ORSoC Graphics accelerator Specification

Per Lenander, Anton Fosselius

June 1, 2012

e § OpenCores

WwWW.OpEncores.org

Revision history

’ Rev. \ Date \ Author \ Description

[0.1.0 [23/3/2012 [Per Lenander | Initial draft

Contents

|2§ Concepts]

2.6.2 Transformation processor|

[2.6.3 Vector processor|o

|4 E eglsters|

4.1

Control Register (CONTROL)|

4.2

Status Register (STATUS)|. .

4.3

Alpha (ALPHA)|

4.4

Colorkey register (COLORKEY)|

Target base address Register (TARGET_BASE

Target size width Register
Target size y Register (TARGET SIZE_Y

TARGET _SIZE_X)|

Texture 0 Base Register (TEX0_BASE)|

Texture 0 size x Register (TEX0_SIZE_X)

Texture 0 size y Register (TEX0_SIZE_Y)

Source Pixel position 0 x Register (SRC_P0_X)

Source Pixel position 0 y Register (SRC_P0_Y)

Source Pixel position 1 Register (SRC_P1_X)

Source Pixel position 1 Register (SRC_P1.Y)

Destination Pixel position Register (DEST_X)

Destination Pixel position Register (DEST_Y)

Destination Pixel position Register (DEST_Z)|

Matrix coefficient registers|.
Clip Pixel position 0 x Register (CLIP_P0_X)

Clip Pixel position 0 y Register (CLIP_P0_Y)

Clip Pixel position 1 x Register (CLIP_P1_X)

L~ —J——

Clip Pixel position 1 y Register (CLIP_P1_Y)

[4.23 Color Registers (COLORO0-2)|

5 Operation

5.1 Drawpixell

7.1 _mewlibl
[7.1.1 orgixinit| o
[7.1.2 orgtx_vga_set_videomode|.
7.1.3 orgix.vgaset_vbaral.
714 orgfxvgaset_vbarb]
[F15 orgfxveabankswitch]ot ..
[7.1.6 orgix_initsurfacel oL L.
[7.1.7 orgix_bind rendertarget|
[7.1.8 orgfx_enable_cliprect|
7.1.9 orgtxcliprect|] oo oo
[110 orghxsrerect]
[7.1.11 orgixsetpixel| L.
[7.1.12 orgix_ memcpy|.
[.1.13 orgfxsetcolor|
7.1.14 orgtxrect|o
7.1.15 orgtx_ linel oL
FI06 orol Tamgld . -« o o o oo
[7.1.17 orgix_triangledd|. L.
[7.1.18 orgixcurvel
7.1.19 orgfx_enabletexOf.
7.1.20 orgtx_bind_tex(O] oL
[F12T orgfxenablealphal
[7.1.22 orgixset_alphal oL
[7.1.23 orgix_enable_colorkey|.
[7.1.24 orgfx_set_colorkey|.

[7.2.1 orgtxplus_init| L.
[7.2.2 orgtxplus_init_surface|.
[7.2.3 orgtxplus_bind_rendertarget|
[1.2.4 orgixplusfiip| o
7.2.5 orgtxplusclip| o oo
7.2.6 orgtxplusfill]
[f27 orgfxplusting
[7.2.8 orgtxplus_triangle[. 0oL,
[7.2.9 orgtxplus_curvel oL

[7.2.10 orgfxplus_draw_surface]
[7211 orgfxplus_.draw_surface_section]

18
18
19
19
19
19
19

19

[7.2.12 orgfxplus_colorkey|
[7213 orgfxplusalphal
[7.3 Bitmap Fonts| oo

[7.3.1 orgix_ make bitmap_font|
[1.3.2 orgixputtext|.

(8

Programming examples|

1 Introduction

The ORSoC Graphics accelerator allows the user to do advanced vector render-
ing and 2D blitting to a memory area. The core supports operations such as
drawing textures, lines, curves and filling rectangular and triangular areas with
color.

This IP Core is designed to integrate with the OpenRISC processor through
a Wishbone bus interface. The core itself has no means of displaying the infor-
mation rendered, for this purpose it can work alongside a display component,
such as the enhanced VGA/LCD IP core found on OpenCores.
1.1 Features

e 32-bit Wishbone bus interface

o Integrates with enhanced VGA/LCD IP core

e Support for 16 bit color depth

e Support for variable resolution

e Acceleration of line operations

e Acceleration of rectangle and triangle rasterization

e Acceleration of memory copy operations

e Textures can be saved to video memory

e Vector transformation and rasterization

e Clipping/Scissoring

e Alpha blending and colorkeying

e Filled Bezier curves

e Bitmap Fonts

e Vector Fonts (ttf)

e Interpolation of colors

e UV-Mapping

e Transformation (scaling and rotation)

e 3D model support (3d degree .obj)

e Z-Buffer (triangles drawn in order of appearance)

e Requires 10000 Slice LUTs (Xilinx ISE 13.4)

1.2 IP Core directory structure

A basic overview of the contents of the IP core source folder can be found in
figure [1I The rtl folder also contains files for implementing the component in
ORPSoCv2.

GFX

—>I bench I—>| verilog I—)-l

Contains testbenches
for all gfx components

|

Contains the documentation
of the core, including source
files and images

|

i
o] o |
w o verios] on |

Contains all rtl code
for the gfx core

arbiter

include

orpsoc_top

vga_lcd

LI

xilinx_ddr2

The rest of the folders
all contain minor
changes to different
parts of ORPSoC
needed to integrate
the gfx core

|

sSW I—>| drivers I—)-l

—>| examples I—)-l

bare

The software folder

linux

)

contains drivers for the
core intended to run
on OpenRISC, both for
bare metal and Linux. There
is some example code to

converter utility

get you started, and an image|

Figure 1: Directory structure of the ORSoC graphics accelerator.

Wishbone CPU
A A A
\d Y ¥
WiGA GFX orlz200
A 3 A
L Y Y
RAM

Figure 2: Overview of the ORPSoCv2’s wishbone interconnection.

2 Architecture

2.1 Overview

A topology of how the orgfx is connected to the VGA driver and the OpenRisc
core is shown in figure The orgfx has three wishbone interfaces: one read-
/write port that is used to communicate with the host CPU. One read port that
reads texture/alpha blending information from the RAM and one write port to
write pixel information to the RAM.

2.2 Concepts

This section describes a few basic terms used in this document.

Video memory — The orgfx component writes pixels one by one to an
external memory, usually a SDRAM or DDR RAM chip. The CPU should also
have access to this memory space to be able to write pixels directly (the easiest
way to load textures).

Render target — The render target, defined by the target base and size
registers, describes the area to which all operations render pixels. It is possible
to change the base address and size, enabling render-to-texture and double
buffering.

Surface/Texture — Any memory area that can be rendered to, including
the render target, is considered a surface. A surface is defined by it’s base
address and size. There are two main surfaces that the orgfx device handles:
the render target and the currently active texture. Swapping between different
textures has to be done in software. The operation of setting the current render
target or texture is referred to as binding.

Source, Destination and Clip rectangles — There are three sets of rect-
angles that affect rendering, each described by two points. The first point sets
the beginning of the rectangle, while the second point sets the pixel after the
end of the rectangle. This way, a rectangle exactly filling the screen would be
(0,0,640,480) at 640x480 resolution. See figure

Source rectangle — The source rectangle defines what pixels should be
read from a texture during textured operations. The points are defined in the

Figure 3: 1. Texture, 2. Source, 3. Render target, 4. Clip, 5. Destination

coordinates of the currently bound texture. This way sections of a texture can
be drawn (good for tile maps or bitmap fonts).

Destination rectangle — The destination rectangle defines where opera-
tions such as draw pixel and draw line will draw pixels, in the coordinates of
the render target.

Clip rectangle — The clip rectangle defines an area within the current
render target which is valid to draw to. Any pixels outside this rectangle are
discarded in the rasterization step. Pixels outside of the render target are au-
tomatically discarded.

2.3 Coordinate precision

The orgfx core supports variable coordinate precision through two parameters,
point_width and subpixel width. Both parameters defaults to 16 bits width.

Target size, clip and source rects are defined as point_width bit integers.
Destination points are defined as fixed point numbers, with point_width bit
integer precision and subpixel_width fractional precision. Internally many
calculations are done with fixed point logic.

2.4 Instruction FIFO

All wishbone writes sent to the slave interface will pass through an instruction
fifo. If the device is in the busy state (when the pipeline is active) the instruction
will be queued instead of being set immediately. This is important to take into
account when reading from registers, since an operation that changes the register
being read might be queued. To find out if the device is busy, poll the status
register and check if the busy bit is high.

2.5 Pipeline

The orgfx core uses a pipelined architecture to speed up operation. An overview
of the pipeline can be seen in figure[dl Each module in the pipeline communicates
with acknowledge and write signals. A module will not assert write to the next

Wishbone

slave
L
Transform . - o
processor »| Rasterizer Division
v "
> Clipping [« Interpolation
L 4
Wishbone Fragment
Reader "] processor
»| Blender

Renderer

A\ A

Wishbone
writer

Figure 4: Picture of the orgfx pipeline

module unless it receives an ack first (or if the module was previously in a ready
state, in which case the downstream pipeline is empty). All ack and write signals
are always exactly one clock tick long, to prevent triggering multiple instances
of the same instruction.

Each module in the pipeline may hold the upstream pipeline for several clock
ticks. For example, the rasterizer will prevent incoming raster instructions until
all the pixels for the current operation are generated. When the rasterizer is
ready for new data, it will send an ack upstream.

2.6 Description of core modules
2.6.1 Wishbone slave

The wishbone slave handles all communication from the main OpenRISC pro-
cessor (or other master cpu). This component holds all the registers, and the
instruction fifo that sets them. This component can be in one of two states:
busy or wait. It enters the busy state when a pipeline operation is initialized,
and returns to the wait state when the operation is finished.

10

2.6.2 Transformation processor

The transformation processor handles rotations and scaling.

2.6.3 Vector processor

This module generates the Bézier curve and can be skipped if no vector graphics
is drawn.

2.6.4 Rasterizer

This rasterizer generates pixel coordinates from points for several different op-
erations.

2.6.5 Clipper

Discard generated pixel if clipping is enabled and pixel is out of bounds. Always
discard pixels outside of the target area.

2.6.6 Fragment processor

The fragment processor adds color to the pixel generated by the rasterizer. If
texturing is disabled, a color supplied from the color register is used. If texturing
is enabled on the other hand, the u v coordinates supplied by the rasterizer are
used to fetch a pixel from the active texture. If colorkeying is enabled and the
fetched color matches the color key, the current pixel is discarded.

2.6.7 Blender

The blender module performs alpha blending if this is enabled. The module
fetches the color of the pixel that the current operation will write to, and the
mixes the value of the target color and the color from the fragment processor
using the following algorithm:

alpha = alphagiopar * alphapigze

coloreys = coloriy, * alpha + coloriarger * (1 — alpha)

Where alpha is a value between 0 (transparent) and 1 (opaque). If alpha
blending is disabled the pixel is passed on unmodified. The alpha value can be
interpolated over a triangle to create gradients. If this function is turned off
(interpolation is disabled on triangle draws) then alphapize; is set to 1.

2.6.8 Wishbone arbiter

Since two parts of the pipeline (fragment and blender) needs to access video
memory, the arbiter makes certain only one of them can access the reader at
once. The blender has the highest priority.

2.6.9 Wishbone master read

The wishbone reader handles all reads from video memory.

11

2.6.10 Renderer

The renderer calculates the memory address of the target pixel.

2.6.11 Wishbone master write

The wishbone master handles all writes to the video memory.

3 10 Ports

The Core has three wishbone interfaces:

e Wishbone slave — connects to the data bus of the OpenRISC processor. In
the case of ORPSoC, this bus is connected through an arbiter. Supports
standard wishbone communications, not any burst modes.

e Wishbone master read-only — connects to a video memory port with read
access. Used for fetching textures and during blending.

e Wishbone master write-only — connects to a video memory port with write
access. Used for rendering pixels to the framebuffer.

There is an interrupt enabled that can be connected to the interrupt pins on
the or1200 CPU (in the supplied orpsoc_top it is connected to or1200_pic_ints[9]).
For this interrupt to trigger, the correct bits in the control register has to be
set.

12

4 Registers

’ Name \ Addr \ Width \ Access \ Description
CONTROL 0x00 32 RW Control register
STATUS 0x04 32 R Status register
ALPHA 0x08 32 RW Global alpha register
COLORKEY 0x0c 32 RwW Colorkey register
TARGET_BASE 0x10 32 RW Render target base
TARGET_SIZE X | 0x14 32 RW Render target width
TARGET_SIZE_Y | 0x18 32 RW Render target height
TEX0_BASE Oxlc 32 RW Texture 0 base
TEX0_SIZE X 0x20 32 RW Texture 0 width
TEXO0SIZE_Y 0x24 32 RW Texture 0 height
SRC_P0_X 0x28 | 32 RwW Source pixel 0 x
SRC_PO_Y 0x2c 32 RW Source pixel 0 y
SRC_P1.X 0x30 32 RW Source pixel 1 x
SRC_PLY 0x34 32 RW Source pixel 1y
DEST_X 0x38 32 RW Destination pixel x
DEST.Y 0x3c 32 RW Destination pixel y
DEST_Z 0x40 | 32 RwW Destination pixel z
AA 0x44 32 RW Transformation matrix coefficient
AB 0x48 32 RW Transformation matrix coefficient
AC Ox4c 32 RW Transformation matrix coefficient
TX 0x50 32 RW Transformation matrix coefficient
BA 0x54 32 RW Transformation matrix coefficient
BB 0x58 32 RW Transformation matrix coefficient
BC 0x5c 32 RW Transformation matrix coefficient
TY 0x60 32 RW Transformation matrix coefficient
CA 0x64 32 RW Transformation matrix coefficient
CB 0x68 32 RW Transformation matrix coefficient
CC 0x6¢ 32 RW Transformation matrix coefficient
TZ 0x70 32 RW Transformation matrix coefficient
CLIP_P0_X 0x74 32 RW Clip pixel 0 x
CLIP_PO.Y 0x78 32 RW Clip pixel 0 y
CLIP_P1.X 0x7c 32 RW Clip pixel 1 x
CLIP_P1Y 0x80 32 RW Clip pixel 0 y
COLORO 0x84 32 RW Color 0
COLORI1 0x88 32 RW Color 1
COLOR2 0x8c 32 RW Color 2
U0 0x90 32 RW Texture coordinate 0
VO 0x94 32 RW Texture coordinate 0
Ul 0x98 32 RW Texture coordinate 1
V1 0x9c 32 RW Texture coordinate 1
U2 0Oxa0 32 RW Texture coordinate 2
V2 Oxad 32 RW Texture coordinate 2
ZBUFFER_BASE | 0xa8 32 RW Depth buffer base address

Each register is described in detail in the following sections, with information
about what the purpose of each bit in the register is. The default value provided

13

for each register is set when the device receives a reset signal.

4.1 Control Register (CONTROL)

’ Bit # \ Access \ Description ‘
[31:20] | - Reserved
[19] W Transform point
[18] W Forward point
[17:16] | RW Active point
15:14] | - Reserved
13 W Bézier inside shape
12 W Interpolation
11 W Curve write
10] W Triangle write
9] W Line write
8] W Rect write
[7] - Reserved
[6] RW Z-buffer enable
[5] RW Clipping enable
[4] RW Colorkey enable
[3] RW Blending enable
2] RW Texture0 enable
[1:0] RW Color depth

Default value: 0x00
Color depth is defined as follows:

’ Mode \ Color depth ‘

00 8 bit

01 16 bit

10 24 bit (not supported)
11 32 bit

The active point is defined as follows:

’ Mode \ Point id ‘

00 p0O
01 pl
10 p2
11 p3

The operations Forward point and Transform point reads the current
values of the active point and stores the x, y, z values in the correct register

inside the device.

4.2 Status Register (STATUS)

’ Bit # \ Access \ Description
BL16] | R FIFO size
[15:1] | R Reserved
[0] R Busy pin (high when busy)

Default value: —

14

4.3 Alpha (ALPHA)
’ Bit # \ Access \ Description

[31:24] | RW Point 0 alpha
[23:16] | RW Point 1 alpha
[15:8] RW Point 2 alpha
[7:0] RW Global alpha

Default value: Oxffffffff

The global alpha value is used in all rendering when alpha blending is en-
abled. OxfF is full opacity, while 0x00 is full transparency (nothing rendered).
When interpolation of triangles is activated, the point alpha values are used to
find an interpolated alpha value for each pixel. This value is then multiplied
with the global alpha before being used for blending.

4.4 Colorkey register (COLORKEY)

’ Bit # \ Access \ Description ‘
[[31:0] [RW | Colorkey ‘

Default value: 0x00

By setting a colorkey certain pixels in a texture can be discarded in the
fragment stage, providing a hard transparency. Depending on the color depth,
a mask is applied to the color. Using 8 bit color, only the 8 least significant bits
in the colorkey will be compared with the texture color during the check. The
colorkey enable bit in the control register must be set to enable this functionality.

4.5 Target base address Register (TARGET _BASE)

’ Bit # \ Access \ Description ‘
[31:2] | RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

4.6 Target size width Register (TARGET_SIZE _X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Width |

Default value: 0x00

4.7 Target size y Register (TARGET_SIZE_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Height |

Default value: 0x00

15

4.8 Texture 0 Base Register (TEX0_BASE)

’ Bit # \ Access \ Description ‘
[31:2] | RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

4.9 Texture 0 size x Register (TEX0_SIZE_X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Width |

Default value: 0x00

4.10 Texture O size y Register (TEX0_SIZE_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Height |

Default value: 0x00

4.11 Source Pixel position 0 x Register (SRC_P0_X)
’ Bit # \ Access \ Description ‘
[[31:0] [RW | Integer x pos |

Default value: 0x00
The source pixels are used to define a specific area in a texture to draw.

4.12 Source Pixel position 0 y Register (SRC_P0_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer y pos |

Default value: 0x00

4.13 Source Pixel position 1 Register (SRC_P1_X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer x pos |

Default value: 0x00

4.14 Source Pixel position 1 Register (SRC_P1.Y)
’ Bit # \ Access \ Description ‘

’ [31:0] \ RW \ Integer y pos ‘

Default value: 0x00

16

4.15 Destination Pixel position Register (DEST _X)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00

The control register flag active point decides the destination register inside
the device. Points are pushed to the device by setting the forward or transform
bit in the control register.

4.16 Destination Pixel position Register (DEST_Y)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00

4.17 Destination Pixel position Register (DEST _Z)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00

4.18 Matrix coefficient registers

The matrix coefficients are defined in the following way:
AA AB AC TX
M=| BA BB BC TY
CA CB cCC Tz
Each coefficient has a register, where the bits are defined as:
’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part
The default matrix is set to no scaling, no rotation, no translation:

1 0 0
Mdefault = 010
0 0 1

o O O

4.19 Clip Pixel position 0 x Register (CLIP_P0_X)
’ Bit # \ Access \ Description ‘

[[31:0] | RW | Integer x ‘

Default value: 0x00

17

4.20 Clip Pixel position 0 y Register (CLIP_P0_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer y ‘

Default value: 0x00

4.21 Clip Pixel position 1 x Register (CLIP_P1_X)

| Bit # | Access | Description |
[[31:0] | RW | Integer x ‘
Default value: 0x00

4.22 Clip Pixel position 1 y Register (CLIP _P1.Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer y ‘

Default value: 0x00

4.23 Color Registers (COLORO0-2)
’ Bit # \ Access \ Description ‘
[[31:0] [RW | Color bits ‘

Default value: 0x00
There are several color modes available (set in video mode register):

| Mode | Format ‘
32bpp 31:24] is alpha channel. [23:16] is R, [15:8] is G and [7:0] is B
16bpp 15:11] is R, [10:5] is B and [4:0] is G

8bpp gray [7:0] sets both R, G and B values

8bpp palette | [7:0] sets the color index in the palette

5 Operation

All hardware accelerated operations draw pixels to the currently active surface
(defined by TADR_REG and TSZE_REG). These operations are all affected by
clip_p0 and clip_pl. No pixels that fall outside the clipping rectangle will be
rendered.

5.1 Draw pixel

Input needed: dest_p0, color

Orgfx have no hardware-support for writing a single pixel to the video memory.
However its possible to draw a line, rect or curve with the size of one pixel.
The software API makes it possible to draw a pixel by writing directly to the
memory (this is the most optimal way). Since the video memory can point to
both the framebuffer and to textures, the same operation can be used to draw
an arbitrary pixel to the screen and to load a texture into video memory.

18

5.2 Fill rect

Input needed: ctrl, dest_p0, dest_pl, color, [src_p0, src_pl]

Fill rect will fill the area of a rectangle created between the pixel dest_p0 and
dest_pl with color. If texturing is enabled, color will be taken from the active
texture in the area between src_p0 and src_pl. This operation is hardware
accelerated, and is activated by setting the Rect write bit in the control register.

5.3 Line

Input needed: dest_p0, dest_pl, color
Line will draw a line between the pixels dest_p0 and dest_pl with color. This
operation is hardware accelerated.

5.4 Fill triangle

Input needed: ctrl, dest_p0, dest_pl, dest_p2, color, [src_p0, src_pl]
Draw the pixels in the triangle created by dest_p0, dest_pl and dest_p2.

5.5 Curve

Input needed: ctrl, dest_p0, dest_pl, dest_p2, dest_p3, color, [src_p0, src_pl]
Draws a cubic bézier curve. for a quadratic bézier curve, use the same value for
dest_pl and dest_p2.

5.6 Fill curve

Input needed: ctrl, dest_p0, dest_pl, dest_p2, dest_p3, color, [src_p0, src_pl]
Draws a filled cubic bézier curve. for a filled quadratic bézier curve, use the
same value for dest_pl and dest_p2.

6 Clocks

The wishbone slave uses the system wishbone bus clock at 50 Mhz, while the
rest of the pipeline and the wishbone interfaces to the memory runs at 100Mhz.

7 Driver interface

The ORSoC graphics accelerator offers three different APIs to code against, two
for bare metal when coding directly against the processor, and a Linux kernel
module. The extended bare metal interface is a wrapper around the basic bare
metal API, and makes coding easier by reducing the number of calls. The
drawback is lesser control over the graphics card.

7.1 newlib

The basic library is provided in orgfx.h and orgfx.c.

The bare metal library declares a structure that can hold surfaces (both
framebuffers and textures). Many functions take a pointer to one of these struc-
tures.

19

struct orgfx_surface

{

unsigned int addr;
unsigned int w;
unsigned int h;

b

7.1.1 orgfx_init

Description: The orgfx_init must be called first to get other oc_gfx commands
to work properly.

void orgfx_init (unsigned int memoryArea);

7.1.2 orgfx_vga set_videomode

Description: Sets the video mode, width, height, bpp.

void orgfx_set_videomode (unsigned int width,
unsigned int height ,
unsigned char bpp);

7.1.3 orgfx_vga_set_vbara
Description: Assign a memory address to ”Video Base Address Register A”.

void orgfx_vga_set_vbara(unsigned int addr);

7.1.4 orgfx_vga_set_vbarb

Description: Assign a memory address to ”Video Base Address Register B”.

void orgfx_vga_set_vbarb (unsigned int addr);

7.1.5 orgfx_vga bank switch

Description: Switches the framebuffer.

void orgfx_vga_bank_switch ();

7.1.6 orgfx_init_surface

Description: Initialize a surface and return a control structure for it. This
function increments an internal video memory stack pointer, so each surface
will be allocated after the previous one in memory (starting at memoryArea set
by orgfx_init). There is currently no memory management in place to recycle
surface memory once it is no longer in use. The first surface initialized will
point to the same memory that the video controller reads from, so it should be
initialized with the width and height of the screen.

struct orgfx_surface
orgfx_init_surface (unsigned int width,
unsigned int height);

20

7.1.7 orgfx_bind_rendertarget

Description: Binds a surface as the active render target. This function must
be called before any drawing operations can be performed.

void orgfx_bind_rendertarget (struct orgfx_surface xsurface);

7.1.8 orgfx_enable_cliprect
Description: Enables/disables clipping.

inline void orgfx_enable_cliprect (unsigned int enable);

7.1.9 orgfx_cliprect

Description: Sets the clipping rect. No pixels will be drawn outside of this rect
(useful for restricting draws to a specific area of the render target). orgfx_bind_rendertarget
will reset the clipping rect to the size of the surface.

inline void orgfx_cliprect (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl);

7.1.10 orgfx_srcrect

Description: Sets the source rectangle that will be used by texturing opera-
tions. This allows for only drawing a small part of a texture. orgfx_bind_tex0
will reset this to the size of the texture.

inline void orgfx_srcrect (unsigned int x0,
unsigned int y0,
unsigned int x1,
unsigned int yl);

7.1.11 orgfx_set_pixel

Description: Set a pixel on coordinate x,y to color. This is done in software
by direct memory writes. This operation is not affected by the clipping rect!

inline void orgfx_set_pixel(unsigned int x,
unsigned int vy,
unsigned int color);

7.1.12 orgfx_memcpy

Description: Copies memory from the processor to the video memory. Size
is in 32-bit words. This function is intended to work with the output array of
the sprite converter utility to load images into memory. Remember to bind a
texture as the render target first!

void orgfx_memcpy (unsigned int mem][] ,
unsigned int size);

21

7.1.13 orgfx_set_color
Description: Sets the current drawing color.

inline void orgfx_set_color (unsigned int color);

7.1.14 orgfx_rect

Description: Draws a rect from (x0,y0) to (x1,y1) and fills it with the current
drawing color. If texturing is enabled, the current texture will be drawn instead.

inline void orgfx_rect (unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl);

7.1.15 orgfx_line

Description: Draws a line from (x0,y0) to (x1,yl) with the current drawing
color. If texturing is enabled, the first pixel of the current texture will be drawn
instead.

inline void orgfx_line (unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl);

7.1.16 orgfx_triangle

Description: Draws a filled triangle of the space spanned by (x0,y0), (x1,y1)
and (x2,y2). The order of the points is important, since triangles calculated to
be counter clockwise will be discarded (backface culling). The interpolate flag
indicates if flat coloring or interpolated coloring should be used. The interpolate
flag has to be enabled for interpolated alpha, texture coordinates or depth is
desired (flat coloring can be obtained by setting all three color registers to the
same color).

inline void orgfx_triangle (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl,
unsigned int x2,
unsigned int y2,
unsigned int interpolate);

7.1.17 orgfx_triangle3d

Description: This function works the same way as the triangle function, but
the Z-values are set.

22

inline void orgfx_triangle3d (unsigned int x0,
unsigned int yO0,
unsigned int z0,
unsigned int x1,
unsigned int yl,
unsigned int zl,
unsigned int x2,
unsigned int y2,
unsigned int z2,
unsigned int interpolate);

7.1.18 orgfx_curve

Description: Draws a Quadratic curve between the points (x0,y0) and (x2,y2)
with the control points (x1,yl). The three points form a triangle. The inside
flag determines if the inside or outside of the curve is filled inside the triangle.

inline void orgfx_curve(unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl,
unsigned int x2,
unsigned int y2,
unsigned int inside);

7.1.19 orgfx_enable_tex0
Description: Enables or disables texturing.

void orgfx_enable_tex0 (unsigned int enable);

7.1.20 orgfx_bind_tex0
Description: Binds a surface as the current texture. Will reset the source rect.

void orgfx_bind_tex0 (struct orgfx_surfacex surface);

7.1.21 orgfx_enable_alpha
Description: Enables or disables alpha blending.

void orgfx_enable_alpha (unsigned int enable);

7.1.22 orgfx_set_alpha
Description: Sets the alpha blending value.
void orgfx_set_alpha (unsigned int alpha);

23

7.1.23 orgfx_enable_colorkey
Description: Enables or disables colorkey.

void orgfx_enable_colorkey (unsigned int enable);

7.1.24 orgfx_set_colorkey
Description: Sets the colorkey color.

void orgfx_set_colorkey (unsigned int colorkey);

7.2 Extended newlib

The extended library is provided in orgfx_plus.h and orgfx_plus.c, but orgfx.c
also has to be compiled for it to work.

Instead of using surface structs directly, the extended API hides surface
management by returning id tags for each surface. The screen surface (defined
by id -1) is handled as a single surface, even when double buffering is enabled.

The driver defines the number of available surfaces (not counting the screen)
with a static define. Change this if the default value is too low for your appli-
cation.

7.2.1 orgfxplus_init

Description: Initializes the screen with the supplied video mode and returns
an id for the screen.

int orgfxplus_init (unsigned int width,
unsigned int height ,
unsigned char bpp,
unsigned char doubleBuffering);

7.2.2 orgfxplus_init_surface

Description: Unlike the basic API, this function both initializes a surface and
loads a prepared image to it in one function call. The return value is an id that
can be used to bind the surface. It changes render target during operation, but
switches back to the last render target on completion. Since the screen(s) are
already initialized by a call to init, they do not need to be loaded using this
function.

int orgfxplus_init_surface (unsigned int width,
unsigned int height ,
unsigned int mem|[]);

7.2.3 orgfxplus_bind_rendertarget
Description: Binds a surface as the current render target.

void orgfxplus_bind_rendertarget(int surface);

24

7.2.4 orgfxplus_flip

Description: Swaps which buffer to draw on when using double buffering.
Needs to be called once before anything shows up on screen!

void orgfxplus_flip ();

7.2.5 orgfxplus_clip

Description: Sets the current clipping rect. This is reset to the size of the new
render target when orgfxplus_bind_rendertarget is called.

inline void orgfxplus_clip (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl,
unsigned int enable);

7.2.6 orgfxplus_fill
Description: Draws a rectangle to the current render target with a flat color.

void orgfxplus_fill (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl,
unsigned int color);

7.2.7 orgfxplus_line

Description: Draws a line from (x0,y0) to (x1,y1) to the current render target
with a flat color.

void orgfxplus_line (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl,
unsigned int color);

7.2.8 orgfxplus_triangle

Description: Draws a triangle between the points (x0,y0),(x1,y1) and (x2,y2)
and fills it with a color.

void orgfxplus_triangle (unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl,
unsigned int x2,
unsigned int y2,
unsigned int color);

25

7.2.9 orgfxplus_curve

Description: Draws a quadratic bA@zier curve from (x0,y0) to (x3,y3) with
the control points (x1,y1) and (x2,y2).

void orgfxplus_curve (unsigned int x0,
unsigned int yO0,
unsigned int x1,
unsigned int yl,
unsigned int x2,
unsigned int y2,
unsigned int x3,
unsigned int y3,
unsigned int color);

7.2.10 orgfxplus_draw_surface
Description: Draws a texture to the current render target.

void orgfxplus_draw_surface (unsigned int x0,
unsigned int yO0,
unsigned int surface);

7.2.11 orgfxplus_draw_surface_section

Description: Draws a section of a texture defined by src0, srcl to the current
render target.

void orgfxplus_draw_surface_section (unsigned int x0,
unsigned int yO0,
unsigned int srcx0,
unsigned int srcyO,
unsigned int srcxl,
unsigned int srcyl,
unsigned int surface);

7.2.12 orgfxplus_colorkey

Description: Sets the colorkey color and enables or disables the use of the
colorkey.

void orgfxplus_colorkey (unsigned int colorkey ,
unsigned int enable);

7.2.13 orgfxplus_alpha

Description: Sets the alpha value and enables or disables the use of the alpha
blending.

void orgfxplus_alpha(unsigned int alpha,
unsigned int enable);

26

7.3 Bitmap Fonts
7.3.1 orgfx_make_bitmap_font

Creates a orgfx_bitmap_font from a image. glyphSpacing space between two
glyphs in the string and spaceWidth is the size of the space character.

orgfx_bitmap_font orgfx_make_bitmap_font(orgfx_tileset* glyphs,
unsigned int glyphSpacing,
unsigned int spaceWidth);

7.3.2 orgfx_put_text
Puts the text ”str” on the screen with the specified ”font” on position x0,y0.

void orgfx_put_text(orgfx_font* font,
unsigned int x0, unsigned int yO0,
const char *str);

7.4 Vector Fonts
7.5 Linux

The current version of the core does not have a Linux driver.

7.6 Utilities
7.6.1 Sprite Maker

Since there is no libraries for loading images in the bare metal driver, a utility
program is provided that converts an image into a format that can be loaded to
the graphics accelerator. The Sprite Maker utility uses SDL and SDL_image to
load images, and supports loading several basic formats, such as bmp, jpg, png,
gif etc. The utility supports writing to 8-, 16-, 24- and 32-bits-per-pixel (must
match the format set by orgfx_set_videomode). The width of the loaded image
must be a multiple of 4 pixels (8 bpp), 2 pixels (16 bpp) or 1 bpp (24, 32 bpp)
respectively.

The resulting output of the utility is a header file that can be included into
your program. This header declares an array, which can be copied to memory
and be used as a texture.

This is sample shows how the converter utility can be used:

./ spritemaker image.png [bpp]

If bpp is not provided, the utility uses 8 bits-per-pixel. For an example of
how to use the output of the converter, see section [§

7.6.2 Mesh Maker

Similar to the image loading utility, there is a simple program that converts
Maya obj files into a mesh format that is easy to load into the bare metal
driver.

WRITE MORE

27

7.6.3 Fonter

The fonter is a application that converts a ttf file into a .h file that can be
included in the project. if no input is given the application tries to open font.ttf
and convert it to font.h.

./fonter [fontname.ttf] [output.h]

7.6.4 Regger

The regger is a application that keeps track of what register addresses is set in
the RTL code and in the drivers.

8 Programming examples

The following piece of code shows how to use the extended interface for a bare
metal implementation on the ORPSoCv2 platform. Bahamut_cc.png.h is a 186
by 248 pixel image with a pinkish background (rgb code ff00ff, or f81f in 16 bit).
The header file is generated by the sprite maker utility at 16 bit color depth.

#include "orgfx_plus.h”
#include ”Bahamut_cc.png.h”

int main(void)

{

int i;

// Initialize screen to 640x480—16Q@60
// No double buffering
int screen = orgfxplus_init (640, 480, 16, 0);

// Initialize dragon sprite
int bahamut_sprite =
orgfxplus_init_surface (186, 248, Bahamut_cc);

// Activate colorkeying
orgfxplus_colorkey (0xf81f, 1);

// Clear screen, white color

orgfxplus_fill (0,0,640,480,0 xffff);
// Draw a few lines with different colors
orgfxplus_line (200,100,10,10,0xf000);
orgfxplus_line (200,100,351,31,0x0{f0);
orgfxplus_line (200,100,121,231,0x00£0);
orgfxplus_line (200,100,321,231,0xf00f)

// Draw the dragon at different alpha settings

orgfxplus_alpha (64 ,1);
orgfxplus_draw_surface (100, 100, bahamut_sprite);

28

orgfxplus_alpha (128 ,1);
orgfxplus_draw_surface (120, 102, bahamut_sprite);
orgfxplus_alpha (255,1);
orgfxplus_draw_surface (140, 104, bahamut_sprite);

while (1);

References

29

	Introduction
	Features
	IP Core directory structure

	Architecture
	Overview
	Concepts
	Coordinate precision
	Instruction FIFO
	Pipeline
	Description of core modules
	Wishbone slave
	Transformation processor
	Vector processor
	Rasterizer
	Clipper
	Fragment processor
	Blender
	Wishbone arbiter
	Wishbone master read
	Renderer
	Wishbone master write

	IO Ports
	Registers
	Control Register (CONTROL)
	Status Register (STATUS)
	Alpha (ALPHA)
	Colorkey register (COLORKEY)
	Target base address Register (TARGET_BASE)
	Target size width Register (TARGET_SIZE_X)
	Target size y Register (TARGET_SIZE_Y)
	Texture 0 Base Register (TEX0_BASE)
	Texture 0 size x Register (TEX0_SIZE_X)
	Texture 0 size y Register (TEX0_SIZE_Y)
	Source Pixel position 0 x Register (SRC_P0_X)
	Source Pixel position 0 y Register (SRC_P0_Y)
	Source Pixel position 1 Register (SRC_P1_X)
	Source Pixel position 1 Register (SRC_P1_Y)
	Destination Pixel position Register (DEST_X)
	Destination Pixel position Register (DEST_Y)
	Destination Pixel position Register (DEST_Z)
	Matrix coefficient registers
	Clip Pixel position 0 x Register (CLIP_P0_X)
	Clip Pixel position 0 y Register (CLIP_P0_Y)
	Clip Pixel position 1 x Register (CLIP_P1_X)
	Clip Pixel position 1 y Register (CLIP_P1_Y)
	Color Registers (COLOR0-2)

	Operation
	Draw pixel
	Fill rect
	Line
	Fill triangle
	Curve
	Fill curve

	Clocks
	Driver interface
	newlib
	orgfx_init
	orgfx_vga_set_videomode
	orgfx_vga_set_vbara
	orgfx_vga_set_vbarb
	orgfx_vga_bank_switch
	orgfx_init_surface
	orgfx_bind_rendertarget
	orgfx_enable_cliprect
	orgfx_cliprect
	orgfx_srcrect
	orgfx_set_pixel
	orgfx_memcpy
	orgfx_set_color
	orgfx_rect
	orgfx_line
	orgfx_triangle
	orgfx_triangle3d
	orgfx_curve
	orgfx_enable_tex0
	orgfx_bind_tex0
	orgfx_enable_alpha
	orgfx_set_alpha
	orgfx_enable_colorkey
	orgfx_set_colorkey

	Extended newlib
	orgfxplus_init
	orgfxplus_init_surface
	orgfxplus_bind_rendertarget
	orgfxplus_flip
	orgfxplus_clip
	orgfxplus_fill
	orgfxplus_line
	orgfxplus_triangle
	orgfxplus_curve
	orgfxplus_draw_surface
	orgfxplus_draw_surface_section
	orgfxplus_colorkey
	orgfxplus_alpha

	Bitmap Fonts
	orgfx_make_bitmap_font
	orgfx_put_text

	Vector Fonts
	Linux
	Utilities
	Sprite Maker
	Mesh Maker
	Fonter
	Regger

	Programming examples

