ORSoC Graphics accelerator Specification

Per Lenander, Anton Fosselius

June 5, 2012

e &\ OpenCores

WwwWw.opencares.org

1!“\ |||k“
\\lr\\| ||{

——,

N 'T—D ' | \

r,(_/— l\/" II\\| uu

Revision history

[Rev. | Date | Author | Description
1.0 23/3/2012 Per Lenander Initial draft and basic functionality
2.0 4/6/2012 Per Lenander Advanced functionality (vector, 3D etc)

Contents

|2.? Concepts] e

P37 Coordinate precision] v v v v i e
2.4 Instruction FIFOI

D Pipeline|o

0.4 1931 €212

[2.6.5 Fragment processor|. Lo

|4 E eglsters|

4.1 Control Register (CONTROL)| i

4.2 Status Register (STATUS)|[.
4.3 Alpha (ALPHA)| e
4.4 Colorkey register (COLORKEY)|
4.5 Target base address Register (TARGET BASE)[.
4.6 Target size width Register (TARGET SIZEX)|
4.7 Target size y Register (TARGET SIZE Y)| . -« o v v oo
4.8 Texture 0 Base Register (TEX0_BASE)|
4.9 Texture 0 size x Register (TEXOSIZE X)|
4.10 Texture 0 size y Register (TEXOSIZE_Y)|
4.11 Source Pixel position 0 x Register (SRC_POX)|
4.12 Source Pixel position 0 y Register (SRC_PO_Y)|
4.13 Source Pixel position 1 Register (SRC_P1.X)|
4.14 Source Pixel position 1 Register (SRC_P1.Y)[.
4.15 Destination Pixel position Register (DEST X)|.
4.16 Destination Pixel position Register (DEST_Y)|.
4.17 Destination Pixel position Register (DEST Z)| . . « v o v v oo oo e e
4.18 Matrix coefficient registers|. oL
4.19 Clip Pixel position 0 x Register (CLIP_.POX)|
4.20 Clip Pixel position 0 y Register (CLIP_PO_Y)[.
4.21 Clip Pixel position 1 x Register (CLIP_ P1.X)[.
4.22 Clip Pixel position 1 y Register (CLIP.P1.Y)|
4.23 Color Registers (COLORO-2)[.

5 Operation

5.1 Draw pixell

7.1 mewlibl
[7.1.1 orgixnit]
[7.1.2 orgitx_vga_set_videomode|.
7.1.3 orgix_vgaset_vbaral. L
714 orglxovgasetvbarb]
[I5 orgflxvgabankswitch
[7.1.6 orgix_init_surfacel L
[7.1.7 orgix_bind rendertarget| Lo
[7.1.8 orgfx_enablecliprect] 0oL
7.1.9 orgixcliprect|o
[T30 orgfxsrerect]
[7.1.11 orgtxset_pixell
[7.1.12 orglx memcpy|. oL
[7.1.13 orgixset_color]

[7.1.14 orgfxsetcolors|
.....................................

[116 orgfxling
[(.1.17 orgtx_linedd|

[7.1.18 orgix triangle| oL
7.1.19 orgtx_triangledd|.
7.1.20 orgfx_curvel o e e
......................................
[7.1.22 orgfx_enable_texO] L
[7.1.23 orgix_bind tex(0] L
[7.1.24 orgfx_enablezbuffer|00 L.

7.1.25 orgix_bind zbufter|] L
[126 orgfx_clearzbuffer]
[7.1.27 orgtx_enable_alphal oo
[7.1.28 orgixset_alpha]
[7.1.29 orgix_enable_colorkey|.o o o

[7.1.30 orgfxset_colorkey|.
|Z.1.31 orgfx_enable_transform]o

[71.32 orgfx_set_transformation matrix]. o v v v v v i

[7.2.1 orgixplusnit|o

7.2.2 orgixplusinit_surface|.

2. orgixplus_bind_texO|.
[1.2.5 orgtxplus flip|
[7.2.6 orgixplusclip|
(2.7 orgtxplus filll
7.2.8 orgixpluslinel
[[290 orgfxplustriangle]. o
[7.2.10 orgtxplus_curve|l L
[71.2.11 orgixplus_draw_surface| L o
[7.2.12 orgtxplus_draw_surtace_section|

17
17
17
17
17
18

18

[7.2.13 orgtxplus_colorkey| 24
[7234 orgfxplus_alphal o v v o 24

[7.3 DBitmap Fonts| 25
[7.3.1 orgtx make bitmap_font|o oo 25

[7.3.2 orgix put_text|. 25

[t4 Vector Fontsl o 25
7.4.1 orgtx_make vector_font|. Lo 25

4.2 orgfx_init_vector_font|. oL oL 25

[A3 orgfx put_vector_char] it 25
[7.4.4 orgtx_put_vector_text|. o 26

M5 3D APT . . o o oo 26
51 Transformationd 26
[7.5.2 orgtx3ddmakemesh{.o o oo 00000 26
[75.3 orgfx3d mesh texture size] v v v v v it 26
[7.5.4 orgtx3dd.draw_mesh|. oo 27

M6 Tuxl . . o o oo o 27
[0.7 _Software emulation| 27
S 01 T e O 27
[7.8.1 Sprite maker utility] oo 27
[7.8.2 Bitmap font maker utility|o oo 27
[7.8.3 Mesh maker utility| oo 27
[7.8.4 Vector font maker utility] oo oo 30

85 Regger|. 30

I8 Programming examples| 30

1 Introduction

The ORSoC Graphics accelerator allows the user to do advanced vector rendering and 2D blitting
to a memory area. The core supports operations such as drawing textures, lines, curves and filling
rectangular and triangular areas with color.

This IP Core is designed to integrate with the OpenRISC processor through a Wishbone bus
interface. The core itself has no means of displaying the information rendered, for this purpose
it can work alongside a display component, such as the enhanced VGA/LCD IP core found on
OpenCores.

1.1 Features

e 32-bit Wishbone bus interface

e Integrates with enhanced VGA/LCD IP core

e Support for 16 bit color depth

e Support for variable resolution

e Acceleration of line operations

e Acceleration of rectangle and triangle rasterization

e Acceleration of memory copy operations

e Textures can be saved to video memory

e Vector transformation and rasterization

e Clipping/Scissoring

e Alpha blending and colorkeying

e Filled Bezier curves

e Bitmap Fonts

e Vector Fonts (ttf)

e Interpolation of colors

e UV-Mapping

e Transformation (scaling and rotation)

e 3D model support (.obj model files built using 3rd degree polygons)

e Z-Buffer (triangles drawn in depth order)

e Requires around 10000 Slice LUTs (Xilinx ISE 13.4)

1.2 IP Core directory structure

A overview of the contents of the IP core source folder can be found in figure

2 Architecture

2.1 Overview

A topology of how the ORGFX is connected to the VGA driver and the OpenRISC core is shown
in figure [2} The ORGFX has three wishbone interfaces: one read/write port that is used to com-
municate with the host CPU. One read port that reads depth/texture/alpha blending information
from the RAM and one write port to write pixel information to the RAM.

GFX

X Contains testbenches
iI bench | ’l verilog | ’l gfx | for all gfx components
—>| doc |—>| src |

Contains the documentation

of the core, including source

files and images
X Contains all rtl code

—>| rtl |—>| verilog I—b-l gfx | for the gfx core
—)I SW I—)l drivers I—)l gfx I—)l bare

The software folder

)l examples I»l bare | contains drivers for the
core intended to run

on OpenRISC bare metal. Therg|
is some example code to

get you started, and several
utils conversion utilies

Figure 1: Directory structure of the ORSoC graphics accelerator.

Wishbone CPU
A [A
Y L4 Y
WIGEA GFX orl200
A A A
Y Y Y
RaM

Figure 2: Overview of the ORPSoCv2’s wishbone interconnection.

Figure 3: 1. Texture, 2. Source, 3. Render target, 4. Clip, 5. Destination

2.2 Concepts

This section describes a few basic terms used in this document.

Video memory — The ORGFX component writes pixels one by one to an external memory,
usually a SDRAM or DDR RAM chip. The CPU should also have access to this memory space to
be able to write pixels directly (the easiest way to load textures).

Render target — The render target, defined by the target base and size registers, describes
the area to which all operations render pixels. It is possible to change the base address and size,
enabling render-to-texture and double buffering.

Surface/Texture — Any memory area that can be rendered to, including the render target, is
considered a surface. A surface is defined by it’s base address and size. There are two main surfaces
that the ORGFX device handles: the render target and the currently active texture. Swapping
between different textures has to be done in software. The operation of setting the current render
target or texture is referred to as binding.

Source, Destination and Clip rectangles — There are three sets of rectangles that affect
rendering, each described by two points. The first point sets the beginning of the rectangle, while
the second point sets the pixel after the end of the rectangle. This way, a rectangle exactly filling
the screen would be (0,0,640,480) at 640x480 resolution. See figure

Source rectangle — The source rectangle defines what pixels should be read from a texture
during textured operations. The points are defined in the coordinates of the currently bound
texture. This way sections of a texture can be drawn (good for tile maps or bitmap fonts).

Destination rectangle — The destination rectangle defines where operations such as draw
pixel and draw line will draw pixels, in the coordinates of the render target.

Clip rectangle — The clip rectangle defines an area within the current render target which is
valid to draw to. Any pixels outside this rectangle are discarded in the rasterization step. Pixels
outside of the render target are automatically discarded.

Z-buffer — The depth or Z-buffer is a surface containing z coordinate information. This can
be used to draw graphics primitives in depth-correct order.

2.3 Coordinate precision

The ORGFX core supports variable coordinate precision through two parameters, point_width
and subpixel_width. Both parameters defaults to 16 bits width.

Target size, clip and source rects are defined as point_width bit integers. Destination points
are defined as fixed point numbers, with point_width bit integer precision and subpixel_width
fractional precision. Internally many calculations are done with fixed point logic.

Wishbone
slave

Transform
processor

Rasterizer > Division

A\ A

»| Clipping € Interpolation

A\ A

Wishbone Fragment
Reader processor

A\ A

»| Blender

Renderer

Wishbone
writer

Figure 4: Picture of the ORGFX pipeline

2.4 Instruction FIFO

All wishbone writes sent to the slave interface will pass through an instruction fifo. If the device
is in the busy state (when the pipeline is active) the instruction will be queued instead of being
set immediately. This is important to take into account when reading from registers, since an
operation that changes the register being read might be queued. To find out if the device is busy,
poll the status register and check if the busy bit is high.

2.5 Pipeline

The ORGFX core uses a pipelined architecture to speed up operation. An overview of the pipeline
can be seen in figure Each module in the pipeline communicates with acknowledge and write
signals. A module will not assert write to the next module unless it receives an ack first (or if the
module was previously in a ready state, in which case the downstream pipeline is empty). All ack
and write signals are always exactly one clock tick long, to prevent triggering multiple instances
of the same instruction.

Each module in the pipeline may hold the upstream pipeline for several clock ticks. For example,
the rasterizer will prevent incoming raster instructions until all the pixels for the current operation
are generated. When the rasterizer is ready for new data, it will send an ack upstream.

2.6 Description of core modules
2.6.1 Wishbone slave

The wishbone slave handles all communication from the main OpenRISC processor (or other
master CPU). This component holds all the registers, and the instruction FIFO that sets them.
This component can be in one of two states: busy or wait. It enters the busy state when a pipeline
operation is initialized, and returns to the wait state when the operation is finished. Operations
can be initialized by writing to the control register (see section .

2.6.2 Transformation processor

The transformation processor handles rotations and scaling.

2.6.3 Rasterizer

This rasterizer generates pixel coordinates from points for several different operations.

2.6.4 Clipper

Discard generated pixel if clipping is enabled and pixel is out of bounds. Always discard pixels
outside of the target area.

2.6.5 Fragment processor

The fragment processor adds color to the pixel generated by the rasterizer. If texturing is disabled,
a color supplied from the color register is used. If texturing is enabled on the other hand, the
u v coordinates supplied by the rasterizer are used to fetch a pixel from the active texture. If
colorkeying is enabled and the fetched color matches the color key, the current pixel is discarded.

2.6.6 Blender

The blender module performs alpha blending if this is enabled. The module fetches the color of
the pixel that the current operation will write to, and the mixes the value of the target color and
the color from the fragment processor using the following algorithm:

alpha = alphagiopal * alphapiger

color oy = coloryy, * alpha + colorigrger * (1 — alpha)

Where alpha is a value between 0 (transparent) and 1 (opaque). If alpha blending is disabled
the pixel is passed on unmodified. The alpha value can be interpolated over a triangle to create
gradients. If this function is turned off (interpolation is disabled on triangle draws) then alphap;ze
is set to 1.

2.6.7 Wishbone arbiter

Since two parts of the pipeline (fragment and blender) needs to access video memory, the arbiter
makes certain only one of them can access the reader at once. The blender has the highest priority.

2.6.8 Wishbone master read

The wishbone reader handles all reads from video memory.

2.6.9 Renderer

The renderer calculates the memory address of the target pixel.

2.6.10 Wishbone master write

The wishbone master handles all writes to the video memory.

10

3 10 Ports

The Core has three wishbone interfaces:

e Wishbone slave — connects to the data bus of the OpenRISC processor. In the case of ORP-
SoC, this bus is connected through an arbiter. Supports standard wishbone communications,
not any burst modes.

e Wishbone master read-only — connects to a video memory port with read access. Used for
fetching textures and during blending.

e Wishbone master write-only — connects to a video memory port with write access. Used for
rendering pixels to the framebuffer.

There is an interrupt enabled that can be connected to the interrupt pins on the or1200 CPU
(in the supplied orpsoc_top it is connected to or1200_pic_ints[9]). For this interrupt to trigger, the
correct bits in the control register has to be set.

11

4 Registers

| Name | Addr | Width | Access | Description
CONTROL 0x00 | 32 RW Control register
STATUS 0x04 32 R Status register
ALPHA 0x08 | 32 RW Global alpha register
COLORKEY 0x0c 32 RW Colorkey register
TARGET BASE | 0x10 | 32 RW Render target base
TARGET_SIZE X | 0x14 32 RW Render target width
TARGETSIZE_Y | 0x18 32 RW Render target height
TEX0_BASE Oxlc 32 RW Texture 0 base
TEX0_SIZE_X 0x20 32 RW Texture 0 width
TEXO0SIZE_.Y 0x24 32 RW Texture 0 height
SRC_P0_X 0x28 | 32 RW Source pixel 0 x
SRC_P0O_Y 0x2c 32 RW Source pixel 0 y
SRC_P1.X 0x30 | 32 RW Source pixel 1 x
SRC_PLY 0x34 | 32 RW Source pixel 1y
DEST_X 0x38 32 RW Destination pixel x
DEST.Y 0x3c 32 RW Destination pixel y
DEST_Z 0x40 32 RW Destination pixel z
AA 0x44 32 RW Transformation matrix coefficient
AB 0x48 32 RW Transformation matrix coefficient
AC Ox4c 32 RW Transformation matrix coefficient
TX 0x50 32 RW Transformation matrix coefficient
BA 0xb54 32 RW Transformation matrix coefficient
BB 0x58 32 RW Transformation matrix coefficient
BC 0xb5c 32 RW Transformation matrix coefficient
TY 0x60 32 RW Transformation matrix coefficient
CA 0x64 32 RW Transformation matrix coefficient
CB 0x68 32 RW Transformation matrix coefficient
CC 0x6¢ 32 RW Transformation matrix coefficient
TZ 0x70 32 RW Transformation matrix coefficient
CLIP_P0_X 0x74 32 RW Clip pixel 0 x
CLIP_PO.Y 0x78 32 RW Clip pixel 0 y
CLIP_P1.X 0x7c 32 RW Clip pixel 1 x
CLIP_P1.Y 0x80 32 RW Clip pixel 0 y
COLORO 0x84 32 RW Color 0
COLOR1 0x88 32 RW Color 1
COLOR2 0x8c 32 RW Color 2
Uo 0x90 32 RW Texture coordinate 0
VO 0x94 32 RW Texture coordinate 0
U1l 0x98 32 RW Texture coordinate 1
V1 0x9c 32 RW Texture coordinate 1
U2 0xa0 32 RW Texture coordinate 2
V2 Oxad 32 RW Texture coordinate 2
ZBUFFER_BASE | 0xa8 32 RW Depth buffer base address

Each register is described in detail in the following sections, with information about what the
purpose of each bit in the register is. The default value provided for each register is set when the
device receives a reset signal.

12

4.1 Control Register (CONTROL)
’ Bit # \ Access \ Description ‘

[31:20] | - Reserved

[19] W Transform point
[18] W Forward point
[17:16] | RW Active point
[15:14] | - Reserved

[13] W Bézier inside shape
[12] W Interpolation
[11] W Curve write

[10] W Triangle write
[9] W Line write

8] W Rect write

[7] - Reserved

[6] RW Z-buffer enable
[5] RW Clipping enable
4 RW Colorkey enable
3 RW Blending enable
2] RW Texture0 enable
1:0] RW Color depth

Default value: 0x00
Color depth is defined as follows:
’ Mode \ Color depth ‘

00 8 bit

01 16 bit

10 24 bit (not supported)
11 32 bit

The active point is defined as follows:
| Mode | Point id |

00 p0
01 pl
10 p2
11 -

The operations Forward point and Transform point reads the current values of the active
point and stores the x, y, z values in the correct register inside the device.

4.2 Status Register (STATUS)
’ Bit # \ Access \ Description ‘

[31:16] | R Current FIFO size
[15:1] | R Reserved
[0] R Busy pin (high when busy)

Default value: —

4.3 Alpha (ALPHA)
’ Bit # \ Access \ Description ‘

[31:24] | RW Point 0 alpha
[23:16] | RW Point 1 alpha
[15:8] | RW Point 2 alpha
[7:0] RW Global alpha

Default value: Ox{IfffIfl

13

The global alpha value is used in all rendering when alpha blending is enabled. O0xff is full
opacity, while 0x00 is full transparency (nothing rendered). When interpolation of triangles is
activated, the point alpha values are used to find an interpolated alpha value for each pixel. This
value is then multiplied with the global alpha before being used for blending.

4.4 Colorkey register (COLORKEY)

’ Bit # \ Access \ Description ‘
[[31:0] | RW | Colorkey ‘

Default value: 0x00

By setting a colorkey certain pixels in a texture can be discarded in the fragment stage, provid-
ing a hard transparency. Depending on the color depth, a mask is applied to the color. Using 8 bit
color, only the 8 least significant bits in the colorkey will be compared with the texture color during
the check. The colorkey enable bit in the control register must be set to enable this functionality.

4.5 Target base address Register (TARGET_BASE)

’ Bit # \ Access \ Description ‘
[31:2] | RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

4.6 Target size width Register (TARGET_SIZE_X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Width |

Default value: 0x00

4.7 Target size y Register (TARGET _SIZE_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Height |

Default value: 0x00

4.8 Texture 0 Base Register (TEX0_BASE)

’ Bit # \ Access \ Description ‘
[31:2] | RW Video Memory Address
[1:0] - Nothing

Default value: 0x00

4.9 Texture 0 size x Register (TEXO0_SIZE _X)
’ Bit # \ Access \ Description ‘

[[31:0] | RW [Integer Width |

Default value: 0x00

4.10 Texture 0 size y Register (TEX0_SIZE_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer Height |

Default value: 0x00

14

4.11 Source Pixel position 0 x Register (SRC_P0_X)
’ Bit # \ Access \ Description ‘
[[31:0] [RW | Integer x pos |

Default value: 0x00
The source pixels are used to define a specific area in a texture to draw.

4.12 Source Pixel position 0 y Register (SRC_P0._Y)
’ Bit # \ Access \ Description ‘

’ [31:0] \ RW \ Integer y pos ‘

Default value: 0x00

4.13 Source Pixel position 1 Register (SRC_P1_X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer x pos |

Default value: 0x00

4.14 Source Pixel position 1 Register (SRC_P1.Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer y pos |

Default value: 0x00

4.15 Destination Pixel position Register (DEST _X)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00
The control register flag active point decides the destination register inside the device. Points
are pushed to the device by setting the forward or transform bit in the control register.

4.16 Destination Pixel position Register (DEST_Y)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00

4.17 Destination Pixel position Register (DEST _Z)

’ Bit # \ Access \ Description ‘
[31:16] | RW Signed Integer part
[15:0] | RW Fractional part

Default value: 0x00

4.18 Matrix coefficient registers

The matrix coefficients are defined in the following way:

15

AA AB AC TX
M=| BA BB BC TY

CA CB CC TZ
Each coefficient has a register, where the bits are defined as:
’ Bit # \ Access \ Description
[31:16] | RW Signed Integer part

[15:0] | RW Fractional part
The default matrix is set to no scaling, no rotation, no translation:

|

4.19 Clip Pixel position 0 x Register (CLIP_P0_X)

’ Bit # \ Access \ Description ‘
[[31:0] [RW | Integer x ‘
Default value: 0x00

1 0 0
Mdefault = 0 10
0 0 1

o O O

4.20 Clip Pixel position 0 y Register (CLIP_P0_Y)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer y ‘

Default value: 0x00

4.21 Clip Pixel position 1 x Register (CLIP_P1_X)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Integer x ‘

Default value: 0x00

4.22 Clip Pixel position 1 y Register (CLIP_P1.Y)
’ Bit # \ Access \ Description ‘

’ [31:0] \ RW \ Integer y ‘

Default value: 0x00

4.23 Color Registers (COLORO0-2)
’ Bit # \ Access \ Description ‘
[[31:0] | RW [Color bits |

Default value: 0x00
There are several color modes available (set in control register):

’ Mode \ Format ‘
32bpp [31:24] is alpha channel. [23:16] is R, [15:8] is G and [7:0] is B
16bpp 15:11] is R, [10:5] is B and [4:0] is G

[
8bpp gray [7:0] sets both R, G and B values
8bpp palette | [7:0] sets the color index in the palette

Currently only 16 bit color depth is fully supported.

16

4.24 Texture coordinate Registers (U0-2 and VO0-2)
’ Bit # \ Access \ Description ‘

[[31:0] [RW | Coordinate bits (integer) |

Default value: 0x00

4.25 Depth buffer Register (ZBUFFER _BASE)

’ Bit # \ Access \ Description ‘
[31:2] | RW 32-bit word base address
[1:0] - Ignored

Default value: 0x00

This register holds the base address of the depth buffer. The depth buffer operations uses

TARGET_SIZE_X and TARGET_SIZE_Y for the size of the depth buffer (it is assumed that the
render target and the depth buffer are of the same size.

5 Operation

All hardware accelerated operations draw pixels to the currently active surface (defined by TADR_REG
and TSZE_REG). These operations are all affected by clip_p0 and clip_pl. No pixels that fall out-
side the clipping rectangle will be rendered.

5.1 Draw pixel

Input needed: dest_p0, color0

ORGFX have no hardware-support for writing a single pixel to the video memory. However its
possible to draw a line, rect or curve with the size of one pixel. The software API makes it possible
to draw a pixel by writing directly to the memory (this is the most optimal way). Since the video
memory can point to both the framebuffer and to textures, the same operation can be used to
draw an arbitrary pixel to the screen and to load a texture into video memory.

5.2 Fill rect

Input needed: ctrl, dest_p0, dest_pl, color0, [src_p0, src_pl]

Fill rect will fill the area of a rectangle created between the pixel dest_p0 and dest_pl with color.
If texturing is enabled, color will be taken from the active texture in the area between src_p0 and
src_pl. This operation is hardware accelerated, and is activated by setting the Rect write bit in
the control register.

5.3 Line

Input needed: ctrl, dest_p0, dest_pl, color0
Line will draw a line between the pixels dest_p0 and dest_p1 with color. This operation is hardware
accelerated.

5.4 Triangle

Input needed: ctrl, dest_p0, dest_pl, dest_p2, color0, [colorl, color2, u0, v0, ul, vl, u2, v2]
Draw the pixels in the triangle created by dest_p0O, dest_pl and dest_p2. The triangle can be
colored with either a flat color, a gradient or a texture. Gradient or textured coloring require the
interpolation pin to be set in the control register.

17

5.5 Curve

Input needed: ctrl, dest_p0, dest_pl, dest_p2, color0, [colorl, color2, u0, v0, ul, vl, u2, v2]
Draws a filled quadratic Bézier curve with dest_p0 as start, dest_pl as control point and dest_p2
as end. For this operation to work, the interpolation pin must be set in the control register.

6 Clocks

The entire component uses the same clock domain.

7 Driver interface

The ORSoC graphics accelerator offers three different APIs to code against, two for bare metal
when coding directly against the processor, and a Linux kernel module. The extended bare metal
interface is a wrapper around the basic bare metal API, and makes coding easier by reducing the
number of calls. The drawback is lesser control over the graphics card.

7.1 newlib

The basic library is provided in orgfx.h and orgfx.c.
The bare metal library declares a structure that can hold surfaces (both framebuffers and
textures). Many functions take a pointer to one of these structures.

struct orgfx_surface

{

unsigned int addr;
unsigned int w;
unsigned int h;

}s

7.1.1 orgfx_init
Description: The orgfx_init must be called first to get other oc_gfx commands to work properly.

void orgfx_init (unsigned int memoryArea);

7.1.2 orgfx_vga set_videomode
Description: Sets the video mode, width, height, bpp.

void orgfx_set_videomode (unsigned int width,
unsigned int height ,
unsigned char bpp);

7.1.3 orgfx_vga_set_vbara
Description: Assign a memory address to ”Video Base Address Register A”.

void orgfx_vga_set_vbara(unsigned int addr);

7.1.4 orgfx_vga set_vbarb
Description: Assign a memory address to ”Video Base Address Register B”.

void orgfx_vga_set_vbarb (unsigned int addr);

18

7.1.5 orgfx_vga_bank_switch

Description: Switches the framebuffer.

void orgfx_vga_bank_switch ();

7.1.6 orgfx_init_surface

Description: Initialize a surface and return a control structure for it. This function increments
an internal video memory stack pointer, so each surface will be allocated after the previous one in
memory (starting at memoryArea set by orgfx_init). There is currently no memory management
in place to recycle surface memory once it is no longer in use. The first surface initialized will
point to the same memory that the video controller reads from, so it should be initialized with the
width and height of the screen.

struct orgfx_surface
orgfx_init_surface (unsigned int width,
unsigned int height);

7.1.7 orgfx_bind_rendertarget

Description: Binds a surface as the active render target. This function must be called before any
drawing operations can be performed.

void orgfx_bind_rendertarget (struct orgfx_surface xsurface);

7.1.8 orgfx_enable_cliprect
Description: Enables/disables clipping.

inline void orgfx_enable_cliprect (unsigned int enable);

7.1.9 orgfx_cliprect

Description: Sets the clipping rect. No pixels will be drawn outside of this rect (useful for
restricting draws to a specific area of the render target). orgfx_bind_rendertarget will reset the
clipping rect to the size of the surface.

inline void orgfx_cliprect (unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl);

7.1.10 orgfx_srcrect

Description: Sets the source rectangle that will be used by texturing operations. This allows for
only drawing a small part of a texture. orgfx_bind_tex0 will reset this to the size of the texture.

inline void orgfx_srcrect (unsigned int x0,
unsigned int yO0,
unsigned int xI1,
unsigned int yl);

7.1.11 orgfx_set_pixel

Description: Set a pixel on coordinate x,y to color. This is done in software by direct memory
writes. This operation is not affected by the clipping rect!
inline void orgfx_set_pixel(int x,

int y,

unsigned int color);

19

7.1.12 orgfx_memcpy

Description: Copies memory from the processor to the video memory. Size is in 32-bit words.
This function is intended to work with the output array of the sprite converter utility to load
images into memory. Remember to bind a texture as the render target first!

void orgfx_memcpy (unsigned int mem|],
unsigned int size);

7.1.13 orgfx_set_color

Description: Sets the current drawing color (for flat coloring).

inline void orgfx_set_color (unsigned int color);

7.1.14 orgfx_set_colors

Description: Sets all the current drawing colors (for gradient coloring).

inline void orgfx_set_colors(unsigned int color0,
unsigned int colorl ,
unsigned int color2);

7.1.15 orgfx_rect

Description: Draws a rect from (x0,y0) to (x1,y1) and fills it with the current drawing color. If
texturing is enabled, the current texture will be drawn instead.

inline void orgfx_rect(int x0,
int yo0,
int x1,
int yl);

7.1.16 orgfx_line

Description: Draws a line from (x0,y0) to (x1,y1) with the current drawing color. If texturing is
enabled, the first pixel of the current texture will be drawn instead.

inline void orgfx_line (int x0, int yO,
int x1, int yl);

7.1.17 orgfx_line3d

Description: Draws a line from (x0,y0,z0) to (x1,y1l,z1) with the current drawing color. If
texturing is enabled, the first pixel of the current texture will be drawn instead.

inline void orgfx_line3d (int x0, int y0, int z0,
int x1, int yl, int zl);

7.1.18 orgfx_triangle

Description: Draws a filled triangle of the space spanned by (x0,y0), (x1,y1) and (x2,y2). The
order of the points is important, since triangles calculated to be counter clockwise will be discarded
(backface culling). The interpolate flag indicates if flat coloring or interpolated coloring should be
used. The interpolate flag has to be enabled for interpolated alpha, texture coordinates or depth
is desired (flat coloring can be obtained by setting all three color registers to the same color).
inline void orgfx_triangle(int x0, int yO0,

int x1, int yl,

int x2, int y2,

unsigned int interpolate);

20

7.1.19 orgfx_triangle3d
Description: This function works the same way as the triangle function, but the Z-values are set.

inline void orgfx_triangle3d (int x0, int y0, int z0,
int x1, int yl, int zl,
int x2, int y2, int z2,
unsigned int interpolate);

7.1.20 orgfx_curve

Description: Draws a Quadratic curve between the points (x0,y0) and (x2,y2) with the control
points (x1,y1). The three points form a triangle. The inside flag determines if the inside or outside
of the curve is filled inside the triangle.

inline void orgfx_curve(int x0, int yO,
int x1, int yl,
int x2, int y2,
unsigned int inside);

7.1.21 orgfx_uv
Description: Sets the three texture coordinates used in textured triangle renders.

inline void orgfx_uv(unsigned int u0, unsigned int v0,
unsigned int ul, unsigned int vl,
unsigned int u2, unsigned int v2);

7.1.22 orgfx_enable_tex0
Description: Enables or disables texturing.

void orgfx_enable_tex0 (unsigned int enable);

7.1.23 orgfx_bind_tex0
Description: Binds a surface as the current texture. Will reset the source rect.

void orgfx_bind_tex0(struct orgfx_surfacex surface);

7.1.24 orgfx_enable_zbuffer

Description: Enables or disables reads and writes to the depth buffer. Requires that a depth
buffer is bound.

void orgfx_enable_zbuffer (unsigned int enable);

7.1.25 orgfx_bind_zbuffer

Description: Binds the depth buffer. This surface should have the same resolution as the render
target.

void orgfx_bind_zbuffer (struct orgfx_surface xsurface);

7.1.26 orgfx_clear_zbuffer
Description: Clears the depth buffer.

void orgfx_clear_zbuffer ();

21

7.1.27 orgfx_enable_alpha
Description: Enables or disables alpha blending.

void orgfx_enable_alpha (unsigned int enable);

7.1.28 orgfx_set_alpha
Description: Sets the alpha blending value.
void orgfx_set_alpha (unsigned int alpha);

7.1.29 orgfx_enable_colorkey
Description: Enables or disables colorkey.

void orgfx_enable_colorkey (unsigned int enable);

7.1.30 orgfx_set_colorkey
Description: Sets the colorkey color.

void orgfx_set_colorkey (unsigned int colorkey);

7.1.31 orgfx_enable_transform
Description: Enables or disables hardware accelerated transformation of points.

void orgfx_enable_transform (unsigned int enable);

7.1.32 orgfx_set_transformation_matrix
Description: Sets the 3 by 4 transformation matrix used in hardware.

void orgfx_set_transformation_matrix (int aa, int ab, int ac, int tx,
int ba, int bb, int bc, int ty,
int ca, int cb, int cc, int tz);

7.2 Extended newlib

The extended library is provided in orgfx_plus.h and orgfx_plus.c, but orgfx.c also has to be
compiled for it to work.

Instead of using surface structs directly, the extended API hides surface management by re-
turning id tags for each surface. The screen surface (defined by id -1) is handled as a single surface,
even when double buffering is enabled.

The driver defines the number of available surfaces (not counting the screen) with a static
define. Change this if the default value is too low for your application.

There are no 3D functions in this API. For the more advanced 3D functionality (meshes, depth
buffering etc.), see the advanced API.

7.2.1 orgfxplus_init

Description: Initializes the screen with the supplied video mode and returns an id for the screen.
The only supported bpp is 16. Double buffering and depth buffering can be enabled (and the
appropriate buffers will be allocated). The depth buffer is allocated with the same size as the
screen. There is no support in the driver to allocate more than one depth buffer.

22

int orgfxplus_init(unsigned int width,
unsigned int height ,
unsigned char bpp,
unsigned char doubleBuffering ,
unsigned char zbuffer);

7.2.2 orgfxplus_init_surface

Description: Unlike the basic API, this function both initializes a surface and loads a prepared
image to it in one function call. The return value is an id that can be used to bind the surface. It
changes render target during operation, but switches back to the last render target on completion.
Since the screen(s) are already initialized by a call to init, they do not need to be loaded using this
function.

int orgfxplus_init_surface (unsigned int width,
unsigned int height ,
unsigned int mem[]);

7.2.3 orgfxplus_bind_rendertarget
Description: Binds a surface as the current render target.

void orgfxplus_bind_rendertarget (int surface);

7.2.4 orgfxplus_bind_tex0
Description: Binds a surface as the current active texture.

void orgfxplus_bind_tex0(int surface);

7.2.5 orgfxplus_flip

Description: Swaps which buffer to draw on when using double buffering. Needs to be called
once before anything shows up on screen!

void orgfxplus_flip ();

7.2.6 orgfxplus_clip

Description: Sets the current clipping rect. This is reset to the size of the new render target
when orgfxplus_bind_rendertarget is called.
inline void orgfxplus_clip (unsigned int x0,

unsigned int yO0,

unsigned int x1,

unsigned int yl,

unsigned int enable);

7.2.7 orgfxplus_fill
Description: Draws a rectangle to the current render target with a flat color.

void orgfxplus_fill (int x0, int yO,
int x1, int yl,
unsigned int color);

23

7.2.8 orgfxplus_line

Description: Draws a line from (x0,y0) to (x1,y1) to the current render target with a flat color.

void orgfxplus_line(int x0, int yO0,
int x1, int yl,
unsigned int color);

7.2.9 orgfxplus_triangle

Description: Draws a triangle between the points (x0,y0),(x1,y1) and (x2,y2) and fills it with a
color.

void orgfxplus_triangle(int x0, int y0,
int x1, int yl1,
int x2, int y2,
unsigned int color);

7.2.10 orgfxplus_curve

Description: Draws a quadratic Bézier curve from (x0,y0) to (x2,y2) with the control point
(x1,y1). Uses flat coloring,.

void orgfxplus_curve(int x0, int yO0,
int x1, int yl,
int x2, int y2,
unsigned int inside ,
unsigned int color);

7.2.11 orgfxplus_draw_surface

Description: Draws a texture to the current render target.

void orgfxplus_draw_surface (int x0, int yO0,
unsigned int surface);

7.2.12 orgfxplus_draw_surface_section

Description: Draws a section of a texture defined by src0, srcl to the current render target.

void orgfxplus_draw_surface_section (int x0, int yO,
unsigned int srcx0,
unsigned int srcy0,
unsigned int srecxl
unsigned int srcyl,
unsigned int surface);

7.2.13 orgfxplus_colorkey

Description: Sets the colorkey color and enables or disables the use of the colorkey.

void orgfxplus_colorkey (unsigned int colorkey,
unsigned int enable);

7.2.14 orgfxplus_alpha

Description: Sets the alpha value and enables or disables the use of the alpha blending.

void orgfxplus_alpha (unsigned int alpha,
unsigned int enable);

24

7.3 Bitmap Fonts

Note that bitmap fonts can be generated with the bitfontmaker utility. This utility generates an
initialization function that calls the orgfx_make_bitmap_font function and returns a valid font.

7.3.1 orgfx_make_bitmap_font

Creates a orgfx_bitmap_font from a image. glyphSpacing is the space in pixels between two glyphs
in the string, and space Width is the size of the space character.

orgfx_bitmap_font orgfx_make_bitmap_font(orgfx_tilesetx glyphs,
unsigned int glyphSpacing,
unsigned int spaceWidth);

7.3.2 orgfx_put_text
Puts the text ”str” on the screen with the specified ”font” on position x0,y0.

void orgfx_put_text(orgfx_font* font,
int x0, int yo0,
const wchar_t =str);

Note the use of wide strings (which enables the use of special characters such as 446). Example
usage:

orgfx_put_text(&font, x0, y0,
L”Some example text”);

7.4 Vector Fonts

Note that vector fonts can be generated with the fonter utility. This utility generates an initializa-
tion function that calls the orgfx_make_vector_font and orgfx_init_vector_font functions and
returns a valid font.

7.4.1 orgfx_make_vector_font

Creates a orgfx_vector_font from a series of glyphs.

orgfx_vector_font orgfx_make_vector_font (Glyph xglyphlist ,
int size,
Glyph #xglyphindexlist ,
int glyphindexlistsize)

7.4.2 orgfx_init_vector_font
Initializes the font for use. Needs to be called to set the index list.

int orgfx_init_vector_font (orgfx_vector_font font);

7.4.3 orgfx_put_vector_char

Prints one glyph from the font with the current transformation matrix. If the glyph is not supported
in the font the function will return without doing anything.

void orgfx_put_vector_char (orgfx_vector_fontx font, wchar_t text);

25

7.4.4 orgfx_put_vector_text

Prints a string of characters using a vector font. This function sets the transformation matrix from
the offset, scale and rotation parameters, then makes a series of calls to orgfx_put_vector_char.

void orgfx_put_vector_text (orgfx_vector_fontx font,
orgfx_point3 offset
orgfx_point3 scale
orgfx_point3 rotation ,
const wchar_t xstr,
unsigned int color);

7.5 3D API

There are two major parts of the 3D API, one is the transformation matrix interface and the other
is the 3D mesh interface.

7.5.1 Transformations

By setting the transformation matrix the ORGFX core can perform hardware accelerated trans-
formations for every point sent to it, causing significantly less overhead than if this was done in
software.

The relevant functions are listed below:

orgfx_matrix orgfx3d_identity (void);

orgfx_matrix orgfx3d_rotateX (orgfx_matrix mat, float rad);
orgfx_matrix orgfx3d_rotateY (orgfx_matrix mat, float rad);
orgfx_matrix orgfx3d_rotateZ (orgfx_matrix mat, float rad);
orgfx_matrix orgfx3d_scale(orgfx_matrix mat, orgfx_point3 s);
orgfx_matrix orgfx3d_translate(orgfx_matrix mat, orgfx_point3 t);

inline void orgfx3d_set_matrix (orgfx_matrix mat);

7.5.2 orgfx3d_make_mesh
Initializes a mesh with the necessary arrays generated by the meshmaker utility.

orgfx_mesh orgfx3d_make_mesh(orgfx_facex faces,
unsigned int nFaces,
orgfx_point3* verts,
unsigned int nVerts,
orgfx_point2x* uvs,
unsigned int nUvs);

7.5.3 orgfx3d_mesh_texture_size

This should be called only once for each mesh that will be using texture coordinates. Since the
ORGFX device uses pixel coordinates the UV coordinates must be updated with the size of the
used texture.

void orgfx3d_mesh_texture_size (orgfx_mesh* mesh,
unsigned int width,
unsigned int height);

26

7.5.4 orgfx3d_draw_mesh

This function draws the mesh to screen, using the translation, rotation and scale vectors stored
in the mesh structure. If filled is set to zero, the mesh will be drawn as a colored wireframe. If
filled is set to one and textured to zero, the mesh will be drawn with interpolated colors (the mesh
format currently does not support materials). If filled is set to one and textured is also set to one,
the mesh will be textured using interpolated uv texture coordinates.

void orgfx3d_draw_mesh (orgfx_meshx mesh,
int filled , int textured);

7.6 Linux

The current version of the core does not have a Linux driver.

7.7 Software emulation

The entire device has a software implementation to make it easier to write applications for the
device. The orgfx_sw.c file replaces the orgfx.c and orgfx_plus.c files, and renders pixels as
they would be rendered by the graphics accelerator, but on a PC. The software implementation
uses SDL as the backend.

7.8 Utilities
7.8.1 Sprite maker utility

A small application that converts an image into a header file that can be included in the project
when compiled. The application generates an array of color values that can be loaded as a sprite.

The application has support for reading common image file formats such as bmp, png and jpg
(for a full list, see the supported file formats of the SDL_image libaray). 8- 16- and 32-bit output is
supported, and can be changed by passing a command line argument to the program (by default,
the output is adjusted for 16 bit color mode).

The resulting output header file, which is named after the input, can be included in a program
using the extended bare metal driver. The easiest way to use the sprite is to use the generated
initialize function defined in the header file.

7.8.2 Bitmap font maker utility

Another application generates the data structures necessary to load bitmap fonts with very little
effort. It takes an image and a grid spacing as input, and automatically generates offsets for all
the glyphs in the font. The font generated by the program has 256 characters arranged according
to the ASCII charset, as seen in figure [5] and [6]

The application has support for reading common image file formats such as bmp, png and jpg
(for a full list, see the supported file formats of the SDL_image libaray). 8- 16- and 32-bit output is
supported, and can be changed by passing a command line argument to the program (by default,
the output is adjusted for 16 bit color mode). Both vertical and horizontal grid spacing are set to
32 pixels by default, but this can be changed through command line arguments.

The resulting output header file, which is named after the input, can be included in a program
using the bare metal and font driver. The easiest way to use the bitmap font is to use the generated
initialize function defined in the header file.

7.8.3 Mesh maker utility

The mesh maker utility loads 3D objects and generates a header file that can be used by the
advanced 3D API. Currently the utility only supports Wavefront .obj files which only contains 3rd
order polygons. Any higher order polygons will be discarded, so all polygons in the model must
be converted to triangles prior to running the utility.

27

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
O 00 Mul 32 20 Space 64 40 @ 96 60
1 01 Start of heading 33 21 ! 65 41 A 97 61 a
2 0Z Start of text 34 22 " 66 42 B 93 62 h
3 03 Endoftext 35 23 # 67 43 C 99 63 o
4 04 End of transmit 36 24§ 65 44 D 100 54 d
5 05 Enguiry 37 25 % 69 45 E 101 65 e
6 06 Acknowledge 38 26 & 70 45 F 10z s f
707 Audble bel 39 27 ! 71 47 G 103 87 g
8 08 Backzpace 40 25 0 72 45 H 104 68 h
9 09 Horizontsl tak 41 29) 73 49 I 105 B89 i
10 0OA Line feed 42 2A ¥ 74 4A J 106 BA j
11 0OE Wertical tab 43 2B + 75 4B K 107 6B k
1z 0OC Form feed 44 2C 76 4C L 108 sC 1
13 0Ol Carriage return 45 2D - 77 4D M 109 6D m
14 O0OE Shift out 45 2E . 78 4E N 110 B6E n
15 OF Shiftin 47 2F / 79 4F O 111 6F o
16 10 Datalink escape 43 30 0 g0 50 P 112 70 p
17 11 Device control 1 49 31 1 51 51 @ 113 71 o
18 12 Device cortrol 2 50 32 2 82 52 R 114 72 r
19 13 Device cortrol 3 51 33 3 83 53 3 115 73 =
20 14 Device control 4 52 34 4 54 54 T 116 74 ¢«
21 15 Meq. acknowledge 53 35 5 35 55 U 117 75 u
2z 16 Synchronous idle 54 36 6 36 586 WV 118 76w
23 17 Endtrans. block 55 37 7 87 57 W 112 77 w
24 158 Cancel 56 38 8 g8 558 X 120 78
25 19 End of medium 57 39 9 89 59 ¥ 121 79 ¥
26 1A Substiution 58 3A 90 S5A I 122 7A =
27 1B Escape 59 3B ; 91 5B [123 7B {
28 1C File separator 60 3C < 92 5C 124 7C |
29 1D Group separator 61 3D = 93 5D] 125 7D 1}
30 1E Record separstor 62 3E > 94 EE 126 TFE ~
31 1F Unit zeparator 63 3F 7?7 95 &F 127 7F 0O

Figure 5: The ASCII table. Each number from 0 to 127 refers to a character. The numbers 0 to
31 cannot be printed.

28

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
lza 80 @ 160 A0 & 19z co L ZZ4 EO o
1292 81 i 161 Al i 193 1 L Z2Z5 E1 &
130 &2 & 162 AZ o 194 ©C2 226 Ez2 T
131 &3 & 163 A3 1 195 c3 |} 227 E3 mn
132 584 & 154 A4 # 196 C4 -— 228 E4 %
133 &85 & 165 A5 W 197 c5 + 229 E5 a
134 &6 & 166 A ? 196 C6 F 230 E6 n
135 87 ¢ 167 A7 ® 199 c7 | 231 E7 1
136 &3 & 168 A8 ¢ zoo cCa L 232 E& &
137 89 & 169 AS -~ 201 C2 fF 233 ES @
136 &8A & 170 AA - 20z CA L Z34 EA Q
1392 8B 1 171 AEB * 203 CB Z35 EEBE &
140 &C i 172 AC W 204 cco |k 236 EC =
141 &I i 173 AD Zz05 CD = 237 ED w
142 &E A 174 AE « 208 CE # 238 EE =
143 &F A 175 AF 207 CF <+ Z32 EF n
144 90 E 176 EO zos Do L Zz40 FO =
145 91 = 177 Bl Z02 D1 = Zz41 F1 £
146 92 K 178 B2 210 D2 z4z FZz
147 93 4 179 B3 211 D3 L 243 F3 =
143 94 4 180 E4 21z D4 k Z44 TF4 [
145 95 o 181 ES 213 D5 F 245 F5 J
150 98 1 182 Eo 214 D6 246 FB =
151 97 10 183 B7 q 215 17 247 F7 =
152 9§ ¥ 154 EB& 14 z21s D3 + z45 Fa °
153 99 & 165 B9 4 217 D9 249 F9 =
154 9A 1 166 BA | 218 DA Z50 TFA
155 SEB =« 187 BB q z12 E |} Z51 FB
156 89C &£ i BC 4 220 DC m 252 FC =
157 89D ¥ ig9 EBD 4 zz1 oD | Z53 FD =
158 SE &R i80 EBE 4 zzz DE | Z54 FE H
1592 8SF f 191 EF 4 zza DF ® ZE5 FF 0O

Figure 6: The extended ASCII table. Each number from 128 to 255 refers to a character, mostly
special characters not included in the basic table.

29

Figure 7: A font rendered by the software implementation of the ORGFX. Bézier curves are single
colored while the triangles are interpolated between current color and black

The application supports loading texture coordinates for each vertex, allowing for textured
meshes.

The resulting output header file, which is named after the input, can be included in a program
using the bare metal 3D API. The easiest way to use the mesh is to use the generated initialize
function defined in the header file.

7.8.4 Vector font maker utility

The Font maker is a application that can convert a .ttf file to a format that the graphics card can
handle. The Font maker outputs a .h file that can be included in a project to enable the graphics
accelerators vector font capabilities. The converter finds all explicit vector points in a ttf file and
then calculates the implicit points. At the same time it checks where the glyphs contours ends,
the points is then sent to a Delaunay triangulation function based on the work of V. Domiter and
B. Zalik and implemented by M. Green and T. Ahlén The generated .h file consists of two fields
for each glyph, one field for Bézier writes and one for triangle writes. The generated header file
will contain two lists for each glyph, one to store Bézier writes and one to store triangle writes.
The rendered result can be seen in figure

7.8.5 Regger

The regger is a application that keeps track of what register addresses is set in the RTL code and
in the drivers.

8 Programming examples
The following piece of code shows how to use the extended interface for a bare metal implemen-
tation on the ORPSoCv2 platform. Bahamut_cc.png.h is a 186 by 248 pixel image with a pinkish

background (rgb code ffO0ff, or f81f in 16 bit). The header file is generated by the sprite maker
utility at 16 bit color depth.

#include ”orgfx_plus.h”
#include ”Bahamut_cc.png.h”

int main(void)

Thttp://code.google.com /p/poly2tri/

30

int i;

// Initialize screen to 640x480—16@Q60
// No double buffering
int screen = orgfxplus_init (640, 480, 16, 0);

// Initialize dragon sprite
int bahamut_sprite =
orgfxplus_init_surface (186, 248, Bahamut_cc);

// Activate colorkeying
orgfxplus_colorkey (0xf81f, 1);

// Clear screen, white color
orgfxplus_fill (0,0,640,480,0 xffff);

// Draw a few lines with different colors
orgfxplus_line (200,100,10,10,0xf000);
orgfxplus_line (200,100,351,31,0x0ff0);
orgfxplus_line (200,100,121,231,0x00f0);
orgfxplus_line (200,100,321,231,0xf00f);
// Draw the dragon at different alpha settings
orgfxplus_alpha (64,1);
orgfxplus_draw_surface (100, 100, bahamut_sprite);
orgfxplus_alpha (128 ,1);
orgfxplus_draw_surface (120, 102, bahamut_sprite);
orgfxplus_alpha (255,1);
orgfxplus_draw_surface (140, 104, bahamut_sprite);

while (1);

More example programs are supplied with the implementation in the sw/examples directory.

31

	Introduction
	Features
	IP Core directory structure

	Architecture
	Overview
	Concepts
	Coordinate precision
	Instruction FIFO
	Pipeline
	Description of core modules
	Wishbone slave
	Transformation processor
	Rasterizer
	Clipper
	Fragment processor
	Blender
	Wishbone arbiter
	Wishbone master read
	Renderer
	Wishbone master write

	IO Ports
	Registers
	Control Register (CONTROL)
	Status Register (STATUS)
	Alpha (ALPHA)
	Colorkey register (COLORKEY)
	Target base address Register (TARGET_BASE)
	Target size width Register (TARGET_SIZE_X)
	Target size y Register (TARGET_SIZE_Y)
	Texture 0 Base Register (TEX0_BASE)
	Texture 0 size x Register (TEX0_SIZE_X)
	Texture 0 size y Register (TEX0_SIZE_Y)
	Source Pixel position 0 x Register (SRC_P0_X)
	Source Pixel position 0 y Register (SRC_P0_Y)
	Source Pixel position 1 Register (SRC_P1_X)
	Source Pixel position 1 Register (SRC_P1_Y)
	Destination Pixel position Register (DEST_X)
	Destination Pixel position Register (DEST_Y)
	Destination Pixel position Register (DEST_Z)
	Matrix coefficient registers
	Clip Pixel position 0 x Register (CLIP_P0_X)
	Clip Pixel position 0 y Register (CLIP_P0_Y)
	Clip Pixel position 1 x Register (CLIP_P1_X)
	Clip Pixel position 1 y Register (CLIP_P1_Y)
	Color Registers (COLOR0-2)
	Texture coordinate Registers (U0-2 and V0-2)
	Depth buffer Register (ZBUFFER_BASE)

	Operation
	Draw pixel
	Fill rect
	Line
	Triangle
	Curve

	Clocks
	Driver interface
	newlib
	orgfx_init
	orgfx_vga_set_videomode
	orgfx_vga_set_vbara
	orgfx_vga_set_vbarb
	orgfx_vga_bank_switch
	orgfx_init_surface
	orgfx_bind_rendertarget
	orgfx_enable_cliprect
	orgfx_cliprect
	orgfx_srcrect
	orgfx_set_pixel
	orgfx_memcpy
	orgfx_set_color
	orgfx_set_colors
	orgfx_rect
	orgfx_line
	orgfx_line3d
	orgfx_triangle
	orgfx_triangle3d
	orgfx_curve
	orgfx_uv
	orgfx_enable_tex0
	orgfx_bind_tex0
	orgfx_enable_zbuffer
	orgfx_bind_zbuffer
	orgfx_clear_zbuffer
	orgfx_enable_alpha
	orgfx_set_alpha
	orgfx_enable_colorkey
	orgfx_set_colorkey
	orgfx_enable_transform
	orgfx_set_transformation_matrix

	Extended newlib
	orgfxplus_init
	orgfxplus_init_surface
	orgfxplus_bind_rendertarget
	orgfxplus_bind_tex0
	orgfxplus_flip
	orgfxplus_clip
	orgfxplus_fill
	orgfxplus_line
	orgfxplus_triangle
	orgfxplus_curve
	orgfxplus_draw_surface
	orgfxplus_draw_surface_section
	orgfxplus_colorkey
	orgfxplus_alpha

	Bitmap Fonts
	orgfx_make_bitmap_font
	orgfx_put_text

	Vector Fonts
	orgfx_make_vector_font
	orgfx_init_vector_font
	orgfx_put_vector_char
	orgfx_put_vector_text

	3D API
	Transformations
	orgfx3d_make_mesh
	orgfx3d_mesh_texture_size
	orgfx3d_draw_mesh

	Linux
	Software emulation
	Utilities
	Sprite maker utility
	Bitmap font maker utility
	Mesh maker utility
	Vector font maker utility
	Regger

	Programming examples

