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 32- and 64-bit data

• OpenRISC Vector/DSP eXtension (ORVDX64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 8-, 16-, 32- and 64-bit
data

• OpenRISC Floating-Point eXtension (ORFPX32/64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 32- and 64-bit data

• Two simple memory addressing modes, whereby memory address is calcula ted
by:

• addition of a register operand and a signed 16-bit immediate value
• addition of a register operand and a signed 16-bit immediate value followed by

update of the register operand with the calculated effective address
• Two register operands (or one register and a constant) for most instructions who

then place the result in a third register
• Shadowed or single 32-entry or narrow 16-entry general purpose register file
• Branch delay slot for keeping the pipeline as full as possible
• Support for separate instruction and data caches/MMUs (Harvard architecture) or

for unified instruction and data caches/MMUs (Stanford architecture)
• A flexible architecture definition that allows certain functions to be performed

either in hardware or with the assistance of impleme ntation-specific software
• Number of different, separated exceptions simplifying exception model

• Fast context switch support in register set, caches, and MMUs

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 15 of 331

2.2 Introduction
The OpenRISC 1000 architecture is a completely open architecture. It defines the

architecture of a family of open source, RISC microprocessor cores. The OpenRISC 1000
architecture allows for a spectrum of chip and system implementations at a variety of
price/performance points for a range of applications. It is a 32/64-bit load and store RISC
architecture designed with emphasis on performance, simplicity, low power
requirements, and scalability. OpenRISC 1000 targets medium and high performance
networking and embedded computer environments.

Performance features include a full 32/64-bit architecture; vector, DSP and floating-
point instructions; powerful virtual memory support; cache coherency; optional SMP and
SMT support, and support for fast context switching. The architecture defines several
features for networking and embedded computer environments. Most notable are several
instruction extensions, a configurable number of general-purpose registers, configurable
cache and TLB sizes, dynamic power management support, and space for user-provided
instructions.

The OpenRISC 1000 architecture is the predecessor of a richer and more powerful
next generation of OpenRISC architectures.

The full source for implementations of the OpenRISC 1000 architecture is available
at www.opencores.org and is supported with GNU software development tools and a
behavioral simulator. Most OpenRISC implementations are designed to be modular and
vendor-independent. They can be interfaced with other open-source cores available at
www.opencores.org.

Opencores.org encourages third parties to design and market their own
implementations of the OpenRISC 1000 architecture and to participate in further
development of the architecture.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 16 of 331

3 Addressing Modes and
Operand Conventions

This chapter describes memory-addressing modes and memory operand conventions
defined by the OpenRISC 1000 system architecture.

3.1 Memory Addressing Modes
The processor computes an effective address when executing a memory access

instruction or branch instruction or when fetching the next sequential instruction. If the
sum of the effective address and the operand length exceeds the maximum effective
address in logical address space, the memory operand wraps around from the maximum
effective address through effective address 0.

3.1.1 Register Indirect with Displacement
Load/store instructions using this address mode contain a signed 16-bit immediate

value, which is sign-extended and added to the contents of a general-purpose register
specified in the instruction.

Instruction

GPR Sign Extended Imm

+

Effective Address

Figure 3-1. Register Indirect with Displacement Addressing

Figure 3-1 shows how an effective address is computed when using register

indirect with displacement addressing mode.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 17 of 331

3.1.2 PC Relative
Branch instructions using this address mode contain a signed 26-bit immediate

value that is sign-extended and added to the contents of a Program Counter register.
Before the execution at the destination PC, instruction in delay slot is executed.

Instruction

PC Sign Extended Imm

+

Effective Address

Figure 3-2. PC Relative Addressing

Figure 3-2 shows how an effective address is generated when using PC relative

addressing mode.

3.2 Memory Operand Conventions
The architecture defines an 8-bit byte, 16-bit halfword, a 32-bit word, and a 64-bit

doubleword. It also defines IEEE-754 compliant 32-bit single precision float and 64-bit
double precision float storage units. 64-bit vectors of bytes, 64-bit vectors of halfwords,
64-bit vectors of singlewords, and 64-bit vectors of single precision floats are also
defined.

Type of Data Length in Bytes Length in Bits

Byte 1 8

Halfword (or half) 2 16

Singleword (or word) 4 32

Doubleword (or double) 8 64

Single precision float 4 32

Double precision float 8 64

Vector of bytes 8 64

Vector of halfwords 8 64

Vector of singlewords 8 64

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 18 of 331

Type of Data Length in Bytes Length in Bits

Vector of single precision floats 8 64

Table 3-1. Memory Operands and their sizes

3.2.1 Bit and Byte Ordering
Byte ordering defines how the bytes that make up halfwords, singlewords and

doublewords are ordered in memory. To simplify OpenRISC implementations, the
architecture implements Most Significant Byte (MSB) ordering – or big end ian byte
ordering by default. But implementations can support Least Significant Byte (LSB)
ordering if they implement byte reordering hardware. Reordering is enabled with bit
SR[LEE].

The figures below illustrate the conventions for bit and byte numbering within
various width storage units. These conventions hold for both integer and floating-point
data, where the most significant byte of a floating-point value holds the sign and at least
significant byte holds the start of the exponent.

Table 3-2 shows how bits and bytes are ordered in a halfword.

Bit 15 Bit 8 Bit 7 Bit 0

MSB LSB

Byte address 0 Byte address 1

Table 3-2. Default Bit and Byte Ordering in Halfwords

Table 3-3 shows how bits and bytes are ordered in a singleword.

Bit 31 Bit 24 Bit 23 Bit 16 Bit 15 Bit 8 Bit 7 Bit 0

MSB LSB

Byte address 0 Byte address 1 Byte address 2 Byte address 3

Table 3-3. Default Bit and Byte Ordering in Singlewords and Single Precision Floats

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 19 of 331

Table 3-4 shows how bits and bytes are ordered in a doubleword.

Bit 63 Bit 56

MSB

Byte address 0 Byte address 1 Byte address 2 Byte address 3

 Bit 7 Bit 0

 LSB

Byte address 4 Byte address 5 Byte address 6 Byte address 7

Table 3-4. Default Bit and Byte Ordering in Doublewords, Double Precision Floats and all Vector
Types

3.2.2 Aligned and Misaligned Accesses
A memory operand is naturally aligned if its address is an integral multiple of the

operand length. Implementations might support accessing unaligned memory operands,
but the default behavior is that accesses to unaligned operands result in an alignment
exception. See chapter Error! Reference source not found. on page Error! Bookmark
not defined. for information on alignment exception.

Operand Length addr[3:0] if aligned

Byte 8 bits Xxxx

Halfword (or half) 2 bytes Xxx0

Singleword (or word) 4 bytes Xx00

Doubleword (or double) 8 bytes X000

Single precision float 4 bytes Xx00

Double precision float 8 bytes X000

Vector of bytes 8 bytes X000

Vector of halfwords 8 bytes X000

Vector of singlewords 8 bytes X000

Vector of single precision floats 8 bytes X000

Table 3-5. Memory Operand Alignment

OR32 instructions are four bytes long and word-aligned.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 20 of 331

4 Register Set
4.1 Features

The OpenRISC 1000 register set includes the following principal features:
• Thirty-two or sixteen 32/64-bit general-purpose registers – OpenRISC 1000

implementations optimized for use in FPGAs and ASICs in embedded and similar
environments may implement only the first sixteen of the possible thirty-two
registers.

• All other registers are special-purpose registers defined for each unit separately
and accessible through the l.mtspr/l.mfspr instructions.

4.2 Overview
An OpenRISC 1000 processor includes several types of registers: user level general-

purpose and special-purpose registers, supervisor level special-purpose registers and unit-
dependent registers.

User level general-purpose and special-purpose registers are accessible both in user
mode and supervisor mode of operation. Supervisor level special-purpose registers are
accessible only in supervisor mode of operation (SR[SM]=1).

Unit dependent registers are usually only accessible in supervisor mode but there
can be exceptions to this rule. Accessibility for architecture-defined units is defined in
this manual. Accessibility for custom units not covered by this manual will be defined in
the appropriate implementation-specific manuals.

4.3 Special-Purpose Registers
The special-purpose registers of all units are grouped into thirty-two groups. Each

group can have different register address decoding depending on the maximum
theoretical number of registers in that particular group. A group can contain registers
from several different units or processes. The SR[SM] bit is also used in register address
decoding, as some registers are accessible only in supervisor mode. The l.mtspr and
l.mfspr instructions are used for reading and writing registers.

GROUP # UNIT DESCRIPTION

0 System Control and Status registers

1 Data MMU (in the case of a single unified MMU, groups 1 and 2 decode into a
single set of registers)

2 Instruction MMU (in the case of a single unified MMU, groups 1 and 2 decode
into a single set of registers)

3 Data Cache (in the case of a single unified cache, groups 3 and 4 decode into a

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 21 of 331

GROUP # UNIT DESCRIPTION
single set of registers)

4 Instruction Cache (in the case of a single unified cache, groups 3 and 4 decode
into a single set of registers)

5 MAC unit

6 Debug unit

7 Performance counters unit

8 Power Management

9 Programmable Interrupt Controller

10 Tick Timer

11 Floating Point unit

12-23 Reserved for future use

24-31 Custom units

Table 4-1. Groups of SPRs

An OpenRISC 1000 processor implementation is required to implement at least

the special purpose registers from group 0. All other groups are optional, and registers
from these groups are implemented only if the implementation has the corresponding
unit. Which units are actually implemented may be determined by reading the UPR
register from group 0.
 A 16-bit SPR address is made of 5-bit group index (bits 15-11) and 11-bit register
index (bits 10-0).

Grp # Reg # Reg Name USER
MODE

SUPV
MODE

Description

0 0 VR – R Version register

0 1 UPR – R Unit Present register

0 2 CPUCFGR – R CPU Configuration register

0 3 DMMUCFGR – R Data MMU Configuration
register

0 4 IMMUCFGR – R Instruction MMU Configuration
register

0 5 DCCFGR – R Data Cache Configuration
register

0 6 ICCFGR – R Instruction Cache Configuration
register

0 7 DCFGR – R Debug Configuration register

0 8 PCCFGR – R Performance Counters
Configuration register

0 16 NPC – R/W PC mapped to SPR space
(next PC)

0 17 SR – R/W Supervision register

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 22 of 331

Grp # Reg # Reg Name USER
MODE

SUPV
MODE

Description

0 18 PPC – R/W PC mapped to SPR space
(previous PC)

0 20 FPCSR R* R/W FP Control Status register

0 32-47 EPCR0-EPCR15 – R/W Exception PC registers

0 48-63 EEAR0-EEAR15 – R/W Exception EA registers

0 64-79 ESR0-ESR15 – R/W Exception SR registers

0 1024-
1535

GPR0-GPR511 – R/W GPRs mapped to SPR space

1 0 DMMUCR – R/W Data MMU Control register

1 1 DMMUPR – R/W Data MMU Protection Register

1 2 DTLBEIR – W Data TLB Entry Invalidate
register

1 4-7 DATBMR0-
DATBMR3

– R/W Data ATB Match registers

1 8-11 DATBTR0-
DATBTR3

– R/W Data ATB Translate registers

1 512-
639

DTLBW0MR0 -
DTLBW0MR127

– R/W Data TLB Match registers Way
0

1 640-
767

DTLBW0TR0-
DTLBW0TR127

– R/W Data TLB Translate registers
Way 0

1 768-
895

DTLBW1MR0 -
DTLBW1MR127

– R/W Data TLB Match registers Way
1

1 896-
1023

DTLBW1TR0-
DTLBW1TR127

– R/W Data TLB Translate registers
Way 1

1 1024-
1151

DTLBW2MR0 -
DTLBW2MR127

– R/W Data TLB Match registers Way
2

1 1152-
1279

DTLBW2TR0-
DTLBW2TR127

– R/W Data TLB Translate registers
Way 2

1 1280-
1407

DTLBW3MR0 -
DTLBW3MR127

– R/W Data TLB Match registers Way
3

1 1408-
1535

DTLBW3TR0-
DTLBW3TR127

– R/W Data TLB Translate registers
Way 3

2 0 IMMUCR – R/W Instruction MMU Control
register

2 1 IMMUPR – R/W Instruction MMU Protection
Register

2 2 ITLBEIR – W Instruction TLB Entry Invalidate
register

2 4-7 IATBMR0-
IATBMR3

– R/W Instruction ATB Match registers

2 8-11 IATBTR0-
IATBTR3

– R/W Instruction ATB Translate
registers

2 512- ITLBW0MR0- – R/W Instruction TLB Match registers

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 23 of 331

Grp # Reg # Reg Name USER
MODE

SUPV
MODE

Description

639 ITLBW0MR127 Way 0

2 640-
767

ITLBW0TR0-
ITLBW0TR127

– R/W Instruction TLB Translate
registers Way 0

2 768-
895

ITLBW1MR0-
ITLBW1MR127

– R/W Instruction TLB Match registers
Way 1

2 896-
1023

ITLBW1TR0-
ITLBW1TR127

– R/W Instruction TLB Translate
registers Way 1

2 1024-
1151

ITLBW2MR0-
ITLBW2MR127

– R/W Instruction TLB Match registers
Way 2

2 1152-
1279

ITLBW2TR0-
ITLBW2TR127

– R/W Instruction TLB Translate
registers Way 2

2 1280-
1407

ITLBW3MR0-
ITLBW3MR127

– R/W Instruction TLB Match registers
Way 3

2 1408-
1535

ITLBW3TR0-
ITLBW3TR127

– R/W Instruction TLB Translate
registers Way 3

3 0 DCCR – R/W DC Control register

3 1 DCBPR W W DC Block Prefetch register

3 2 DCBFR W W DC Block Flush register

3 3 DCBIR – W DC Block Invalidate register

3 4 DCBWR W W DC Block Write-back register

3 5 DCBLR W W DC Block Lock register

4 0 ICCR – R/W IC Control register

4 1 ICBPR W W IC Block Prefetch register

4 2 ICBIR – W IC Block Invalidate register

4 3 ICBLR W W IC Block Lock register

5 1 MACLO R/W R/W MAC Low

5 2 MACHI R/W R/W MAC High

6 0-7 DVR0-DVR7 – R/W Debug Value registers

6 8-15 DCR0-DCR7 – R/W Debug Control registers

6 16 DMR1 – R/W Debug Mode register 1

6 17 DMR2 – R/W Debug Mode register 2

6 18-19 DCWR0-DCWR1 – R/W Debug Watchpoint Counter
registers

6 20 DSR – R/W Debug Stop register

6 21 DRR – R/W Debug Reason register

7 0-7 PCCR0-PCCR7 R* R/W Performance Counters Count
registers

7 8-15 PCMR0-PCMR7 – R/W Performance Counters Mode
registers

8 0 PMR – R/W Power Management register

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 24 of 331

Grp # Reg # Reg Name USER
MODE

SUPV
MODE

Description

9 0 PICMR – R/W PIC Mask register

9 2 PICSR – R/W PIC Status register

10 0 TTMR – R/W Tick Timer Mode register

10 1 TTCR R* R/W Tick Timer Count register

Table 4-2. List of All Special-Purpose Registers

SPRs with R* for user mode access are readable in user mode if SR[SUMRA] is set.

4.4 General-Purpose Registers (GPRs)
The thirty-two general-purpose registers are labeled R0-R31 and are 32 bits wide in

32-bit implementations and 64 bits wide in 64-bit implementations. They hold scalar
integer data, floting-point data, vectors or memory pointers. Table 4-3 contains a list of
general-purpose registers. The GPRs may be accessed as both source and destination
registers by ORBIS, ORVDX and ORFPX instructions.

See chapter Application Binary Interface on page 6 for information on floating-point
data types.

Register r31 r30

Register R29 R28 r27 r26 r25 r24

Register R23 R22 r21 r20 r19 r18

Register R17 R16 r15 r14 r13 r12

Register R11 r10 r9 r8 r7 r6

Register R5 r4 r3 r2 r1 r0

Table 4-3. General-Purpose Registers

R0 is used as a constant zero. Whether or not R0 is actually hardwired to zero is

implementation dependent. R0 should never be used as a destination register.
Functions of other registers are explained in chapter Application Bina ry Interfaceon page
6.

An implementation may have several sets of GPRs and use them as shadow
registers, switching between them whenever a new exception occurs. The current set is
identified by the SR[CID] value.

An implementation is not required to initialize GPRs to zero during the reset
procedure. The reset exception handler is responsible for initializing GPRs to zero if that
is necessary.

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 25 of 331

4.5 Support for Custom Number of GPRs
Programs may be compiled with less than thirty-two registers. Unused registers are

disabled (set as fixed registers) when compiling code. Such code is also executable on
normal implementations with thirty-two registers but not vice versa. This feature is quite
useful since users are expected to move from less powerful OpenRISC implementations
with less than thirty-two registers to more powerful thirty-two register OpenRISC
implementations.

If configuration registers are implemented, CPUCFGR[CGF] indicates whether
implementation has complete thirty-two general-purpose registers or less than thirty-two
registers.

4.6 Supervision Register (SR)
The Supervison register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode only.
The SR value defines the state of the processor.

Bit 31-28 27-17 16
Identifier CID Reserved SUMRA

Reset 0 0 0

R/W R/W Read Only R/W

Bit 15 14 13 12 11 10 9 8

Identifier FO EPH DSX OVE OV CY F CE
Reset 1 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0
Identifier LEE IME DME ICE DCE IEE TEE SM

Reset 0 0 0 0 0 0 0 1

R/W R/W R/W R/W R/W R/W R/W R/W R/W

SM Supervisor Mode

0 Processor is in User Mode
1 Processor is in Supervisor Mode

TEE Tick Timer Exception Enabled
0 Tick Timer Exceptions are not recognized

1 Tick Timer Exceptions are recognized

IEE Interrupt Exception Enabled
0 Interrupts are not recognized

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 26 of 331

1 Interrupts are recognized

DCE Data Cache Enable
0 Data Cache is not enabled

1 Data Cache is enabled

ICE Instruction Cache Enable
0 Instruction Cache is not enabled

1 Instruction Cache is enabled

DME Data MMU Enable
0 Data MMU is not enabled

1 Data MMU is enabled

IME Instruction MMU Enable
0 Instruction MMU is not enabled

1 Instruction MMU is enabled

LEE Little Endian Enable
0 Little Endian (LSB) byte ordering is not enabled

1 Little Endian (LSB) byte ordering is enabled

CE CID Enable
0 CID disabled and shadow registers disabled

1 CID automatic increment and shadow registers enabled

F Flag
0 Conditional branch flag was cleared by sfXX instructions

1 Conditional branch flag was set by sfXX instructions

CY Carry flag
0 No carry out produced by last arithmetic operation

1 Carry out was produced by last arithmetic operation

OV Overflow flag
0 No overflow occured during last arithmetic operation

1 Overflow occured during last arithmetic operation

OVE Overflow flag Exception
0 Overflow flag does not cause an exception

1 Overflow flag causes range exception

DSX Delay Slot Exception
0 EPCR points to instruction not in the delay slot

1 EPCR points to instruction in delay slot

EPH Exception Prefix High
0 Exceptions vectors are located in memory area starting at 0x0

1 Exception vectors are located in memory area starting at 0xF0000000

FO Fixed One
This bit is always set

SUMRA SPRs User Mode Read Access
0 All SPRs are inaccessible in user mode
1 Certain SPRs can be read in user mode

CID Context ID (optional)
0-15 Current Processor Context

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 27 of 331

Table 4-4. SR Field Descriptions

4.7 Exception Program Counter Registers
(EPCR0 - EPCR15)
The Exception Program Counter registers are special-purpose supervisor- level

registers accessible with the l.mtspr/l.mfspr instructions in supervisor mode. Read access
in user mode is possible if it is enabled in PCMRx[SUMRA]. They are 32-bit wide
registers in 32-bit implementations and can be wider than 32 bits in 64-bit
implementations.

After an exception, the EPCR is set to the program counter address (PC) of the
instruction that was interrupted by the exception. If only one EPCR is present in the
implementation, it must be saved by the exception handler routine before exception
recognition is re-enabled in the SR.

Bit 31-0
Identifier EPC

Reset 0

R/W R/W

EPC Exception Program Counter Address

Table 4-5. EPCR Field Descriptions

4.8 Exception Effective Address Registers
(EEAR0-EEAR15)
The Exception Effective Address registers are special-purpose supervisor- leve l

registers accessible with the l.mtspr/l.mfspr instructions in supervisor mode. Read access
in user mode is possible if it is enabled in SR[SUMRA]. The EEARs are 32-bit wide
registers in 32-bit implementations and can be wider than 32 bits in 64-bit
implementations.

After an exception, the EEAR is set to the effective address (EA) generated by the
faulting instruction. If only one EEAR is present in the implementation, it must be saved
by the exception handler routine before exception recognition is re-enabled in the SR.

Bit 31-0
Identifier EEA

Reset 0

R/W R/W

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 28 of 331

EEA Exception Effective Address

Table 4-6. EEAR Field Descriptions

4.9 Exception Supervision Registers
(ESR0-ESR15)
The Exception Supervis ion registers are special-purpose supervisor- level registers

accessible with l.mtspr/l.mfspr instructions in supervisor mode. They are 32 bits wide
registers in 32-bit implementations and can be wider than 32 bits in 64-bit
implementations.

After an exception, the Supervision register (SR) is copied into the ESR. If only one
ESR is present in the implementation, it must be saved by the exception handler routine
before exception recognition is re-enabled in the SR.

Bit 31-0
Identifier ESR

Reset 0

R/W R/W

EEA Exception SR

Table 4-7. ESR Field Descriptions

4.10 Next and Previous Program Counter
(NPC and PPC)

The Program Counter registers represent the address just executed and the address
instruction just to be executed.

These and the GPR registers mapped into SPR space should only be used for
debugging purposes by an external debugger. Applications should use the l.jal instruction
to obtain the current program counter and arithmethic instructions to obtain GPR register
values.

4.11 Floating Point Control Status Register
(FPCSR)
Floating point control status register is a 32-bit special-purpose register accessible

with the l.mtspr/l.mfspr instructions in supervisor mode and as read-only register in user
mode if enabled in SR[SUMRA].
The FPCSR value controls floating point rounding modes, optional generation of floating
point exception and provides floating point status flags. Status flags are updated after

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 29 of 331

every floating point instruction is completed and can serve to determine what caused the
floating point exception.
If floating point exception is enabled then FPCSR status flags have to be cleared in
floating point exception handler. Status flags are cleared by writing 0 to all status bits.

Bit 31-12 11 10 9 8
Identifier Reserved DZF INF IVF IXF

Reset 0 0 0 0 0

R/W Read Only R/W R/W R/W R/W

Bit 7 6 5 4 3 2-1 0

Identifier ZF QNF SNF UNF OVF RM FPEE

Reset 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W

FPEE Floating Point Exception Enabled

0 FP Exception is disabled
1 FP Exception is enabled

RM Rounding Mode
0 Round to nearest

1 Round to zero
2 Round to infinity+
3 Round to infinity-

OVF OVerflow Flag
0 No overflow

1 Result overflowed

UNF UNderflow Flag
0 No underflow

1 Result underflowed

SNF SNAN Flag
0 Result not SNAN

1 Result SNAN

QNF QNAN Flag
0 Result not QNAN

1 Result QNAN

ZF Zero Flag
0 Result not zero

1 Result zero

IXF IneXact Flag
0 Result precise
1 Result inexact

IVF InaValid Flag

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 30 of 331

0 Result valid
1 Result invalid

INF INfinity Flag
0 Result finite

1 Result infinite

DZF Divide by Zero Flag
0 Proper divide
1 Divide by zero

Table 4-8. FPCSR Field Descriptions

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 31 of 331

5 Instruction Set
This chapter describes the OpenRISC 1000 instruction set.

5.1 Features
The OpenRISC 1000 instruction set includes the following principal features:

• Simple and uniform-length instruction formats featuring five Instruction Subsets

• OpenRISC Basic Instruction Set (ORBIS32/64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 32-bit and 64-bit data

• OpenRISC Vector/DSP eXtension (ORVDX64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 8-, 16-, 32- and 64-bit
data

• OpenRISC Floating-Point eXtension (ORFPX32/64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 32-bit and 64-bit data

• Reserved opcodes for custom instructions
Note: Instructions are divided into instruction classes. Only the basic classes are required
to be implemented in an OpenRISC 1000 implementation.

Figure 5-1. Instruction Set

5.2 Overview
OpenRISC 1000 instructions belong to one of the following instruction subsets:

• ORBIS32:
• 32-bit integer instructions
• Basic DSP instructions

Instruction Set

ORBIS32

ORBIS64

ORVDX64

ORFPX32

ORFPX64

 OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

www.opencores.org Rev 1.1 32 of 331

• 32-bit load and store instructions
• Program flow instructions
• Special instructions
• ORBIS64:
• 64-bit integer instructions

• 64-bit load and store instructions
• ORFPX32:
• Single-precision floating-point instructions
• ORFPX64:
• Double-precision floating-point instructions
• 64-bit load and store instructions
• ORVDX64:
• Vector instructions
• DSP instructions

Instructions in each subset are also split into two instruction classes according to
implementation importance:

• Class I
• Class II

Class Description

I Instructions in class I must always be implemented.

II Instructions from class II are optional and an implementation may choose to
use some or all instructions from this class based on requirements of the target

application.

Table 5-1. OpenRISC 1000 Instruction Classes

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.add Add Signed l.add

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x0

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 33 of 331

5.3 ORBIS32/64
Format:

l.add rD,rA,rB

Description:

The contents of general-purpose register rA are added to the contents of general-purpose
register rB to form the result. The result is placed into general-purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] + rB[31:0]
SR[CY] < - carry
SR[OV] < - overflow

64-bit Implementation:

rD[63:0] < - rA[63:0] + rB[63:0]
SR[CY] < - carry
SR[OV] < - overflow

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.addc Add Signed and Carry l.addc

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x1

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 34 of 34

Format:

l.addc rD,rA,rB

Description:

The contents of general-purpose register rA are added to the contents of general-purpose
register rB and carry SR[CY] to form the result. The result is placed into general-purpose
register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] + rB[31:0] + SR[CY]
SR[CY] < - carry
SR[OV] < - overflow

64-bit Implementation:

rD[63:0] < - rA[63:0] + rB[63:0] + SR[CY]
SR[CY] < - carry
SR[OV] < - overflow

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Mi ddle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.addi Add Immediate Signed l.addi

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x27 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 35 of 35

Format:

l.addi rD,rA,I

Description:

The immediate value is sign-extended and added to the contents of general-
purposeregister rA to form the result. The result is placed into general-purposeregister rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] + exts(Immediate)
SR[CY] < - carry
SR[OV] < - overflow

64-bit Implementation:

rD[63:0] < - rA[63:0] + exts(Immediate)
SR[CY] < - carry
SR[OV] < - overflow

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.addic Add Immediate Signed and Carry l.addic

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x28 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 36 of 36

Format:

l.addic rD,rA,I

Description:

The immediate value is sign-extended and added to the contents of general-
purposeregister rA and carry SR[CY] to form the result. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] + exts(Immediate) + SR[CY]
SR[CY] < - carry
SR[OV] < - overflow

64-bit Implementation:

rD[63:0] < - rA[63:0] + exts(Immediate) + SR[CY]
SR[CY] < - carry
SR[OV] < - overflow

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.and And l.and

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x3

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 37 of 37

Format:

l.and rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical AND operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] AND rB[31:0]

64-bit Implementation:

rD[63:0] < - rA[63:0] AND rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.andi And with Immediate Half Word l.andi

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x29 D A K

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 38 of 38

Format:

l.andi rD,rA,K

Description:

The immediate value is zero-extended and combined with the contents of general-
purpose register rA in a bit-wise logical AND operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] AND extz(Immediate)

64-bit Implementation:

rD[63:0] < - rA[63:0] AND extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.bf Branch if Flag l.bf

31 26 25 . 0
opcode 0x4 N

6 bits 26bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 39 of 39

Format:

l.bf N

Description:

The immediate value is shifted left two bits, sign-extended to program counter width, and
then added to the address of the branch instruction. The result is the effective address of
the branch. If the flag is set, the program branches to EA with a delay of one instruction.

32-bit Implementation:

EA < - exts(Immediate < < 2) + BranchInsnAddr
PC < - EA if SR[F] set

64-bit Implementation:

EA < - exts(Immediate < < 2) + BranchInsnAddr
PC < - EA if SR[F] set

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.bnf Branch if No Flag l.bnf

31 26 25 . 0
opcode 0x3 N

6 bits 26bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 40 of 40

Format:

l.bnf N

Description:

The immediate value is shifted left two bits, sign-extended to program counter width, and
then added to the address of the branch instruction. The result is the effective address of
the branch. If the flag is cleared, the program branches to EA with a delay of one
instruction.

32-bit Implementation:

EA < - exts(Immediate < < 2) + BranchInsnAddr
PC < - EA if SR[F] cleared

64-bit Implementation:

EA < - exts(Immediate < < 2) + BranchInsnAddr
PC < - EA if SR[F] cleared

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cmov Conditional Move l.cmov

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0xe

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 41 of 331

Format:

l.cmov rD,rA,rB

Description:

If SR[F] is set, general-purpose register rA is placed in general-purpose register rD. If
SR[F] is cleared, general-purpose register rB is placed in general-purpose register rD.

32-bit Implementation:

rD[31:0] < - SR[F] ? rA[31:0] : rB[31:0]

64-bit Implementation:

rD[63:0] < - SR[F] ? rA[63:0] : rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.csync Context Syncronization l.csync

31 . 0
opcode 0x23000000

32bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 42 of 331

Format:

l.csync

Description:

Execution of context synchronization instruction results in completion of all operations
inside the processor and a flush of the instruction pipelines. When all operations are
complete, the RISC core resumes with an empty instruction pipeline and fresh context in
all units (MMU for example).

32-bit Implementation:

context-synchronization

64-bit Implementation:

context-synchronization

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust1
Reserved for ORBIS32/64 Custom

Instructions
l.cust1

31 26 25 . 0
opcode 0x1c reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 43 of 331

Format:

l.cust1

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust2
Reserved for ORBIS32/64 Custom

Instructions
l.cust2

31 26 25 . 0
opcode 0x1d reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 44 of 44

Format:

l.cust2

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust3
Reserved for ORBIS32/64 Custom

Instructions
l.cust3

31 26 25 . 0
opcode 0x1e reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 45 of 45

Format:

l.cust3

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust4
Reserved for ORBIS32/64 Custom

Instructions
l.cust4

31 26 25 . 0
opcode 0x1f reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 46 of 46

Format:

l.cust4

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust5
Reserved for ORBIS32/64 Custom

Instructions
l.cust5

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 5 4 . . . 0
opcode 0x3c D A B L K

6 bits 5 bits 5 bits 5 bits 6 bits 5bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 47 of 47

Format:

l.cust5 rD,rA,rB,L,K

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust6
Reserved for ORBIS32/64 Custom

Instructions
l.cust6

31 26 25 . 0
opcode 0x3d reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 48 of 48

Format:

l.cust6

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middl e Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust7
Reserved for ORBIS32/64 Custom

Instructions
l.cust7

31 26 25 . 0
opcode 0x3e reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 49 of 49

Format:

l.cust7

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.cust8
Reserved for ORBIS32/64 Custom

Instructions
l.cust8

31 26 25 . 0
opcode 0x3f reserved

6 bits 26bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 50 of 50

Format:

l.cust8

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but rather by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.div Divide Signed l.div

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x3 reserved opcode 0x9

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 51 of 51

Format:

l.div rD,rA,rB

Description:

The content of general-purpose register rA are divided by the content of general-purpose
register rB, and the result is placed into general-purpose register rD. Both operands are
treated as signed integers. A carry flag is set when the divisor is zero (if carry SR[CY] is
implemented).

32-bit Implementation:

rD[31:0] < - rA[31:0] / rB[31:0]
SR[OV] < - overflow
SR[CY] < - carry

64-bit Implementation:

rD[63:0] < - rA[63:0] / rB[63:0]
SR[OV] < - overflow
SR[CY] < - carry

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.divu Divide Unsigned l.divu

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x3 reserved opcode 0xa

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 52 of 52

Format:

l.divu rD,rA,rB

Description:

The content of general-purpose register rA are divided by the content of general-purpose
register rB, and the result is placed into general-purpose register rD. Both operands are
treated as unsigned integers. A carry flag is set when the divisor is zero (if carry SR[CY]
is implemented).

32-bit Implementation:

rD[31:0] < - rA[31:0] / rB[31:0]
SR[OV] < - overflow
SR[CY] < - carry

64-bit Implementation:

rD[63:0] < - rA[63:0] / rB[63:0]
SR[OV] < - overflow
SR[CY] < - carry

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middl e Middle Middle
Middle Right

l.extbs Extend Byte with Sign l.extbs

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x1 reserved opcode 0xc

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 53 of 53

Format:

l.extbs rD,rA

Description:

Bit 7 of general-purpose register rA is placed in high-order bits of general-purpose
register rD. The low-order eight bits of general-purpose register rA are copied into the
low-order eight bits of general-purpose register rD.

32-bit Implementation:

rD[31:8] < - rA[7]
rD[7:0] < - rA[7:0]

64-bit Implementation:

rD[63:8] < - rA[7]
rD[7:0] < - rA[7:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.extbz Extend Byte with Zero l.extbz

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x3 reserved opcode 0xc

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 54 of 54

Format:

l.extbz rD,rA

Description:

Zero is placed in high-order bits of general-purpose register rD. The low-order eight bits
of general-purpose register rA are copied into the low-order eight bits of general-purpose
register rD.

32-bit Implementation:

rD[31:8] < - 0
rD[7:0] < - rA[7:0]

64-bit Implementation:

rD[63:8] < - 0
rD[7:0] < - rA[7:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.exths Extend Half Word with Sign l.exths

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x0 reserved opcode 0xc

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 55 of 55

Format:

l.exths rD,rA

Description:

Bit 15 of general-purpose register rA is placed in high-order bits of general-purpose
register rD. The low-order 16 bits of general-purpose register rA are copied into the low-
order 16 bits of general-purpose register rD.

32-bit Implementation:

rD[31:16] < - rA[15]
rD[15:0] < - rA[15:0]

64-bit Implementation:

rD[63:16] < - rA[15]
rD[15:0] < - rA[15:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.exthz Extend Half Word with Zero l.exthz

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x2 reserved opcode 0xc

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 56 of 56

Format:

l.exthz rD,rA

Description:

Zero is placed in high-order bits of general-purpose register rD. The low-order 16 bits of
general-purpose register rA are copied into the low-order 16 bits of general-purpose
register rD.

32-bit Implementation:

rD[31:16] < - 0
rD[15:0] < - rA[15:0]

64-bit Implementation:

rD[63:16] < - 0
rD[15:0] < - rA[15:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.extws Extend Word with Sign l.extws

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x0 reserved opcode 0xd

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS64 II

www.opencores.org Rev 1.1 57 of 57

Format:

l.extws rD,rA

Description:

Bit 31 of general-purpose register rA is placed in high-order bits of general-purpose
register rD. The low-order 32 bits of general-purpose register rA are copied from low-
order 32 bits of general-purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0]

64-bit Implementation:

rD[63:32] < - rA[31]
rD[31:0] < - rA[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.extwz Extend Word with Zero l.extwz

31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A reserved opcode 0x1 reserved opcode 0xd

6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS64 II

www.opencores.org Rev 1.1 58 of 58

Format:

l.extwz rD,rA

Description:

Zero is placed in high-order bits of general-purpose register rD. The low-order 32 bits of
general-purpose register rA are copied into the low-order 32 bits of general-purpose
register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0]

64-bit Implementation:

rD[63:32] < - 0
rD[31:0] < - rA[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.ff1 Find First 1 l.ff1

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0xf

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 59 of 59

Format:

l.ff1 rD,rA,rB

Description:

Position of the first '1' bit is written into general-purpose register rD. Checking for bit '1'
starts with MSB, and counting is decremented for every zero bit. If first '1' bit is
discovered in LSB, one is written into rD. If there is no '1' bit, zero is written in rD.

32-bit Implementation:

rD[31:0] < - rA[31] ? 32 : rA[30] ? 31 ... rA[0] ? 1 : 0

64-bit Implementation:

rD[63:0] < - rA[63] ? 64 : rA[62] ? 63 ... rA[0] ? 1 : 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.j Jump l.j

31 26 25 . 0
opcode 0x0 N

6 bits 26bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 60 of 60

Format:

l.j N

Description:

The immediate value is shifted left two bits, sign-extended to program counter width, and
then added to the address of the jump instruction. The result is the effective address of the
jump. The program unconditionally jumps to EA with a delay of one instruction.

32-bit Implementation:

PC < - exts(Immediate < < 2) + JumpInsnAddr

64-bit Implementation:

PC < - exts(Immediate < < 2) + JumpInsnAddr

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.jal Jump and Link l.jal

31 26 25 . 0
opcode 0x1 N

6 bits 26bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 61 of 61

Format:

l.jal N

Description:

The immediate value is shifted left two bits, sign-extended to program counter width, and
then added to the address of the jump instruction. The result is the effective address of the
jump. The program unconditionally jumps to EA with a delay of one instruction. The
address of the instruction after the delay slot is placed in the link register.

32-bit Implementation:

PC < - exts(Immediate < < 2) + JumpInsnAddr
LR < - DelayInsnAddr + 4

64-bit Implementation:

PC < - exts(Immediate < < 2) + JumpInsnAddr
LR < - DelayInsnAddr + 4

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.jalr Jump and Link Register l.jalr

31 26 25 16 15 . . . 11 10 0
opcode 0x12 reserved B reserved

6 bits 10 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 62 of 62

Format:

l.jalr rB

Description:

The contents of general-purpose register rB is the effective address of the jump. The
program unconditionally jumps to EA with a delay of one instruction. The address of the
instruction after the delay slot is placed in the link register. It is not allowed to specify
link register as rB.

32-bit Implementation:

PC < - rB
LR < - DelayInsnAddr + 4

64-bit Implementation:

PC < - rB
LR < - DelayInsnAddr + 4

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.jr Jump Register l.jr

31 26 25 16 15 . . . 11 10 0
opcode 0x11 reserved B reserved

6 bits 10 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 63 of 63

Format:

l.jr rB

Description:

The contents of general-purpose register rB is the effective address of the jump. The
program unconditionally jumps to EA with a delay of one instruction.

32-bit Implementation:

PC < - rB

64-bit Implementation:

PC < - rB

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lbs Load Byte and Extend with Sign l.lbs

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x24 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 64 of 64

Format:

l.lbs rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The byte in memory addressed by EA is loaded into
the low-order eight bits of general-purpose register rD. High-order bits of general-
purpose register rD are replaced with bit 7 of the loaded value.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[7:0] < - (EA)[7:0]
rD[31:8] < - (EA)[7]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[7:0] < - (EA)[7:0]
rD[63:8] < - (EA)[7]

Exceptions:

TLB miss
Page fault
Bus error

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lbz Load Byte and Extend with Zero l.lbz

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x23 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 65 of 65

Format:

l.lbz rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The byte in memory addressed by EA is loaded into
the low-order eight bits of general-purpose register rD. High-order bits of general-
purpose register rD are replaced with zero.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[7:0] < - (EA)[7:0]
rD[31:8] < - 0

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[7:0] < - (EA)[7:0]
rD[63:8] < - 0

Exceptions:

TLB miss
Page fault
Bus error

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.ld Load Double Word l.ld

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x20 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS64 I

www.opencores.org Rev 1.1 66 of 66

Format:

l.ld rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The double word in memory addressed by EA is
loaded into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[63:0] < - (EA)[63:0]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lhs Load Half Word and Extend with Sign l.lhs

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x26 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 67 of 67

Format:

l.lhs rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The half word in memory addressed by EA is loaded
into the low-order 16 bits of general-purpose register rD. High-order bits of general-
purpose register rD are replaced with bit 15 of the loaded value.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[15:0] < - (EA)[15:0]
rD[31:16] < - (EA)[15]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[15:0] < - (EA)[15:0]
rD[63:16] < - (EA)[15]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lhz Load Half Word and Extend with Zero l.lhz

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x25 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 68 of 68

Format:

l.lhz rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The half word in memory addressed by EA is loaded
into the low-order 16 bits of general-purpose register rD. High-order bits of general-
purpose register rD are replaced with zero.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[15:0] < - (EA)[15:0]
rD[31:16] < - 0

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[15:0] < - (EA)[15:0]
rD[63:16] < - 0

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lws Load Single Word and Extend with Sign l.lws

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x22 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 69 of 331

Format:

l.lws rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The single word in memory addressed by EA is
loaded into the low-order 32 bits of general-purpose register rD. High-order bits of
general-purpose register rD are replaced with bit 31 of the loaded value.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[31:0] < - (EA)[31:0]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[31:0] < - (EA)[31:0]
rD[63:32] < - (EA)[31]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.lwz Load Single Word and Extend with Zero l.lwz

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x21 D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 70 of 331

Format:

l.lwz rD,I(rA)

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The single word in memory addressed by EA is
loaded into the low-order 32 bits of general-purpose register rD. High-order bits of
general-purpose register rD are replaced with zero.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
rD[31:0] < - (EA)[31:0]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
rD[31:0] < - (EA)[31:0]
rD[63:32] < - 0

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mac Multiply Signed and Accumulate l.mac

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 4 3 . . 0
opcode 0x31 reserved A B reserved opcode 0x1

6 bits 5 bits 5 bits 5 bits 7 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 71 of 331

Format:

l.mac rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are multiplied, and the result is truncated to 32 bits and added to the special-purpose
registers MACHI and MACLO. All operands are treated as signed integers.

32-bit Implementation:

temp[31:0] < - rA[31:0] * rB[31:0]
MACHI[31:0]MACLO[31:0] < - temp[31:0] +
MACHI[31:0]MACLO[31:0]

64-bit Implementation:

temp[31:0] < - rA[63:0] * rB[63:0]
MACHI[31:0]MACLO[31:0] < - temp[31:0] +
MACHI[31:0]MACLO[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.maci Multiply Immediate Signed and
Accumulate

l.maci

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x13 I reserved B I

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 72 of 72

Format:

l.maci rB,I

Description:

The immediate value and the contents of general-purpose register rA are multiplied, and
the result is truncated to 32 bits and added to the special-purpose registers MACHI and
MACLO. All operands are treated as signed integers.

32-bit Implementation:

temp[31:0] < - rA[31:0] * exts(Immediate)
MACHI[31:0]MACLO[31:0] < - temp[31:0] +
MACHI[31:0]MACLO[31:0]

64-bit Implementation:

temp[31:0] < - rA[63:0] * exts(Immediate)
MACHI[31:0]MACLO[31:0] < - temp[31:0] +
MACHI[31:0]MACLO[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.macrc MAC Read and Clear l.macrc

31 26 25 . . . 21 20 . . 17 16 0
opcode 0x6 D reserved opcode 0x10000

6 bits 5 bits 4 bits 17bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 73 of 73

Format:

l.macrc rD

Description:

Once all instructions in MAC pipeline are completed, the contents of MAC is placed into
general-purpose register rD and MAC accumulator is cleared.

32-bit Implementation:

synchronize-mac
rD[31:0] < - MACLO[31:0]
MACLO[31:0], MACHI[31:0] <- 0

64-bit Implementation:

synchronize-mac
rD[63:0] < - MACHI[31:0]MACLO[31:0]
MACLO[31:0], MACHI[31:0] <- 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.mfspr Move From Special-Purpose Register l.mfspr

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x2d D A K

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 74 of 74

Format:

l.mfspr rD,rA,K

Description:

The contents of the special register, defined by contents of general-purpose rA logically
ORed with immediate value, are moved into general-purpose register rD.

32-bit Implementation:

rD[31:0] < - spr(rA OR Immediate)

64-bit Implementation:

rD[63:0] < - spr(rA OR Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.movhi Move Immediate High l.movhi

31 26 25 . . . 21 20 . . 17 16 15 0
opcode 0x6 D reserved opcode 0x0 K

6 bits 5 bits 4 bits 1 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 75 of 75

Format:

l.movhi rD,K

Description:

The 16-bit immediate value is zero-extended, shifted left by 16 bits, and placed into
general-purpose register rD.

32-bit Implementation:

rD[31:0] < - extz(Immediate) < < 16

64-bit Implementation:

rD[63:0] < - extz(Immediate) < < 16

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.msb Multiply Signed and Subtract l.msb

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 4 3 . . 0
opcode 0x31 reserved A B reserved opcode 0x2

6 bits 5 bits 5 bits 5 bits 7 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 76 of 76

Format:

l.msb rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are multiplied, and the result is truncated to 32 bits and subtracted from the special-
purpose registers MACHI and MACLO. Result of the subtraction is placed into MACHI
and MACLO registers.All operands are treated as signed integers.

32-bit Implementation:

temp[31:0] < - rA[31:0] * rB[31:0]
MACHI[31:0]MACLO[31:0] < - MACHI[31:0]MACLO[31:0] -
temp[31:0]

64-bit Implementation:

temp[31:0] < - rA[63:0] * rB[63:0]
MACHI[31:0]MACLO[31:0] < - MACHI[31:0]MACLO[31:0] -
temp[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.msync Memory Syncronization l.msync

31 . 0
opcode 0x22000000

32bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 77 of 77

Format:

l.msync

Description:

Execution of the memory synchronization instruction results in completion of all
load/store operations before the RISC core continues.

32-bit Implementation:

memory-synchronization

64-bit Implementation:

memory-synchronization

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.mtspr Move To Special-Purpose Register l.mtspr

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x30 K A B K

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 78 of 78

Format:

l.mtspr rA,rB,K

Description:

The contents of general-purpose register rB are moved into the special register defined by
contents of general-purpose register rA logically ORed with the immediate value.

32-bit Implementation:

spr(rA OR Immediate) < - rB[31:0]

64-bit Implementation:

spr(rA OR Immediate) < - rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.mul Multiply Signed l.mul

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x3 reserved opcode 0x6

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 79 of 79

Format:

l.mul rD,rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are multiplied, and the result is truncated to destination register width and placed into
general-purpose register rD. Both operands are treated as signed integers.

32-bit Implementation:

rD[31:0] < - rA[31:0] * rB[31:0]
SR[OV] < - overflow
SR[CY] < - carry

64-bit Implementation:

rD[63:0] < - rA[63:0] * rB[63:0]
SR[OV] < - overflow
SR[CY] < - carry

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.muli Multiply Immediate Signed l.muli

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x2c D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 80 of 80

Format:

l.muli rD,rA,I

Description:

The immediate value and the contents of general-purpose register rA are multiplied, and
the result is truncated to destination register width and placed into general-purpose
register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] * Immediate
SR[OV] < - overflow
SR[CY] < - carry

64-bit Implementation:

rD[63:0] < - rA[63:0] * Immediate
SR[OV] < - overflow
SR[CY] < - carry

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.mulu Multiply Unsigned l.mulu

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x3 reserved opcode 0xb

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 81 of 81

Format:

l.mulu rD,rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are multiplied, and the result is truncated to destination register width and placed into
general-purpose register rD. Both operands are treated as unsigned integers.

32-bit Implementation:

rD[31:0] < - rA[31:0] * rB[31:0]
SR[OV] < - overflow
SR[CY] < - carry

64-bit Implementation:

rD[63:0] < - rA[63:0] * rB[63:0]
SR[OV] < - overflow
SR[CY] < - carry

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.nop No Operation l.nop

31 24 23 16 15 0
opcode 0x15 reserved K

8 bits 8 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 82 of 82

Format:

l.nop K

Description:

This instruction does not do anything except that it takes at least one clock cycle to
complete. It is often used to fill delay slot gaps.Immediate value can be used for
simulation purposes.

32-bit Implementation:

64-bit Implementation:

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.or Or l.or

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x4

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 83 of 83

Format:

l.or rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical OR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] OR rB[31:0]

64-bit Implementation:

rD[63:0] < - rA[63:0] OR rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.ori Or with Immediate Half Word l.ori

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x2a D A K

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 84 of 84

Format:

l.ori rD,rA,K

Description:

The immediate value is zero-extended and combined with the contents of general-
purpose register rA in a bit-wise logical OR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] OR extz(Immediate)

64-bit Implementation:

rD[63:0] < - rA[63:0] OR extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.psync Pipeline Syncronization l.psync

31 . 0
opcode 0x22800000

32bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 85 of 85

Format:

l.psync

Description:

Execution of pipeline synchronization instruction results in completion of all instructions
that were fetched before l.psync instruction. Once all instructions are completed,
instructions fetched after l.psync are flushed from the pipeline and fetched again.

32-bit Implementation:

pipeline-synchronization

64-bit Implementation:

pipeline-synchronization

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.rfe Return From Exception l.rfe

31 26 25 . 0
opcode 0x9 reserved

6 bits 26bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 86 of 86

Format:

l.rfe

Description:

Execution of this instruction partially restores the state of the processor prior to the
exception. This instruction does not have a delay slot.

32-bit Implementation:

PC < - EPCR
SR < - ESR

64-bit Implementation:

PC < - EPCR
SR < - ESR

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.ror Rotate Right l.ror

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x3 reserved opcode 0x8

6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 87 of 87

Format:

l.ror rD,rA,rB

Description:

General-purpose register rB specifies the number of bit positions; the contents of general-
purpose register rA are rotated right. The result is written into general-purpose register
rD. In 32-bit implementations bit 5 of rB is ignored.

32-bit Implementation:

rD[31-rB[4:0]:0] < - rA[31:rB]
rD[31:32-rB[4:0]] < - rA[rB[4:0]-1:0]

64-bit Implementation:

rD[63-rB[5:0]:0] < - rA[63:rB]
rD[63:64-rB[5:0]] < - rA[rB[5:0]-1:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.rori Rotate Right with Immediate l.rori

31 26 25 . . . 21 20 . . . 16 15 8 7 6 5 0
opcode 0x2e D A reserved opcode 0x3 L

6 bits 5 bits 5 bits 8 bits 2 bits 6bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 88 of 88

Format:

l.rori rD,rA,L

Description:

The 6-bit immediate value specifies the number of bit positions; the contents of general-
purpose register rA are rotated right. The result is written into general-purpose register
rD. In 32-bit implementations bit 5 of immediate is ignored.

32-bit Implementation:

rD[31-L:0] < - rA[31:L]
rD[31:32-L] < - rA[L-1:0]

64-bit Implementation:

rD[63-L:0] < - rA[63:L]
rD[63:64-L] < - rA[L-1:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sb Store Byte l.sb

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x36 I A B I

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 89 of 89

Format:

l.sb I(rA),rB

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The low-order 8 bits of general-purpose register rB
are stored to memory location addressed by EA.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
(EA)[7:0] < - rB[7:0]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
(EA)[7:0] < - rB[7:0]

Exceptions:

TLB miss
Page fault
Bus error

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sd Store Double Word l.sd

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x34 I A B I

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS64 I

www.opencores.org Rev 1.1 90 of 90

Format:

l.sd I(rA),rB

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The double word in general-purpose register rB is
stored to memory locatio n addressed by EA.

32-bit Implementation:

N/A

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
(EA)[63:0] < - rB[63:0]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfeq Set Flag if Equal l.sfeq

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x720 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 91 of 91

Format:

l.sfeq rA,rB

Description:

The contents of general-purpose registers rA and rB are compared. If the contents are
equal, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] == rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] == rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfeqi Set Flag if Equal Immediate l.sfeqi

31 21 20 . . . 16 15 0
opcode 0x5e0 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 92 of 92

Format:

l.sfeqi rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared. If the two values are equal, the compare flag is set; otherwise the compare flag
is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] == exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] == exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfges Set Flag if Greater or Equal Than Signed l.sfges

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x72b A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 93 of 331

Format:

l.sfges rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as signed integers. If
the contents of the first register are greater than or equal to the contents of the second
register, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] >= rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] >= rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfgesi Set Flag if Greater or Equal Than
Immediate Signed

l.sfgesi

31 21 20 . . . 16 15 0
opcode 0x5eb A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 94 of 331

Format:

l.sfgesi rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared as signed integers. If the contents of the first register are greater than or equal
to the immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] >= exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] >= exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfgeu
Set Flag if Greater or Equal Than

Unsigned
l.sfgeu

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x723 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 95 of 331

Format:

l.sfgeu rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as unsigned integers. If
the contents of the first register are greater than or equal to the contents of the second
register, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] >= rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] >= rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfgeui Set Flag if Greater or Equal Than
Immediate Unsigned

l.sfgeui

31 21 20 . . . 16 15 0
opcode 0x5e3 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 96 of 96

Format:

l.sfgeui rA,I

Description:

The contents of general-purpose register rA and the zero-extended immediate value are
compared as unsigned integers. If the contents of the first register are greater than or
equal to the immediate value the compare flag is set; otherwise the compare flag is
cleared.

32-bit Implementation:

SR[F] < - rA[31:0] >= extz(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] >= extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfgts Set Flag if Greater Than Signed l.sfgts

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x72a A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 97 of 97

Format:

l.sfgts rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as signed integers. If
the contents of the first register are greater than the contents of the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] > rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] > rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfgtsi
Set Flag if Greater Than Immediate

Signed
l.sfgtsi

31 21 20 . . . 16 15 0
opcode 0x5ea A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 98 of 98

Format:

l.sfgtsi rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared as signed integers. If the contents of the first register are greater than the
immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] > exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] > exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfgtu Set Flag if Greater Than Unsigned l.sfgtu

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x722 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 99 of 99

Format:

l.sfgtu rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as unsigned integers. If
the contents of the first register are greater than the contents of the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] > rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] > rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfgtui Set Flag if Greater Than Immediate
Unsigned

l.sfgtui

31 21 20 . . . 16 15 0
opcode 0x5e2 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 100 of 100

Format:

l.sfgtui rA,I

Description:

The contents of general-purpose register rA and the zero-extended immediate value are
compared as unsigned integers. If the contents of the first register are greater than the
immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] > extz(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] > extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfles Set Flag if Less or Equal Than Signed l.sfles

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x72d A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 101 of 101

Format:

l.sfles rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as signed integers. If
the contents of the first register are less than or equal to the contents of the second
register, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < = rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] < = rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sflesi Set Flag if Less or Equal Than Immediate
Signed

l.sflesi

31 21 20 . . . 16 15 0
opcode 0x5ed A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 102 of 102

Format:

l.sflesi rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared as signed integers. If the contents of the first register are less than or equal to
the immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < = exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] < = exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfleu Set Flag if Less or Equal Than Unsigned l.sfleu

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x725 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 103 of 103

Format:

l.sfleu rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as unsigned integers. If
the contents of the first register are less than or equal to the contents of the second
register, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < = rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] < = rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

l.sfleui Set Flag if Less or Equal Than Immediate
Unsigned

l.sfleui

31 21 20 . . . 16 15 0
opcode 0x5e5 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 104 of 104

Format:

l.sfleui rA,I

Description:

The contents of general-purpose register rA and the zero-extended immediate value are
compared as unsigned integers. If the contents of the first register are less than or equal to
the immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < = extz(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] < = extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sflts Set Flag if Less Than Signed l.sflts

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x72c A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 105 of 105

Format:

l.sflts rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as signed integers. If
the contents of the first register are less than the contents of the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] < rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfltsi Set Flag if Less Than Immediate Signed l.sfltsi

31 21 20 . . . 16 15 0
opcode 0x5ec A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 106 of 106

Format:

l.sfltsi rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared as signed integers. If the contents of the first register are less than the
immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] < exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfltu Set Flag if Less Than Unsigned l.sfltu

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x724 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 107 of 107

Format:

l.sfltu rA,rB

Description:

The contents of general-purpose registers rA and rB are compared as unsigned integers. If
the contents of the first register are less than the contents of the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] < rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfltui Set Flag if Less Than Immediate Unsigned l.sfltui

31 21 20 . . . 16 15 0
opcode 0x5e4 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 108 of 108

Format:

l.sfltui rA,I

Description:

The contents of general-purpose register rA and the zero-extended immediate value are
compared as unsigned integers. If the contents of the first register are less than the
immediate value the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < extz(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] < extz(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfne Set Flag if Not Equal l.sfne

31 21 20 . . . 16 15 . . . 11 10 0
opcode 0x721 A B reserved

11 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 109 of 109

Format:

l.sfne rA,rB

Description:

The contents of general-purpose registers rA and rB are compared. If the contents are not
equal, the compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] != rB[31:0]

64-bit Implementation:

SR[F] < - rA[63:0] != rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sfnei Set Flag if Not Equal Immediate l.sfnei

31 21 20 . . . 16 15 0
opcode 0x5e1 A I

11 bits 5 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 110 of 110

Format:

l.sfnei rA,I

Description:

The contents of general-purpose register rA and the sign-extended immediate value are
compared. If the two values are not equal, the compare flag is set; otherwise the compare
flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] != exts(Immediate)

64-bit Implementation:

SR[F] < - rA[63:0] != exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sh Store Half Word l.sh

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x37 I A B I

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 111 of 111

Format:

l.sh I(rA),rB

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The low-order 16 bits of general-purpose register rB
are stored to memory location addressed by EA.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
(EA)[15:0] < - rB[15:0]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
(EA)[15:0] < - rB[15:0]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sll Shift Left Logical l.sll

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x8

6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 112 of 112

Format:

l.sll rD,rA,rB

Description:

General-purpose register rB specifies the number of bit positions; the contents of general-
purpose register rA are shifted left, inserting zeros into the low-order bits. The result is
written into general-purpose rD. In 32-bit implementations bit 5 of rB is ignored.

32-bit Implementation:

rD[31:rB[4:0]] < - rA[31-rB[4:0]:0]
rD[rB[4:0]-1:0] < - 0

64-bit Implementation:

rD[63:rB[5:0]] < - rA[63-rB[5:0]:0]
rD[rB[5:0]-1:0] < - 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.slli Shift Left Logical with Immediate l.slli

31 26 25 . . . 21 20 . . . 16 15 8 7 6 5 0
opcode 0x2e D A reserved opcode 0x0 L

6 bits 5 bits 5 bits 8 bits 2 bits 6bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 113 of 113

Format:

l.slli rD,rA,L

Description:

The immediate value specifies the number of bit positions; the contents of general-
purpose register rA are shifted left, inserting zeros into the low-order bits. The result is
written into general-purpose register rD. In 32-bit implementations bit 5 of immediate is
ignored.

32-bit Implementation:

rD[31:L] < - rA[31-L:0]
rD[L-1:0] < - 0

64-bit Implementation:

rD[63:L] < - rA[63-L:0]
rD[L-1:0] < - 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sra Shift Right Arithmetic l.sra

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x2 reserved opcode 0x8

6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 114 of 114

Format:

l.sra rD,rA,rB

Description:

General-purpose register rB specifies the number of bit positions; the contents of general-
purpose register rA are shifted right, sign-extending the high-order bits. The result is
written into general-purpose register rD. In 32-bit implementations bit 5 of rB is ignored.

32-bit Implementation:

rD[31-rB[4:0]:0] < - rA[31:rB[4:0]]
rD[31:32-rB[4:0]] < - rA[31]

64-bit Implementation:

rD[63-rB[5:0]:0] < - rA[63:rB[5:0]]
rD[63:64-rB[5:0]] < - rA[63]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.srai Shift Right Arithmetic with Immediate l.srai

31 26 25 . . . 21 20 . . . 16 15 8 7 6 5 0
opcode 0x2e D A reserved opcode 0x2 L

6 bits 5 bits 5 bits 8 bits 2 bits 6bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 115 of 115

Format:

l.srai rD,rA,L

Description:

The 6-bit immediate value specifies the number of bit positions; the contents of general-
purpose register rA are shifted right, sign-extending the high-order bits. The result is
written into general-purpose register rD. In 32-bit implementations bit 5 of immediate is
ignored.

32-bit Implementation:

rD[31-L:0] < - rA[31:L]
rD[31:32-L] < - rA[31]

64-bit Implementation:

rD[63-L:0] < - rA[63:L]
rD[63:64-L] < - rA[63]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.srl Shift Right Logical l.srl

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 . . 6 5 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x1 reserved opcode 0x8

6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 2 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 116 of 116

Format:

l.srl rD,rA,rB

Description:

General-purpose register rB specifies the number of bit positions; the contents of general-
purpose register rA are shifted right, inserting zeros into the high-order bits. The result is
written into general-purpose register rD. In 32-bit implementations bit 5 of rB is ignored.

32-bit Implementation:

rD[31-rB[4:0]:0] < - rA[31:rB[4:0]]
rD[31:32-rB[4:0]] < - 0

64-bit Implementation:

rD[63-rB[5:0]:0] < - rA[63:rB[5:0]]
rD[63:64-rB[5:0]] < - 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.srli Shift Right Logical with Immediate l.srli

31 26 25 . . . 21 20 . . . 16 15 8 7 6 5 0
opcode 0x2e D A reserved opcode 0x1 L

6 bits 5 bits 5 bits 8 bits 2 bits 6bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 117 of 117

Format:

l.srli rD,rA,L

Description:

The 6-bit immediate value specifies the number of bit positions; the contents of general-
purpose register rA are shifted right, inserting zeros into the high-order bits. The result is
written into general-purpose register rD. In 32-bit implementations bit 5 of immediate is
ignored.

32-bit Implementation:

rD[31-L:0] < - rA[31:L]
rD[31:32-L] < - 0

64-bit Implementation:

rD[63-L:0] < - rA[63:L]
rD[63:64-L] < - 0

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sub Subtract Signed l.sub

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x2

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 118 of 118

Format:

l.sub rD,rA,rB

Description:

The contents of general-purpose register rB are subtracted from the contents of general-
purpose register rA to form the result. The result is placed into general-purpose register
rD. This isntruction does not change carry SR[CY] flag.

32-bit Implementation:

rD[31:0] < - rA[31:0] - rB[31:0]
SR[CY] < - carry
SR[OV] < - overflow

64-bit Implementation:

rD[63:0] < - rA[63:0] - rB[63:0]
SR[CY] < - carry
SR[OV] < - overflow

Exceptions:

Range Exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sw Store Single Word l.sw

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0
opcode 0x35 I A B I

6 bits 5 bits 5 bits 5 bits 11bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 119 of 119

Format:

l.sw I(rA),rB

Description:

The offset is sign-extended and added to the contents of general-purpose register rA. The
sum represents an effective address. The low-order 32 bits of general-purpose register rB
are stored to memory location addressed by EA.

32-bit Implementation:

EA < - exts(Immediate) + rA[31:0]
(EA)[31:0] < - rB[31:0]

64-bit Implementation:

EA < - exts(Immediate) + rA[63:0]
(EA)[31:0] < - rB[31:0]

Exceptions:

TLB miss
Page fault
Bus error
Alignment

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.sys System Call l.sys

31 16 15 0
opcode 0x2000 K

16 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 120 of 120

Format:

l.sys K

Description:

Execution of the system call instruction results in the system call exception. The system
calls exception is a request to the operating system to provide operating system services.
The immediate value can be used to specify which system service is requested,
alternatively a GPR defined by the ABI can be used to specify system service.

32-bit Implementation:

system-call-exception(K)

64-bit Implementation:

system-call-exception(K)

Exceptions:

System Call

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.trap Trap l.trap

31 16 15 0
opcode 0x2100 K

16 bits 16bits

Instruction Class
ORBIS32 II

www.opencores.org Rev 1.1 121 of 121

Format:

l.trap K

Description:

Execution of trap instruction results in the trap exception if specified bit in SR is set. Trap
exception is a request to the operating system or to the debug facility to execute certain
debug services. Immediate value is used to select which SR bit is tested by trap
instruction.

32-bit Implementation:

if SR[K] = 1 then trap-exception()

64-bit Implementation:

if SR[K] = 1 then trap-exception()

Exceptions:

Trap exception

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.xor Exclusive Or l.xor

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0
opcode 0x38 D A B reserved opcode 0x0 reserved opcode 0x5

6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 122 of 122

Format:

l.xor rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical XOR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] XOR rB[31:0]

64-bit Implementation:

rD[63:0] < - rA[63:0] XOR rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

l.xori Exclusive Or with Immediate Half Word l.xori

31 26 25 . . . 21 20 . . . 16 15 0
opcode 0x2b D A I

6 bits 5 bits 5 bits 16bits

Instruction Class
ORBIS32 I

www.opencores.org Rev 1.1 123 of 123

Format:

l.xori rD,rA,I

Description:

The immediate value is sign-extended and combined with the contents of general-purpose
register rA in a bit-wise logical XOR operation. The result is placed into general-purpose
register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] XOR exts(Immediate)

64-bit Implementation:

rD[63:0] < - rA[63:0] XOR exts(Immediate)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Mi ddle
Middle Right

lf.add.d Add Floating-Point Double-Precision lf.add.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x10

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 124 of 124

Format:

lf.add.d rD,rA,rB

Description:

The contents of general-purpose register rA are added to the contents of general-purpose
register rB to form the result. The result is placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] + rB[63:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middl e Middle Middle
Middle Right

lf.add.s Add Floating-Point Single-Precision lf.add.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x0

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instructio n Class
ORFPX32 I

www.opencores.org Rev 1.1 125 of 125

Format:

lf.add.s rD,rA,rB

Description:

The contents of general-purpose register rA are added to the contents of general-purpose
register rB to form the result. The result is placed into general-purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] + rB[31:0]

64-bit Implementation:

rD[31:0] < - rA[31:0] + rB[31:0]
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Mi ddle Middle Middle
Middle Middle Right

lf.cust1.d
Reserved for ORFPX64 Custom

Instructions
lf.cust1.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 . . 4 3 . . 0
opcode 0x32 reserved A B reserved opcode 0xe reserved

6 bits 5 bits 5 bits 5 bits 3 bits 4 bits 4bits

Instruction Class
ORFPX64 II

www.opencores.org Rev 1.1 126 of 126

Format:

lf.cust1.d rA,rB

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lf.cust1.s
Reserved for ORFPX32 Custom

Instructions
lf.cust1.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 . . 4 3 . . 0
opcode 0x32 reserved A B reserved opcode 0xd reserved

6 bits 5 bits 5 bits 5 bits 3 bits 4 bits 4bits

Instruction Class
ORFPX32 II

www.opencores.org Rev 1.1 127 of 127

Format:

lf.cust1.s rA,rB

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.div.d Divide Floating-Point Double-Precision lf.div.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x13

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 II

www.opencores.org Rev 1.1 128 of 128

Format:

lf.div.d rD,rA,rB

Description:

The contents of general-purpose register rA are divided by the contents of general-
purpose register rB to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] / rB[63:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.div.s Divide Floating-Point Single-Precision lf.div.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x3

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 II

www.opencores.org Rev 1.1 129 of 331

Format:

lf.div.s rD,rA,rB

Description:

The contents of general-purpose register rA are divided by the contents of general-
purpose register rB to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] / rB[31:0]

64-bit Implementation:

rD[31:0] < - rA[31:0] / rB[31:0]
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.ftoi.d
Floating-Point Double-Precision To

Integer
lf.ftoi.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A opcode 0x0 reserved opcode 0x15

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 130 of 331

Format:

lf.ftoi.d rD,rA

Description:

The contents of general-purpose register rA are converted to an integer and stored in
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - ftoi(rA[63:0])

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.ftoi.s
Floating-Point Single-Precision To

Integer
lf.ftoi.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A opcode 0x0 reserved opcode 0x5

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 131 of 331

Format:

lf.ftoi.s rD,rA

Description:

The contents of general-purpose register rA are converted to an integer and stored into
general-purpose register rD.

32-bit Implementation:

rD[31:0] < - ftoi(rA[31:0])

64-bit Implementation:

rD[31:0] < - ftoi(rA[31:0])
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.itof.d
Integer To Floating-Point Double-

Precision
lf.itof.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A opcode 0x0 reserved opcode 0x14

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 132 of 132

Format:

lf.itof.d rD,rA

Description:

The contents of general-purpose register rA are converted to a double-precision floating-
point number and stored in general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - itof(rA[63:0])

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.itof.s
Integer To Floating-Point Single -

Precision
lf.itof.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A opcode 0x0 reserved opcode 0x4

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 133 of 133

Format:

lf.itof.s rD,rA

Description:

The contents of general-purpose register rA are converted to a single-precision floating-
point number and stored into general-purpose register rD.

32-bit Implementation:

rD[31:0] < - itof(rA[31:0])

64-bit Implementation:

rD[31:0] < - itof(rA[31:0])
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lf.madd.d
Multiply and Add Floating-Point

Double-Precision
lf.madd.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x17

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 II

www.opencores.org Rev 1.1 134 of 134

Format:

lf.madd.d rD,rA,rB

Description:

The contents of general-purpose register rA are multiplied by the contents of general-
purpose register rB, and added to special-purpose register FPMADDLO/FPMADDHI.

32-bit Implementation:

N/A

64-bit Implementation:

FPMADDHI[31:0]FPMADDLO[31:0] < - rA[63:0] * rB[63:0] +
FPMADDHI[31:0]FPMADDLO[31:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lf.madd.s
Multiply and Add Floating-Point

Single-Precision
lf.madd.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x7

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 II

www.opencores.org Rev 1.1 135 of 135

Format:

lf.madd.s rD,rA,rB

Description:

The contents of general-purpose register rA are multiplied by the contents of general-
purpose register rB, and added to special-purpose register FPMADDLO/FPMADDHI.

32-bit Implementation:

FPMADDHI[31:0]FPMADDLO[31:0] < - rA[31:0] * rB[31:0] +
FPMADDHI[31:0]FPMADDLO[31:0]

64-bit Implementation:

FPMADDHI[31:0]FPMADDLO[31:0] < - rA[31:0] * rB[31:0] +
FPMADDHI[31:0]FPMADDLO[31:0]
FPMADDHI < - 0
FPMADDLO < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.mul.d
Multiply Floating-Point Double-

Precision
lf.mul.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x12

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 136 of 136

Format:

lf.mul.d rD,rA,rB

Description:

The contents of general-purpose register rA are multiplied by the contents of general-
purpose register rB to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] * rB[63:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.mul.s Multiply Floating-Point Single-Precision lf.mul.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x2

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 137 of 137

Format:

lf.mul.s rD,rA,rB

Description:

The contents of general-purpose register rA are multiplied by the contents of general-
purpose register rB to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] * rB[31:0]

64-bit Implementation:

rD[31:0] < - rA[31:0] * rB[31:0]
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.rem.d
Remainder Floating-Point Double-

Precision
lf.rem.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x16

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 II

www.opencores.org Rev 1.1 138 of 138

Format:

lf.rem.d rD,rA,rB

Description:

The contents of general-purpose register rA are divided by the contents of general-
purpose register rB, and remainder is used as the result. The result is placed into general-
purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] % rB[63:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.rem.s
Remainder Floating-Point Single-

Precision
lf.rem.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x6

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 II

www.opencores.org Rev 1.1 139 of 139

Format:

lf.rem.s rD,rA,rB

Description:

The contents of general-purpose register rA are divided by the contents of general-
purpose register rB, and remainder is used as the result. The result is placed into general-
purpose register rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] % rB[31:0]

64-bit Implementation:

rD[31:0] < - rA[31:0] % rB[31:0]
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfeq.d
Set Flag if Equal Floating-Point

Double-Precision
lf.sfeq.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x18

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 140 of 140

Format:

lf.sfeq.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the two registers are equal, the compare flag is set; otherwise the
compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[63:0] == rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfeq.s
Set Flag if Equal Floating-Point Single -

Precision
lf.sfeq.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x8

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 141 of 141

Format:

lf.sfeq.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the two registers are equal, the compare flag is set; otherwise the
compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] == rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] == rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfge.d
Set Flag if Greater or Equal Than
Floating-Point Double-Precision

lf.sfge.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x1b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 142 of 142

Format:

lf.sfge.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is greater than or equal to the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[63:0] >= rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfge.s
Set Flag if Greater or Equal Than

Floating-Point Single-Precision
lf.sfge.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0xb

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 143 of 143

Format:

lf.sfge.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is greater than or equal to the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] >= rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] >= rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfgt.d
Set Flag if Greater Than Floating-Point

Double-Precision
lf.sfgt.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x1a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 144 of 144

Format:

lf.sfgt.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is greater than the second register, the compare flag
is set; otherwise the compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[63:0] > rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middl e Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfgt.s
Set Flag if Greater Than Floating-Point

Single-Precision
lf.sfgt.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0xa

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 145 of 145

Format:

lf.sfgt.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is greater than the second register, the compare flag
is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] > rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] > rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfle.d
Set Flag if Less or Equal Than Floating-

Point Double-Precision
lf.sfle.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x1d

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 146 of 146

Format:

lf.sfle.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is less than or equal to the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[363:0] < = rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfle.s
Set Flag if Less or Equal Than Floating-

Point Single-Precision
lf.sfle.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0xd

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 147 of 147

Format:

lf.sfle.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is less than or equal to the second register, the
compare flag is set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < = rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] < = rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sflt.d
Set Flag if Less Than Floating-Point

Double-Precision
lf.sflt.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x1c

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 148 of 148

Format:

lf.sflt.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is less than the second register, the compare flag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[63:0] < rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sflt.s
Set Flag if Less Than Floating-Point

Single-Precision
lf.sflt.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0xc

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 149 of 149

Format:

lf.sflt.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the first register is less than the second register, the compare flag is
set; otherwise the compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] < rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] < rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Mi ddle
Middle Right

lf.sfne.d
Set Flag if Not Equal Floating-Point

Double-Precision
lf.sfne.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x19

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 150 of 150

Format:

lf.sfne.d rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the two registers are not equal, the compare flag is set; otherwise the
compare flag is cleared.

32-bit Implementation:

N/A

64-bit Implementation:

SR[F] < - rA[63:0] != rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sfne.s
Set Flag if Not Equal Floating-Point

Single-Precision
lf.sfne.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 reserved A B reserved opcode 0x9

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 151 of 151

Format:

lf.sfne.s rA,rB

Description:

The contents of general-purpose register rA and the contents of general-purpose register
rB are compared. If the two registers are not equal, the compare flag is set; otherwise the
compare flag is cleared.

32-bit Implementation:

SR[F] < - rA[31:0] != rB[31:0]

64-bit Implementation:

SR[F] < - rA[31:0] != rB[31:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sub.d
Subtract Floating-Point Double-

Precision
lf.sub.d

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x11

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX64 I

www.opencores.org Rev 1.1 152 of 152

Format:

lf.sub.d rD,rA,rB

Description:

The contents of general-purpose register rB are subtracted from the contents of general-
purpose register rA to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] - rB[63:0]

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lf.sub.s Subtract Floating-Point Single-Precision lf.sub.s

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0x32 D A B reserved opcode 0x1

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORFPX32 I

www.opencores.org Rev 1.1 153 of 153

Format:

lf.sub.s rD,rA,rB

Description:

The contents of general-purpose register rB are subtracted from the contents of general-
purpose register rA to form the result. The result is placed into general-purpose register
rD.

32-bit Implementation:

rD[31:0] < - rA[31:0] - rB[31:0]

64-bit Implementation:

rD[31:0] < - rA[31:0] - rB[31:0]
rD[63:32] < - 0

Exceptions:

Floating Point

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.add.b Vector Byte Elements Add Signed lv.add.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x30

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 154 of 154

Format:

lv.add.b rD,rA,rB

Description:

The byte elements of general-purpose register rA are added to the byte elements of
general-purpose register rB to form the result elements. The result elements are placed
into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] + rB[7:0]
rD[15:8] < - rA[15:8] + rB[15:8]
rD[23:16] < - rA[23:16] + rB[23:16]
rD[31:24] < - rA[31:24] + rB[31:24]
rD[39:32] < - rA[39:32] + rB[39:32]
rD[47:40] < - rA[47:40] + rB[47:40]
rD[55:48] < - rA[55:48] + rB[55:48]
rD[63:56] < - rA[63:56] + rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.add.h
Vector Half-Word Elements Add

Signed
lv.add.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x31

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 155 of 155

Format:

lv.add.h rD,rA,rB

Description:

The half-word elements of general-purpose register rA are added to the half-word
elements of general-purpose register rB to form the result elements. The result elements
are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] + rB[15:0]
rD[31:16] < - rA[31:16] + rB[31:16]
rD[47:32] < - rA[47:32] + rB[47:32]
rD[63:48] < - rA[63:48] + rB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.adds.b
Vector Byte Elements Add Signed

Saturated
lv.adds.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x32

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 156 of 156

Format:

lv.adds.b rD,rA,rB

Description:

The byte elements of general-purpose register rA are added to the byte elements of
general-purpose register rB to form the result elements. If the result exceeds the min/max
value for the destination data type, it is saturated to the min/max value and placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8s(rA[7:0] + rB[7:0])
rD[15:8] < - sat8s(rA[15:8] + rB[15:8])
rD[23:16] < - sat8s(rA[23:16] + rB[23:16])
rD[31:24] < - sat8s(rA[31:24] + rB[31:24])
rD[39:32] < - sat8s(rA[39:32] + rB[39:32])
rD[47:40] < - sat8s(rA[47:40] + rB[47:40])
rD[55:48] < - sat8s(rA[55:48] + rB[55:48])
rD[63:56] < - sat8s(rA[63:56] + rB[63:56])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.adds.h
Vector Half-Word Elements Add

Signed Saturated
lv.adds.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x33

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 157 of 157

Format:

lv.adds.h rD,rA,rB

Description:

The half-word elements of general-purpose register rA are added to the half-word
elements of general-purpose register rB to form the result elements. If the result exceeds
the min/max value for the destination data type, it is saturated to the min/max value and
placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat16s(rA[15:0] + rB[15:0])
rD[31:16] < - sat16s(rA[31:16] + rB[31:16])
rD[47:32] < - sat16s(rA[47:32] + rB[47:32])
rD[63:48] < - sat16s(rA[63:48] + rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.addu.b Vector Byte Elements Add Unsigned lv.addu.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x34

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 158 of 158

Format:

lv.addu.b rD,rA,rB

Description:

The unsigned byte elements of general-purpose register rA are added to the unsigned byte
elements of general-purpose register rB to form the result elements. The result elements
are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] + rB[7:0]
rD[15:8] < - rA[15:8] + rB[15:8]
rD[23:16] < - rA[23:16] + rB[23:16]
rD[31:24] < - rA[31:24] + rB[31:24]
rD[39:32] < - rA[39:32] + rB[39:32]
rD[47:40] < - rA[47:40] + rB[47:40]
rD[55:48] < - rA[55:48] + rB[55:48]
rD[63:56] < - rA[63:56] + rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.addu.h
Vector Half-Word Elements Add

Unsigned
lv.addu.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x35

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 159 of 159

Format:

lv.addu.h rD,rA,rB

Description:

The unsigned half-word elements of general-purpose register rA are added to the
unsigned half-word elements of general-purpose register rB to form the result elements.
The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] + rB[15:0]
rD[31:16] < - rA[31:16] + rB[31:16]
rD[47:32] < - rA[47:32] + rB[47:32]
rD[63:48] < - rA[63:48] + rB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.addus.b
Vector Byte Elements Add

Unsigned Saturated
lv.addus.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x36

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 160 of 160

Format:

lv.addus.b rD,rA,rB

Description:

The unsigned byte elements of general-purpose register rA are added to the unsigned byte
elements of general-purpose register rB to form the result elements. If the result exceeds
the min/max value for the destination data type, it is saturated to the min/max value and
placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8u(rA[7:0] + rB[7:0])
rD[15:8] < - sat8u(rA[15:8] + rB[15:8])
rD[23:16] < - sat8u(rA[23:16] + rB[23:16])
rD[31:24] < - sat8u(rA[31:24] + rB[31:24])
rD[39:32] < - sat8u(rA[39:32] + rB[39:32])
rD[47:40] < - sat8u(rA[47:40] + rB[47:40])
rD[55:48] < - sat8u(rA[55:48] + rB[55:48])
rD[63:56] < - sat8u(rA[63:56] + rB[63:56])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.addus.h
Vector Half-Word Elements Add

Unsigned Saturated
lv.addus.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x37

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 161 of 161

Format:

lv.addus.h rD,rA,rB

Description:

The unsigned half-word elements of general-purpose register rA are added to the
unsigned half-word elements of general-purpose register rB to form the result elements.
If the result exceeds the min/max value for the destination data type, it is saturated to the
min/max value and placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat16s(rA[15:0] + rB[15:0])
rD[31:16] < - sat16s(rA[31:16] + rB[31:16])
rD[47:32] < - sat16s(rA[47:32] + rB[47:32])
rD[63:48] < - sat16s(rA[63:48] + rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_eq.b Vector Byte Elements All Equal lv.all_eq.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x10

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 162 of 162

Format:

lv.all_eq.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all corresponding elements are
equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] == rB[7:0]
rA[15:8] == rB[15:8] &&
rA[23:16] == rB[23:16] &&
rA[31:24] == rB[31:24] &&
rA[39:32] == rB[39:32] &&
rA[47:40] == rB[47:40] &&
rA[55:48] == rB[55:48] &&
rA[63:56] == rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_eq.h
Vector Half-Word Elements All

Equal lv.all_eq.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x11

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 163 of 163

Format:

lv.all_eq.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all corresponding
elements are equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] == rB[15:0] &&
rA[31:16] == rB[31:16] &&
rA[47:32] == rB[47:32] &&
rA[63:48] == rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_ge.b
Vector Byte Elements All Greater

Than or Equal To
lv.all_ge.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x12

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 164 of 164

Format:

lv.all_ge.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all elements of rA are greater than
or equal to the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] >= rB[7:0] &&
rA[15:8] >= rB[15:8] &&
rA[23:16] >= rB[23:16] &&
rA[31:24] >= rB[31:24] &&
rA[39:32] >= rB[39:32] &&
rA[47:40] >= rB[47:40] &&
rA[55:48] >= rB[55:48] &&
rA[63:56] >= rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_ge.h
Vector Half-Word Elements All

Greater Than or Equal To
lv.all_ge.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x13

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 165 of 165

Format:

lv.all_ge.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all elements of rA are
greater than or equal to the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] >= rB[15:0] &&
rA[31:16] >= rB[31:16] &&
rA[47:32] >= rB[47:32] &&
rA[63:48] >= rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_gt.b
Vector Byte Elements All Greater

Than
lv.all_gt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x14

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 166 of 166

Format:

lv.all_gt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all elements of rA are greater than
the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] > rB[7:0] &&
rA[15:8] > rB[15:8] &&
rA[23:16] > rB[23:16] &&
rA[31:24] > rB[31:24] &&
rA[39:32] > rB[39:32] &&
rA[47:40] > rB[47:40] &&
rA[55:48] > rB[55:48] &&
rA[63:56] > rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_gt.h
Vector Half-Word Elements All

Greater Than
lv.all_gt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x15

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 167 of 167

Format:

lv.all_gt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all elements of rA are
greater than the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] > rB[15:0] &&
rA[31:16] > rB[31:16] &&
rA[47:32] > rB[47:32] &&
rA[63:48] > rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_le.b
Vector Byte Elements All Less

Than or Equal To
lv.all_le.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x16

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 168 of 168

Format:

lv.all_le.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all elements of rA are less than or
equal to the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] < = rB[7:0] &&
rA[15:8] < = rB[15:8] &&
rA[23:16] < = rB[23:16] &&
rA[31:24] < = rB[31:24] &&
rA[39:32] < = rB[39:32] &&
rA[47:40] < = rB[47:40] &&
rA[55:48] < = rB[55:48] &&
rA[63:56] < = rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_le.h
Vector Half-Word Elements All

Less Than or Equal To
lv.all_le.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x17

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 169 of 169

Format:

lv.all_le.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all elements of rA are
less than or equal to the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] < = rB[15:0] &&
rA[31:16] < = rB[31:16] &&
rA[47:32] < = rB[47:32] &&
rA[63:48] < = rB[63:48]rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_lt.b Vector Byte Elements All Less Than lv.all_lt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x18

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 170 of 170

Format:

lv.all_lt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all elements of rA are less than the
elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] < rB[7:0] &&
rA[15:8] < rB[15:8] &&
rA[23:16] < rB[23:16] &&
rA[31:24] < rB[31:24] &&
rA[39:32] < rB[39:32] &&
rA[47:40] < rB[47:40] &&
rA[55:48] < rB[55:48] &&
rA[63:56] < rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_lt.h
Vector Half-Word Elements All

Less Than
lv.all_lt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x19

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 171 of 171

Format:

lv.all_lt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all elements of rA are
less than the elements of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] < rB[15:0] &&
rA[31:16] < rB[31:16] &&
rA[47:32] < rB[47:32] &&
rA[63:48] < rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_ne.b
Vector Byte Elements All Not

Equal lv.all_ne.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x1a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 172 of 331

Format:

lv.all_ne.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if all corresponding elements are not
equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] != rB[7:0] &&
rA[15:8] != rB[15:8] &&
rA[23:16] != rB[23:16] &&
rA[31:24] != rB[31:24] &&
rA[39:32] != rB[39:32] &&
rA[47:40] != rB[47:40] &&
rA[55:48] != rB[55:48] &&
rA[63:56] != rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.all_ne.h
Vector Half-Word Elements All

Not Equal lv.all_ne.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x1b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 173 of 331

Format:

lv.all_ne.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if all corresponding
elements are not equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] != rB[15:0] &&
rA[31:16] != rB[31:16] &&
rA[47:32] != rB[47:32] &&
rA[63:48] != rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.and Vector And lv.and

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x38

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 174 of 331

Format:

lv.and rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical AND operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] AND rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_eq.b
Vector Byte Elements Any

Equal lv.any_eq.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x20

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 175 of 175

Format:

lv.any_eq.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any two corresponding elements
are equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] == rB[7:0] ||
rA[15:8] == rB[15:8] ||
rA[23:16] == rB[23:16] ||
rA[31:24] == rB[31:24] ||
rA[39:32] == rB[39:32] ||
rA[47:40] == rB[47:40] ||
rA[55:48] == rB[55:48] ||
rA[63:56] == rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_eq.h
Vector Half-Word Elements

Any Equal lv.any_eq.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x21

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 176 of 176

Format:

lv.any_eq.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any two corresponding
elements are equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] == rB[15:0] ||
rA[31:16] == rB[31:16] ||
rA[47:32] == rB[47:32] ||
rA[63:48] == rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_ge.b
Vector Byte Elements Any
Greater Than or Equal To

lv.any_ge.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x22

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 177 of 177

Format:

lv.any_ge.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any element of rA is greater than
or equal to the corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] >= rB[7:0] ||
rA[15:8] >= rB[15:8] ||
rA[23:16] >= rB[23:16] ||
rA[31:24] >= rB[31:24] ||
rA[39:32] >= rB[39:32] ||
rA[47:40] >= rB[47:40] ||
rA[55:48] >= rB[55:48] ||
rA[63:56] >= rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_ge.h
Vector Half-Word Elements

Any Greater Than or Equal To
lv.any_ge.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x23

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 178 of 178

Format:

lv.any_ge.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any element of rA is
greater than or equal to the corresponding element of rB; otherwise the compare flag is
cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] >= rB[15:0] ||
rA[31:16] >= rB[31:16] ||
rA[47:32] >= rB[47:32] ||
rA[63:48] >= rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_gt.b
Vector Byte Elements Any

Greater Than
lv.any_gt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x24

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 179 of 179

Format:

lv.any_gt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any element of rA is greater than
the corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] > rB[7:0] ||
rA[15:8] > rB[15:8] ||
rA[23:16] > rB[23:16] ||
rA[31:24] > rB[31:24] ||
rA[39:32] > rB[39:32] ||
rA[47:40] > rB[47:40] ||
rA[55:48] > rB[55:48] ||
rA[63:56] > rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_gt.h
Vector Half-Word Elements Any

Greater Than
lv.any_gt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x25

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 180 of 180

Format:

lv.any_gt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any element of rA is
greater than the corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] > rB[15:0] ||
rA[31:16] > rB[31:16] ||
rA[47:32] > rB[47:32] ||
rA[63:48] > rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_le.b
Vector Byte Elements Any Less

Than or Equal To
lv.any_le.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x26

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 181 of 181

Format:

lv.any_le.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any element of rA is less than or
equal to the corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] < = rB[7:0] ||
rA[15:8] < = rB[15:8] ||
rA[23:16] < = rB[23:16] ||
rA[31:24] < = rB[31:24] ||
rA[39:32] < = rB[39:32] ||
rA[47:40] < = rB[47:40] ||
rA[55:48] < = rB[55:48] ||
rA[63:56] < = rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_le.h
Vector Half-Word Elements Any

Less Than or Equal To
lv.any_le.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x27

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 182 of 182

Format:

lv.any_le.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any element of rA is
less than or equal to the corresponding element of rB; otherwise the compare flag is
cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] ,= rB[15:0] ||
rA[31:16] < = rB[31:16] ||
rA[47:32] < = rB[47:32] ||
rA[63:48] < = rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.any_lt.b
Vector Byte Elements Any Less

Than
lv.any_lt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x28

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 183 of 183

Format:

lv.any_lt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any element of rA is less than the
corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] < rB[7:0] ||
rA[15:8] < rB[15:8] ||
rA[23:16] < rB[23:16] ||
rA[31:24] < rB[31:24] ||
rA[39:32] < rB[39:32] ||
rA[47:40] < rB[47:40] ||
rA[55:48] < rB[55:48] ||
rA[63:56] < rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.any_lt.h
Vector Half-Word Elements Any

Less Than
lv.any_lt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x29

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 184 of 184

Format:

lv.any_lt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any element of rA is
less than the corresponding element of rB; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] < rB[15:0] ||
rA[31:16] < rB[31:16] ||
rA[47:32] < rB[47:32] ||
rA[63:48] < rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_ne.b
Vector Byte Elements Any Not

Equal lv.any_ne.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x2a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 185 of 185

Format:

lv.any_ne.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. The compare flag is set if any two corresponding elements
are not equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[7:0] != rB[7:0] ||
rA[15:8] != rB[15:8] ||
rA[23:16] != rB[23:16] ||
rA[31:24] != rB[31:24] ||
rA[39:32] != rB[39:32] ||
rA[47:40] != rB[47:40] ||
rA[55:48] != rB[55:48] ||
rA[63:56] != rB[63:56]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.any_ne.h
Vector Half-Word Elements

Any Not Equal lv.any_ne.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x2b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 186 of 186

Format:

lv.any_ne.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. The compare flag is set if any two corresponding
elements are not equal; otherwise the compare flag is cleared.
The compare flag is replicated into all bit positions of general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

flag < - rA[15:0] != rB[15:0] ||
rA[31:16] != rB[31:16] ||
rA[47:32] != rB[47:32] ||
rA[63:48] != rB[63:48]
rD[63:0] < - repl(flag)

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.avg.b Vector Byte Elements Average lv.avg.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x39

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 187 of 187

Format:

lv.avg.b rD,rA,rB

Description:

The byte elements of general-purpose register rA are added to the byte elements of
general-purpose register rB, and the sum is shifted right by one to form the result
elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - (rA[7:0] + rB[7:0]) >> 1
rD[15:8] < - (rA[15:8] + rB[15:8]) >> 1
rD[23:16] < - (rA[23:16] + rB[23:16]) >> 1
rD[31:24] < - (rA[31:24] + rB[31:24]) >> 1
rD[39:32] < - (rA[39:32] + rB[39:32]) >> 1
rD[47:40] < - (rA[47:40] + rB[47:40]) >> 1
rD[55:48] < - (rA[55:48] + rB[55:48]) >> 1
rD[63:56] < - (rA[63:56] + rB[63:56]) >> 1

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.avg.h Vector Half -Word Elements Average lv.avg.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x3a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 188 of 188

Format:

lv.avg.h rD,rA,rB

Description:

The half-word elements of general-purpose register rA are added to the half-word
elements of general-purpose register rB, and the sum is shifted right by one to form the
result elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - (rA[15:0] + rB[15:0]) >> 1
rD[31:16] < - (rA[31:16] + rB[31:16]) >> 1
rD[47:32] < - (rA[47:32] + rB[47:32]) >> 1
rD[63:48] < - (rA[63:48] + rB[63:48]) >> 1

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_eq.b
Vector Byte Elements

Compare Equal lv.cmp_eq.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x40

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 189 of 189

Format:

lv.cmp_eq.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the two corresponding compared elements are equal; otherwise the element bits are
cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] == rB[7:0]
rD[15:8] < - repl(rA[15:8] == rB[15:8]
rD[23:16] < - repl(rA[23:16] == rB[23:16]
rD[31:24] < - repl(rA[31:24] == rB[31:24]
rD[39:32] < - repl(rA[39:32] == rB[39:32]
rD[47:40] < - repl(rA[47:40] == rB[47:40]
rD[55:48] < - repl(rA[55:48] == rB[55:48]
rD[63:56] < - repl(rA[63:56] == rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_eq.h
Vector Half-Word Elements

Compare Equal lv.cmp_eq.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x41

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 190 of 190

Format:

lv.cmp_eq.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the two corresponding compared elements are equal; otherwise the element
bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] == rB[7:0]
rD[31:16] < - repl(rA[23:16] == rB[23:16]
rD[47:32] < - repl(rA[39:32] == rB[39:32]
rD[63:48] < - repl(rA[55:48] == rB[55:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_ge.b

Vector Byte Elements
Compare Greater Than or

Equal To

lv.cmp_ge.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x42

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 191 of 191

Format:

lv.cmp_ge.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the element in rA is greater than or equal to the element in rB; otherwise the element bits
are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] >= rB[7:0]
rD[15:8] < - repl(rA[15:8] >= rB[15:8]
rD[23:16] < - repl(rA[23:16] >= rB[23:16]
rD[31:24] < - repl(rA[31:24] >= rB[31:24]
rD[39:32] < - repl(rA[39:32] >= rB[39:32]
rD[47:40] < - repl(rA[47:40] >= rB[47:40]
rD[55:48] < - repl(rA[55:48] >= rB[55:48]
rD[63:56] < - repl(rA[63:56] >= rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_ge.h

Vector Half-Word Elements
Compare Greater Than or

Equal To

lv.cmp_ge.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x43

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 192 of 192

Format:

lv.cmp_ge.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the element in rA is greater than or equal to the element in rB; otherwise the
element bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] >= rB[7:0]
rD[31:16] < - repl(rA[23:16] >= rB[23:16]
rD[47:32] < - repl(rA[39:32] >= rB[39:32]
rD[63:48] < - repl(rA[55:48] >= rB[55:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_gt.b
Vector Byte Elements Compare

Greater Than
lv.cmp_gt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x44

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 193 of 193

Format:

lv.cmp_gt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the element in rA is greater than the element in rB; otherwise the element bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] > rB[7:0]
rD[15:8] < - repl(rA[15:8] > rB[15:8]
rD[23:16] < - repl(rA[23:16] > rB[23:16]
rD[31:24] < - repl(rA[31:24] > rB[31:24]
rD[39:32] < - repl(rA[39:32] > rB[39:32]
rD[47:40] < - repl(rA[47:40] > rB[47:40]
rD[55:48] < - repl(rA[55:48] > rB[55:48]
rD[63:56] < - repl(rA[63:56] > rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_gt.h
Vector Half-Word Elements

Compare Greater Than
lv.cmp_gt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x45

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 194 of 194

Format:

lv.cmp_gt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the element in rA is greater than the element in rB; otherwise the element
bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] > rB[7:0]
rD[31:16] < - repl(rA[23:16] > rB[23:16]
rD[47:32] < - repl(rA[39:32] > rB[39:32]
rD[63:48] < - repl(rA[55:48] > rB[55:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_le.b
Vector Byte Elements Compare

Less Than or Equal To
lv.cmp_le.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x46

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 195 of 195

Format:

lv.cmp_le.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the element in rA is less than or equal to the element in rB; otherwise the element bits are
cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] < = rB[7:0]
rD[15:8] < - repl(rA[15:8] < = rB[15:8]
rD[23:16] < - repl(rA[23:16] < = rB[23:16]
rD[31:24] < - repl(rA[31:24] < = rB[31:24]
rD[39:32] < - repl(rA[39:32] < = rB[39:32]
rD[47:40] < - repl(rA[47:40] < = rB[47:40]
rD[55:48] < - repl(rA[55:48] < = rB[55:48]
rD[63:56] < - repl(rA[63:56] < = rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_le.h

Vector Half-Word Elements
Compare Less Than or Equal

To

lv.cmp_le.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x47

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 196 of 196

Format:

lv.cmp_le.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the element in rA is less than or equal to the element in rB; otherwise the
element bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] < = rB[7:0]
rD[31:16] < - repl(rA[23:16] < = rB[23:16]
rD[47:32] < - repl(rA[39:32] < = rB[39:32]
rD[63:48] < - repl(rA[55:48] < = rB[55:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_lt.b
Vector Byte Elements Compare

Less Than
lv.cmp_lt.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x48

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 197 of 197

Format:

lv.cmp_lt.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the element in rA is less than the element in rB; otherwise the element bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] < = rB[7:0]
rD[15:8] < - repl(rA[15:8] < = rB[15:8]
rD[23:16] < - repl(rA[23:16] < = rB[23:16]
rD[31:24] < - repl(rA[31:24] < = rB[31:24]
rD[39:32] < - repl(rA[39:32] < = rB[39:32]
rD[47:40] < - repl(rA[47:40] < = rB[47:40]
rD[55:48] < - repl(rA[55:48] < = rB[55:48]
rD[63:56] < - repl(rA[63:56] < = rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_lt .h
Vector Half-Word Elements

Compare Less Than
lv.cmp_lt.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x49

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 198 of 198

Format:

lv.cmp_lt.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the element in rA is less than the element in rB; otherwise the element bits
are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] < = rB[7:0]
rD[31:16] < - repl(rA[23:16] < = rB[23:16]
rD[47:32] < - repl(rA[39:32] < = rB[39:32]
rD[63:48] < - repl(rA[55:48] < = rB[55:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.cmp_ne.b
Vector Byte Elements
Compare Not Equal lv.cmp_ne.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x4a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 199 of 199

Format:

lv.cmp_ne.b rD,rA,rB

Description:

All byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB. Bits of the element in general-purpose register rD are set if
the two corresponding compared elements are not equal; otherwise the element bits are
cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - repl(rA[7:0] != rB[7:0])
rD[15:8] < - repl(rA[15:8] != rB[15:8])
rD[23:16] < - repl(rA[23:16] != rB[23:16])
rD[31:24] < - repl(rA[31:24] != rB[31:24])
rD[39:32] < - repl(rA[39:32] != rB[39:32])
rD[47:40] < - repl(rA[47:40] != rB[47:40])
rD[55:48] < - repl(rA[55:48] != rB[55:48])
rD[63:56] < - repl(rA[63:56] != rB[63:56])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Mi ddle
Middle Middle Middle Right

lv.cmp_ne.h
Vector Half-Word Elements

Compare Not Equal lv.cmp_ne.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x4b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 200 of 200

Format:

lv.cmp_ne.h rD,rA,rB

Description:

All half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB. Bits of the element in general-purpose register
rD are set if the two corresponding compared elements are not equal; otherwise the
element bits are cleared.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - repl(rA[7:0] != rB[7:0])
rD[31:16] < - repl(rA[23:16] != rB[23:16])
rD[47:32] < - repl(rA[39:32] != rB[39:32])
rD[63:48] < - repl(rA[55:48] != rB[55:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.cust1
Reserved for Custom Vector

Instructions
lv.cust1

31 26 25 8 7 . . 4 3 . . 0
opcode 0xa reserved opcode 0xc reserved

6 bits 18 bits 4 bits 4bits

Instruction Class
ORVDX64 II

www.opencores.org Rev 1.1 201 of 201

Format:

lv.cust1

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.cust2
Reserved for Custom Vector

Instructions
lv.cust2

31 26 25 8 7 . . 4 3 . . 0
opcode 0xa reserved opcode 0xd reserved

6 bits 18 bits 4 bits 4bits

Instruction Class
ORVDX64 II

www.opencores.org Rev 1.1 202 of 202

Format:

lv.cust2

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Mi ddle Middle Middle Middle Middle
Middle Right

lv.cust3
Reserved for Custom Vector

Instructions
lv.cust3

31 26 25 8 7 . . 4 3 . . 0
opcode 0xa reserved opcode 0xe reserved

6 bits 18 bits 4 bits 4bits

Instruction Class
ORVDX64 II

www.opencores.org Rev 1.1 203 of 203

Format:

lv.cust3

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.cust4
Reserved for Custom Vector

Instructions
lv.cust4

31 26 25 8 7 . . 4 3 . . 0
opcode 0xa reserved opcode 0xf reserved

6 bits 18 bits 4 bits 4bits

Instruction Class
ORVDX64 II

www.opencores.org Rev 1.1 204 of 204

Format:

lv.cust4

Description:

This fake instruction only allocates instruction set space for custom instructions. Custom
instructions are those that are not defined by the architecture but instead by the
implementation itself.

32-bit Implementation:

N/A

64-bit Implementation:

N/A

Exceptions:

N/A

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middl e Middle
Middle Middle Middle Right

lv.madds.h
Vector Half-Word Elements

Multiply Add Signed Saturated
lv.madds.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x54

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 205 of 205

Format:

lv.madds.h rD,rA,rB

Description:

The signed half-word elements of general-purpose register rA are multiplied by the
signed half-word elements of general-purpose register rB to form intermediate results.
They are then added to the signed half-word VMAC elements to form the final results
that are placed again in the VMAC registers. The intermediate result is placed into
general-purpose register rD. If any of the final results exceeds the min/max value, it is
saturated.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat32s(rA[15:0] * rB[15:0] + VMACLO[31:0])
rD[31:16] < - sat32s(rA[31:16] * rB[31:16] + VMACLO[63:32])
rD[47:32] < - sat32s(rA[47:32] * rB[47:32] + VMACHI[31:0])
rD[63:48] < - sat32s(rA[63:48] * rB[63:48] + VMACHI[63:32])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.max.b Vector Byte Elements Maximum lv.max.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x55

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 206 of 206

Format:

lv.max.b rD,rA,rB

Description:

The byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB, and the larger elements are selected to form the result
elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] > rB[7:0] ? rA[7:0] : vrfB[7:0]
rD[15:8] < - rA[15:8] > rB[15:8] ? rA[15:8] : vrfB[15:8]
rD[23:16] < - rA[23:16] > rB[23:16] ? rA[23:16] :
vrfB[23:16]
rD[31:24] < - rA[31:24] > rB[31:24] ? rA[31:24] :
vrfB[31:24]
rD[39:32] < - rA[39:32] > rB[39:32] ? rA[39:32] :
vrfB[39:32]
rD[47:40] < - rA[47:40] > rB[47:40] ? rA[47:40] :
vrfB[47:40]
rD[55:48] < - rA[55:48] > rB[55:48] ? rA[55:48] :
vrfB[55:48]
rD[63:56] < - rA[63:56] > rB[63:56] ? rA[63:56] :
vrfB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.max.h
Vector Half-Word Elements

Maximum
lv.max.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x56

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 207 of 207

Format:

lv.max.h rD,rA,rB

Description:

The half-word elements of general-purpose register rA are compared to the half-word
elements of general-purpose register rB, and the larger elements are selected to form the
result elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] > rB[15:0] ? rA[15:0] : vrfB[15:0]
rD[31:16] < - rA[31:16] > rB[31:16] ? rA[31:16] :
vrfB[31:16]
rD[47:32] < - rA[47:32] > rB[47:32] ? rA[47:32] :
vrfB[47:32]
rD[63:48] < - rA[63:48] > rB[63:48] ? rA[63:48] :
vrfB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.merge.b Vector Byte Elements Merge lv.merge.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x57

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 208 of 208

Format:

lv.merge.b rD,rA,rB

Description:

The byte elements of the lower half of the general-purpose register rA are combined with
the byte elements of the lower half of general-purpose register rB in such a way that the
lowest element is from rB, the second element from rA, the third again from rB etc. The
result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rB[7:0]
rD[15:8] < - rA[15:8]
rD[23:16] < - rB[23:16]
rD[31:24] < - rA[31:24]
rD[39:32] < - rB[39:32]
rD[47:40] < - rA[47:40]
rD[55:48] < - rB[55:48]
rD[63:56] < - rA[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.merge.h
Vector Half-Word Elements

Merge
lv.merge.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x58

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 209 of 209

Format:

lv.merge.h rD,rA,rB

Description:

The half-word elements of the lower half of the general-purpose register rA are combined
with the half-word elements of the lower half of general-purpose register rB in such a
way that the lowest element is from rB, the second element from rA, the third again from
rB etc. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rB[15:0]
rD[31:16] < - rA[31:16]
rD[47:32] < - rB[47:32]
rD[63:48] < - rA[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.min.b Vector Byte Elements Minimum lv.min.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x59

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 210 of 210

Format:

lv.min.b rD,rA,rB

Description:

The byte elements of general-purpose register rA are compared to the byte elements of
general-purpose register rB, and the smaller elements are selected to form the result
elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] < rB[7:0] ? rA[7:0] : vrfB[7:0]
rD[15:8] < - rA[15:8] < rB[15:8] ? rA[15:8] : vrfB[15:8]
rD[23:16] < - rA[23:16] < rB[23:16] ? rA[23:16] :
vrfB[23:16]
rD[31:24] < - rA[31:24] < rB[31:24] ? rA[31:24] :
vrfB[31:24]
rD[39:32] < - rA[39:32] < rB[39:32] ? rA[39:32] :
vrfB[39:32]
rD[47:40] < - rA[47:40] < rB[47:40] ? rA[47:40] :
vrfB[47:40]
rD[55:48] < - rA[55:48] < rB[55:48] ? rA[55:48] :
vrfB[55:48]
rD[63:56] < - rA[63:56] < rB[63:56] ? rA[63:56] :
vrfB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.min.h Vector Half-Word Elements Minimum lv.min.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 211 of 211

Format:

lv.min.h rD,rA,rB

Description:

The half-word elements of general-purpose regis ter rA are compared to the half-word
elements of general-purpose register rB, and the smaller elements are selected to form the
result elements. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] < rB[15:0] ? rA[15:0] : vrfB[15:0]
rD[31:16] < - rA[31:16] < rB[31:16] ? rA[31:16] :
vrfB[31:16]
rD[47:32] < - rA[47:32] < rB[47:32] ? rA[47:32] :
vrfB[47:32]
rD[63:48] < - rA[63:48] < rB[63:48] ? rA[63:48] :
vrfB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.msubs.h

Vector Half-Word Elements
Multiply Subtract Signed

Saturated

lv.msubs.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 212 of 212

Format:

lv.msubs.h rD,rA,rB

Description:

The signed half-word elements of general-purpose register rA are multiplied by the
signed half-word elements of general-purpose register rB to form intermediate results.
They are then subtracted from the signed half-word VMAC elements to form the final
results that are placed again in the VMAC registers. The intermediate result is placed into
general-purpose register rD. If any of the final results exceeds the min/max value, it is
saturated.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat32s(VMACLO[31:0] - rA[15:0] * rB[15:0])
rD[31:16] < - sat32s(VMACLO[63:32] - rA[31:16] * rB[31:16])
rD[47:32] < - sat32s(VMACHI[31:0] - rA[47:32] * rB[47:32])
rD[63:48] < - sat32s(VMACHI[63:32] - rA[63:48] * rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.muls.h
Vector Half-Word Elements
Multiply Signed Saturated

lv.muls.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5c

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 II

www.opencores.org Rev 1.1 213 of 213

Format:

lv.muls.h rD,rA,rB

Description:

The signed half-word elements of general-purpose register rA are multiplied by the
signed half-word elements of general-purpose register rB to form the results. The result is
placed into general-purpose register rD. If any of the final results exceeds the min/max
value, it is saturated.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat32s(rA[15:0] * rB[15:0])
rD[31:16] < - sat32s(rA[31:16] * rB[31:16])
rD[47:32] < - sat32s(rA[47:32] * rB[47:32])
rD[63:48] < - sat32s(rA[63:48] * rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.nand Vector Not And lv.nand

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5d

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 214 of 214

Format:

lv.nand rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical NAND operation. The result is placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] NAND rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.nor Vector Not Or lv.nor

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5e

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 215 of 215

Format:

lv.nor rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical NOR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] NOR rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.or Vector Or lv.or

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x5f

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 216 of 216

Format:

lv.or rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical OR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] OR rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.pack.b Vector Byte Elements Pack lv.pack.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x60

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 217 of 218

Format:

lv.pack.b rD,rA,rB

Description:

The lower half of the byte elements of the general-purpose register rA are truncated and
combined with the lower half of the byte truncated elements of the general-purpose
register rB in such a way that the lowest elements are from rB, and the highest elements
from rA. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[3:0] < - rB[3:0]
rD[7:4] < - rB[11:8]
rD[11:8] < - rB[19:16]
rD[15:12] < - rB[27:24]
rD[19:16] < - rB[35:32]
rD[23:20] < - rB[43:40]
rD[27:24] < - rB[51:48]
rD[31:28] < - rB[59:56]
rD[35:32] < - rA[3:0]
rD[39:36] < - rA[11:8]
rD[43:40] < - rA[19:16]
rD[47:44] < - rA[27:24]
rD[51:48] < - rA[35:32]
rD[55:52] < - rA[43:40]
rD[59:56] < - rA[51:48]
rD[63:60] < - rA[59:56]

Exceptions:

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.pack.b Vector Byte Elements Pack lv.pack.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x60

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 218 of 218

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.pack.h Vector Half-word Elements Pack lv.pack.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x61

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 219 of 219

Format:

lv.pack.h rD,rA,rB

Description:

The lower half of the half-word elements of the general-purpose register rA are truncated
and combined with the lower half of the half-word truncated elements of the general-
purpose register rB in such a way that the lowest elements are from rB, and the highest
elements from rA. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rB[15:0]
rD[15:8] < - rB[31:16]
rD[23:16] < - rB[47:32]
rD[31:24] < - rB[63:48]
rD[39:32] < - rA[15:0]
rD[47:40] < - rA[31:16]
rD[55:48] < - rA[47:32]
rD[63:56] < - rA[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.packs.b
Vector Byte Elements Pack Signed

Saturated
lv.packs.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x62

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 220 of 221

Format:

lv.packs.b rD,rA,rB

Description:

The lower half of the signed byte elements of the general-purpose register rA are
truncated and combined with the lower half of the signed byte truncated elements of the
general-purpose register rB in such a way that the lowest elements are from rB, and the
highest elements from rA. If any truncated element exceeds a signed 4-bit value, it is
saturated. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[3:0] < - sat4s(rB[7:0]
rD[7:4] < - sat4s(rB[15:8]
rD[11:8] < - sat4s(rB[23:16]
rD[15:12] < - sat4s(rB[31:24]
rD[19:16] < - sat4s(rB[39:32]
rD[23:20] < - sat4s(rB[47:40]
rD[27:24] < - sat4s(rB[55:48]
rD[31:28] < - sat4s(rB[63:56]
rD[35:32] < - sat4s(rA[7:0]
rD[39:36] < - sat4s(rA[15:8]
rD[43:40] < - sat4s(rA[23:16]
rD[47:44] < - sat4s(rA[31:24]
rD[51:48] < - sat4s(rA[39:32]
rD[55:52] < - sat4s(rA[47:40]

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.packs.b
Vector Byte Elements Pack Signed

Saturated
lv.packs.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x62

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 221 of 221

rD[59:56] < - sat4s(rA[55:48]
rD[63:60] < - sat4s(rA[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.packs.h
Vector Half-word Elements Pack

Signed Saturated
lv.packs.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x63

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 222 of 222

Format:

lv.packs.h rD,rA,rB

Description:

The lower half of the signed halfword elements of the general-purpose register rA are
truncated and combined with the lower half of the signed half-word truncated elements of
the general-purpose register rB in such a way that the lowest elements are from rB, and
the highest elements from rA. If any truncated element exceeds a signed 8-bit value, it is
saturated. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8s(rB[15:0])
rD[15:8] < - sat8s(rB[31:16])
rD[23:16] < - sat8s(rB[47:32])
rD[31:24] < - sat8s(rB[63:48])
rD[39:32] < - sat8s(rA[15:0])
rD[47:40] < - sat8s(rA[31:16])
rD[55:48] < - sat8s(rA[47:32])
rD[63:56] < - sat8s(rA[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.packus.b
Vector Byte Elements Pack

Unsigned Saturated
lv.packus.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x64

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 223 of 224

Format:

lv.packus.b rD,rA,rB

Description:

The lower half of the unsigned byte elements of the general-purpose register rA are
truncated and combined with the lower half of the unsigned byte truncated elements of
the general-purpose register rB in such a way that the lowest elements are from rB, and
the highest elements from rA. If any truncated element exceeds an unsigned 4-bit value, it
is saturated. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[3:0] < - sat4u(rB[7:0]
rD[7:4] < - sat4u(rB[15:8]
rD[11:8] < - sat4u(rB[23:16]
rD[15:12] < - sat4u(rB[31:24]
rD[19:16] < - sat4u(rB[39:32]
rD[23:20] < - sat4u(rB[47:40]
rD[27:24] < - sat4u(rB[55:48]
rD[31:28] < - sat4u(rB[63:56]
rD[35:32] < - sat4u(rA[7:0]
rD[39:36] < - sat4u(rA[15:8]
rD[43:40] < - sat4u(rA[23:16]
rD[47:44] < - sat4u(rA[31:24]
rD[51:48] < - sat4u(rA[39:32]
rD[55:52] < - sat4u(rA[47:40]

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.packus.b
Vector Byte Elements Pack

Unsigned Saturated
lv.packus.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x64

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 224 of 224

rD[59:56] < - sat4u(rA[55:48]
rD[63:60] < - sat4u(rA[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.packus.h
Vector Half-word Elements
Pack Unsigned Saturated

lv.packus.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x65

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 225 of 225

Format:

lv.packus.h rD,rA,rB

Description:

The lower half of the unsigned halfword elements of the general-purpose register rA are
truncated and combined with the lower ha lf of the unsigned half-word truncated elements
of the general-purpose register rB in such a way that the lowest elements are from rB, and
the highest elements from rA. If any truncated element exceeds an unsigned 8-bit value, it
is saturated. The result e lements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8u(rB[15:0])
rD[15:8] < - sat8u(rB[31:16])
rD[23:16] < - sat8u(rB[47:32])
rD[31:24] < - sat8u(rB[63:48])
rD[39:32] < - sat8u(rA[15:0])
rD[47:40] < - sat8u(rA[31:16])
rD[55:48] < - sat8u(rA[47:32])
rD[63:56] < - sat8u(rA[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.perm.n Vector Nibble Elements Permute lv.perm.n

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x66

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 226 of 227

Format:

lv.perm.n rD,rA,rB

Description:

The 4-bit elements of general-purpose register rA are permuted according to the
corresponding 4-bit values in general-purpose register rB. The result elements are placed
into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[3:0] < - rA[rB[3:0]*4+3:rB[3:0]*4]
rD[7:4] < - rA[rB[7:4]*4+3:rB[7:4]*4]
rD[11:8] < - rA[rB[11:8]*4+3:rB[11:8]*4]
rD[15:12] < - rA[rB[15:12]*4+3:rB[15:12]*4]
rD[19:16] < - rA[rB[19:16]*4+3:rB[19:16]*4]
rD[23:20] < - rA[rB[23:20]*4+3:rB[23:20]*4]
rD[27:24] < - rA[rB[27:24]*4+3:rB[27:24]*4]
rD[31:28] < - rA[rB[31:28]*4+3:rB[31:28]*4]
rD[35:32] < - rA[rB[35:32]*4+3:rB[35:32]*4]
rD[39:36] < - rA[rB[39:36]*4+3:rB[39:36]*4]
rD[43:40] < - rA[rB[43:40]*4+3:rB[43:40]*4]
rD[47:44] < - rA[rB[47:44]*4+3:rB[47:44]*4]
rD[51:48] < - rA[rB[51:48]*4+3:rB[51:48]*4]
rD[55:52] < - rA[rB[55:52]*4+3:rB[55:52]*4]
rD[59:56] < - rA[rB[59:56]*4+3:rB[59:56]*4]
rD[63:60] < - rA[rB[63:60]*4+3:rB[63:60]*4]

Exceptions:

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.perm.n Vector Nibble Elements Permute lv.perm.n

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x66

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 227 of 227

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.rl.b Vector Byte Elements Rotate Left lv.rl.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x67

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 228 of 228

Format:

lv.rl.b rD,rA,rB

Description:

The contents of byte elements of general-purpose register rA are rotated left by the
number of bits specified in the lower 3 bits in each byte element of general-purpose
register rB. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] rl rB[2:0]
rD[15:8] < - rA[15:8] rl rB[10:8]
rD[23:16] < - rA[23:16] rl rB[18:16]
rD[31:24] < - rA[31:24] rl rB[26:24]
rD[39:32] < - rA[39:32] rl rB[34:32]
rD[47:40] < - rA[47:40] rl rB[42:40]
rD[55:48] < - rA[55:48] rl rB[50:48]
rD[63:56] < - rA[63:56] rl rB[58:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.rl.h Vector Half-Word Elements Rotate Left lv.rl.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x68

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 229 of 229

Format:

lv.rl.h rD,rA,rB

Description:

The contents of half-word elements of general-purpose register rA are rotated left by the
number of bits specified in the lower 4 bits in each half-word element of general-purpose
register rB. The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] rl rB[3:0]
rD[31:16] < - rA[31:16] rl rB[19:16]
rD[47:32] < - rA[47:32] rl rB[35:32]
rD[63:48] < - rA[63:48] rl rB[51:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.sll Vector Shift Left Logical lv.sll

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 230 of 230

Format:

lv.sll rD,rA,rB

Description:

The contents of general-purpose register rA are shifted left by the number of bits
specified in the lower 4 bits in each byte element of general-purpose register rB, inserting
zeros into the low-order bits of rD. The result elements are placed into general-purpose
register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] < < rB[2:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sll.b Vector Byte Elements Shift Left Logical lv.sll.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x69

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 231 of 231

Format:

lv.sll.b rD,rA,rB

Description:

The contents of byte elements of general-purpose register rA are shifted left by the
number of bits specified in the lower 3 bits in each byte element of general-purpose
register rB, inserting zeros into the low-order bits. The result elements are placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] < < rB[2:0]
rD[15:8] < - rA[15:8] < < rB[10:8]
rD[23:16] < - rA[23:16] < < rB[18:16]
rD[31:24] < - rA[31:24] < < rB[26:24]
rD[39:32] < - rA[39:32] < < rB[34:32]
rD[47:40] < - rA[47:40] < < rB[42:40]
rD[55:48] < - rA[55:48] < < rB[50:48]
rD[63:56] < - rA[63:56] < < rB[58:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sll.h
Vector Half-Word Elements Shift Left

Logical lv.sll.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 232 of 232

Format:

lv.sll.h rD,rA,rB

Description:

The contents of half-word elements of general-purpose register rA are shifted left by the
number of bits specified in the lower 4 bits in each half-word element of general-purpose
register rB, inserting zeros into the low-order bits. The result elements are placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] < < rB[3:0]
rD[31:16] < - rA[31:16] < < rB[19:16]
rD[47:32] < - rA[47:32] < < rB[35:32]
rD[63:48] < - rA[63:48] < < rB[51:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sra.b
Vector Byte Elements Shift Right

Arithmetic
lv.sra.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6e

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 233 of 331

Format:

lv.sra.b rD,rA,rB

Description:

The contents of byte elements of general-purpose register rA are shifted right by the
number of bits specified in the lower 3 bits in each byte element of general-purpose
register rB, inserting the most significant bit of each element into the high-order bits. The
result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] sra rB[2:0]
rD[15:8] < - rA[15:8] sra rB[10:8]
rD[23:16] < - rA[23:16] sra rB[18:16]
rD[31:24] < - rA[31:24] sra rB[26:24]
rD[39:32] < - rA[39:32] sra rB[34:32]
rD[47:40] < - rA[47:40] sra rB[42:40]
rD[55:48] < - rA[55:48] sra rB[50:48]
rD[63:56] < - rA[63:56] sra rB[58:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sra.h
Vector Half-Word Elements Shift Right

Arithmetic
lv.sra.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6f

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 234 of 331

Format:

lv.sra.h rD,rA,rB

Description:

The contents of half-word elements of general-purpose register rA are shifted right by the
number of bits specified in the lower 4 bits in each half-word element of general-purpose
register rB, inserting the most significant bit of each element into the high-order bits. The
result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] sra rB[3:0]
rD[31:16] < - rA[31:16] sra rB[19:16]
rD[47:32] < - rA[47:32] sra rB[35:32]
rD[63:48] < - rA[63:48] sra rB[51:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.srl Vector Shift Right Logical lv.srl

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x70

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 235 of 331

Format:

lv.srl rD,rA,rB

Description:

The contents of general-purpose register rA are shifted right by the number of bits
specified in the lower 4 bits in each byte element of general-purpose register rB, inserting
zeros into the high-order bits of rD. The result elements are placed into general-purpose
register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] >> rB[2:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.srl.b Vector Byte Elements Shift Right Logical lv.srl.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6c

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 236 of 236

Format:

lv.srl.b rD,rA,rB

Description:

The contents of byte elements of general-purpose register rA are shifted right by the
number of bits specified in the lower 3 bits in each byte element of general-purpose
register rB, inserting zeros into the high-order bits. The result elements are placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] >> rB[2:0]
rD[15:8] < - rA[15:8] >> rB[10:8]
rD[23:16] < - rA[23:16] >> rB[18:16]
rD[31:24] < - rA[31:24] >> rB[26:24]
rD[39:32] < - rA[39:32] >> rB[34:32]
rD[47:40] < - rA[47:40] >> rB[42:40]
rD[55:48] < - rA[55:48] >> rB[50:48]
rD[63:56] < - rA[63:56] >> rB[58:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.srl.h
Vector Half-Word Elements Shift Right

Logical lv.srl.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x6d

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 237 of 237

Format:

lv.srl.h rD,rA,rB

Description:

The contents of half-word elements of general-purpose register rA are shifted right by the
number of bits specified in the lower 4 bits in each half-word element of general-purpose
register rB, inserting zeros into the high-order bits. The result elements are placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] >> rB[3:0]
rD[31:16] < - rA[31:16] >> rB[19:16]
rD[47:32] < - rA[47:32] >> rB[35:32]
rD[63:48] < - rA[63:48] >> rB[51:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sub.b Vector Byte Elements Subtract Signed lv.sub.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x71

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 238 of 238

Format:

lv.sub.b rD,rA,rB

Description:

The byte elements of general-purpose register rB are subtracted from the byte elements of
general-purpose register rA to form the result elements. The result elements are placed
into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] - rB[7:0]
rD[15:8] < - rA[15:8] - rB[15:8]
rD[23:16] < - rA[23:16] - rB[23:16]
rD[31:24] < - rA[31:24] - rB[31:24]
rD[39:32] < - rA[39:32] - rB[39:32]
rD[47:40] < - rA[47:40] - rB[47:40]
rD[55:48] < - rA[55:48] - rB[55:48]
rD[63:56] < - rA[63:56] - rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle
Middle Right

lv.sub.h
Vector Half-Word Elements Subtract

Signed
lv.sub.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x72

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 239 of 239

Format:

lv.sub.h rD,rA,rB

Description:

The half-word elements of general-purpose register rB are subtracted from the half-word
elements of general-purpose register rA to form the result elements. The result elements
are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] - rB[15:0]
rD[31:16] < - rA[31:16] - rB[31:16]
rD[47:32] < - rA[47:32] - rB[47:32]
rD[63:48] < - rA[63:48] - rB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subs.b
Vector Byte Elements Subtract

Signed Saturated
lv.subs.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x73

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 240 of 240

Format:

lv.subs.b rD,rA,rB

Description:

The byte elements of general-purpose register rB are subtracted from the byte elements of
general-purpose register rA to form the result elements. If the result exceeds the min/max
value for the destination data type, it is saturated to the min/max value and placed into
general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8s(rA[7:0] + rB[7:0])
rD[15:8] < - sat8s(rA[15:8] + rB[15:8])
rD[23:16] < - sat8s(rA[23:16] + rB[23:16])
rD[31:24] < - sat8s(rA[31:24] + rB[31:24])
rD[39:32] < - sat8s(rA[39:32] + rB[39:32])
rD[47:40] < - sat8s(rA[47:40] + rB[47:40])
rD[55:48] < - sat8s(rA[55:48] + rB[55:48])
rD[63:56] < - sat8s(rA[63:56] + rB[63:56])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subs.h
Vector Half-Word Elements Subtract

Signed Saturated
lv.subs.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x74

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 241 of 241

Format:

lv.subs.h rD,rA,rB

Description:

The half-word elements of general-purpose register rB are subtracted from the half-word
elements of general-purpose register rA to form the result elements. If the result exceeds
the min/max value for the destination data type, it is saturated to the min/max value and
placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat16s(rA[15:0] - rB[15:0])
rD[31:16] < - sat16s(rA[31:16] - rB[31:16])
rD[47:32] < - sat16s(rA[47:32] - rB[47:32])
rD[63:48] < - sat16s(rA[63:48] - rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subu.b
Vector Byte Elements Subtract

Unsigned
lv.subu.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x75

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 242 of 242

Format:

lv.subu.b rD,rA,rB

Description:

The unsigned byte elements of general-purpose register rB are subtracted from the
unsigned byte elements of general-purpose register rA to form the result elements. The
result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - rA[7:0] - rB[7:0]
rD[15:8] < - rA[15:8] - rB[15:8]
rD[23:16] < - rA[23:16] - rB[23:16]
rD[31:24] < - rA[31:24] - rB[31:24]
rD[39:32] < - rA[39:32] - rB[39:32]
rD[47:40] < - rA[47:40] - rB[47:40]
rD[55:48] < - rA[55:48] - rB[55:48]
rD[63:56] < - rA[63:56] - rB[63:56]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subu.h
Vector Half-Word Elements

Subtract Unsigned
lv.subu.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x76

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 243 of 243

Format:

lv.subu.h rD,rA,rB

Description:

The unsigned half-word elements of general-purpose register rB are subtracted from the
unsigned half-word elements of general-purpose register rA to form the result elements.
The result elements are placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - rA[15:0] - rB[15:0]
rD[31:16] < - rA[31:16] - rB[31:16]
rD[47:32] < - rA[47:32] - rB[47:32]
rD[63:48] < - rA[63:48] - rB[63:48]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subus.b
Vector Byte Elements Subtract

Unsigned Saturated
lv.subus.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x77

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 244 of 244

Format:

lv.subus.b rD,rA,rB

Description:

The unsigned byte elements of general-purpose register rB are subtracted from the
unsigned byte elements of general-purpose register rA to form the result elements. If the
result exceeds the min/max value for the destination data type, it is saturated to the
min/max value and placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - sat8u(rA[7:0] + rB[7:0])
rD[15:8] < - sat8u(rA[15:8] + rB[15:8])
rD[23:16] < - sat8u(rA[23:16] + rB[23:16])
rD[31:24] < - sat8u(rA[31:24] + rB[31:24])
rD[39:32] < - sat8u(rA[39:32] + rB[39:32])
rD[47:40] < - sat8u(rA[47:40] + rB[47:40])
rD[55:48] < - sat8u(rA[55:48] + rB[55:48])
rD[63:56] < - sat8u(rA[63:56] + rB[63:56])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle
Middle Middle Right

lv.subus.h
Vector Half-Word Elements
Subtract Unsigned Saturated

lv.subus.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x78

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 245 of 245

Format:

lv.subus.h rD,rA,rB

Description:

The unsigned half-word elements of general-purpose register rB are subtracted from the
unsigned half-word elements of general-purpose register rA to form the result elements.
If the result exceeds the min/max value for the destination data type, it is saturated to the
min/max value and placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - sat16u(rA[15:0] - rB[15:0])
rD[31:16] < - sat16u(rA[31:16] - rB[31:16])
rD[47:32] < - sat16u(rA[47:32] - rB[47:32])
rD[63:48] < - sat16u(rA[63:48] - rB[63:48])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.unpack.b Vector Byte Elements Unpack lv.unpack.b

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x79

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 246 of 246

Format:

lv.unpack.b rD,rA,rB

Description:

The lower half of the 4-bit elements in general-purpose register rA are sign-extended and
placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[7:0] < - exts(rA[3:0])
rD[15:8] < - exts(rA[7:4])
rD[23:16] < - exts(rA[11:8])
rD[31:24] < - exts(rA[15:12])
rD[39:32] < - exts(rA[19:16])
rD[47:40] < - exts(rA[23:20])
rD[55:48] < - exts(rA[27:24])
rD[63:56] < - exts(rA[31:28])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle
Middle Middle Middle Right

lv.unpack.h
Vector Half-Word Elements

Unpack
lv.unpack.h

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x7a

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 247 of 247

Format:

lv.unpack.h rD,rA,rB

Description:

The lower half of the 8-bit elements in general-purpose register rA are sign-extended and
placed into general-purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[15:0] < - exts(rA[7:0])
rD[31:16] < - exts(rA[15:8])
rD[47:32] < - exts(rA[23:16])
rD[63:48] < - exts(rA[31:24])

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual July 13, 2004

Left Middle Middle Middle Middle Middle Middle Middle Middle Middle Middle Right

lv.xor Vector Exclusive Or lv.xor

31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . 8 7 0
opcode 0xa D A B reserved opcode 0x7b

6 bits 5 bits 5 bits 5 bits 3 bits 8bits

Instruction Class
ORVDX64 I

www.opencores.org Rev 1.1 248 of 248

Format:

lv.xor rD,rA,rB

Description:

The contents of general-purpose register rA are combined with the contents of general-
purpose register rB in a bit-wise logical XOR operation. The result is placed into general-
purpose register rD.

32-bit Implementation:

N/A

64-bit Implementation:

rD[63:0] < - rA[63:0] XOR rB[63:0]

Exceptions:

None

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 249 of 331

6 Exception Model
This chapter describes the various exception types and their handling.

6.1 Introduction
The exception mechanism allows the processor to change to supervisor state as a

result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at the address predetermined for
each exception. Processing of exceptions begins in supervisor mode.

The OpenRISC 1000 arcitecture has special support for fast exception processing –
also called fast context switch support. This allows very rapid interrupt processing. It is
achieved with shadowing general-purpose and some special registers.

The architecture requires that all exceptions be handled in strict order with respect to
the instruction stream. When an instruction-caused exception is recognized, any
unexecuted instructions that appear earlier in the instruction stream are required to
complete before the exception is taken.

Exceptions can occur while an exception handler routine is executing, and multiple
exceptions can become nested. Support for fast exceptions allows fast nesting of
exceptions until all shadowed registers are used. If context switching is not implemented,
nested exceptions should not occur.

6.2 Exception Classes
All exceptions can be described as precise or imprecise and either synchronous or

asynchronous. Synchronous exceptions are caused by instructions and asynchronous
exceptions are caused by events external to the processor.

Type Exception

Asynchronous/nonmaskable Bus Error, Reset

Asynchronous/maskable External Interrupt, Tick Timer

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise None

Table 6-1. Exception Classes

Whenever an exception occurs, current PC is saved to current EPCR and new PC

is set with the vector address according to Table 6-2.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 250 of 331

Exception Type Vector
Offset

Causal Conditions

Reset 0x100 Caused by software or hardware reset.

Bus Error 0x200 The causes are implementation-specific, but typically
they are related to bus errors and attempts to access

invalid physical address.

Data Page Fault 0x300 No matching PTE found in page tables or page
protection violation for load/store operations.

Instruction Page Fault 0x400 No matching PTE found in page tables or page
protection violation for instruction fetch.

Tick Timer 0x500 Tick timer interrupt asserted.

Alignment 0x600 Load/store access to naturally not aligned location.

Illegal Instruction 0x700 Illegal instruction in the instruction stream.

External Interrupt 0x800 External interrupt asserted.

D-TLB Miss 0x900 No matching entry in DTLB (DTLB miss).

I-TLB Miss 0xA00 No matching entry in ITLB (ITLB miss).

Range 0xB00 If programmed in the SR, the setting of certain flags,
like SR[OV], causes a range exception. On

OpenRISC implementations with less than 32 GPRs
when accessing unimplemented architectural GPRs.
On all implementations if SR[CID] had to go out of

range in order to process next exception.

System Call 0xC00 System call initiated by software.

Floating Point 0xD00 Caused by floating point instructions when FPCSR
status flags are set by FPU and FPCSR[FPEE] is set

Trap 0xE00 Caused by the l.trap instruction or by debug unit.

Reserved 0xF00 –
0x1400

Reserved for future use.

Reserved 0x1500 –
0x1800

Reserved for implementation-specific exceptions.

Reserved 0x1900 –
0x1F00

Reserved for custom exceptions.

Table 6-2. Exception Types and Causal Conditions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 251 of 331

6.3 Exception Processing
Whenever an exception occurs, the current/next PC is saved to the current EPCR

except if the current instruction is in the delay slot. If the PC points to the delay slot
instruction, PC-4 is saved to the current EPCR and SR[DSX] is set. Table 6-3 defines
what are current/next PC and effective address.

The SR is saved to the current ESR.
Current EPCR/ESR are identified by SR[CID]. If fast context switching is not

implemented then current EPCR/ESR are always EPCR0/ESR0.
In addition, the current EEAR is set with the effective address in question if one

of the following exceptions occurs: Bus Error, IMMU page fault, DMMU page fault,
Alignment, I-TLB miss, D-TLB miss.

Exception Priority EPCR
(no delay slot)

EPCR
(delay slot)

EEAR

Reset 1 - - -

Bus Error 4 (insn)
9 (data)

Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Load/
store/fetch
virtual EA

Data Page
Fault

8 Address of instruction
that caused exception

Address of jump ins truction
before the instruction that

caused exception

Load/store
virtual EA

Instruction
Page Fault

3 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Instruction
fetch

virtual EA

Tick Timer 12 Address of next not
executed instruction

Address of just executed
jump instruction

-

Alignment 6 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Load/store
virtual EA

Illegal
Instruction

5 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Instruction
fetch

virtual EA

External
Interrupt

12 Address of next not
executed instruction

Address of just executed
jump instruction

-

D-TLB Miss 7 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Load/store
virtual EA

I-TLB Miss 2 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

Instruction
fetch

virtual EA

Range 10 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

-

System Call 7 Address of next not Address of just executed -

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 252 of 331

Exception Priority EPCR
(no delay slot)

EPCR
(delay slot)

EEAR

executed instruction jump instruction

Floating
Point

11 Address of next not
executed instruction

Address of just executed
jump instruction

-

Trap 7 Address of instruction
that caused exception

Address of jump instruction
before the instruction that

caused exception

-

Table 6-3. Values of EPCR and EEAR After Exception

If fast context switching is used, SR[CID] is incremented with each new

exception so that a new set of shadowed registers is used. If SR[CID] will overflow with
the current exception, a range exception is invoked.

However, if SR[CE] is not set, fast context switching is not enabled. In this case
all registers that will be modified by exception handler routine must first be saved.

All exceptions set a new SR where both MMUs are disabled (address translation
disabled), supervisor mode is turned on, and tick timer exceptions and interrupts are
disabled. (SR[DME]=0, SR[IME]=0, SR[SM]=1, SR[IEE]=0 and SR[TEE]=0).

When enough machine state information has been saved by the exception handler,
SR[TTE] and SR[IEE] can be re-enabled so that tick timer and external interrupts are not
blocked.

When returning from an exception handler with l.rfe, SR and PC are restored. If
SR[CE] is set, CID will be automatically decremented and the previous machine state
will be restored; otherwise, general-purpose registers previously saved by exception
handler need to be restored as well.

6.4 Fast Context Switching (Optional)
Fast context switching is a technique that reduces register storing to stack when

exceptions occur. Only one type of exception can be handled, so it is up to the software to
figure out what caused it. Using software, both interrupt handler invokation and thread
switching can be handled very quickly. The hardware should be capable of switching
between contexts in only one cycle.

Context can also be switched during an exception or by using a supervisor register
CXR (context register) available only in supervisor mode. CXR is the same for all
contexts.

6.4.1 Changing Context in Supervisor Mode
The read/write register CXR consists of two parts: the lower 16 bits represents the

current context register set. The upper 16 bits represent the current CID. CCID cannot be
accessed in user mode. Writing to CCID causes an immediate context change. Reading

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 253 of 331

from CCID returns the running (current) context ID. The context where CID=0 is also
called the main context.

BIT 31-16 15-0

Identifier CCID CCRS

Reset 0 0

CCRS has two functions:

• When an exception occurs, it holds the previous CID.
• It is used to access other context's registers.

6.4.2 Context Switch Caused by Exception
When an exception occurs and fast context switching is enabled, the CCID is

copied to CCRS and then set to zero, thus switching to main context.
Functions of the main context are:

• Switching between threads
• Handling exceptions
• Preparing, loading, saving, and releasing context identifiers to/from the CID table

CXR should be stored in a general-purpose register as soon as possible, to allow

further exception nesting.
The following table shows an example how the CID table could be used. Generally,

there is no need that free exception contexts are equal.

CID Function

7

6

5

Exception contexts

4

3

2

1

Thread contexts

0 Main context

 Four thread contexts are loaded, and software can switch between them freely using

main context, running in supervisor mode. When an exception occurs, first need to be
determined what caused it and switch to the next free exception context. Since exceptions
can be nested, more free contexts may have to be available. Some of the contexts thus
need to be stored to memory in order to switch to a new exception.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 254 of 331

The algorithm used in the main context to handle context saving/restoring and
switching can be kept as simple as possible. It should have enough (of its own) registers
to store information such as:

• Current running CID

• Next exception
• Thread cycling info
• Pointers to context table in memory
• Copy of CXR

If the number of interrupts is significant, some sort of defered interrupts calls

mechanism can be used. The main context algorithm should store just I/O information
passed by the interrupt for further execution and return from main context as soon as
possible.

6.4.3 Accessing Other Contexts’ Registers
This operation can be done only in supervisor mode. In the basic instruction set we

have the l.mtspr and l.mfspr instructions that are used to access shadowed registers.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 255 of 331

7 Memory Model
This chapter describes the OpenRISC 1000 weakly ordered memory model.

7.1 Memory
Memory is byte-addressed with halfword accesses aligned on 2-byte boundaries,

singleword accesses aligned on 4-byte boundaries, and doubleword accesses aligned on
8-byte boundaries.

7.2 Memory Access Ordering
The OpenRISC 1000 architecture specifies a weakly ordered memory model for

uniprocessor and shared memory multiprocessor systems. This model has the advantage
of a higher-performance memory system but places the responsibility for strict access
ordering on the programmer.

The order in which the processor performs memory access, the order in which those
accesses complete in memory, and the order in which those accesses are viewed by
another processor may all be different. Two means of enforcing memory access ordering
are provided to allow programs in uniprocessor and multiprocessor system to share
memory.

An OpenRISC 1000 processor implementation may also implement a more
restrictive, strongly ordered memory model. Programs written for the weakly ordered
memory model will automatically work on processors with strongly ordered memory
model.

7.2.1 Memory Synchronize Instruction
The l.msync instruction permits the program to control the order in which load

and store operations are performed. This synchronization is accomplished by requiring
programs to indicate explicitly in the instruc tion stream, by inserting a memory sync
instruction, that synchronization is required. The memory sync instruction ensures that all
memory accesses initiated by a program have been performed before the next instruction
is executed.

OpenRISC 1000 processor implementations, that implement the strongly-ordered
memory model instead of the weakly-ordered one, can execute memory synchronization
instruction as a no-operation instruction.

7.2.2 Pages Designated as Weakly-Ordered-Memory
When a memory page is designated as a Weakly-Ordered-Memory (WOM) page,

instructions and data can be accessed out-of-order and with prefetching. When a page is

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 256 of 331

designated as not WOM, instruction fetches and load/store operations are performed in-
order without any prefetching.

OpenRISC 1000 scalar processor implementations, that implement strongly-ordered
memory model instead of the weakly-ordered one and perform load and store operations
in-order, are not required to implement the WOM bit in the MMU.

7.3 Atomicity
A memory access is atomic if it is always performed in its entirerty with no visible

fragmentation. Atomic memory accesses are specifically required to implement software
semaphores and other shared structures in systems where two different processes on the
same processor, or two different processors in a multiprocessor environment, access the
same memory location with intent to modify it.
The OpenRISC 1000 architecture provides two dedicated instructions that together
perform an atomic read-modify-write operation.
l.lwa rD, I(rA)
l.swa I(rA), rB

Instruction l.lwa loads single word from memory, creating a reservation for a
subsequent conditional store operation. A special register, invisible to the programmer, is
used to hold the address of the memory location, which is used in the atomic read-
modify-write operation.

The reservation for a subsequent l.swa is cancelled if another master reads the
same memory location (snoop hit), another l.lwa is executed or if the software explicitly
clears the reservation register.

If a reservation is still valid when the corresponding l.swa is executed, l.swa stores
general-purpose register rB into the memory. If reservation was cancelled, l.swa is
executed as no operation.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 257 of 331

8 Memory Management
This chapter describes the virtual memory and access protection mechanisms for

memory management within the OpenRISC 1000 architecture.
Note that this chapter describes the address translation mechanism from the

perspective of the programming model. As such, it describes the structure of the page
tables, the MMU conditions that cause MMU related exceptions and the MMU registers.
The hardware implementation details that are invisible to the OpenRISC 1000
programming model, such as MMU organization and TLB size, are not contained in the
architectural definition.

8.1 MMU Features
The OpenRISC 1000 memory management unit includes the following principal features:

• Support for effective address (EA) of 32 bits and 64 bits
• Support for implementation specific size of physical address spaces up to 35

address bits (32 GByte)
• Three different page sizes:

• Level 0 pages (32 Gbyte; only with 64-bit EA) translated with D/I Area
Translation Buffer (ATB)

• Level 1 pages (16 MByte) translated with D/I Area Translation Buffer (ATB)
• Level 2 pages (8 Kbyte) translated with D/I Translation Lookaside Buffer (TLB)
• Address translation using one-, two- or three-level page tables
• Powerful page based access protection with support for demand-paged virtual

memory
• Support for simultaneous multi-threading (SMT)

8.2 MMU Overview
The primary functions of the MMU in an OpenRISC 1000 processor are to translate

effective addresses to physical addresses for memory accesses. In addition, the MMU
provides various levels of access protection on a page-by-page basis. Note that this
chapter describes the conceptual model of the OpenRISC 1000 MMU and
implementations may differ in the specific hardware used to implement this model.

Two general types of accesses generated by OpenRISC 1000 processors require
address translation – instruction accesses generated by the instruction fetch unit, and data
accesses generated by the load and store unit. Generally, the address translation
mechanism is defined in terms of page tables used by OpenRISC 1000 processors to
locate the effective to physical address mapping for instruction and data accesses.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 258 of 331

The definition of page table data structures provides significant flexibility for the
implementation of performance enhancement features in a wide range of processors.
Therefore, the performance enhancements used to the page table informatio n on-chip
vary from implementation to implementation.

Translation lookaside buffers (TLBs) are commonly implemented in OpenRISC
1000 processors to keep recently-used page address translations on-chip. Although their
exact implementation is not specified, the general concepts that are pertinent to the
system software are described.

MMU

CPU Core

32-Bit Effective Address

36-Bit Virtual Address

4-Bit Context ID CID
(4 bits)

3 0

Page Index
(32-VMPS bits)

Page Offset
(VMPS bits)

31 VMPS 0
VMPS-

1

Page Index
(32-VMPS bits)

Page Offset
(VMPS bits)

31 0

CID
(4 bits)

35 32
VMP

S
VMPS-1

xTLB / xAAT

Virtual Page Number (VPN)

External I/F

PADDR_WIDTH-Bit
Physical Address

Physical Page Number
(PADDR_WIDTH-VMPS bit)

Page Offset
(VMPS bit)

PADDR_WIDTH-1 0VMPS
VMPS-

1

Figure 8-1. Translation of Effective to Physical Address – Simplified block diagram for 32-bit

processor implementations

Large areas can be translated with optional facility called Area Translation Buffer

(ATB). ATBs translate 16MB and 32GB pages. If xTLB and xATB have a match on the
same virtual address, xTLB is used.

The MMU, together with the exception processing mechanism, provides the
necessary support for the operating system to implement a paged virtual memory
environment and for enforcing protection of designated memory areas.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 259 of 331

8.3 MMU Exceptions
To complete any memory access, the effective address must be translated to a

physical address. An MMU exception occurs if this translation fails.
TLB miss exceptions can happen only on OpenRISC 1000 processor

implementations that do TLB reload in software.
The page fault exceptions that are caused by missing PTE in page table or page

access protection can happen on any OpenRISC 1000 processor implementations.

EXCEPTION NAME VECTOR OFFSET CAUSING CONDITIONS

Data Page Fault 0x300 No matching PTE found in page tables or page
protection violation for load/store operations.

Instruction Page
Fault

0x400 No matching PTE found in page tables or page
protection violation for instruction fetch.

DTLB Miss 0x900 No matching entry in DTLB.

ITLB Miss 0xA00 No matching entry in ITLB.

Table 8-1. MMU Exceptions

The state saved by the processor for each of the exceptions in Table 9-2 contains

information that identifies the address of the failing instruction. Refer to the chapter
entitled “Error! Reference source not found. ” on page Error! Bookmark not defined.
for a more detailed description of exception processing.

8.4 MMU Special-Purpose Registers
Table 8-2 summarizes the registers that the operating system uses to program the

MMU. These registers are 32-bit special-purpose supervisor- level registers accessible
with the l.mtspr/l.mfspr instructions in supervisor mode only.

Table 8-2 does not show two configuration registers that are implemented if
implementation implements configuration registers. DMMUCFGR and IMMUCFGR
describe capability of DMMU and IMMU.

Grp # Reg # Reg Name USER
MODE

SUPV
MODE

Description

1 0 DMMUCR – R/W Data MMU Control register

1 1 DMMUPR – R/W Data MMU Protection Register

1 2 DTLBEIR – W Data TLB Entry Invalidate
register

1 4-7 DATBMR0-
DATBMR3

– R/W Data ATB Match registers

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 260 of 331

1 8-11 DATBTR0-
DATBTR3

– R/W Data ATB Translate registers

1 512-
639

DTLBW0MR0 -
DTLBW0MR127

– R/W Data TLB Match registers
Way 0

1 640-
767

DTLBW0TR0-
DTLBW0TR127

– R/W Data TLB Translate registers
Way 0

1 768-
895

DTLBW1MR0 -
DTLBW1MR127

– R/W Data TLB Match registers
Way 1

1 896-
1023

DTLBW1TR0-
DTLBW1TR127

– R/W Data TLB Translate registers
Way 1

1 1024-
1151

DTLBW2MR0 -
DTLBW2MR127

– R/W Data TLB Match registers
Way 2

1 1152-
1279

DTLBW2TR0-
DTLBW2TR127

– R/W Data TLB Translate registers
Way 2

1 1280-
1407

DTLBW3MR0 -
DTLBW3MR127

– R/W Data TLB Match registers
Way 3

1 1408-
1535

DTLBW3TR0-
DTLBW3TR127

– R/W Data TLB Translate registers
Way 3

2 0 IMMUCR – R/W Instruction MMU Control
register

2 1 IMMUPR – R/W Instruction MMU Protection
Register

2 2 ITLBEIR – W Instruction TLB Entry
Invalidate register

2 4-7 IATBMR0-
IATBMR3

– R/W Instruction ATB Match
registers

2 8-11 IATBTR0-
IATBTR3

– R/W Instruction ATB Translate
registers

2 512-
639

ITLBW0MR0-
ITLBW0MR127

– R/W Instruction TLB Match
registers Way 0

2 640-
767

ITLBW0TR0-
ITLBW0TR127

– R/W Instruction TLB Translate
registers Way 0

2 768-
895

ITLBW1MR0-
ITLBW1MR127

– R/W Instruction TLB Match
registers Way 1

2 896-
1023

ITLBW1TR0-
ITLBW1TR127

– R/W Instruction TLB Translate
registers Way 1

2 1024-
1151

ITLBW2MR0-
ITLBW2MR127

– R/W Instruction TLB Match
registers Way 2

2 1152-
1279

ITLBW2TR0-
ITLBW2TR127

– R/W Instruction TLB Translate
registers Way 2

2 1280-
1407

ITLBW3MR0-
ITLBW3MR127

– R/W Instruction TLB Match
registers Way 3

2 1408-
1535

ITLBW3TR0-
ITLBW3TR127

– R/W Instruction TLB Translate
registers Way 3

Table 8-2. List of MMU Special-Purpose Registers

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 261 of 331

As TLBs are noncoherent caches of PTEs, software that changes the page tables

in any way must perform the appropriate TLB invalidate operations to keep the on-chip
TLBs coherent with respect to the page tables in memory.

8.4.1 Data MMU Control Register (DMMUCR)
The DMMUCR is a 32-bit special-purpose supervisor- level register accessible

with the l.mtspr/l.mfspr instructions in supervisor mode.
It provides general control of the DMMU.

Bit 31-10 9-1 0

Identifier PTBP Reserved DTF

Reset 0 X 0

R/W R/W R R/W

DTF DTLB Flush

0 DTLB ready for operation
1 DTLB flush request/status

PTBP Page Table Base Pointer
N 22-bit pointer to the base of page directory/table

Table 8-3. DMMUCR Field Descriptions

The PTBP field in the DMMUCR is required only in implementations with

hardware PTE reload support. Implementations that use software TLB reload are not
required to implement this field because the page table base pointer is stored in a TLB
miss exception handler’s variable.

The DTF is optional and when implemented it flushes entire DTLB.

8.4.2 Data MMU Protection Register (DMMUPR)
The DMMUPR is a 32-bit special-purpose supervisor- level register accessible

with the l.mtspr/l.mfspr instructions in supervisor mode.
It defines 7 protection groups indexed by PPI fields in PTEs.

Bit 31-28 27 26 25 24

Identifier Reserved UWE7 URE7 SWE7 SRE7

Reset X 0 0 0 0

R/W R R/W R/W R/W R/W

Bit 23 22 21 20 19 18 17 16

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 262 of 331

Identifier UWE6 URE6 SWE6 SRE6 UWE5 URE5 SWE5 SRE5

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

Identifier UWE4 URE4 SWE4 SRE4 UWE3 URE3 SWE3 SRE3

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Identifier UWE2 URE2 SWE2 SRE2 UWE1 URE1 SWE1 SRE1

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

SREx Supervisor Read Enable x

0 Load operation in supervisor mode not permitted
1 Load operation in supervisor mode permitted

SWEx Supervisor Write Enable x
0 Store operation in supervisor mode not permitted

1 Store operation in supervisor mode permitted

UREx User Read Enable x
0 Load operation in user mode not permitted

1 Load operation in user mode permitted

UWEx User Write Enable x
0 Store operation in user mode not permitted

1 Store operation in user mode permitted

Table 8-4. DMMUPR Field Descriptions

A DMMUPR is required only in implementations with hardware PTE reload

support. Implementations that use software TLB reload are not required to implement this
register; instead a TLB miss handler should have a software variable as replacement for
the DMMUPR and it should do a software look-up operation and set DTLBWyTRx
protection bits accordingly.

8.4.3 Instruction MMU Control Register (IMMUCR)
The IMMUCR is a 32-bit special-purpose supervisor- level register accessible

with the l.mtspr/l.mfspr instructions in supervisor mode.
It provides general control of the IMMU.

Bit 31-10 9-1 0

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 263 of 331

Identifier PTBP Reserved ITF

Reset 0 X 0

R/W R/W R R/W

ITF ITLB Flush

0 ITLB ready for operation
1 ITLB flush request/status

PTBP Page Table Base Pointer
N 22-bit pointer to the base of page directory/table

Table 8-5. IMMUCR Field Descriptions

The PTBP field in xMMUCR is required only in implementations with hardware

PTE reload support. Implementations that use software TLB reload are not required to
implement this field because the page table base pointer is stored in a TLB miss
exception handler’s variable.

The ITF is optional and when implemented it flushes entire ITLB.

8.4.4 Instruction MMU Protection Register (IMMUPR)

The IMMUP register is a 32-bit special-purpose supervisor- level register
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

It defines 7 protection groups indexed by PPI fields in PTEs.

Bit 31-14 13 12 11 10 9 8

Identifier Reserved UXE7 SXE7 UXE6 SXE6 UXE5 SXE5

Reset X 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Identifier UXE4 SXE4 UXE3 SXE3 UXE2 SXE2 UXE1 SXE1

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

SXEx Supervisor Execute Enable x

0 Instruction fetch in supervisor mode not permitted
1 Instruction fetch in supervisor mode permitted

UXEx User Execute Enable x
0 Instruction fetch in user mode not permitted

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 264 of 331

1 Instruction fetch in user mode permitted

Table 8-6. IMMUPR Field Descriptions

The IMMUPR is required only in implementations with hardware PTE reload

support. Implementations that use software TLB reload are not required to implement this
register; instead the TLB miss handler should have a software variable as replacement for
the IMMUPR register and it should do a software look-up operation and set ITLBWyTRx
protection bits accordingly.

8.4.5 Instruction/Data TLB Entry Invalidate Registers
(xTLBEIR)

The instruction/data TLB entry invalidate registers are special-purpose registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode. They are 32 bits wide
in 32-bit implementations and 64 bits wide in 64-bit implementation.

The xTLBEIR is written with the effective address. The corresponding xTLB
entry is invalidated in the local processor.

Bit 31-0

Identifier EA

Reset 0

R/W Write Only

EA Effective Address

EA that targets TLB entry inside TLB

Table 8-7. xTLBEIR Field Descriptions

8.4.6 Instruction/Data Translation Lookaside Buffer
Way y Match Registers
(xTLBWyMR0-xTLBWyMR127)

The xTLBWyMR registers are 32-bit special-purpose supervisor- level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

Together with the xTLBWyTR registers they cache translation entries used for
translating virtual to physical address. A virtual address is formed from the EA generated
during instruction fetch or load/store operation, and the SR[CID] field. xTLBWyMR
registers hold a tag that is compared with the current virtual address generated by the
CPU core. Together with the xTLBWyTR registers and match logic they form a core part
of the xMMU.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 265 of 331

Bit 31-12

Identifier VPN

Reset X

R/W R/W

Bit 11-8 7-6 5-2 1 0

Identifier Reserved LRU CID PL1 V

Reset X 0 X 0 0

R/W R R/W R/W R/W R/W

V Valid

0 TLB entry invalid
1 TLB entry valid

PL1 Page Level 1
0 Page level is 2
1 Page level is 1

CID Context ID
0-15 TLB entry translates for CID

LRU Last Recently used
0-3 Index in LRU queue (lower the number, more recent access)

VPN Virtual Page Number
0-N Number of the virtual frame that must match EA

Table 8-8. xTLBMR Field Descriptions

The CID bits can be hardwired to zero if the implementation does not support fast

context switching and SR[CID] bits.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 266 of 331

8.4.7 Data Translation Lookaside Buffer Way y
Translate Registers
(DTLBWyTR0-DTLBWyTR127)

The DTLBWyTR registers are 32-bit special-purpose supervisor-level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

Together with the DTLBWyMR registers they cache translation entries used for
translating virtual to physical address. A virtual address is formed from the EA generated
during a load/store operation, and the SR[CID] field. Together with the DTLBWyMR
registers and match logic they form a core of the DMMU.

Bit 31-12 11-10 9 8 7

Identifier PPN Reserved SWE SRE UWE

Reset X X X X X

R/W R/W R R/W R/W R/W

Bit 6 5 4 3 2 1 0

Identifier URE D A WOM WBC CI CC

Reset X X X X X X X

R/W R/W R/W R/W R/W R/W R/W R/W

CC Cache Coherency

0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page

CI Cache Inhibit
0 Cache is enabled for this page
1 Cache is disabled for this page

WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM Weakly-Ordered Memory
0 Strongly-ordered memory model for this page
1 Weakly-ordered memory model for this page

A Accessed
0 Page was not accessed

1 Page was accessed

D Dirty
0 Page was not modified

1 Page was modified

URE User Read Enable x

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 267 of 331

0 Load operation in supervisor mode not permitted
1 Load operation in supervisor mode permitted

UWE User Write Enable x
0 Store operation in supervisor mode not permitted

1 Store operation in supervisor mode permitted

SRE Supervisor Read Enable x
0 Load operation in user mode not permitted

1 Load operation in user mode permitted

SWE Supervisor Write Enable x
0 Store operation in user mode not permitted

1 Store operation in user mode permitted

PPN Physical Page Number
0-N Number of the physical frame in memory

Table 8-9. DTLBTR Field Descriptions

8.4.8 Instruction Translation Lookaside Buffer Way y
Translate Registers
(ITLBWyTR0-ITLBWyTR127)

The ITLBWyTR registers are 32-bit special-purpose supervisor- level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

Together with the ITLBWyMR registers they cache translation entries used for
translating virtual to physical address. A virtual address is formed from the EA generated
during an instruction fetch operation, and the SR[CID] field. Together with the
ITLBWyMR registers and match logic they form a core part of the IMMU.

Bit 31-12 11-8 7

Identifier PPN Reserved UXE

Reset X X X

R/W R/W R/W R/W

Bit 6 5 4 3 2 1 0

Identifier SXE D A WOM WBC CI CC

Reset X X X X X X X

R/W R/W R/W R/W R/W R/W R/W R/W

CC Cache Coherency
0 Data cache coherency is not enforced for this page

1 Data cache coherency is enforced for this page

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 268 of 331

CI Cache Inhibit
0 Cache is enabled for this page
1 Cache is disabled for this page

WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM Weakly-Ordered Memory
0 Strongly-ordered memory model for this page
1 Weakly-ordered memory model for this page

A Accessed
0 Page was not accessed

1 Page was accessed

D Dirty
0 Page was not modified

1 Page was modified

SXE Supervisor Execute Enable x
0 Instruction fetch operation in supervisor mode not permitted

1 Instruction fetch operation in supervisor mode permitted

UXE User Execute Enable x
0 Instruction fetch operation in user mode not permitted

1 Instruction fetch operation in user mode permitted

PPN Physical Page Number
0-N Number of the physical frame in memory

Table 8-10. ITLBWyTR Field Descriptions

8.4.9 Instruction/Data Area Translation Buffer Match
Registers (xATBMR0-xATBMR3)

The xATBMR registers are 32-bit special-purpose supervisor- level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

Together with the xATBTR registers they cache translation entries used for
translating virtual to physical address of large address space areas. A virtual address is
formed from the EA generated during an instruction fetch or load/store operation, and the
SR[CID] field. xATBMR registers hold a tag that is compared with the current virtual
address generated by the CPU core. Together with the xATBTR registers and match logic
they form a core part of the xMMU.

Bit 31-10

Identifier VPN

Reset X

R/W R/W

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 269 of 331

Bit 9-5 5 4-1 0

Identifier Reserved PS CID V

Reset X 0 0 0

R/W R R/W R/W R/W

V Valid

0 TLB entry invalid
1 TLB entry valid

CID Context ID
0-15 TLB entry translates for CID

PS Page Size
0 16 Mbyte page
1 32 Gbyte page

VPN Virtual Page Number
0-N Number of the virtual frame that must match EA

Table 8-11. xATBMR Field Descriptions

The CID bits can be hardwired to zero if the implementation does not support fast

context switching and SR[CID] bits.

8.4.10 Data Area Translation Buffer Translate
Registers (DATBTR0-DATBTR3)

The DATBTR registers are 32-bit special-purpose supervisor-level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

Together with the DATBMR registers they cache translation entries used for
translating virtual to physical address. A virtual address is formed from the EA generated
during a load/store operation, and the SR[CID] field. Together with the DATBMR
registers and match logic they form a core part of the DMMU.

Bit 31-10 9 8 7

Identifier PPN UWE URE SWE

Reset X X X X

R/W R/W R/W R/W R/W

Bit 6 5 4 3 2 1 0

Identifier SRE D A WOM WBC CI CC

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 270 of 331

Reset X X X X X X X

R/W R/W R/W R/W R/W R/W R/W R/W

CC Cache Coherency

0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page

CI Cache Inhibit
0 Cache is enabled for this page
1 Cache is disabled for this page

WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM Weakly-Ordered Memory
0 Strongly-ordered memory model for this page
1 Weakly-ordered memory model for this page

A Accessed
0 Page was not accessed

1 Page was accessed

D Dirty
0 Page was not modified

1 Page was modified

SRE Supervisor Read Enable x
0 Load operation in supervisor mode not permitted

1 Load operation in supervisor mode permitted

SWE Supervisor Write Enable x
0 Store operation in supervisor mode not permitted

1 Store operation in supervisor mode permitted

URE User Read Enable x
0 Load operation in user mode not permitted

1 Load operation in user mode permitted

UWE User Write Enable x
0 Store operation in user mode not permitted

1 Store operation in user mode permitted

PPN Physical Page Number
0-N Number of the physical frame in memory

Table 8-12. DATBTR Field Descriptions

8.4.11 Instruction Area Translation Buffer Translate
Registers (IATBTR0-IATBTR3)

The IATBTR registers are 32-bit special-purpose supervisor- level registers
accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 271 of 331

Together with the IATBMR registers they cache translation entries used for
translating virtual to physical address. A virtual address is formed from the EA generated
during an instruction fetch operation, and the SR[CID] field. Together with the IATBMR
registers and match logic they form a core part of the IMMU.

Bit 31-10 9-8 7

Identifier PPN Reserved UXE

Reset X X X

R/W R/W R/W R/W

Bit 6 5 4 3 2 1 0

Identifier SXE D A WOM WBC CI CC

Reset X X X X X X X

R/W R/W R/W R/W R/W R/W R/W R/W

CC Cache Coherency

0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page

CI Cache Inhibit
0 Cache is enabled for this page
1 Cache is disabled for this page

WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM Weakly-Ordered Memory
0 Strongly-ordered memory model for this page
1 Weakly-ordered memory model for this page

A Accessed
0 Page was not accessed

1 Page was accessed

D Dirty
0 Page was not modified

1 Page was modified

SXE Supervisor Execute Enable x
0 Instruction fetch operation in supervisor mode not permitted

1 Instruction fetch operation in supervisor mode permitted

UXE User Execute Enable x
0 Instruction fetch operation in user mode not permitted

1 Instruction fetch operation in user mode permitted

PPN Physical Page Number
0-N Number of the physical frame in memory

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 272 of 331

Table 8-13. IATBTR Field Descriptions

8.5 Address Translation Mechanism in 32-bit
Implementations
Memory in an OpenRISC 1000 implementation with 32-bit effective addresses (EA)

is divided into level 1 and level 2 pages. Translation is therefore based on two- level page
table. However for virtual memory areas that do not need the smallest 8KB page
granularity, only one level can be used.

Virtual Address
Space

2^36 bytes

Effective Address
Space per Process

Truncated
Effective Address

Space per Process
2^32

bytes

Level 1 Page

Level 1 Page
2^24 bytes

Level 2 Page

Level 2 Page
2^13 bytes

Figure 8-2. Memory Divided Into L1 and L2 pages

The first step in page address translation is to append the current SR[CID] bits as

most significant bits to the 32-bit effective address, combining them into a 36-bit virtual
address. This virtual address is then used to locate the correct page table entry (PTE) in
the page tables in the memory. The physical page number is then extracted from the PTE
and used in the physical address. Note that for increased performance, most processors
implement on-chip trans lation lookaside buffers (TLBs) to cache copies of the recently-
used PTEs.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 273 of 331

Context ID
(4 bits)

Page Index Level 1
(8 bits)

Page Index Level 2
(11 bits)

Page Offset
(13 bits)

35 31 24 23 13 12 0

Physical Page Number
(22 bits)

Page Offset
(13 bits)

34 13 12 0

Page Table
Base Address
depending on
current CID

+

PTE1

L1 Page Directory

+

PTE2

L2 Page Table

Virtual Page Number (VPN)

255

0

0

2047

Figure 8-3. Address Translation Mechanism using Two-Level Page Table

Figure 8-3 shows an overview of the two- level page table translation of a virtual

address to a physical address:
• Bits 35..32 of the virtual address select the page tables for the current context

(process)
• Bits 31..24 of the virtual address correspond to the level 1 page number within the

current context’s virtual space. The L1 page index is used to index the L1 page
directory and to retrieve the PTE from it, or together with the L2 page index to
match for the PTE in on-chip TLBs.

• Bits 23..13 of the virtual address correspond to the level 2 page number within the
current context’s virtual space. The L2 page index is used to index the L2 page
table and to retrieve the PTE from it, or together with the L1 page index to match
for the PTE in on-chip TLBs.

• Bits 12..0 of the virtual address are the byte offset within the page; these are
concatenated with the PPN field of the PTE to form the physical address used to
access memory

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 274 of 331

The OpenRISC 1000 two- level page table translation also allows implementation of
segments with only one level of translation. This greatly reduces memory requirements
for the page tables since large areas of unused virtual address space can be covered only
by level 1 PTEs.

Context ID
(4 bits)

Page Index Level 1
(8 bits)

Page Offset
(24 bits)

35 31 24 23 0

Truncated Physical Page Number
(11 bits)

Page Offset
(24 bits)

34 23 0

Page Table
Base Address
depending on
current CID

+

PTE1

L1 Page Table

Virtual Page Number (VPN)

0

255

Figure 8-4. Address Translation Mechanism using only L1 Page Table

Figure 8-4 shows an overview of the one- level page table translation of a virtual

address to physical address:
• Bits 35..32 of the virtual address select the page tables for the current context

(process)
• Bits 31..24 of the virtual address correspond to the level 1 page number within the

current context’s virtual space. The L1 page index is used to index the L1 page
table and to retrieve the PTE from it, or to match for the PTE in on-chip TLBs.

• Bits 23..0 of the virtual address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address
used to access memory

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 275 of 331

8.6 Address Translation Mechanism in 64-bit
Implementations
Memory in OpenRISC 1000 implementations with 64-bit effective addresses (EA) is

divided into level 0, level 1 and level 2 pages. Translation is therefore based on three-
level page table. However for virtual memory areas that do not need the smallest page
granularity of 8KB, two level translation can be used.

Level 2 Page
2^13 bytes

Level 1 Page
2^24 bytes

Level 2 Page

Truncated
Effective

Address Space
per Process

2^46 bytes

Level 0 Page

Virtual Address
Space

2^50 bytes

Effective
Address Space

per Process

Level 0 Page
2^35 bytes

Level 1 Page

Figure 8-5. Memory Divided Into L0, L1 and L2 pages

The first step in page address translation is truncation of the 64-bit effective

address into a 46-bit address. Then the current SR[CID] bits are appended as most
significant bits. The 50-bit virtual address thus formed is then used to locate the correct
page table entry (PTE) in the page tables in the memory. The physical page number is
then extracted from the PTE and used in the physical address. Note that for increased
performance, most processors implement on-chip translation lookaside buffers (TLBs) to
cache copies of the recently-used PTEs.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 276 of 331

Context ID
(4 bits)

Page Index Level 1
(11 bits)

Page Index Level 2
(11 bits)

Page Offset
(13 bits)

49 45 35 34 24 23 0

Physical Page Number
(22 bits)

Page Offset
(13 bits)

34 13 12 0

Page Table
Base Address
depending on
current CID

+

PTE0

L0 Page Table

+

PTE1

L1 Page Table

Virtual Page Number (VPN)

Page Index Level 3
(11 bits)

PTE2

+ L2 Page Table

13 12

0

2047

2047

0

0

2047

Figure 8-6. Address Translation Mechanism using Three-Level Page Table

Figure 8-6 shows an overview of the three- level page table translation of a virtual

address to physical address:
• Bits 49..46 of the virtual address select the page tables for the current context

(process)
• Bits 45..35 of the virtual address correspond to the level 0 page number within

current context’s virtual space. The L0 page index is used to index the L0 page
directory and to retrieve the PTE from it, or together with the L1 and L2 page
indexes to match for the PTE in on-chip TLBs.

• Bits 34..24 of the virtual address correspond to the level 1 page number within the
current context’s virtual space. The L1 page index is used to index the L1 page
directory and to retrieve the PTE from it, or together with the L0 and L2 page
indexes to match for the PTE in on-chip TLBs.

• Bits 23..13 of the virtual address correspond to the level 2 page number within the
current context’s virtual space. The L2 page index is used to index the L2 page
table and to retrieve the PTE from it, or together with the L0 and L1 page indexes
to match for the PTE in on-chip TLBs.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 277 of 331

• Bits 12..0 of the virtual address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address
used to access memory

The OpenRISC 1000 three- level page table translation also allows implementation of

large segments with two levels of trans lation. This greatly reduces memory requirements
for the page tables since large areas of unused virtual address space can be covered only
by level 1 PTEs.

Context ID
(4 bits)

Page Index Level 1
(11 bits)

Page Index Level 2
(11 bits)

Page Offset
(24 bits)

49 45 35 34 24 23 0

Physical Page Number
(11 bits)

Page Offset
(24 bits)

34 24 23 0

Page Table
Base Address
depending on
current CID

+

PTE0

L0 Page Table

+

PTE1

L1 Page Table

Virtual Page Number (VPN)

0

2047

2047

0

Figure 8-7. Address Translation Mechanism using Two-Level Page Table

Figure 8-7 shows an overview of the two- level page table translation of a virtual

address to physical address:
• Bits 49..46 of the virtual address select the page tables for the current context

(process)
• Bits 45..35 of the virtual address correspond to the level 0 page number within the

current context’s virtual space. The L0 page index is used to index the L0 page
directory and to retrieve the PTE from it, or together with the L1 page index to
match for the PTE in on-chip TLBs.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 278 of 331

• Bits 34..24 of the virtual address correspond to the level 1 page number within the
current context’s virtual space. The L1 page index is used to index the L1 page
table and to retrieve the PTE from it, or together with the L0 page index to match
for the PTE in on-chip TLBs.

• Bits 23..0 of the virtual address are the byte offset within the page; these are
concatenated with the truncated PPN field of the PTE to form the physical address
used to access memory

8.7 Memory Protection Mechanism
After a virtual address is determined to be within a page covered by the valid PTE,

the access is validated by the memory protection mechanism. If this protection
mechanism prohibits the access, a page fault exception is generated.

The memory protection mechanism allows selectively granting read access, write
access or execute access for both supervisor and user modes. The page protection
mechanism provides protection at all page level granularities.

Protection attribute Meaning

DMMUPR[SREx] Enable load operations in supervisor mode to the page.

DMMUPR[SWEx] Enable store operations in supervisor mode to the page.

IMMUPR[SXEx] Enable execution in supervisor mode of the page.

DMMUPR[UREx] Enable load operations in user mode to the page.

DMMUPR[UWEx] Enable store operations in user mode to the page.

IMMUPR[UXEx] Enable execution in user mode of the page.

Table 8-14. Protection Attributes

Table 8-14 lists page protection attributes defined in MMU protection registers.

For the individual page the appropriate strategy out of seven possible strategies
programmed in MMU protection registers is selected with the PPI field of the PTE.

In OpenRISC 1000 processors that do not implement TLB/ATB reload in
hardware, protection registers are not needed.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 279 of 331

DMMUPR
Protection groups

PPI

SWE

SRE

URE

UWE

Figure 8-8. Selection of Page Protection Attributes for Data Accesses

IMMUPR
Protection groups

PPI

SXE

UXE

Figure 8-9. Selection of Page Protection Attributes for Instruction Fetch Accesses

8.8 Page Table Entry Definition
Page table entries (PTEs) are generated and placed in page tables in memory by the

operating system. A PTE is 32 bits wide and is the same for 32-bit and 64-bit OpenRISC
1000 processor implementations.

A PTE translates a virtual memory area into a physical memory area. How much
virtual memory is translated depends on which level the PTE resides. PTEs are either in
page directories with L bit zeroed or in page tables with L bit set. PTEs in page

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 280 of 331

directories point to next level page directory or to final page table that containts PTEs for
actual address translation.

Physical Page Number
(22 bits)

PP Index
(3 bits)

D A WOM WBC CI CCL

31 10 89 6 5 4 3 2 1 0

Figure 8-10. Page Table Entry Format

CC Cache Coherency

0 Data cache coherency is not enforced for this page
1 Data cache coherency is enforced for this page

CI Cache Inhibit
0 Cache is enabled for this page
1 Cache is disabled for this page

WBC Write-Back Cache
0 Data cache uses write-through strategy for data from this page
1 Data cache uses write-back strategy for data from this page

WOM Weakly-Ordered Memory
0 Strongly-ordered memory model for this page
1 Weakly-ordered memory model for this page

A Accessed
0 Page was not accessed

1 Page was accessed

D Dirty
0 Page was not modified

1 Page was modified

PPI Page Protection Index
0 PTE is invalid

1-7 Selects a group of six bits from a set of seven protection attribute groups in
xMMUCR

L Last
0 PTE from page directory pointing to next page directory/table
1 Last PTE in a linked form of PTEs (describing the actual page)

PPN Physical Page Number
0-N Number of the physical frame in memory

Table 8-15. PTE Field Descriptions

8.9 Page Table Search Operation
An implementation may choose to implement the page table search operation in

either hardware or software. For all page table search operations data addresses are
untranslated (i.e. the effective and physical base address of the page table are the same).

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 281 of 331

When implemented in software, two TLB miss exceptions are used to handle TLB
reload operations. Also, the software is responsible for maintaining accessed and dirty
bits in the page tables.

8.10 Page History Recording
The accessed (A) and dirty (D) bits reside in each PTE and keep information about

the history of the page. The operating system uses this information to determine which
areas of the main memory to swap to the disk and which areas of the memory to load
back to the main memory (demand-paging).

The accessed (A) bit resides both in the PTE in page table and in the copy of PTE in
the TLB. Each time the page is accessed by a load, store or instruction fetch operation,
the accessed bit is set.

If the TLB reload is performed in software, then the software must also write back
the accessed bit from the TLB to the page table.

In cases when access operation to the page fails, it is not defined whether the
accessed bit should be set or not. Since the accessed bit is merely a hint to the operating
system, it is up to the implementation to decide.

It is up to the operating system to determine when to explicitly clear the accessed bit
for a given page.

The dirty (D) bit resides in both the PTE in page table and in the copy of PTE in the
TLB. Each time the page is modified by a store operation, the dirty bit is set.

If TLB reload is performed in software, then the software must also write back the
dirty bit from the TLB to the page table.

In cases when access operation to the page fails, it is not defined whether the dirty
bit should be set or not. Since the dirty bit is merely a hint to the operating system, it is up
to the implementation to decide. However implementation or TLB reload software must
check whether page is actually writable before setting the dirty bit.

It is up to the operating system to determine when to explicitly clear the dirty bit for
a given page.

8.11 Page Table Updates
Updates to the page tables include operations like adding a PTE, deleting a PTE and

modifying a PTE. On multiprocessor systems exclusive access to the page table must be
assured before it is modified.

TLBs are noncoherent caches of the page tables and must be maintained
accordingly. Explicit software syncronization between TLB and page tables is required so
that page tables and TLBs remain coherent.

Since the processor reloads PTEs even during updates of the page table, special
care must be taken when updating page tables so that the processor does not accidently
use half modified page table entries.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 282 of 331

9 Cache Model &
Cache Coherency
This chapter describes the OpenRISC 1000 cache model and architectural control

to maintain cache coherency in multiprocessor environment.
Note that this chapter describes the cache model and cache coherency mechanism

from the perspective of the programming model. As such, it describes the cache
management principles, the cache coherency mechanisms and the cache control registers.
The hardware implementation details that are invisible to the OpenRISC 1000
programming model, such as cache organization and size, are not contained in the
architectural definition.

The function of the cache management registers depends on the implementation of
the cache(s) and the setting of the memory/cache access attributes. For a program to
execute properly on all OpenRISC 1000 processor implementations, software should
assume a Harvard cache model. In cases where a processor is implemented without a
cache, the architecture guarantees that writ ing to cache registers will not halt execution.
For example a processor without cache should simply ignore writes to cache management
registers. A processor with a Stanford cache model should simply ignore writes to
instruction cache management registers. In this manner, programs written for separate
instruction and data caches will run on all compliant implementations.

9.1 Cache Special-Purpose Registers
Table 9-1 summarizes the registers that the operating system uses to manage the

cache(s).
For implementations that have unified cache, registers that control the data and

instruction caches are merged and available at the same time both as data and intruction
cache registers.

GRP # REG # REG NAME USER
MODE

SUPV
MODE

DESCRIPTION

3 0 DCCR – R/W Data Cache Control Register

3 1 DCBPR W W Data Cache Block Prefetch Register

3 2 DCBFR W W Data Cache Block Flush Register

3 3 DCBIR – W Data Cache Block Invalidate Register

3 4 DCBWR W W Data Cache Block Write-back
Register

3 5 DCBLR - W Data Cache Block Lock Register

4 0 ICCR – R/W Instruction Cache Control Register

4 1 ICBPR W W Instruction Cache Block PreFetch

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 283 of 331

GRP # REG # REG NAME USER
MODE

SUPV
MODE

DESCRIPTION

Register

4 2 ICBIR W W Instruction Cache Block Invalidate
Register

4 3 ICBLR - W Instruction Cache Block Lock
Register

Table 9-1. Cache Registers

9.1.1 Data Cache Control Register
The data cache control register is a 32-bit special-purpose register accessible with

the l.mtspr/l.mfspr instructions in supervisor mode.
The DCCR controls the operation of the data cache.

Bit 31-8 7-0

Identifier Reserved EW

Reset X 0

R/W R R/W

EW Enable Ways

0000 0000 All ways disabled/locked
…

1111 1111 All ways enabled/unlocked

Table 9-2. DCCR Field Descriptions

If data cache does not implement way locking, the DCCR is not required to be

implemented.

9.1.2 Instruction Cache Control Register
The instruction cache control register is a 32-bit special-purpose register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The ICCR controls the operation of the instruction cache.

Bit 31-8 7-0

Identifier Reserved EW

Reset X 0

R/W R R/W

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 284 of 331

EW Enable Ways

0000 0000 All ways disabled/locked
…

1111 1111 All ways enabled/unlocked

Table 9-3. ICCR Field Descriptions

If the instruction cache does not implement way locking, the ICCR is not required to

be implemented.

9.2 Cache Management
This section describes special-purpose cache management registers for both data and

instruction caches.
Memory accesses caused by cache management are not recorded (unlike load or

store instructions) and cannot invoke any exception.
Instruction caches do not need to be coherent with the memory or caches of other

processors. Software must make the instruction cache coherent with modified instructions
in the memory. A typical way to accomplish this is:

• Data cache block write-back (update of the memory)
• l.csync (wait for update to finish)
• Instruction cache block invalidate (clear instruction cache block)

• Flush pipeline

9.2.1 Data Cache Block Prefetch (Optional)
The data cache block prefetch register is an optional special-purpose register

accessible with the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32
bits wide in 32-bit implementations and 64 bits wide in 64-bit implementations. An
implementation may choose not to implement this register and ignore all writes to this
register.

The DCBPR is written with the effective address and the corresponding block
from memory is prefetched into the cache. Memory accesses are not recorded (unlike
load or store instructions) and cannot invoke any exception.

A data cache block prefetch is used strictly for improving performance.

Bit 31-0

Identifier EA

Reset 0

R/W Write Only

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 285 of 331

EA Effective Address

EA that targets byte inside cache block

Table 9-4. DCBPR Field Descriptions

9.2.2 Data Cache Block Flush
The data cache block flush register is a special-purpose register accessible with

the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32 bits wide in
32-bit implementations and 64 bits wide in 64-bit implementations.

The DCBFR is written with the effective address. If coherency is required then the
corresponding:

• Unmodified data cache block is invalidated in all processors.

• Modified data cache block is written back to the memory and invalidated in all
processors.

• Missing data cache block in the local processor causes that modified data cache
block in other processor is written back to the memory and invalidated. If other
processors have unmodified data cache block, it is just invalidated in all
processors.

If coherency is not required then the corresponding:

• Unmodified data cache block in the local processor is invalidated.

• Modified data cache block is written back to the memory and invalidated in local
processor.

• Missing cache block in the local processor does not cause any action.

Bit 31-0

Identifier EA

Reset 0

R/W Write only

EA Effective Address

EA that targets byte inside cache block

Table 9-5. DCBFR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 286 of 331

9.2.3 Data Cache Block Invalidate
The data cache block invalidate register is a special-purpose register accessible

with the l.mtspr/l.mfspr instructio ns in supervisor mode. It is 32 bits wide in 32-bit
implementations and 64 bits wide in 64-bit implementations.

The DCBIR is written with the effective address. If coherency is required then the
corresponding:

• Unmodified data cache block is invalidated in all processors.
• Modified data cache block is invalidated in all processors.

• Missing data cache block in the local processor causes that data cache blocks in
other processors are invalidated.

If coherency is not required then corresponding:

• Unmodified data cache block in the local processor is invalidated.
• Modified data cache block in the local processor is invalidated.
• Missing cache block in the local processor does not cause any action.

Bit 31-0

Identifier EA

Reset 0

R/W Write Only

EA Effective Address

EA that targets byte inside cache block

Table 9-6. DCBIR Field Descriptions

9.2.4 Data Cache Block Write-Back
The data cache block write-back register is a special-purpose register accessible

with the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32 bits wide
in 32-bit implementations and 64 bits wide in 64-bit implementations.

The DCBWR is written with the effective address. If coherency is required then
the corresponding data cache block in any of the processors is written back to memory if
it was modified. If coherency is not required then the corresponding data cache block in
the local processor is written back to memory if it was modified.

Bit 31-0

Identifier EA

Reset 0

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 287 of 331

R/W Write Only

EA Effective Address

EA that targets byte inside cache block

Table 9-7. DCBWR Field Descriptions

9.2.5 Data Cache Block Lock (Optional)
The data cache block lock register is an optional special-purpose register

accessible with the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32
bits wide in a 32-bit implementation and 64 bits wide in a 64-bit implementation.

The DCBLR is written with the effective address. The corresponding data cache
block in the local processor is locked.

If all blocks of the same set in all cache ways are locked, then the cache refill may
automatically unlock the least-recently used block.

Bit 31-0

Identifier EA

Reset 0

R/W Write Only

EA Effective Address

EA that targets byte inside cache block

Table 9-8. DCBLR Field Descriptions

9.2.6 Instruction Cache Block Prefetch (Optional)
The instruction cache block prefetch register is an optional special-purpose

register accessible with the l.mtspr/l.mfspr instructions in both user and supervisor
modes. It is 32 bits wide in 32-bit implementations and 64 bits wide in 64-bit
implementations. An implementation may choose not to implement this register and
ignore all writes to this register.

The ICBPR is written with the effective address and the corresponding block from
memory is prefetched into the instruction cache.

Instruction cache block prefetch is used strictly for improving performance.

Bit 31-0

Identifier EA

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 288 of 331

Reset 0

R/W Write Only

EA Effective Address

EA that targets byte inside cache block

Table 9-9. ICBPR Field Descriptions

9.2.7 Instruction Cache Block Invalidate
The instruction cache block invalidate register is a special-purpose register

accessible with the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32
bits wide in 32-bit implementations and 64 bits wide in 64-bit implementations.

The ICBIR is written with the effective address. If coherency is required then the
corresponding instruction cache blocks in all processors are invalidated. If coherency is
not required then the corresponding instruction cache block is invalidated in the local
processor.

Bit 31-0

Identifier EA

Reset 0

R/W Write Only

EA Effective Address
EA that targets byte inside cache block

Table 9-10. ICBIR Field Descriptions

9.2.8 Instruction Cache Block Lock (Optional)
The instruction cache block lock register is an optional special-purpose register

accessible with the l.mtspr/l.mfspr instructions in both user and supervisor modes. It is 32
bits wide in 32-bit implementations and 64 bits wide in 64-bit implementations.

The ICBLR is written with the effective address. The correspond ing instruction
cache block in the local processor is locked.

If all blocks of the same set in all cache ways are locked, then the cache refill may
automatically unlock the least-recently used block.

Missing cache block in the local processor does not cause any action.

Bit 31-0

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 289 of 331

Identifier EA

Reset 0

R/W Write Only

EA Effective Address

EA that targets byte inside cache block

Table 9-11. ICBLR Field Descriptions

9.3 Cache/Memory Coherency
The primary role of the cache coherency system is to synchronize cache content

with other caches and with the memory and to provide the same image of the memory to
all devices using the memory.

The architecture provides several features to implement cache coherency. In systems
that do not provide cache coherency with the PTE attributes (because they do not
implement a memory management unit), it may be provided through explicit cache
management.

Cache coherency in systems with virtual memory can be provided on a page-by-page
basis with PTE attributes. The attributes are:

• Cache Coherent (CC Attribute)
• Caching-Inhibited (CI Attribute)
• Write-Back Cache (WBC Attribute)

When the memory/cache attributes are changed, it is imperative that the cache

contents should reflect the new attribute settings. This usually means that cache blocks
must be flushed or invalidated.

9.3.1 Pages Designated as Cache Coherent Pages
This attribute improves performance of the systems where cache coherency is

performed with hardware and is relatively slow. Memory pages that do not need cache
coherency are marked with CC=0 and only memory pages that need cache coherency are
marked with CC=1. When an access to shared resource is made, the local processor will
assert some kind of cache coherency signal and other processors will respond if they have
a copy of the target location in their caches.

To improve performance of uniprocessor systems, memory pages should not be
designated as CC=1.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 290 of 331

9.3.2 Pages Designated as Caching-Inhibited Pages
Memory accesses to memory pages designated with CI=1 are always performed

directly into the main memory, bypassing all caches. Memory pages designated with
CI=1 are not loaded into the cache and the target content should never be available in the
cache. To prevent any accident copy of the target location in the cache, whenever the
operating system sets a memory page to be caching-inhibited, it should flush the
corresponding cache blocks.

Multiple accesses may be merged into combined accesses except when individual
accesses are separated by l.msync or l.csync or l.psync.

9.3.3 Pages Designated as Write-Back Cache Pages
Store accesses to memory pages designated with WBC=0 are performed both in

data cache and memory. If a system uses multilevel hierarchy caches, a store must be
performed to at least the depth in the memory hierarchy seen by other processors and
devices.

Multiple stores may be merged into combined stores except when individual
stores are separated by l.msync or l.sync or l.psync . A store operation may cause any
part of the cache block to be written back to main memory.

Store accesses to memory pages designated with WBC=1 are performed only to
the local data cache. Data from the local data cache can be copied to other caches and to
main memory when copy-back operation is required. WBC=1 improves system
performance, however it requires cache snooping hardware support in data cache
controllers to gurantee cache coherency.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 291 of 331

10 Debug Unit (Optional)
This chapter describes the OpenRISC 1000 debug facility. The debug unit assists

software developers in debugging their systems. It provides support for watchpoints,
breakpoints and program-flow control registers.

Watchpoints and breakpoint are events triggered by program- or data-flow matching
the conditions programmed in the debug registers. Watchpoints do not interfere with the
execution of the program-flow except indirectly when they cause a breakpoint.
Watchpoints can be counted by Performance Counters Unit.

Breakpoint, unlike watchpoints, also suspends execution of the current program-
flow and start trap exception processing. Breakpoint is optional consequence of
watchpoints.

10.1 Features
The OpenRISC 1000 architecture defines eight sets of debug registers. Additional

debug register sets can be defined by the implementation itself. The debug unit is
optional and the presence of an implementation is indicated by the UPR[DUP] bit.

• Optional implementation
• Eight architecture defined sets of debug value/compare registers
• Match signed/unsigned conditions on instruction fetch EA, load/store EA and

load/store data
• Combining match conditions for complex watchpoints
• Watchpoints can be counted by Performance Counters Unit
• Watchpoints can generate a breakpoint (trap exception)
• Counting watchpoints for generation of additional watchpoints

DVR/DCR pairs are used to compare instruction fetch or load/store EA and load/store

data to the value stored in DVRs. Matches can be combined into more complex matches
and used for generation of watchpoints. Watchpoints can be counted and reported as
breakpoint.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 292 of 331

CPU

Instruction Cache

Data Cache

IF EA

LS E A

LS data

DVR0/DCR0

DVR7/DCR7

WP

/

BP

Breakpoints

DMR

WatchpointsMatch 0

Match 7
?

?

DSR DRR

Figure 10-1. Block Diagram of Debug Support

10.2 Debug Value Registers (DVR0-DVR7)
The debug value registers are 32-bit special-purpose supervisor- level registers

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DVRs are programmed with the watchpoint addresses or data by the resident

debug software or by the development interface. Their value is compared to the fetch or
load/store EA or to the load/store data according to the corresponding DCR. Based on the
settings of the corresponding DCR a watchpoint is generated.

Bit 31-0

Identifier VALUE

Reset 0

R/W R/W

VALUE Watchpoint/Breakpoint Address/Data

Table 10-1. DVR Field Descriptions

10.3 Debug Control Registers (DCR0-DCR7)
The debug control registers are 32-bit special-purpose supervisor- level registers

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 293 of 331

The DCRs are programmed with the watchpoint settings that define how DVRs are
compared to the instruction fetch or load/store EA or to the load/store data.

Bit 31-8 7-5 4 3-1 0

Identifier Reserved CT SC CC DP

Reset X 0 0 0 0

R/W R R/W R/W R/W R

DP DVR/DCR Present

0 Corresponding DVR/DCR pair is not present
1 Corresponding DVR/DCR pair is present

CC Compare Condition
000 Masked
001 Equal

010 Less than
011 Less than or equal

100 Greater than
101 Greater than or equal

110 Not equal
111 Reserved

SC Signed Comparison
0 Compare using unsigned integers

1 Compare using signed integers

CT Compare To
000 Comparison disabled
001 Instruction fetch EA

010 Load EA
011 Store EA
100 Load data
101 Store data

110 Load/Store EA
111 Load/Store data

Table 10-2. DCR Field Descriptions

10.4 Debug Mode Register 1 (DMR1)
The debug mode register 1 is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DMR1 is programmed with the watchpoint/breakpoint settings that define how

DVR/DCR pairs operate and is set by the resident debug software or by the development
interface.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 294 of 331

Bit 31-25 23 22 21-20 19-18 17-16

Identifier Reserved BT ST Res CW9 CW8

Reset X 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W

Bit 15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0

Identifier CW7 CW6 CW5 CW4 CW3 CW2 CW1 CW0

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

CW0 Chain Watchpoint 0

00 Watchpoint 0 = Match 0
01 Watchpoint 0 = Match 0 & External Watchpoint
10 Watchpoint 0 = Match 0 | External Watchpoint

11 Reserved

CW1 Chain Watchpoint 1
00 Watchpoint 1 = Match 1

01 Watchpoint 1 = Match 1 & Watchpoint 0
10 Watchpoint 1 = Match 1 | Watchpoint 0

11 Reserved

CW2 Chain Watchpoint 2
00 Watchpoint 2 = Match 2

01 Watchpoint 2 = Match 2 & Watchpoint 1
10 Watchpoint 2 = Match 2 | Watchpoint 1

11 Reserved

CW3 Chain Watchpoint 3
00 Watchpoint 3 = Match 3

01 Watchpoint 3 = Match 3 & Watchpoint 2
10 Watchpoint 3 = Match 3 | Watchpoint 2

11 Reserved

CW4 Chain Watchpoint 4
00 Watchpoint 4 = Match 4

01 Watchpoint 4 = Match 4 & External Watchpoint
10 Watchpoint 4 = Match 4 | External Watchpoint

11 Reserved

CW5 Chain Watchpoint 5
00 Watchpoint 5 = Match 5

01 Watchpoint 5 = Match 5 & Watchpoint 4
10 Watchpoint 5 = Match 5 | Watchpoint 4

11 Reserved

CW6 Chain Watchpoint 6

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 295 of 331

00 Watchpoint 6 = Match 6
01 Watchpoint 6 = Match 6 & Watchpoint 5
10 Watchpoint 6 = Match 6 | Watchpoint 5

11 Reserved

CW7 Chain Watchpoint 7
00 Watchpoint 7 = Match 7

01 Watchpoint 7 = Match 7 & Watchpoint 6
10 Watchpoint 7 = Match 7 | Watchpoint 6

11 Reserved

CW8 Chain Watchpoint 8
00 Watchpoint 8 = Watchpoint counter 0 match

01 Watchpoint 8 = Watchpoint counter 0 match & Watchpoint 3
10 Watchpoint 8 = Watchpoint counter 0 match | Watchpoint 3

11 Reserved

CW9 Chain Watchpoint 9
00 Watchpoint 9 = Watchpoint counter 1 match

01 Watchpoint 9 = Watchpoint counter 1 match & Watchpoint 7
10 Watchpoint 9 = Watchpoint counter 1 match | Watchpoint 7

11 Reserved

ST Single-step Trace
0 Single-step trace disabled

1 Every executed instruction causes trap exception

BT Branch Trace
0 Branch trace disabled

1 Every executed branch instruction causes trap exception

Table 10-3. DMR1 Field Descriptions

10.5 Debug Mode Register 2(DMR2)
The debug mode register 2 is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DMR2 is programmed with the watchpoint/breakpoint settings that define

which watchpoints generate a breakpoint and which watchpoint counters are enabled.
When a breakpoint happens WBS provides information which watchpoint or several
watchpoints caused breakpoint condition. WBS bits are sticky and should be cleared by
writing 0 ot them every time a breakpoint condition is processed. DMR2 is set by the
resident debug software or by the development interface.

Bit 31-22 21-12 11-2 1 0

Identifier WBS WGB AWTC WCE1 WCE
0

Reset 0 0 0 0 0

R/W R R/W R/W R/W R/W

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 296 of 331

WCE0 Watchpoint Counter Enable 0

0 Counter 0 disabled
1 Counter 0 enabled

WCE1 Watchpoint Counter Enable 1
0 Counter 1 disabled
1 Counter 1 enabled

AWTC Assign Watchpoints to Counter
00 0000 0000 All Watchpoints increment counter 0
00 0000 0001 Watchpoint 0 increments counter 1

…
00 0000 1111 First four watchpoints increment counter 1, rest increment

counter 0
…

11 1111 1111 All watchpoints increment counter 1

WGB Watchpoints Generating Breakpoint (trap exception)
00 0000 0000 Breakpoint disabled

00 0000 0001 Watchpoint 0 generates breakpoint
…

01 0000 0000 Watchpoint counter 0 generates breakpoint
…

11 1111 1111 All watchpoints generate breakpoint

WBS Watchpoints Breakpoint Status
00 0000 0000 No watchpoint caused breakpoint
00 0000 0001 Watchpoint 0 caused breakpoint

…
01 0000 0000 Watchpoint counter 0 caused breakpoint

…
11 1111 1111 Any watchpoint could have caused breakpoint

Table 10-4. DMR2 Field Descriptions

10.6 Debug Watchpoint Counter Register (DWCR0-
DWCR1)
The debug watchpoint counter registers are 32-bit special-purpose supervisor- level

registers accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DWCRs contain 16-bit counters that count watchpoints programmed in the

DMR. The value in a DWCR can be accessed by the resident debug software or by the
development interface. DWCRs also contain match values. When a counter reaches the
match value, a watchpoint is generated.

Bit 31-16 15-0

Identifier MATCH COUNT

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 297 of 331

Reset 0 0

R/W R/W R/W

COUNT Number of watchpoints programmed in DMR

N 16-bit counter of generated watchpoints assigned to this counter

MATCH N 16-bit value that when matched generates a watchpoint

Table 10-5. DWCR Field Descriptions

10.7 Debug Stop Register (DSR)
The debug stop register is a 32-bit special-purpose supervisor- level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DSR specifies which exceptions cause the core to stop the execution of the

exception handler and turn over control to development interface. It can be programmed
by the resident debug software or by the development interface.

Bit 31-14 13 12 11 10 9 8

Identifier Reserved TE FPE SCE RE IME DME

Reset X 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Identifier INTE IIE AE TTE IPFE DPFE BUSE
E

RSTE

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RSTE Reset Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

BUSEE Bus Error Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

DPFE Data Page Fault Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IPFE Instruction Page Fault Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 298 of 331

TTE Tick Timer Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

AE Alignment Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IIE Illegal Instruction Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

INTE Interrupt Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

DME DTLB Miss Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

IME ITLB Miss Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

RE Range Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

SCE System Call Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

FPE Floating Point Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

TE Trap Exception
0 This exception does not transfer control to the development I/F
1 This exception transfers control to the development interface

Table 10-6. DSR Field Descriptions

10.8 Debug Reason Register (DRR)
The debug reason register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The DRR specifies which event caused the core to stop the execution of program

flow and turned control over to the development interface. It should be cleared by the
resident debug software or by the development interface.

Bit 31-14 13 12 11 10 9 8

Identifier Reserved TE FPE SCE RE IME DME

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 299 of 331

Reset X 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Identifier INTE IIE AE TTE IPFE DPFE BUSE
E

RSTE

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RSTE Reset Exception

0 This exception did not transfer control to the development I/F
1 This exception transfered control to the development interface

BUSEE Bus Error Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

DPFE Data Page Fault Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

IPFE Instruction Page Fault Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

TTE Tick Timer Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

AE Alignment Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

IIE Illegal Instruction Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

INTE Interrupt Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

DME DTLB Miss Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

IME ITLB Miss Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

RE Range Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 300 of 331

SCE System Call Exception
0 This exception did not transfer control to the development I/F

1 This exception transfered control to the development interface

FPE Floating Point Exception
0 This exception did not transfer control to the development I/F

1 This exception transferred control to the development interface

TE Trap Exception
0 This exception did not transfer control to the development I/F

1 This exception transferred control to the development interface

Table 10-7. DRR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 301 of 331

11 Performance Counters Unit
(Optional)
This chapter describes the OpenRISC 1000 performance counters facility.

Performance counters can be used to count predefined events such as L1 instruction or
data cache misses, branch instructions, pipeline stalls etc.
Data from the Performance Counters Unit can be used for the following:

• To improve performance by developing better application level algorithms, better
optimized operating system routines and for improvements in the hardware
architecture of these systems (e.g. memory subsystems).

• To improve future OpenRISC implementations and add future enhancements to
the OpenRISC architecture.

• To help system developers debug and test their systems.

11.1 Features
The OpenRISC 1000 architecture defines eight performance counters. Additional

performance counters can be defined by the implementation itself. The Performance
Counters Unit is optional and the presence of an implementation is indicated by the
UPR[PCUP] bit.

• Optional implementation.
• Eight architecture defined performance counters
• Eight custom performance counters

• Programmable counting conditions.

11.2 Performance Counters Count Registers
(PCCR0-PCCR7)
The performance counters count registers are 32-bit special-purpose supervisor- level

registers accessible with the l.mtspr/l.mfspr instructions in supervisor mode. Read access
in user mode is possible, if it is enabled in SR[SUMRA].

They are counters of the events programmed in the PCMR registers.

Bit 31-0

Identifier COUNT

Reset 0

R/W R/W

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 302 of 331

COUNT Event counter

Table 11-1. PCCR0 Field Descriptions

11.3 Performance Counters Mode Registers
(PCMR0-PCMR7)
The performance counters mode registers are 32-bit special-purpose supervisor- level

registers accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
They define which events the performance counters unit counts.

Bit 31-26 25-15 14 13 12 11 10

Identifier Reserved WPE DDS ITLB
M

DTL
BM

BS LSU
S

Reset X 0 0 0 0 0 0

R/W Read Only R/W R/W R/W R/W R/W R/W

Bit 9 8 7 6 5 4 3 2 1 0

Identifier IFS ICM DCM IF SA LA CIU
M

CISM Rese
rved

CP

Reset 0 0 0 0 0 0 0 0 0 1

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R

CP Counter Present

0 Counter not present
1 Counter present

CISM Count in Supervisor Mode
0 Counter disabled in supervisor mode

1 Counter counts events in supervisor mode

CIUM Count in User Mode
0 Counter disabled in user mode

1 Counter counts events in user mode

LA Load Access event
0 Event ignored

1 Count load accesses

SA Store Access event
0 Event ignored

1 Count store accesses

IF Instruction Fetch event

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 303 of 331

0 Event ignored
1 Count instruction fetches

DCM Data Cache Miss event
0 Event ignored

1 Count data cache missed

ICM Instruction Cache Miss event
0 Event ignored

1 Count instruction cache misses

IFS Instruction Fetch Stall event
0 Event ignored

1 Count instruction fetch stalls

LSUS LSU Stall event
0 Event ignored

1 Count LSU stalls

BS Branch Stalls event
0 Event ignored

1 Count branch stalls

DTLBM DTLB Miss event
0 Event ignored

1 Count DTLB misses

ITLBM ITLB Miss event
0 Event ignored

1 Count ITLB misses

DDS Data Dependency Stalls event
0 Event ignored

1 Count data dependency stalls

WPE Watchpoint Events
000 0000 0000 All watchpoint events ignored

000 0000 0001 Watchpoint 0 counted
…

111 1111 1111 All watchpoints counted

Table 11-2. PCMR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 304 of 331

12 Power Management (Optional)
This chapter describes the OpenRISC 1000 power management facility. The power

management facility is optional and implementation may choose which features to
implement, and which not. UPR[PMP] indicates whether power management is
implemented or not.

Note that this chapter describes the architectural control of power management from
the perspective of the programming model. As such, it does not describe technology
specific optimizations or implementation techniques.

12.1 Features
The OpenRISC 1000 architecture defines five architectural features for minimizing

power consumption:
• slow down feature
• doze mode
• sleep mode
• suspend mode
• dynamic clock gating feature

The slow down feature takes advantage of the low-power dividers in external clock

generation circuitry to enable full functionality, but at a lower frequency so that power
consumption is reduced.

The slow down feature is software controlled with the 4-bit value in PMR[SDF]. A
lower value specifies higher expected performance from the processor core. Whether this
value controls a processor clock frequency or some other implementation specific feature
is irrelevant to the controlling software. Usually PMR[SDF] is dynamically set by the
operating system’s idle routine, that monitors the usage of the processor core.

When software initiates the doze mode, software processing on the core suspends.
The clocks to the processor internal units are disabled except to the internal tick timer and
programmable interrupt controller. However other on-chip blocks (outside of the
processor block) can continue to function as normal.

The processor should leave doze mode and enter normal mode when a pending
interrupt occurs.

In sleep mode, all processor internal units are disabled and clocks gated. Optio nally,
an implementation may choose to lower the operating voltage of the processor core.

The processor should leave sleep mode and enter normal mode when a pending
interrupt occurs.

In suspend mode, all processor internal units are disabled and clocks gated.
Optionally, an implementation may choose to lower the operating voltage of the
processor core.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 305 of 331

The processor enters normal mode when it is reset. Software may implement a reset
exception handler that refreshes system memory and updates the RISC with the state
prior to the suspension.

If enabled, the clock-gating feature automatically disables clock subtrees to major
processor internal units on a clock cycle basis. These blocks are usually the CPU,
FPU/VU, IC, DC, IMMU and DMMU. This feature can be used in a combination with
other power management features and low-power modes.

Cache or MMU blocks that are already disabled when software enables this feature,
have completely disabled clock subtrees until clock gating is disabled or until the blocks
are again enabled.

12.2 Power Management Register (PMR)
The power management register is a 32-bit special-purpose supervisor- level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
PMR is used to enable or disable power management features and modes.

Bit 31-7 7 6 5 4 3-0

Identifier Reserved SUME DCGE SME DME SDF

Reset X 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W

SDF Slow Down Factor

0 Full speed
1-15 Logarithmic clock frequency reduction

DME Doze Mode Enable
0 Doze mode not enabled

1 Doze mode enabled

SME Sleep Mode Enable
0 Sleep mode not enabled

1 Sleep mode enabled

DCGE Dynamic Clock Gating Enable
0 Dynamic clock gating not enabled

1 Dynamic clock gating enabled

SUME Suspend Mode Enable
0 Suspend mode not enabled

1 Suspend mode enabled

Table 12-1. PMR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 306 of 331

13 Programmable Interrupt
Controller (Optional)
This chapter describes the OpenRISC 1000 level one programmable interrupt

controller. The interrupt controller facility is optio nal and an implementation may chose
whether or not to implement it. If it is not implemented, interrupt input is directly
connected to interrupt exception inputs. UPR[PICP] specifies whether the programmable
interrupt controller is implemented or not.

The Programmable Interrupt Controller has two special-purpose registers and 32
maskable interrupt inputs. If implementation requires permanent unmasked interrupt
inputs, it can use interrupt inputs [1:0] and PICMR[1:0] should be fixed to one.

13.1 Features
The OpenRISC 1000 architecture defines an interrupt controller facility with up to

32 interrupt inputs:

PICMR

Mask Function
INT [31:0] EXT INT EXCEPTION

PICSR

Figure 13-1. Programmable Interrupt Controller Block Diagram

13.2 PIC Mask Register (PICMR)
The interrupt controller mask register is a 32-bit special-purpose supervisor- level

register accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
PICMR is used to mask or unmask 32 programmable interrupt sources.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 307 of 331

Bit 31-0

Identifier IUM

Reset 0

R/W R/W

IUM Interrupt UnMask

0x00000000 All interrupts are masked
0x00000001 Interrupt input 0 is enabled, all others are masked

…
0xFFFFFFFF All interrupt inputs are enabled

Table 13-1. PICMR Field Descriptions

13.3 PIC Status Register (PICSR)
The interrupt controller status register is a 32-bit special-purpose supervisor- level

register accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
PICSR is used to determine the status of each PIC interrupt input. PIC can support

level-triggered interrupts or combination of level-triggered and edge-triggered. Most
implementations today only support level- triggered interrupts.

For level- triggered implementations bits in PICSR simply represent level of
interrupt inputs. Interrupts are cleared by taking appropriate action at the device to negate
the source of the interrupt.Writing a '1' or a '0' to bits in the PICSR that reflect a level-
triggered source must have no effect on PICSR content.

The atomic way to clear an interrupt source which is edge -triggered is by writing a
'1' to the corresponding bit in the PICSR. This will clear the underlying latch for the
edge-triggered source. Writing a '0' to the corresponding bit in the PICSR has no effect
on the underlying latch.

Bit 31-0

Identifier IS

Reset 0

R/W R/(W*)

IS Interrupt Status

0x00000000 All interrupts are inactive
0x00000001 Interrupt input 0 is pending

…
0xFFFFFFFF All interrupts are pending

Table 13-2. PICSR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 308 of 331

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 309 of 331

14 Tick Timer Facility (Optional)
This chapter describes the OpenRISC 1000 tick timer facility. It is optional and an

implementation may chose whether or not to implement it. UPR[TTP] specifies whether
or not the tick timer facility is present.

The Tick Timer is used to schedule operating system and user tasks on regular
time basis or as a high precision time reference.

The Tick Timer facility is enabled with TTMR[M]. TTCR is incremented with
each clock cycle and a tick timer interrupt can be asserted whenever the lower 28 bits of
TTCR match TTMR[TP] and TTMR[IE] is set.

TTCR restarts counting from zero when a match event happens and TTMR[M] is
0x1. If TTMR[M] is 0x2, TTCR is stoped when match event happens and TTCR must be
changed to start counting again. When TTMR[M] is 0x3, TTCR keeps counting even
when match event happens.

14.1 Features
The OpenRISC 1000 architecture defines a tick timer facility with the following

features:
• Maximum timer count of 2^32 clock cycle s
• Maximum time period of 2^28 clock cycles between interrupts
• Maskable tick timer interrupt
• Single run, restartable counter, or continues counter

TTMR

RISC clk
TTCR

TICK INT

Figure 14-1. Tick Timer Block Diagram

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 310 of 331

14.2 Tick Timer Mode Register (TTMR)
The tick timer mode register is a 32-bit special-purpose supervisor- level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
The TTMR is programmed with the time period of the tick timer as well as with the

mode bits that control operation of the tick timer.

Bit 31-30 29 28 27-0

Identifier M IE IP TP

Reset 0 0 0 X

R/W R/W R/W R R/W

TP Time Period

0x0000000 Shortest comparison time period
…

0xFFFFFFF Longest comparison time period

IP Interrupt Pending
0 Tick timer interrupt is not pending

1 Tick timer interrupt pending (write ‘0’ to clear it)

IE Interrupt Enable
0 Tick timer does not generate tick timer interrupt

1 Tick timer generates tick timer interrupt when TTMR[TP] matches TTCR[27:0]

M Mode
00 Tick timer is disabled

01 Timer is restarted when TTMR[TP] matches TTCR[27:0]
10 Timer stops when TTMR[TP] matches TTCR[27:0] (change TTCR to resume

counting)
11 Timer does not stop when TTMR[TP] matches TTCR[27:0]

Table 14-1. TTMR Field Descriptions

14.3 Tick Timer Count Register (TTCR)
The tick timer count register is a 32-bit special-purpose register accessible with the

l.mtspr/l.mfspr instructions in supervisor mode and as read-only register in user mode if
enabled in SR[SUMRA].

TTCR holds the current value of the timer.

Bit 31-0

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 311 of 331

Identifier CNT

Reset 0

R/W R/W

CNT Count

32-bit incrementing counter

Table 14-2. TTCR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 312 of 331

15 OpenRISC 1000
Implementations

15.1 Overview
Implementations of the OpenRISC 1000 architecture come in different

configurations and version releases.
Version and unit present registers both identify the version/release and its

configuration. Detailed configuration for some units is available in configuration
registers.

An operating system should read VR, UPR and the configuration registers, and
adjust its own operation accordingly. Operating systems ported on a particular OpenRISC
version should run on different configurations of this version without modifications.

15.2 Version Register (VR)
The version register is a 32-bit special-purpose supervisor- level register accessible

with the l.mtspr/l.mfspr instructions in supervisor mode.
It identifies the version (model) and revision level of the OpenRISC 1000 processor.

It also specifies the possible template on which this implementation is based.
`

Bit 31-24 23-16 15-6 5-0

Identifier VER CFG Reserved REV

Reset - - X -

R/W R R R R

REV Revision

0..63 A 6-bit number that identifies various releases of a particular version. This
number is changed for each revision of the device.

CFG Configuration Template
0..99 An 8-bit number that identifies particular configuration. However this is just

for operating systems that do not use inf ormation provided by configuration
registers and thus are not truly portable across different configurations of one

implementation version.
Configurations that do implement configuration registers must have their CFG

smaller than 50 and configurations that do not implement configuration registers
must have their CFG 50 or bigger.

VER Version
0x10..0x19 An 8-bit number that identifies a particular processor version and

version of the OpenRISC architecture. Values below 0x10 and above 0x19 are
illegal for OpenRISC 1000 processor implementations.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 313 of 331

Table 15-1. VR Field Descriptions

15.3 Unit Present Register (UPR)
The unit present register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It identifies the present units in the processor. It has a bit for each possible unit or

functionality. The lower sixteen bits identify the presence of units defined in the
OpenRISC 1000 architecture. The upper sixteen bits define the presence of custom units.

Bit 31-24 23-11 10 9 8 7

Identifier CUP Reserved TTP PMP PICP PCUP

Reset - - - - - -

R/W R R R R R R

Bit 6 5 4 3 2 1 0

Identifier DUP MP IMP DMP ICP DCP UP

Reset - - - - - - -

R/W R R R R R R R

UP UPR Present
0 UPR is not present

1 UPR is present

DCP Data Cache Present
0 Unit is not present

1 Unit is present

ICP Instruction Cache Present
0 Unit is not present

1 Unit is present

DMP Data MMU Present
0 Unit is not present

1 Unit is present

IMP Instruction MMU Present
0 Unit is not present

1 Unit is present

MP MAC Present
0 Unit is not present

1 Unit is present

DUP Debug Unit Present
0 Unit is not present

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 314 of 331

1 Unit is present

PCUP Performance Counters Unit Present
0 Unit is not present

1 Unit is present

PMP Power Management Present
0 Unit is not present

1 Unit is present

PICP Programmable Interrupt Controller Present
0 Unit is not present

1 Unit is present

TTP Tick Timer Present
0 Unit is not present

1 Unit is present

CUP Custom Units Present

Table 15-2. UPR Field Descriptions

15.4 CPU Configuration Register (CPUCFGR)
The CPU configuration register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies CPU capabilities and configuration.

Bit 31-10

Identifier Reserved

Reset -

R/W R

Bit 9 8 7 6 5 4 3-0

Identifier OV64S OF64S OF32S OB64S OB32S CGF NSGF

Reset - - - - - - -

R/W R R R R R R R

NSGF Number of Shadow GPR Files

0 Zero shadow GPR files
15 Fifteen shadow GPR Files

CGF Custom GPR File
0 GPR file has 32 registers

1 GPR file has less than 32 registers

OB32S ORBIS32 Supported

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 315 of 331

0 Not supported
1 Supported

OB64S ORBIS64 Supported
0 Not supported

1 Supported

OF32S ORFPX32 Supported
0 Not supported

1 Supported

OF64S ORFP64P Supported
0 Not supported

1 Supported

OV64S ORVDX64 Supported
0 Not supported

1 Supported

Table 15-3. CPUCFGR Field Descriptions

15.5 DMMU Configuration Register (DMMUCFGR)
The DMMU configuration register is a 32-bit special-purpose supervisor- level

register accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies the DMMU capabilities and configuration.

Bit 31-12

Identifier Reserved

Reset -

R/W R

Bit 11 10 9 8 7-5 4-2 1-0

Identifier HTR TEIRI PRI CRI NAE NTS NTW

Reset - - - - - - -

R/W R R R R R R R

NTW Number of TLB Ways

0 DTLB has one way
…

3 DTLB has four ways

NTS Number of TLB Sets (entries per way)
0 DTLB has one set (entries per way)

…
7 DTLB has 128 sets (entries per way)

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 316 of 331

NAE Number of ATB Entries
0 DATB does not exist
1 DATB has one entry

…
4 DATB has four entries

5..7 Invalid values

CRI Control Register Implemented
0 DMMUCR not implemented

1 DMMUCR implement ed

PRI Protection Register Implemented
0 DMMUPR not implemented

1 DMMUPR implemented

TEIRI TLB Entry Invalidate Register Implemented
0 DTLBEIR not implemented

1 DTLBEIR implemented

HTR Hardware TLB Reload
0 TLB Entry reloaded in software
1 TLB Entry reloaded in hardware

Table 15-4. DMMUCFGR Field Descriptions

15.6 IMMU Configuration Register (IMMUCFGR)
The IMMU configuration register is a 32-bit special-purpose supervisor- level

register accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies IMMU capabilities and configuration.

Bit 31-12

Identifier Reserved

Reset -

R/W R

Bit 11 10 9 8 7-5 4-2 1-0

Identifier HTR TEIRI PRI CRI NAE NTS NTW

Reset - - - - - - -

R/W R R R R R R R

NTW Number of TLB Ways

0 ITLB has one way
…

3 ITLB has four ways

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 317 of 331

NTS Number of TLB Sets (entries per way)
0 ITLB has one set (entries per way)

…
7 ITLB has 128 sets (entries per way)

NAE Number of ATB Entries
0 IATB does not exist
1 IATB has one entry

…
4 IATB has four entries

5..7 Invalid values

CRI Control Register Implemented
0 IMMUCR not implemented

1 IMMUCR implemented

PRI Protection Register Implemented
0 IMMUPR not implemented

1 IMMUPR implemented

TEIRI TLB Entry Invalidate Register Implemented
0 ITLBEIR not implemented

1 ITLBEIR implemented

HTR Hardware TLB Reload
0 ITLB Entry reloaded in software
1 ITLB Entry reloaded in hardware

Table 15-5. IMMUCFGR Field Descriptions

15.7 DC Configuration Register (DCCFGR)
The DC configuration register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies data cache capabilities and configuration.

Bit 31-15 14 13 12

Identifier Reserved CBWBRI CBFRI CBLRI

Reset - - - -

R/W R R R R

Bit 11 10 9 8 7 6-3 2-0

Identifier CBPRI CBIRI CCRI CWS CBS NCS NCW

Reset - - - - - - -

R/W R R R R R R R

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 318 of 331

NCW Number of Cache Ways
0 DC has one way

…
5 DC has thirty-two ways

NCS Number of Cache Sets (cache blocks per way)
0 DC has one set (cache blocks per way)

…
10 DC has 1024 sets (cache blocks per way)

BS Cache Block Size
0 Cache block size 16 bytes
1 Cache block size 32 bytes

CWS Cache Write Strategy
0 Cache write-through
1 Cache write-back

CCRI Cache Control Register Implemented
0 Register is not implemented

1 Register is implemented

CBIRI Cache Block Invalidate Register Implemented
0 Register is not implemented

1 Register is implemented

CBPRI Cache Block Prefetch Register Implemented
0 Register is not implemented

1 Register is implemented

CBLRI Cache Block Lock Register Implemented
0 Register is not implemented

1 Register is implemented

CBFRI Cache Block Flush Register Implemented
0 Register is not implemented

1 Register is implemented

CBWBRI Cache Block Write-Back Register Implemented
0 Register is not implemented

1 Register is implemented

Table 15-6. DCCFGR Field Descriptions

15.8 IC Configuration Register (ICCFGR)
The IC configuration register is a 32-bit special-purpose supervisor- level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies instruction cache capabilities and configuration.

Bit 31-13 12

Identifier Reserved CBLRI

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 319 of 331

Reset - -

R/W R R

Bit 11 10 9 8 7 6-3 2-0

Identifier CBPRI CBIRI CCRI Res CBS NCS NCW

Reset - - - - - - -

R/W R R R R R R R

NCW Number of Cache Ways

0 IC has one way
…

5 IC has thirty-two ways

NCS Number of Cache Sets (cache blocks per way)
0 IC has one set (cache blocks per way)

…
10 IC has 1024 sets (cache blocks per way)

BS Cache Block Size
0 Cache block size 16 bytes
1 Cache block size 32 bytes

CCRI Cache Control Register Implemented
0 Register is not implemented

1 Register is implemented

CBIRI Cache Block Invalidate Register Implemented
0 Register is not implemented

1 Register is implemented

CBPRI Cache Block Prefetch Register Implemented
0 Register is not implemented

1 Register is implemented

CBLRI Cache Block Lock Register Implemented
0 Register is not implemented

1 Register is implemented

Table 15-7. ICCFGR Field Descriptions

15.9 Debug Configuration Register (DCFGR)
The debug configuration register is a 32-bit special-purpose supervisor-level register

accessible with the l.mtspr/l.mfspr instructions in supervisor mode.
It specifies debug unit capabilities and configuration.

Bit 31-4 3 2-0

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 320 of 331

Identifier Reserved WPCI NDP

Reset - - -

R/W R R R

NDP Number of Debug Pairs

0 Debug unit has one DCR/DVR pair
…

7 Debug unit has eight DCR/DVR pairs

WPCI Watchpoint Counters Implemented
0 Watchpoint counters not implemented

1 Watchpoint counters implemented

Table 15-8. DCFGR Field Descriptions

15.10 Performance Counters Configuration
Register (PCCFGR)
The performance counters configuration register is a 32-bit special-purpose

supervisor-level register accessible with the l.mtspr/l.mfspr instructions in supervisor
mode.

It specifies performance counters unit capabilities and configuration.

Bit 31-3 2-0

Identifier Reserved NPC

Reset - -

R/W R R

NPC Number of Performance Counters

0 One performance counter
…

7 Eight performance counters

Table 15-9. PCCFGR Field Descriptions

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 321 of 331

16 Application Binary Interface
16.1 Data Representation

16.1.1 Fundamental Types
Scalar types in the ISO/ANSI C language are based on memory operands

definitions from the chapter entitled “Addressing Modes and
Operand Conventions” on page 6. Similar relations between architecture and language
types can be used for any other language.

Type C TYPE SIZEOF ALIGNMENT
(BYTES)

OPENRISC
EQUIVALENT

Char
Signed char

1

1

Signed byte

Unsigned char 1 1 Unsigned byte

Short
Signed short

2 2 Signed halfword

Unsigned short 2 2 Unsigned halfword

Int
Signed int

Long
Signed long

Enum

4 4 Signed singleword

Unsigned int 4 4 Unsigned singleword

Long long
Signed long long

8 8 Signed doubleword

Integral

Unsigned long long 8 8 Unsigned doubleword

Pointer
Any-type *

Any-type (*) ()
4 4 Unsigned singleword

Float 4 4 Single precision float Floating -
point Double 8 8 Double precision float

Table 16-1. Scalar Types

A null pointer of any type must be zero. All floating-point types are IEEE-754

compliant.
The OpenRISC programming model introduces a set of fundamental vector data types, as
described by Table 16-2. For vector assignments both side of assignment must be of the
same vector type.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 322 of 331

VECTOR TYPE SIZEOF ALIGNMENT
(BYTES)

OPENRISC EQUIVALENT

Vector char
Vector signed char

8

8

Vector of signed bytes

Vector unsigned char 8 8 Vector of unsigned bytes

Vector short
Vector signed short

8 8 Vector of signed halfwords

Vector unsigned short 8 8 Vector of unsigned halfwords

Vector int
Vector signed int

Vector long
Vector signed long

8 8 Vector of signed singlewords

Vector unsigned int 8 8 Vector of unsigned singlewords

Vector float 8 8 Vector of single-precisions

Table 16-2. Vector Types

For alignment restrictions of all types see the chapter entitled “Addressing Modes

and
Operand Conventions” on page 6.

16.1.2 Aggregates and Unions
Aggregates (structures and arrays) and unions assume the alignment of their most

strictly aligned element.
• An array uses the alignment of its elements.
• Structures and unions can require padding to meet alignment restrictions. Each

element is assigned to the lowest aligned address.

C

Figure 16-1. Byte aligned, sizeof is 1

C D S

N

Figure 16-2. No padding, sizeof is 8

struct {
 char C;
};

struct {
 char C;
 char D;
 short S;
 long N;
};

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 323 of 331

C Pad

Pad

S

S

S

Figure 16-3. Padding, sizeof is 18

16.1.3 Bit-fields
C structure and union definitions can have elements defined by a specified

number of bits. Table 16-3 describes valid bit-field types and their ranges.

Bit-field Type Width w [bits] Range

Signed char
Char

Unsigned char
1 to 8

-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Signed short
Short

Unsigned short
1 to 16

-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Signed int
Int

Enum
Unsigned int
Signed long

Long
Unsigned long

1 to 32

-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
0 to 2w-1

-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Table 16-3. Bit-Field Types and Ranges

Bit-fields follow the same alignment rules as aggregates and unions, with the

following additions:
• Bit-fields are allocated from most to least significant (from left to right)
• A bit-field must entirely reside in a storage unit appropriate for its declared type.
• Bit-fields may share a storage unit with other struct/union elements, including

elements that are not bit-fields. Struct elements occupy different parts of the
storage unit.

• Unnamed bit- fields’ types do not affect the alignment of a structure or union

struct {
 char C;
 double D;
 short S;
};

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 324 of 331

S(9) J (9) Pad

(6)
C (8)

T(9) Pad
(7)

U (9) Pad
(7)

D(8) Pad (24)

Figure 16-4. Storage unit sharingand alignment padding, sizeof is 12

16.2 Function Calling Sequence
This section describes the standard function calling sequence, including stack frame

layout, register usage, parameter passing, and so on. The standard calling sequence
requirements apply only to global functions, however it is recommended that all
functions use the standard calling sequence.

16.2.1 Register Usage
The OpenRISC 1000 architecture defines 32 general-purpose registers. These

registers are 32 bits wide in 32-bit implementations and 64 bits wide in 64-bit
implementations.

Register Preserved across function calls Usage

R31 No Temporary register

R30 Yes Callee-saved register

R29 No Temporary register

R28 Yes Callee-saved register

R27 No Temporary register

R26 Yes Callee-saved register

R25 No Temporary register

R24 Yes Callee-saved register

R23 No Temporary register

R22 Yes Callee-saved register

R21 No Temporary register

R20 Yes Callee-saved register

R19 No Temporary register

R18 Yes Callee-saved register

struct {
 short S:9;
 int J:9;
 char C;
 short T:9;
 short U:9;
 char D;
};

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 325 of 331

Register Preserved across function calls Usage

R17 No Temporary register

R16 Yes Callee-saved register

R15 No Temporary register

R14 Yes Callee-saved register

R13 No Temporary register

R12 No Temporary register (RVH - Return value
high 32 bits of 64-bit value on 32-bit

system)

R11 No RV – Return value

R10 Yes Callee-saved register

R9 Yes LR – Link address register

R8 No Function parameter number 5

R7 No Function parameter number 4

R6 No Function parameter number 3

R5 No Function parameter number 2

R4 No Function parameter number 1

R3 No Function parameter number 0

R2 Yes FP - Frame pointer

R1 Yes SP - Stack pointer

R0 - Fixed to zero

Table 16-4. General-Purpose Registers

Some registers have assigned roles:

R0 [Zero] Always fixed to zero. Even if it is writable in some embedded
implementations, the software shouldn’t modify it.

R1 [SP] The stack pointer holds the limit of the current stack frame. The stack
contents below the stack pointer are undefined. Stack pointer must be

double word aligned at all times.

R2 [FP] The frame pointer holds the address of the previous stack frame. Incoming
function parameters reside in the previous stack frame and can be accessed

at positive offsets from FP.

R3 through R8 General-purpose parameters use up to 6 general -purpose registers.
Parameters beyond the sixth parameter appear on the stack.

R9 [LR] Link address is the location of the function call instruction and is used to
calculate where program execution should return after function completion.

R11 [RV] Return value of the function. For void functions a value is not defined. For
functions returning a union or structure, a pointer to the result is placed into

return value register.

R12 [RVH] Return value high of the function. For functions returning 32-bit values this
register can be considered temporary register.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 326 of 331

Furthermore, an OpenRISC 1000 implementation might have several sets of
shadowed general-purpose registers. These shadowed registers are used for fast context
switching and sets can be switched only by the operating system.

16.2.2 The Stack Frame
In addition to registers, each function has a frame on the run-time stack. This

stack grows downward from high addresses. Table 16-5 shows the stack frame
organization.

Position Contents Frame

FP + 4N
…

FP + 0

Parameter N
…

Parameter 0
Previous

FP – 4

FP – 8
Function variables

SP + 4 Previous FP value

SP + 0 Return address

Current

SP – 4
SP – 2096

For use by leaf functions w/o function
prologue/epilogue

SP – 2100
SP – 2536

For use by exception handlers

Future

Table 16-5. Stack Frame

The stack pointer always points to the end of the latest allocated stack frame. All

frames must be double word aligned. In code compiled for 32-bit implementations, upper
halves of all double words are zero.

The first 2092 bytes below the current stack frame are reserved for leaf functions
that do not need to modify the ir stack pointer. Exception handlers must guarantee that
they will not use this area.

16.2.3 Parameter Passing
Functions receive their first 6 arguments in general-purpose parameter registers. If

there are more than six arguments, the remaining arguments are passed on the stack.
Structure and union arguments are passed as pointers.

All 64-bit arguments in a 32-bit system are passed using a pair of registers. 64-bit
arguments are not aligned. For example long long arg1, long arg2, long long arg3 are be
passed in the following way: arg1 in r3&r4, arg2 in r5, arg3 in r6&r7.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 327 of 331

16.2.4 Functions Returning Scalars or No Value
A function that returns an integral, pointer or vector/floating-point value places its

result in the general-purpose RV register. Void functions put no particular value in
GPR[RV] register.

16.2.5 Functions Returning Structures or Unions
A function that returns a structure or union places the address of the structure or

union in the general-purpose RV register.

16.3 Operating System Interface

16.3.1 Exception Interface
The OpenRISC 1000 exception mechanism allows the processor to change to

supervisor mode as a result of external signals, errors or execution of certain instructions.
When an exception occurs the following events happen:

• The address of the interrupted instructio n and the machine state are saved
• The machine mode is changed to supervisor mode
• The execution resumes from a predefined exception vector address which is

different for every exception

Exception Type Vector Offset SIGNAL Example

Reset 0x100 None Reset

Bus Error 0x200 SIGBUS Unexisting physical location, bus parity
error.

Data Page Fault 0x300 SIGSEGV Unammaped data location or protection
violation.

Instruction Page
Fault

0x400 SIGSEGV

Unmapped instruction location or
protection violation

Tick Timer
Interrupt

0x500 None Process scheduling

Alignment 0x600 SIGBUS Unaligned data

Illegal Instruction 0x700 SIGILL Illegal/unimplemented instruction

External Interrupt 0x800 None Device has asserted an interrupt

D-TLB Miss 0x900 None DTLB software reload needed

I-TLB Miss 0xA00 None ITLB software reload needed

Range 0xB00 SIGSEGV Arithmetic overflow

System Call 0xC00 None Instruction l.sys

Trap 0xE00 SIGTRAP Instruction l.trap or debug unit exception.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 328 of 331

Table 16-6. Hardware Exceptions and Signals

The operating system handles an exception either by completing the faulting

exception in a manner transparent to the application, if possible, or by delivering a signal
to the application. Table 16-6 shows how hardware exceptions can be mapped to signals
if the operating system cannot complete the faulting exception.

16.3.2 Virtual Address Space
For user programs to execute in virtual address space, the memory management

unit (MMU) must be enabled. The MMU translates virtual address generated by the
running process into physical address. This allows the process to run anywhere in the
physical memory and additionally page to a secondary storage.

Processes typically begin with three logical segments, commonly referred as
“text”, “data” and “stack”. Additional segments may exist or can be created by the
operating system.

16.3.3 Page Size
Memory is organized into pages, which are the system’s smallest units of memory

allocation. The basic page size is 8KB with some implementations supporting 16MB and
32GB pages.

16.3.4 Virtual Address Assignments
Processes have full access to the entire virtual address space. However the size of

a process can be limited by several factors such as a process size limit parameter,
available physical memory and secondary storage.

0xFFFF_FFFF

Reserved system area

Start of Stack
Growing Down

Stack

Growing Up

Heap

 .bss

Start of Data Segments .data

Start of Program Code .text

Start of Dynamic Segment Area

Shared Objects

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 329 of 331

0x0000_2000

0x0000_0000

Unmapped

Table 16-7. Virtual Address Configuration

Page at location 0x0 is usually reserved to catch dereferences of NULL pointers.
Usually the beginning address of “.text”, “.data” and “.bss” segments are defined

when linking the executable file. The heap is adjusted with facilities such as malloc and
free. The dynamic segment area is adjusted with mmap, and the stack size is limited with
setrlimit.

16.3.5 Stack
Every process has its own stack that is not tied to a fixed area in its address space.

Since the stack can change differently for each call of a process, a process should use the
stack pointer in general-purpose register r1 to access stack data.

16.3.6 Processor Execution Modes
The OpenRISC 1000 provides two execution modes: user and supervisor. Processes

run in user mode and the operating system’s kernel runs in supervisor mode. A Process
must execute the l.sys instruction to switch to supervisor mode, hence requesting service
from the operating system. System calls uses same software convention model as used
with function calls, except additional register r11 specifies system call id.

16.4 Position-Independent Code

16.5 ELF
The OpenRISC tools use the ELF object file formats and DWARF debugging

information formats, as described in System V Application Binary Interface, from the
Santa Cruz Operation, Inc. ELF and DWARF provide a suitable basis for representing the
information needed for embedded applications. Other object file formats are available ,
such as COFF. This section describes particular fields in the ELF and DWARF formats
that differ from the base standards for those formats.

16.5.1 Header Convention
The e_machine member of the ELF header contains the decimal value 33906

(hexadecimal 0x8472) that is defined as the name EM_OR32.

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 330 of 331

 The e_ident member of the ELF header contains values as shown in Table 16-8.
OR32 ELF e_ident Fields

e_ident[EI_CLASS] ELFCLASS32 For all 32-bit implementations

E_ident[EI_DATA] ELFDATA2MSB For all implementations

Table 16-8. e_ident Field Values

 The e_flags member of the ELF header contains values as shown in Table 16-9.

OR32 ELF e_flags

HAS_RELOC 0x01 Contains relocation entries

EXEC_P 0x02 Is directly executable

HAS_LINENO 0x04 Has line number information

HAS_DEBUG 0x08 Has debugging information

HAS_SYMS 0x10 Has symbols

HAS_LOCALS 0x20 Has local symbols

DYNAMIC 0x40 Is dynamic object

WP_TEXT 0x80 Text section is write protected

D_PAGED 0x100 Is dynamically paged

Table 16-9. e_flags Field Values

16.5.2 Sections
There are no OpenRISC section requirements beyond the base ELF standards.

16.5.3 Relocation
This section describes values and algorithms used for relocations. In particular, it

describes values the compiler/assembler must leave in place and how the linker modifies
those values.

Name Value Size Calculation

R_ OR32_NONE 0 0 None

R_ OR32_32 1 32 A

R_ OR32_16 2 16 A & 0xffff

R_OR32_8 3 8 A & 0xff

R_ OR32_CONST 4 16 A & 0xffff

R_ OR32_CONSTH 5 16 (A >> 16) & 0xffff

R_ OR32_JUMPTARG 6 28 (S + A -P) >> 2

OpenCores OpenRISC 1000 Architecture Manual julij 13, 2004

www.opencores.org Rev 1.1 331 of 331

Key S indicates the final value assigned to the symbol refernced in the relocation
record. Key A is the added va lue specified in the relocation record. Key P indicates the
address of the relocation (e.g., the address being modified).

16.6 COFF

16.6.1 Sections

16.6.2 Relocation

