
www.opencores.org 1 of 14

1
File description

1.1 “fifo_control.v”

Module FIFO_CONTROL includes control logic for single FIFO. It consists of read and
write address generation and full, almost full, empty and almost empty status generation.
It also generates read and write allow signals, which are used for enabling/disabling
memory used for FIFO. Control logic can be used for independent read and write clocks.

1.2 “wbw_wbr_fifos.v”

WBW_WBR_FIFOS module is actual interface for WISHBONE write and read FIFOs.
It instantiates necessary control logic (FIFO_CONTROL) and RAM modules, which can
be synchronous or asynchronous, depending on parameter definition. It provides control,
data and status interface signals for both WISHBONE write and WISHBONE read
FIFOs.

1.3 “pciw_pcir_fifos.v”

PCIW_PCIR_FIFOS module is actual interface for PCI write and read FIFOs. It
instantiates necessary control logic (FIFO_CONTROL) and RAM modules, which can be
synchronous or asynchronous, depending on parameter definition. It provides control,
data and status interface signals for both PCI write and PCI read FIFOs. It’s almost
identical to WBW_WBR_FIFOs – it’s done separately because of more readable
connection to other modules.

www.opencores.org 2 of 14

1.4 “dp_async_ram.v”

Module DP_ASYNC_RAM is just a behavioral asynchronous dual port RAM for
simulation purposes.

1.5 “dp_sram.v”

Module DP_SRAM is behavioral synchronous dual port RAM for simulation purposes.

1.6 “wb_tb.v”

Module WB_TB is a little test bench (more demonstration than test bench) for
WBW_WBR_FIFOS module.

1.7 “pci_tb.v”

Module PCI_TB is a little test bench (more demonstration than test bench) for
PCIW_PCIR_FIFOS module.

www.opencores.org 3 of 14

2
Operation

2.1 Parameters

FIFO parameters are defined in global “constants.v” file in their own section. Available
parameters, their description and FIFO behavior impact:

Parameter Description

WBW_DEPTH Number of locations in WBW FIFO. Note that one location
is always unused. Minimum number is 8.

WBW_ADDR_LENGTH Address length for WBW_FIFO RAM. It must be
log2(WBW_DEPTH).

WBR_DEPTH Number of locations in WBR FIFO. Note that one location is
always unused. Minimum number is 8.

WBR_ADDR_LENGTH Address length for WBR_FIFO RAM. It must be
log2(WBR_DEPTH).

PCIW_DEPTH Number of locations in PCIW FIFO. Note that one location is
always unused. Minimum number is 8.

PCIW_ADDR_LENGTH Address length for PCIW_FIFO RAM. It must be
log2(PCIW_DEPTH).

PCIR_DEPTH Number of locations in PCIR_FIFO. Note that one location is
always unused. Minimum number is 8.

PCIR_ADDR_LENGTH Address length for PCIR_FIFO RAM. It must be
log2(PCIR_DEPTH).

www.opencores.org 4 of 14

FPGA
BIG

If FPGA is defined, RAMB4_S16_S16 modules are
instantiated for FIFOs storage space. If BIG is commented
out, than 3 Block Select RAM+ modules are shared between
two FIFOs (max depth is 128). FPGA must provide at least 6
of them. This slows down FIFO operation a bit, since it
requires a turnaround cycle between writes and reads. If BIG
is defined, 3 Block Select RAMs are used for each FIFO.
That means a FPGA with at least 12 of them. (max depth
256)

SYNCHRONOUS Only has meaning when FPGA is not defined (commented
out). It invokes elaboration of FIFO control logic that
supports synchronous RAM storage for FIFOs. If FPGA and
SYNCHRONOUS are undefined, asynchronous RAM
storage and control logic is assumed.

2.2 Module descriptions

2.2.1 WBW_WBR_FIFO

Module incorporates both WISHBONE slave unit’s FIFOs: WISHBONE read and
WISHBONE write FIFO. They are joined in a single module because of same storage
space sharing in certain implementations.

Module connections:

• Common signals

Signal name

Size

D
irection

Description

wb_clock_in 1 I
WISHBONE bus clock input. It’s
WBR_FIFO’s read clock and WBW_FIFO’s
write clock

pci_clock_in 1 I PCI bus clock input. It’s WBR_FIFO’s write
clock and WBW_FIFO’s read clock

reset_in 1 I System reset input

www.opencores.org 5 of 14

• WBW_FIFO signals

Signal name

Size

D
irection

Description

wbw_wenable_in 1 I

WBW_FIFO’s write enable input. When FIFO
is not full and write enable is high, data
provided on data inputs will be written to FIFO
on rising WISHBONE clock edge.

wbw_addr_data_in 32 I
WBW_FIFO’s address / data input. Address
entry is always first entry of transaction with
one or more data entries following.

wbw_cbe_in 4 I

WBW_FIFO’s bus command / byte enable
input. First entry of transaction written with
address is PCI bus command, byte enables are
written with data entries (they are negated
SEL_I signals from WISHBONE since PCI BE
signals are active low)

wbw_control_in 4 I

WBW_FIFO’s control bus input – encoded
control values are written to FIFO to
communicate to PCI side. Common controls
are defining address entry, intermediate and
last data entry of transaction, so opposite side
knows when to terminate the cycle.

wbw_renable_in 1 I

WBW_FIFO’s read enable input. When FIFO
is not empty and read enable is high, data
provided on data outputs will change to next
written location on rising PCI clock edge.
Reading side must only assert read enable
when it intends to read currently provided data.

wbw_addr_data_out 32 O
WBW_FIFO’s address / data output. Address
entry is always first entry of transaction with
one or more data entries following.

wbw_cbe_out 4 O

WBW_FIFO’s bus command / byte enable
output. First entry of transaction read
concurrently with address is PCI bus
command, byte enables are read concurrently
with data entries (they are negated SEL_I
signals from WISHBONE since PCI BE
signals are active low)

www.opencores.org 6 of 14

wbw_control_out 4 O

WBW_FIFO’s reading side monitors current
control bus output for various encoded values,
so it knows when to start or end current cycle
in progress.

wbw_flush_in 1 I

WBW_FIFO’s flush input. It doesn’t actually
delete or initialize storage space – it just resets
address counters so FIFO is marked empty.
Any data in the FIFO is therefore invalid.
Flush signal should remain asserted for at least
one PCI or WB clock cycle.

wbw_almost_full_out 1 O

WBW_FIFO’s almost full status output.
Indicates that only one location in the FIFO is
empty. When WB side writes to the FIFO and
samples this signal asserted on rising WB
clock edge, it should stop writing immediately,
since last location was just written.

wbw_full_out 1 O
WBW_FIFO’s full status output – indicates
that no free locations are currently available in
the FIFO.

wbw_almost_empty_out 1 O

WBW_FIFO’s almost empty status output.
Indicates that only one location in the FIFO is
still valid. When PCI side reads from the FIFO
and samples this signal asserted on rising PCI
clock edge, it should stop reading immediately,
since last location was just read and FIFO is
empty.

wbw_empty_out 1 O
WBW_FIFO’s empty status output – indicates
that no locations containing valid data are
currently available in the FIFO.

wbw_transaction_ready_out 1 O

Indicates that at least one unfinished
transaction is present in the WBW_FIFO.
Transaction ready generation is done by
monitoring control bus input and output. When
control bus input indicates last data phase, that
means one complete transaction was
transferred to the FIFO. When control bus
output indicates last data phase it means that
one complete transaction was pulled out of
FIFO.

www.opencores.org 7 of 14

• WBR_FIFO signals

Signal name

Size

D
irection

Description

wbr_wenable_in 1 I

WBR_FIFO’s write enable input. When FIFO
is not full and write enable is high, data
provided on data inputs will be written to FIFO
on rising PCI clock edge.

wbr_data_in 32 I WBR_FIFO’s data input.

wbr_be_in 4 I

WBR_FIFO’s byte enable input. Byte enables
are written with data entries (they are negated
BE# signals from PCI bus since WB SEL_I
signals are active high)

wbr_control_in 4 I

WBR_FIFO’s control bus input – encoded
control values are written to FIFO to
communicate to WB side. Common controls
are defining intermediate and last data entry of
transaction, so opposite side knows when to
terminate the cycle.

wbr_renable_in 1 I

WBR_FIFO’s read enable input. When FIFO is
not empty and read enable is high, data
provided on data outputs will change to next
written location on rising WB clock edge.
Reading side must only assert read enable
when it intends to read currently provided data.

wbr_data_out 32 O WBR_FIFO’s data output.

wbr_be_out 4 O

WBR_FIFO’s byte enable output. Byte enables
are read concurrently with data entries (they
are negated BE# signals from PCI since WB
SEL_I signals are active high)

wbr_control_out 4 O

WBR_FIFO’s reading side monitors current
control bus output for various encoded values,
so it knows when to start or end current cycle
in progress.

wbr_flush_in 1 I

WBR_FIFO’s flush input. It doesn’t actually
delete or initialize storage space – it just resets
address counters so FIFO is marked empty.
Any data in the FIFO is therefore invalid.
Flush signal should remain asserted for at least
one PCI or WB clock cycle.

www.opencores.org 8 of 14

wbr_almost_full_out 1 O

WBR_FIFO’s almost full status output.
Indicates that only one location in the FIFO is
empty. When PCI side writes to the FIFO and
samples this signal asserted on rising PCI clock
edge, it should stop writing immediately, since
last location was just written.

wbr_full_out 1 O
WBR_FIFO’s full status output – indicates that
no free locations are currently available in the
FIFO.

wbr_almost_empty_out 1 O

WBR_FIFO’s almost empty status output.
Indicates that only one location in the FIFO is
still valid. When WB side reads from the FIFO
and samples this signal asserted on rising WB
clock edge, it should stop reading immediately,
since last location was just read and FIFO is
empty.

wbr_empty_out 1 O
WBR_FIFO’s empty status output – indicates
that no locations containing valid data are
currently available in the FIFO.

wbr_transaction_ready_out 1 O

Indicates that at least one unfinished
transaction is present in the WBR_FIFO.
Transaction ready generation is done by
monitoring control bus input and output. When
control bus input indicates last data phase, that
means one complete transaction was
transferred to the FIFO. When control bus
output indicates last data phase it means that
one complete transaction was pulled out of
FIFO.

2.2.2 PCIW_PCIR_FIFO

Module incorporates both PCI target unit’s FIFOs: PCI read and PCI write FIFO. They
are joined in a single module because of same storage space sharing in certain
implementations.

Module connections:

• Common signals

www.opencores.org 9 of 14

Signal name

Size

D
irection

Description

wb_clock_in 1 I
WISHBONE bus clock input. It’s
PCIR_FIFO’s write clock and PCIW_FIFO’s
read clock

pci_clock_in 1 I PCI bus clock input. It’s PCIR_FIFO’s read
clock and PCIW_FIFO’s write clock

reset_in 1 I System reset input

• PCIW_FIFO signals

Signal name

Size

D
irection

Description

pciw_wenable_in 1 I

PCIW_FIFO’s write enable input. When FIFO
is not full and write enable is high, data
provided on data inputs will be written to FIFO
on rising PCI clock edge.

pciw_addr_data_in 32 I
PCIW_FIFO’s address / data input. Address
entry is always first entry of transaction with
one or more data entries following.

pciw_cbe_in 4 I

PCIW_FIFO’s bus command / byte enable
input. First entry of transaction written with
address is PCI bus command, byte enables are
written with data entries (they are negated BE#
signals from PCI since WISHBONE SEL_O
signals are active high)

pciw_control_in 4 I

PCIW_FIFO’s control bus input – encoded
control values are written to FIFO to
communicate to WB side. Common controls
are defining address entry, intermediate and
last data entry of transaction, so opposite side
knows when to terminate the cycle.

www.opencores.org 10 of 14

pciw_renable_in 1 I

PCIW_FIFO’s read enable input. When FIFO
is not empty and read enable is high, data
provided on data outputs will change to next
written location on rising WB clock edge.
Reading side must only assert read enable
when it intends to read currently provided data.

pciw_addr_data_out 32 O
PCIW_FIFO’s address / data output. Address
entry is always first entry of transaction with
one or more data entries following.

pciw_cbe_out 4 O

PCIW_FIFO’s bus command / byte enable
output. First entry of transaction read
concurrently with address is PCI bus
command, byte enables are read concurrently
with data entries (they are negated BE# signals
from PCI since WB SEL_O signals are active
high)

pciw_control_out 4 O

PCIW_FIFO’s reading side monitors current
control bus output for various encoded values,
so it knows when to start or end current cycle
in progress.

pciw_flush_in 1 I

PCIW_FIFO’s flush input. It doesn’t actually
delete or initialize storage space – it just resets
address counters so FIFO is marked empty.
Any data in the FIFO is therefore invalid.
Flush signal should remain asserted for at least
one PCI or WB clock cycle.

pciw_almost_full_out 1 O

PCIW_FIFO’s almost full status output.
Indicates that only one location in the FIFO is
empty. When PCI side writes to the FIFO and
samples this signal asserted on rising PCI clock
edge, it should stop writing immediately, since
last location was just written.

pciw_full_out 1 O
PCIW_FIFO’s full status output – indicates
that no free locations are currently available in
the FIFO.

pciw_almost_empty_out 1 O

PCIW_FIFO’s almost empty status output.
Indicates that only one location in the FIFO is
still valid. When WB side reads from the FIFO
and samples this signal asserted on rising WB
clock edge, it should stop reading immediately,
since last location was just read and FIFO is
empty.

www.opencores.org 11 of 14

pciw_empty_out 1 O
PCIW_FIFO’s empty status output – indicates
that no locations containing valid data are
currently available in the FIFO.

pciw_transaction_ready_out 1 O

Indicates that at least one unfinished
transaction is present in the PCIW_FIFO.
Transaction ready generation is done by
monitoring control bus input and output. When
control bus input indicates last data phase, that
means one complete transaction was
transferred to the FIFO. When control bus
output indicates last data phase it means that
one complete transaction was pulled out of
FIFO.

• PCIR_FIFO signals

Signal name
Size

D
irection

Description

pcir_wenable_in 1 I

PCIR_FIFO’s write enable input. When FIFO
is not full and write enable is high, data
provided on data inputs will be written to FIFO
on rising WB clock edge.

pcir_data_in 32 I PCIR_FIFO’s data input.

pcir_be_in 4 I

PCIR_FIFO’s byte enable input. Byte enables
are written with data entries (they are negated
SEL_O signals from WB bus since PCI BE#
signals are active high)

pcir_control_in 4 I

PCIR_FIFO’s control bus input – encoded
control values are written to FIFO to
communicate to PCI side. Common controls
are defining intermediate and last data entry of
transaction, so opposite side knows when to
terminate the cycle.

www.opencores.org 12 of 14

pcir_renable_in 1 I

PCIR_FIFO’s read enable input. When FIFO is
not empty and read enable is high, data
provided on data outputs will change to next
written location on rising PCI clock edge.
Reading side must only assert read enable
when it intends to read currently provided data.

pcir_data_out 32 O PCIR_FIFO’s data output.

pcir_be_out 4 O

PCIR_FIFO’s byte enable output. Byte enables
are read concurrently with data entries (they
are negated SEL_O signals from WB since PCI
BE# signals are active low)

pcir_control_out 4 O

PCIR_FIFO’s reading side monitors current
control bus output for various encoded values,
so it knows when to start or end current cycle
in progress.

pcir_flush_in 1 I

PCIR_FIFO’s flush input. It doesn’t actually
delete or initialize storage space – it just resets
address counters so FIFO is marked empty.
Any data in the FIFO is therefore invalid.
Flush signal should remain asserted for at least
one PCI or WB clock cycle.

pcir_almost_full_out 1 O

PCIR_FIFO’s almost full status output.
Indicates that only one location in the FIFO is
empty. When WB side writes to the FIFO and
samples this signal asserted on rising WB
clock edge, it should stop writing immediately,
since last location was just written.

pcir_full_out 1 O
PCIR_FIFO’s full status output – indicates that
no free locations are currently available in the
FIFO.

pcir_almost_empty_out 1 O

PCIR_FIFO’s almost empty status output.
Indicates that only one location in the FIFO is
still valid. When PCI side reads from the FIFO
and samples this signal asserted on rising PCI
clock edge, it should stop reading immediately,
since last location was just read and FIFO is
empty.

pcir_empty_out 1 O
PCIR_FIFO’s empty status output – indicates
that no locations containing valid data are
currently available in the FIFO.

www.opencores.org 13 of 14

pcir_transaction_ready_out 1 O

Indicates that at least one unfinished
transaction is present in the PCIR_FIFO.
Transaction ready generation is done by
monitoring control bus input and output. When
control bus input indicates last data phase, that
means one complete transaction was
transferred to the FIFO. When control bus
output indicates last data phase it means that
one complete transaction was pulled out of
FIFO.

2.3 Waveforms

2.3.1 FPGA w/o BIG

As stated in parameters section, in small FPGAs Block Ram sharing is performed, which
requires turnaround cycle between writes and reads. Turnaround is not necessary between
reads and writes. For example – when PCI master interface writes data to WBR_FIFO on
PCI side, it must wait for at least one clock cycle before it can perform a read from
WBW_FIFO. Since PCI bus protocol also defines turnaround cycles and bus idle states
between transactions, this shouldn’t have any impact at all to overall bridge performance.
In any case, FPGA implementation uses synchronous storage space, so control logic for
synchronous RAMs is implemented.

pci_clock_in

wbw_renable_in

wbr_wenable_in

wbw_addr_data_out[31:0]

wbr_data_in[31:0]

wbr_write_data wbw_read_data wbw_read_data + 1

wbr_write_data
First clock edge: Data from a read transaction is written to WBR_FIFO. Data is written
on the rising edge of PCI clock when wbr_wenable_in is high. Data is also mirrored to
wbw_addr_data_out output of WBW_FIFO. Second rising edge is turnaround cycle,
when mirrored write data is replaced by actual data coming out of WBW_FIFO. On the
third clock edge this data is read from FIFO and next data is provided immediately after
rising PCI clock edge when wbw_renable_in is high.

2.3.2 FPGA with BIG defined

This implementation doesn’t share Blocks of RAM between FIFOs, so turnaround is not
necessary. Everything else is the same as in small FPGAs (w/o BIG). Implementation of
control logic is for synchronous storage space.

www.opencores.org 14 of 14

2.3.3 SYNCHRONOUS

If some other storage space is provided and is synchronous, than this storage should be
instantiated and properly connected to control logic in files wbw_wbr_fifos.v and
pciw_pcir_fifos.v. Parameter SYNCHRONOUS should be defined, otherwise FIFOs may
not work correctly. If storage is not synchronous, than this parameter should be
commented out for reduction of additional logic and higher speeds.

wbw_addr_data_in[31:0]

wbw_addr_data_out[31:0]

wbw_empty_out

wbw_almost_empty_out

wbw_full_out

wbw_almost_full_out

wbw_wenable_in

wbw_renable_in

pci_clock_in

wb_clock_in

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

Diagram shows basic SYNCHRONOUS storage WBW_FIFO operation. WBW_FIFO
has WISHBONE clock for write port and PCI clock for read port. There is one special
case to note in the diagram – empty/not empty status transition. Empty status generation
is registered and synchronized to read (PCI) clock. Empty status is stretched for one PCI
clock cycle to assure that valid data is present on the output bus. Data can change only on
rising clock edges of PCI clock. There is a reason for stretching empty status: When
FIFO is empty, read and write addresses are equal. On the first PCI clock edge that
control logic senses difference in read/write address, there is no assurance that there has
been enough time for data to be properly written to the FIFO’s location pointed by read
pointer. That’s why empty status is stretched and on the next read clock edge data is
100% valid. Operation is analogous for other FIFOs also.

Almost empty status generation is synchronous to read clock. When it’s asserted it will
remain asserted for at least one read clock cycle.

Almost full and full statuses generation is synchronous to write clock. Both statuses
remain asserted for at least one clock cycle.

There is not much difference in timing between synchronous and asynchronous storage,
except for stretched empty status, additional logic and registers needed in synchronous
implementation for providing data on outputs from FIFO on any rising clock edge w/o
wait cycles.

