{>OpenCores PCI IP Core Designh document 28.1.2002

PCI IP Core
Design document

Authors: Miha Dolenc & Tadej Markovic
mihad@opencores.org
tadej@opencores.org

Rev. 0.1
January 28, 2002

{}OpenCores PCI IP Core Design document 28.1.2002

This Page is Intentionally Blank

http://www.opencores.org Rev 0.1 ii

{)OpenCores

PCI IP Core Design document

28.1.2002

Revision History

Tadej Markovic

Rev. | Date Author Description
0.0 13/11/01 | Miha Dolenc First Draft
Tadej Markovic
0.1 24/01/02 | Miha Dolenc Testbench description added

http://www.opencores.org

Rev 0.1

{)OpenCores PCI IP Core Design document 28.1.2002

Contents

INTRODUGCTION ..ttt ettt b ettt e bt sh e be b £ e b e e e et e eb e ebeeb e e bt eb e e e e n b e beebesbeeneeneennentas 1
11 PCI IP CORE INTRODUCTIONciuteetteteateaseeateesteesseesseastesssessesssesssesssesssesssssssssseessesnsesssessnsssesssns 1
1.2 PCI TP CORE FEATURES ..ottt ittt ettt sttt ettt sttt et ae e sae e eb e e bt et e e st e nseenbeeneeas 1
1.3 PCI IP CORE DIRECTORY STRUCTURE ..c.uttiuttittisteestietiastesstestessiessteessesssesssesasesseesssesesssessnsssesssns 2

PCIBRIDGE CORE ...ttt bbbt bt h e et e b e nbeeb et e bt ere e e et s 6
2.1 OVERVIEW. ...ttt stttk bbbk bttt h ek bR e s e ne bbb e e b e et et e bbbt eb e et e e ennenne s 6
2.2 CORE FILE HIERARCHY ...ttt ittt sttt bttt eb ekt ah et nn bbbt st e e nnens 7

P R o] £\ oo U] [o 1T = Lo oSS 9
2.3 DESCRIPTION OF CORE MODULESciuiiiieiieitistesie sttt sr ettt nesn e sne b e nnennenne s 13
2.3.1 Description of general core SUDMOAUIES............cooivvieieieine e 13
2.3.2 Description of PCI 1/O SUBMOAUIEScveieieiiesieiecieiee st 13
2321 PCI_i0_MUX SUBMOTUIE ...ttt enas 13
2.3.2.2 CUF_OUL_eg SUDMOAUIE ...ttt sae s 14
2.3.23 PCI_IN_reg SUDMOTUIE ...t ettt 14
2.3.24 PCI_rSt_iNt SUDMOTUIE ... e 14
2.3.25 pci_parity_Check SUDMOTUIEouoii e e 16

2.3.3 Description of WB slave Unit SUDMOAUIES............cccooiiiiiiiiincece e 18
2331 WD SIAVE.V .ttt b e et ae bbb et e et ereene s 18
2.3.3.2 WH_AAAT IMUXV 1ttt b ettt e e b e e te s b e be e e b e e eneereaneas 22
2333 WHOW WO FIOS.V ittt re e ereaae s 22
2.3.34 (o L=] A= To I (T (o Y SO TSRS 24
2335 (oTo 0} 0 V(o Lo [o o[- o N OSSOSO 24
2.3.36 PCI_MASEEr32_SIM_IT.V ittt ettt eas 24
2.3.3.7 PCI_MASTEIB2 STV 1.tttk ettt b ettt e e et e ae et e e b e sbe s b e e e e e neebeebeebesbeebe e eneareaneanas 26

2.3.4 Description of PCI target Unit SUBMOAUIES..........cccoveieieieie s 29
234.1 pci_target32_sm.v & pei_target32_iNterface.V.......coooioeiiiiriicieee e 29
2.3.4.2 PCIW_PCIE_FITOS.V ettt 35
2343 WD MBSTEI.V .ttt ettt b ettt e e ae et e b e nbe e et e eneereane s 36

2.3.5 Description of Configuration space SUDMOUUIESccoceiiriiiiiiiiieee e 37
24 CHANGEABLE CORE CONSTANTS ...uttttttatieteerestestestesseaseesse st sne st sseessesnesnesbesnessesssenseseesnensesns 44
2.4.1 FifO SIZE CONSTANTS .. .cviiiiiitiitei ettt bbbttt bbbt en et ns 44
2.4.2 Fifo RAM instantiation CONSTANTS.........ccoueiiiriiiiireieireese s 45
2.4.3 PCl /O PadS CONSLANTSuiveiiitiieiiitirieieste ettt es st sae st ene st nnens 46
2.4.4 HOST/ GUEST implementation SEIECIONcccvivivereieiece e 46
2.4.5 Image implementation CONSLANES.........ccccviviieieeie et nne s 46
2.4.6 Optional Read-Only Configuration image implementationc.ccocceeeiininieniiiencienns 46
2.4.7 PCIl images’ implementation CONSLANTS..........ccueiriiriiiiiireeee e e 47
2.4.8 WISHBONE images’ implementation CONSLANESccocuririeieiiiie e 48
2.4.9 WISHBONE Slave Specific CONSTANTS..........oiiiiiiii it e 49
2.4.10 PCI SPECITIC CONSTANTS ...ttt bbb 49
2.4.11 WISHBONE Master Specific CONSLANTScccoiiiiriiieieieie e 50
25 CHANGEABLE CONSTANTS DEPENDENCIESccuviuteittitisieeiieiie st et b e e sne b sne b nne e 50
2.6 UNCHANGEABLE CORE CONSTANTS ...e.tttttiurestestestestessesseerensessessessessesseesesnssnessesneeseeseesesnssnenses 52
2.6.1 IO CONSTANTS.....uiiiiiitiiee ettt bbbttt bbb s 52

http://www.opencores.org Rev 0.1 iv

{}OpenCores PCI IP Core Design document 28.1.2002

2.6.2 WISHBONE SIQVE CONSEANTSccuiiiiiiiieiiesie ettt sttt st s e e b e 52
2.6.3 Configuration registers’ address CONSTANESccvivreeeeriererieseseeesese e se e 52
2.6.4 66Mhz Capable bit CONSLANL..........ccviieieciec e 53
PCIBRIDGE TESTBENCH ..ottt bbbt 54
3.1 OVERVIEW. ...ttt stttk bbbt bbb b et e Rt bRt b e e e et e bt e bt st eneeb e e nr e 54
3.2 TESTBENCH FILE HIERARCHY ...iiiiiiiieeiiieit ettt 54
3.2.1 Testhench Module HIEFrarchy ... 55
3.3 DESCRIPTION OF TESTBENCH IMODULES.......ccutitiiitiisieesiee ittt sttt et sae e e sieesaeesneenne e 56
3.3.1 Description of PCl SUDMOUUIEScoueiiiiiiiiii it e 56
3311 pCi_bus_mOonitor SUBMOTUIE..........cooiiiiici e 56
3.3.1.2 pci_blue_arbiter SUDMOUIEccoiiiiiiiicc s 56
3.3.13 pci_behavioral_device SUDMOUIE............ccoiiiiiiiiiccc e 56
3.3.14 pci_behavioral_iack_target SUBMOAUIEc.ooiiiiiieiieee e 57
3.3.15 pci_unsupported_commands_master SUBMOAUIEccoooiiiiiiiiiie e 57

3.3.2 Description of WB SUDMOTUIESccceiviiiiieic sttt sne 57
3321 Wh_bus_monitor SUDMOUIE. ... 57
3.3.2.2 wh_master_behavioral SUDMOAUIEooiiiiiii e 57
3.3.23 wh_slave_behavioral SUDMOUIE.............ccoiiiiii e 58

3.4 DESCRIPTION OF TESTCASESciiutiiuiiitiettateasiesieesieesieesteasteasesssesseassessbeesbeessessesssessessasesseasseanns 58
3.4.1 DesCription Of WBU TESICASES........eiviruerierierieriietieieerie ettt e e bbb eeneeseesbesbesaeas 58
34.11 Testcases for CONFIGUIALION.ottt 59
3.4.1.2 TeStCASES FOr IMAGES TESEScuiiiiiiiieirieie ettt 60
3.4.1.3 Testcases fOr VErfICALION ..o 64

3.4.2 DesCription Of PCIU TESICASESveviverierieriirieeiieieerie ettt e e see sttt e e e sne b e 68
3421 Testcases fOr CONFIGUIALION..........c.ciiiiiiieeic et 68
3.4.2.2 TeStCASES FOr IMAGES TESESviiiiiiiieirieieee ettt 70
3.4.2.3 Testcases fOr VErfICALION ..o 73

3.5 TESTBENCH CONSTANTS ...cetittteateeteeseestestesse sttt s seesse e s et sb sk sbe s e e e b e nbesren b e abeas e e e enbenneanenre e 74
3.5.1 Changeable TesSthench CONSLANTScoiiiiiiiiiiie it 75
3.5.2 Unchangeable Testhench CONSIANTSccociiiiiiiiiiiieie e 76

http://www.opencores.org Rev 0.1 \%

{}OpenCores PCI IP Core Design document 28.1.2002

1

Introduction

1.1 PCI IP Core Introduction

The PCI IP core (PCI bridge) provides an interface between the WISHBONE SoC bus
and the PCI local bus. It consists of two independent units, one handling transactions
originating on the PCI bus, the other one handling transactions originating on the
WISHBONE bus.

The core has been designed to offer as much flexibility as possible to all kinds of
applications.

The chapter 2 describes file hierarchy, description of modules, core design considerations
and constants regarding the PCI IP Core.

The chapter 3 describes file hierarchy, description of modules, testbench design
considerations, description of testcases and constants regarding the Testbench.

1.2 PCI IP Core Features

The following lists the main features of the PCI IP core:
» 32-bit PCl interface
* Fully PCI 2.2 compliant (with 66 MHz PCI specification)
» Separated initiator and target functional blocks
e Supported initiator commands and functions:
* Memory Read, Memory Write

http://www.opencores.org Rev 0.1 1

{)OpenCores PCI IP Core Design document 28.1.2002

Memory Read Multiple (MRM)

Memory Read Line (MRL)

I/0O Read, I/O Write

Configuration Read, Configuration Write
Bus Parking

Interrupt Acknowledge

Host Bridging

» Supported target commands and functions:

Type 0 Configuration Space Header
(Type 0 is used to configure agents on the same bus segment)

(Type 1 is used to configure across PCI-to-PCI bridges) Parity Generation (PAR),
Parity Error Detection (PERR# and SERR#)

Memory Read, Memory Write

Memory Read Multiple (MRM)

Memory Read Line (MRL)

Memory Write and Invalidate (MWI)

I/0 Read, I/O Write

Configuration Read, Configuration Write
Target Abort, Target Retry, Target Disconnect
Fast Back-to-Back Capable response

* Full Command/Status registers

 WISHBONE SoC Interconnection Rev. B compliant interface on processor side
(master with Target PCI and slave with Initiator PCI interface)

» Configurable on-chip FIFOs

1.3 PCI IP Core Directory Structure

Following picture shows the structure of directories of the PCI IP Core.

http://www.opencores.org Rev 0.1 2

{)OpenCores PCI IP Core Design document 28.1.2002

pci
--- apps
=== crt
>
E““ syn
=== exc
--=- out
bit
sdf
L--- ucf
--- rtl
i““ run

i

1

1
]
<
=]

it bt
i
i
<)
Q
(7]

http://www.opencores.org Rev 0.1 3

{)OpenCores PCI IP Core Design document 28.1.2002

There are three major parts of the Verilog code in the pci directory. First one is the code
for the PCI Bridge. The Verilog files are in the pci\rtl\verilog subdirectory. The second
one is the code for the PCI Testbench. This files are used together with files for the PCI
Bridge. There are also some exceptions, but those will be mentioned later. The Verilog
files are in the pci\bench\verilog subdirectory. The third one is the code for the
application, which is PCI Crt Controller. This files are used together with files for the
PCI Bridge. There are also some exceptions, but those will be mentioned later. The
Verilog files are in the pci\apps\crt\rtl\verilog subdirectory.

The documentation is in the subdirectory pci\doc. Documentation consists of PCI Bridge
White Paper, PCI Bridge Product Preview, PCI IP Core Specification and PCI IP Core
Design document.

Library files of the device specific subelements are in the subdirectory pci\lib. This
device specific elements are Memory Blocks, Global Buffers and 1/O Buffers. 1/0
Buffers used in FPGA are written in generic Verilog code and are put into FPGA 10B
cells with constraint file. This files must be changed with device specific 10B cells when
the design is used in ASIC. Memory Blocks and Global Buffers are device specific in
both, FPGA and ASIC.

pci\sim subdirectory is used for running simulation — testbench. The rtl_sim subdirectory
is used for RTL (functional) simulation of the core. There are a few directories included
here:

* bin—includes various scripts needed for running Ncsim simulator

e run - the directory from which the simulation is ran. It provides a script for
starting the simulation and a script for cleaning all the results produced by
previous simulation runs

* log — Ncvlog, Ncelab and Ncsim log files are stored here for review. There is also
a script provided for extracting errors from this logs.

e out — simulation output directory — simulation stores all the results into this
directory (dump files for viewing with Signalscan, testbench text output etc.)

The gate_sim directory is used the same way as rtl_sim, except simulation is run with
the netlist provided from synthesis tool.

Generated files from synthesis tools, like gate level Verilog and log files, are stored in the
pci\syn subdirectory and its subdirectories.

Regarding the application, there are other subdirectories under pci\apps directory. User
constraint file for pre-synthesis is in the pci\apps\crt\syn\exc subdirectory. This is used
for preserving some of the hierarchy to meet PCI timing constraints in FPGA. User
constraint file after synthesis and before implementation is in the pci\apps\crt\syn\ucf
subdirectory. This is used for pin locations, pin types and timing constraints. Generated
bit file from FPGA synthesis tool is stored in the pci\apps\crt\syn\out\bit subdirectory.

http://www.opencores.org Rev 0.1 4

{)OpenCores PCI IP Core Design document 28.1.2002

This is used for FPGA programming. Generated sdf file from FPGA synthesis tool is
stored in the pci\apps\crt\syn\out\sdf subdirectory. This file contains all timing delays.
Sdf file back annotated to Verilog is stored in the pci\apps\crt\syn\out\verilog
subdirectory. This file is used for timing simulation.

http://www.opencores.org Rev 0.1 5

{>OpenCores PCI IP Core Design document 28.1.2002

2
PCI Bridge Core

2.1 Overview

The PCI bridge consists of two units: the PCI target unit and the WISHBONE slave unit.
Each holds its own set of functions to support bridging operations from WISHBONE to
PCI and from PCI to WISHBONE. The WISHBONE slave unit acts as a slave on the
WISHBONE side of the bridge and initiates transactions as a master on the PCI bus. The
PCI target unit acts as a target on the PCI side of the bridge and as a master on its
WISHBONE side. Both units operate independently of each other.

The PCI interface is PCI Specification 2.2 compliant, whereas the WISHBONE is SoC
Interconnection Specification Rev. B compliant. The WISHBONE implementation carries
out a 32-bit bus operation and does not support other bus widths.

http://www.opencores.org Rev 0.1 6

{)OpenCores PCI IP Core Design document 28.1.2002

2.2 Core File Hierarchy

The hierarchy of modules in the PCI Bridge core is shown here with file tree. Each file
here implements one module in a hierarchy RTL source files of the PCI Bridge core are
in the pci\rti\verilog subdirectory.

top.v
pci_bridge32.v
wb_slave_unit.v
wb_slave.v
wbw_wbr_fifos.v
pci_tpram.v *
wbw_fifo_control.v
wbr_fifo_control.v
wb_addr_mux.v
decoder.v **
delayed _sync.v *
synchronizer_flop.v **
delayed_write_reg.v
conf_cyc_addr_dec.v
pci_master32_sm_if.v
pci_master32_sm.v
frame_crit.v
frame_load _crit.v
irdy_out_crit.v
mas_ad_load_crit.v
mas_ch_state crit.v
mas_ad_en_crit.v
cbe_en_crit
. . frame_en_crit.v
pci_target_unit.v
wb_master.v
pciw_pcir_fifos.v
pci_tpram.v *
pciw_fifo_control.v
fifo_control.v
delayed_sync.v *

http://www.opencores.org Rev 0.1 7

{)OpenCores PCI IP Core Design document 28.1.2002

synchronizer_flop.v **
pci_target32_interface.v
pci_decoder.v **
pci_target32_sm.v
pci_target32 clk _en.v
pci_target32_trdy_crit.v
pci_target32_stop_crit.v
. . pci_target32_devs_crit.v
conf_space.v
synchronizer_flop.v **
sync_module.v**
. synchronizer_flop.v **
pci_io_mux.v
pci_io_mux_ad_en_crit.v **
pci_io_mux_ad_load_crit.v **

out_reg.v **
cur_out_reg.v
pci_in_reg.v
pci_parity_check.v
par_crit.v
perr_crit.v
perr_en_crit.v
serr_crti.v
) serr_en_crit.v
. pci_rst_int.v
bufifQ ***
* Files are used within more than one module: pci_tpram.v is used within

wbw_wbr_fifos.v and pciw_pcir_fifos.v files, delayed sync.v is used within
wb_slave_unit.v and pci_target_unit.v files.

** Files are used within one module more than once: synchronizer_flop.v is used
within delayed_sync.v for 5 times and within conf _space.v for several times as
sync_module.v etc., decoder.v is used within wb_addr_mux.v for as much times as there
is the number of WB images, pci_decoder.v is used within pci_target32_interface.v for
as much times as there is the number of PCI images, pci_io_mux_ad_en_crit.v and
pci_io_mux_ad_load_crit.v are used within pci_io_mux.v for 4 times each, out_reg.v is
used within pci_io_mux.v for 47 times (for AD, CBE and Control signals).

*** |nstantiation bufif0 is a generic tri-state buffer with active low output enable’” and
is used within top.v for 47 times (for AD, CBE and Control signals). This is Verilog

http://www.opencores.org Rev 0.1 8

{)OpenCores PCI IP Core Design document 28.1.2002

generic primitive and it works fine in FPGA implementation (1/O pads are defined in
constraint files). For an ASIC implementation, user must edit top.v file to instantiate PCI
I/O pads before synthesys.

2.2.1 Core Module Hierarchy

Module hierarchy is shown in detail in the following four pictures. First picture explains
how the following three pictures should be viewed as a whole. Dashed line means a
boundary between two pictures. Fourth picture shows connections between modules in
the PCI target Unit (PCIU). Third picture shows connections between modules in the WB
slave Unit (WBU) and the Configuration space connections. Second picture shows
connections between modules in the PCI Input/Output interface (1/0).

The name of each module is upper-case name of the respective file. Description of
modules and their connections is in the chapter Description of Core Modules.

WBU

I/O picture picture

PCIU
picture

o e e e e e o
|
1
|
|
|
1
|
|
1
1
|
1
1

Figure 2-1: First picture - Distribution of modules hierarchy into three pictures

http://www.opencores.org Rev 0.1 9

{}OpenCores PCI IP Core Design document 28.1.2002

top.v -
pci_rst_int.v pci_bridge32.v
_ cur_out_reg.v
— |
PO FLIP-FLOPS
A A
1
i
: ﬂlm—-:
! A A !
O-—— bufif0 |
. | [F 1 |
° l — |
o bufifO —lh
®
O-1—9— bufif0

pci_parity_check.v

| _| [perenceriy
[serr_en_critv | =
| |
-> pci_in_reg.v l | >
-> FLIP-FLOPS l

Figure 2-2: Second picture - Module hierarchy of PCI 1/O interconnection

http://www.opencores.org Rev 0.1 10

{}Open Cores

PCI IP Core Design document

28.1.2002

top.v
pci_bridge32.v
wb_slave_unit.v
C
l :
____1 .
1 1
1 1
1 I
1 1
i ¢+
1 1
1 1
1 1
1 1
1 1
1 1
| ' g
: C
I q
1
1
1
1
1
1
1
1
1
1
1
1
[
T 1
e———— L
i
< i
: conf_space.v I host Q=
: R DATA R /W DATA |
1
1
! T 9
. REGISTERS
: 1 ues
i ! host
1 ues
: ° ° host O=—
. : |
I
) 4 v |
Figure 2-3: Third picture - Module hierarchy of WB slave Unit and Configuration space
http://www.opencores.org Rev 0.1 11

{}OpenCores PCI IP Core Design document 28.1.2002

Q000

A

top.v

Figure 2-4: Fourth picture - Module hierarchy of PCI target Unit

http://www.opencores.org Rev 0.1 12

{)OpenCores PCI IP Core Design document 28.1.2002

2.3 Description of Core Modules

2.3.1 Description of general core submodules

The module top.v consists only of module pci_bridge32.v and Verilog instances bufif0
for PCI Input and Output buffers.

The module pci_bridge32.v consists of all major submodules and is, like the module
top.v, without any logic. It includes some Verilog pre-compiler directives for connections
with Configuration space, depending on the HOST or GUEST implementation of the
core. If PCI bridge is implemented as HOST, then read/write connection is provided for
WB slave Unit (accesses from WB bus) and read-only connection is provided for PCI
target Unit (accesses from PCI bus). If PCI bridge is implemented as GUEST bridge, then
read/write connection is provided for PCI target Unit and read-only connection for WB
slave Unit.

2.3.2 Description of PCI I/O submodules

PCI 1/0 modules are shown on the Figure 2-2: Second picture - Module hierarchy of PCI
I/O interconnection.

There are two sets of signals connected to PCI bus through 1/O modules. One set of
signals is from WB slave Unit and the other set of signals is from PCI target Unit. All
output signals, connected to PCI bus, from WB slave and PCI target Unit, also have
output enable signals.

2.3.2.1 pci_io_mux submodule

The module pci_io_mux.v is used for multiplexing output signals from WB slave and
PCI target Unit before registering them in corresponding output Flip-Flops. The signal
used as a select multiplexer signal is registered AD output enable from PCI target Unit,
tar_ad_en_reg_in (from cur_out_reg.v). This way the PCI master in the WB slave Unit
can use the PCI output signals when Target is not operating. This is done to implement
bus parking capability.

All output signals and their appropriate output enable signals are registered. Each output
Flip-Flop and corresponding output enable Flip-Flop are implemented in out_reg.v file.
In addition to data input, each of these Flip-Flops has an asynchronous reset and clock
enable ports. AD output Flip-Flops are shared between Master and Target state machines,
other outputs are controlled exclusively. Outputs from this Flip-Flops are driven into
bufif0 instances (for PCI 1/O pins) in the top level module.

http://www.opencores.org Rev 0.1 13

{)OpenCores PCI IP Core Design document 28.1.2002

Loading (clock enable) of AD output Flip-Flops is in part calculated in pci_io_mux.v,
while timing critical calculation is done in a pci_io_mux_ad_load_crit.v. There are four
of these sub-modules instantiated, one for each byte, to reduce fan-out. Preserve
hierarchy constraint can be selected on these modules, to prevent logic optimization in
them and thus satisfy PCI input timing constraints.

Somewhat similar module and functionality is provided for AD output enable Flip-Flops
driving. It is implemented in pci_io_mux_ad_en_crit.v.

2.3.2.2 cur_out_reg submodule

The opeartion of cur_out_reg.v submodule is the same as pci_io_mux.v, so it consists of
multiplexer and flip-flops and the same input signals. It is used for back-up information
of signals driven on the PCI bus for WB slave and PCI target Units. This had to be done
for FPGA implementation where 10B Flip-Flops are used — they can only have a fanout
of 1, so register replication has to be done in order to use this information. This is also
OK for ASIC implementation, since providing low fanout on output flip-flops reduces
delay on output ports and maybe prevents buffer insertions.

2.3.2.3 pci_in_reg submodule

The module pci_in_reg.v is used for registering the input PCI bus signals. Registered
inputs are used wherever and as much as possible, since stringent PCI bus input timing
constraints don't allow free usage of unregistered inputs. Newertheless, PCI bus control
signals must be used unregistered in some cases because of PCI bus protocol (eg: Master
must deassert FRAME# on the same clock it detects STOP# asserted or Target must
deassert DEVSEL#, STOP# and TRDY# on the same clock it detects FRAME#
deasserted and IRDY# asserted).

2.3.2.4 pci_rst_int submodule

The module pci_rst_int.v is used for basic logic for reset and interrupt pins.

If PCI bridge is implemented as HOST bridge, then RST_I input from WB bus is
recognized as a main asynchronous reset source. The module connects it to PCI core's
internal reset signal and PCI bus RST signal. Soft Reset bit in configuration space also
causes a reset on PCI bus, but does not have any effect on PCI Core's internal logic. Reset
signal RST_O to WB bus is always inactive in this case. Some special design
considerations must be taken into account when using Software Reset — PCI Core doesn't
take care of Device Initialization time as specified in PCI Local Bus Specification v. 2.2.
Software must take care of this by waiting the ammount of time required by the PCI
Specification before starting any transactions on the PCI bus. This wouldn't influence PCI
Core's logic, but could cause errors to occur or make PCI subsystem unstable. Refer to
PCI Local Bus Specification v. 2.2., chapter 4.3.2. Special design considerations are also

http://www.opencores.org Rev 0.1 14

{)OpenCores PCI IP Core Design document 28.1.2002

in order for power up reset which comes from RST_I signal on WB bus. This reset must
be implemented in compliance with PCI Local Bus Specification!

If PCI Core is implemented as GUEST bridge, then RST input from PCI bus is
recognized as a main asynchronous reset source. The module connects it to PCI core's
internal reset signal and WB bus RST_O signal. Soft Reset bit in configuration space
also causes a reset on WB bus, but does not have any effect on PCI Core's internal logic.
When using Soft Reset bit, designer must take into consideration its application’s reset
implementation, to provide valid reset sequnce. For PCI bus reset operation, which is
propagated to WB bus, refer to PCI Local Bus Specification v. 2.2., chapter 4.3.2.

If PCI Core is implemented as HOST bridge, then its INTA# PCI pin is configured as an
input pin (output is always tri-stated). Its negated, synchronized to WB clock domain
and passed to WB bus through INT_O pin, if interrupt propagation is enabled. (interrupt
propagation enable bit of interrupt control register in conf_space.v). Some software
considerations come into account here — since interrupt is synchronized, it induces a
certain latency to pass through the bridge. When software clears an interrupt request at its
source, it should not immediately start accepting new interrupts. There are two
possibilities:

e Interrupt is cleared with a write to the source of interrupt:
Writes through the bridge are posted, therefore software cannot know and must
not assume a time when this write will finish on PCI bus. A common thing a
software would do would be to perform a write transaction to the source and
immediately after that perform a read transaction. This would cause a write
transaction to finish on PCI bus before read transaction can. When read
transaction is finished on WB bus, software knows for sure, that all writes posted
before a read are finished (except in case of an error). This should mean the
source of interrupt was cleared, and WB agent can start accepting new interrupt
requests.

e Interrupt is cleared with a vread from the source of interrupt:
When this read is finished, interrupt request should already be cleared — except in
case of a source that also induces latency to clearing the interrupt. Software
should take that into the account and wait appropriate number of cycles before
accepting new requests.

If PCI Core is implemented as GUEST bridge, then its INTA# PCI pin is configured as
an output pin. INT_I from WB bus is negated, synchronized to PCI clock domain and
passed to PCI bus through INTA# pin, if interrupt propagation is enabled. (interrupt
propagation enable bit of interrupt control register in conf_space.v). Some software
considerations come into account here — since interrupt is synchronized, it induces a
certain latency to pass through the bridge. When software clears an interrupt request at its
source, it should not immediately start accepting new interrupts. There are two
possibilities:

http://www.opencores.org Rev 0.1 15

{)OpenCores PCI IP Core Design document 28.1.2002

e Interrupt is cleared with a write to the source of interrupt:
Writes through the bridge are posted, therefore software cannot know and must
not assume a time when this write will finish on WB bus. A common thing a
software would do would be to perform a write transaction to the source and
immediately after that perform a read transaction. This would cause a write
transaction to finish on WB bus before read transaction can. When read
transaction is finished on PCI bus, software knows for sure, that all writes posted
before a read are finished (except in case of an error). This should mean the
source of interrupt was cleared, and PCI agent can start accepting new interrupt
requests.

e Interrupt is cleared with a read from the source of interrupt:
When this read is finished, interrupt request should already be cleared — except in
case of a source that also induces latency to clearing the interrupt. Software
should take that into the account and wait appropriate number of cycles before
accepting new requests.

Since PCI Core can also cause interrupt requests, pci_rst_int.v module handles passing
those to appropriate output pins too. For HOST bridge implementation interrupts will be
passed to INT_O pin on WB bus, for GUEST bridge implementation they will be passed
to INTA# pin on PCI bus. Some internal synchronization is possible (depending on the
source of interrupt), so software should make sure not to accept new interrupt requsts
from the bridge for at least five cycles after interrupt status is cleared.

2.3.2.5 pci_parity_check submodule

The module pci_parity_check.v is used for generating/checking parity on PCI bus during
address and data phases.

The module is implemented in such a way, that no special signals are needed from PCI
Master or Target state machines. Its operation is based primarily on monitoring Master
and Target output enable and PCI input signals.

When Master state machine is driving AD bus, parity calculation is based on AD and
CBE outputs it provides. Appropriate parity value is driven to PCI bus on PAR pin one
clock after corresponding AD and CBE values. PERR# signal is sampled on next clock.
If it is sampled asserted, Parity Error Detected signal is generated and Master Parity Error
is signaled, if Parity Error Response is enabled in configuration space. PCI Master reads
are decoded using its FRAME and IRDY output enable signals. If those signals are
enabled and AD bus is not, then Master Read is in progress. Operation now switches
from generating value on PAR signal and monitoring PERR# signal, to monitoring PAR
signal and generating PERR# signal. Valid parity is calculated from CBE signals
provided by PCI Master state machine and AD signals provided by external Target. AD
signals are monitored only on cycles on which TRDY# is sampled asserted. Value on
PAR signal received on next clock cycle is xor —ed with parity calculated from CBE and

http://www.opencores.org Rev 0.1 16

{)OpenCores PCI IP Core Design document 28.1.2002

AD signals immediately. Result must be 0, otherwise Detected Parity Error is signalled.
If Parity Error Response in Configuration space is enabled also, when this event occurs,
then PERR# is asserted for one clock cycle and Master Data Parity Error signal is
asserted to set appropriate status bits in Configuration space.

Reads from PCI bus through Target state machine are decoded with Target control
signals and AD bus output enables. When Target state machine is driving control signals
and AD bus, this means a read through Target is in progress. Appropriate parity value is
calculated from Target — provided AD value and external Master-provided CBE value. It
is then driven to PCI bus on PAR pin one clock after corresponding AD values. PERR#
signal is sampled on next clock. If it is sampled asserted, Parity Error Detected signal is
asserted to set appropriate bit in Configuration space. PCI Target writes are decoded
using Target's TRDY output enable signal. If this signal is enabled and AD bus is not,
then Target Write is in progress. Operation now switches from generating value on PAR
signal and monitoring PERR# signal, to monitoring PAR signal and generating PERR#
signal. Valid parity is calculated from external Master-provided CBE and AD signals.
AD signals are monitored only on cycles on which IRDY# is sampled asserted. Value on
PAR signal received on next clock cycle is xor —ed with parity calculated from CBE and
AD signals. Result must be 0, otherwise Detected Parity Error is signalled. If Parity Error
Response in Configuration space is enabled also, when this event occurs, then PERR# is
asserted for one clock cycle.

Parity is also calculated on every Master initiated address phase — value is driven on PAR
pin one clock cycle after the address phase.

Parity is also checked on any external Master's address phase. If invalid parity is
detected, Parity Error Response and System Error Enable bits are set in configuration
space, then SERR# is asserted for one clock cycle and Signaled System Error is signaled
to Configuration space to set appropriate status bit. Detected Parity Error is also signaled
to Configuration space in such an event, regardles of the state of Parity Error Response
and System Error Enable bits. Parity error checking during external Masters' address
phases is done same way as in writes through Target state machine, except in place of
Target control signals, FRAME# input is monitored to decode address phase.

A few small submodules are included into pci_parity_check.v. They are provided only
because PCI timing constraints are hard to meet in FPGA implementation. “Preserve
hierarchy” option can be selected over these modules in FPGA synthesis tool to prevent
optimization of paths that include timing critical inputs. This kind of practice reduced
logic levels on those inputs. Modules provided because of timing issues are:

e par_crit.v — provides output to PAR output Flip-Flop. Signal is generated directly
from some timing critical PCI input signals during target operation.

» perr_crit.v — module feeding PERR output Flip-Flop.
» perr_en_crit.v — module feeding PERR output enable Flip-Flop.

http://www.opencores.org Rev 0.1 17

{)OpenCores PCI IP Core Design document 28.1.2002

serr_en_crit.v — module feeding SERR output enable Flip-Flop
serr_crit.v — module feeding SERR output Flip-Flop

2.3.3 Description of WB slave Unit submodules

wb_slave_unit.v is used for connecting lower level modules that implement unit’s
functionality. It also provides all connections needed between Configuration space and
lower level modules (see Figure 2-3: Third picture - Module hierarchy of WB slave Unit
and Configuration space).

2.3.3.1 wb_slave.v

Module implements WISHBONE slave state machine, which monitors and responds to
cycles generated by external WB masters. It includes all logic needed for passing requests
from WB bus to PCI bus or Configuration space. During WB write requests, logic checks
whether or not all conditions for a write are satisfied. There are a few different ways
writes are processed:

WB state machine starts processing a write, when CYC_I, STB_I and WE_I WB
signals are all active (1). WB address (ADR_I) passes through decoders
implemented in wb_addr_mux.v. Decoders compare input address with addresses
stored in Configuration space and generate hit signals. WB slave state machine
samples those signals at the rising edge of CLK_I while leaving IDLE or one of
DECODE states. Hit signals are used in START state to decide where to go or
what to do next. If not hit signal is sampled active, state machine doesn’t respond
and returns to IDLE state.

Configuration Writes — configuration write starts, when decoder hitO is active
and lower twelve addresses don’t match with Configuration Cycle data register
offset. Configuration writes are accepted only as single writes to DWORD aligned
addresses. If any of addresses [1:0] are non-zero or CAB_I signal is active during
configuration write, WB slave state machine responds with an error and returns to
idle state. WB slave state machine signals to Configuration space when write to
register is to be done also (write enable signal to configuration space). In case of
GUEST implementation of the bridge, configuration writes have no effect on
Configuration space registers. A special case applies here — when bridge is
defined as a GUEST and configuration image is not implemented, WB slave state
machine does not respond to configuration writes at all, because decoder for
Configuration space accesses is not implemented.

Configuration Cycle Writes — this kind of writes is possible only in HOST
bridge implementation. It is initiated when decoder hit0 is active and lower twelve
addresses match with Configuration Cycle data register offset. State machine

http://www.opencores.org Rev 0.1 18

{)OpenCores PCI IP Core Design document 28.1.2002

handles these as Delayed Writes, so some additional restrictions apply. New
Configuration Cycle Write Request can be accepted only if bridge has no other
pending Delayed Transaction to be processed. That means no other Delayed
Read/Write Request/Completion is pending. Pending Requests/Completions are
signaled to WB slave from delayed_sync.v included in wb_slave_unit.v. All of
this conditions are sampled at the same time hits from decoders are sampled. If
there is no Configuration Cycle Write Delayed Completion pending (signaled
from delayed_sync.v), then WB slave state machine responds with retry on WB
bus and returns to idle state. If Completion is pending, WB slave state machine
will end a cycle with error or acknowledge, depending on a kind of termination
received on PCI bus and return to IDLE state. If neither Request or Completion is
pending, then state machine signals Delayed Write Request to delayed_sync.v,
providing appropriate PCI bus command (Configuration Write) and address
decoded by module in conf_cyc_addr_dec.v.

* Image Writes — Image write is initiated when following conditions are satisfied:
0 WB Write Fifo (in wbw_wbr_fifos.v) is not almost full nor full
o0 Delayed Read or Write Requests are not pending
0 One of hits from decoders is active, except hit0

Image Write has two possible forms — 1/0 write or Memory Write. WB slave state
machine decodes a form of Image Write by sampling map bits coming from
Configuration space the same way hits from decoders are sampled. Each hit has
its corresponding map bit. If map bit is 1, then 1/O write is assumed, otherwise
memory write is assumed. In case of 1/0 write, CAB_I signal is not allowed to be
asserted (only single 1/0 writes possible) and SEL_I, ADR_I[1:0] combination
must be valid (PCI IP Core Specification, Chapter 3.2.3). If CAB_1 is asserted
or invalid address/select combination is detected, WB slave state machine will not
accept a write, respond with error and return to IDLE state. In case of memory
write, ADR_I[1:0] must be zero, otherwise state machine doesn’t accept a write,
responds with an error and returns to IDLE state. When Image Write is accepted,
state machine enables first write to WBW Fifo. During this write, address from
wb_addr_mux.v is driven on WBW Fifo address/data output, PCI bus command
is driven on command/byte enable output (PCI bus command is based on whether
this is memory (Memory Write command) or I/O write (1/0 Write command).
Corresponding control bus value is also written to WBW Fifo during this write to
mark an entry as an address/bus command entry. At this same time, state machine
acknowledges the transfer and stores values from SDAT _I and SEL_I buses into
intermediate register. State machine now switches WBW Fifo output to
intermediate register data and negated selects sampled on previous clock edge. In
case of 1/O write, it asserts Fifo write enable, drives a value on Fifo control bus to
mark an entry as last in a transaction and returns to IDLE state. In case of single
memory write (CAB_I de-asserted) or when WBW Fifo status is ALMOST

http://www.opencores.org Rev 0.1 19

{)OpenCores PCI IP Core Design document 28.1.2002

FULL, the action taken is the same as for I/O writes. Otherwise, state machine
continues to WRITE state used for burst writes. In this state, it keeps sampling
data and selects on every clock cycle STB_| is sampled asserted, responds with
acknowledge, and writes previously sampled data to Fifo, until it signals
ALMOST FULL status or WB Master stops transferring (de-asserts CYC | or
CAB_I). When this happens, data sampled into intermediate register is written to
Fifo and marked as last in a transaction by providing right value on Fifo control
bus. State machine then returns to IDLE state.

During WB read requests, logic checks whether or not all conditions for a read are
satisfied. There are a few different ways reads are processed:

Reads are decoded in a same manner as writes, the only difference is that WE_|I
WB signal must be inactive (0) .

Configuration Reads - configuration read starts, when decoder hit0 is active and
lower twelve addresses don’t match with Configuration Cycle data register or
Interrupt Acknowledge Cycle register offset. Configuration reads are accepted
only as single reads to DWORD aligned addresses. If any of addresses [1:0] are
non-zero or CAB_1I signal is active during configuration read, WB slave state
machine responds with an error and returns to IDLE state. A special case applies
when bridge is defined as a GUEST - if configuration image is not implemented,
WB slave state machine does not respond to configuration reads at all, because
decoder for Configuration space accesses is not implemented.

Interrupt Acknowledge Read — can only be done when PCI Core is configured
as HOST. It starts when decoder hitO is active and lower twelve addresses match
with Interrupt Acknowledge Cycle register offset. Since Interrupt Acknowledge
cycle is generated as a Delayed Read Transaction, some additional rules to
Configuration Reads’ rules apply: There must be no other outstanding Delayed
Request or Completion present in WB unit of the bridge. When this is true,
Delayed Read Request with Interrupt Acknowledge PCl bus command is
accepted, WB slave state machine responds with retry and returns to IDLE state.
When Interrupt Acknowledge cycle is finished on PCI, status is transfered
through delayed_sync.v and data through WB Read Fifo (in wbw_wbr_fifos.v).
When cycle is repeated by external WB Master, Delayed Completion pending is
signaled from delayed sync.v and PCI Write Fifo (pciw_pcir_fifos.v in
pci_target_unit.v) is empty, data and appropriate status are signaled to requesting
WB Master and state machine returns to IDLE state.

Configuration Cycle Read - can only be done when PCI Core is configured as
HOST. It starts when decoder hitO is active and lower twelve addresses match
with Configuration Cycle Data register offset. Since Configuration Read cycle is
generated as a Delayed Read Transaction, some additional rules to Configuration
Reads’ rules apply: There must be no other outstanding Delayed Request or
Completion present in WB unit of the bridge. When this is true, Delayed Read

http://www.opencores.org Rev 0.1 20

{)OpenCores PCI IP Core Design document 28.1.2002

Request with Configuration Read PCI bus command and decoded address from
conf_cyc_addr_dec.v is accepted. WB slave state machine responds with retry
and returns to IDLE state. When Configuration Cycle is finished on PCI, status is
transfered through delayed sync.v and data through WB Read Fifo (in
wbw_wbr_fifos.v). When cycle is repeated by external WB Master, Delayed
Completion pending is signaled from delayed _sync.v and PCI Write Fifo (
pciw_pcir_fifos.v in pci_target_unit.v) is empty, data and appropriate status are
signaled to requesting WB Master and state machine returns to IDLE state.

* Image Read - starts when one of hit signals is set, except for hitO (configuration
hit). All image reads are processed as Delayed Transactions, so following rules
apply: If no other outstanding Delayed Request or Completion is pending in WB
slave unit, then new request can be accepted. In case of Memory Read, reads to
DWORD aligned addresses are accepted only. In case of 1/0 Read, only single
reads (CAB_I signal 0) with appropriate address/select line combinations are
accepted (PCI IP Core specification, Chapter 3.2.3). I/0 and Memory reads are
differentiated by map bit that corresponds to current image hit. If map bit is 1, that
means I/O Read, otherwise it is processed as Memory Read. When new Delayed
Read Request is accepted, WB slave state machine responds with retry, stores
address, select and bus command information and returns to IDLE state. 1/O
Reads are always processed the same way: as single reads with 10 Read PCI bus
command used. Memory reads however can be processed in a few different ways,
depending on Core’s configuration. Memory Read Line and Pre-fetch enable bits
from an Image Control register that corresponds to current active hit input are
sampled when state machine leaves IDLE or one of DECODE states. Invalid
Cache Line Size register value masks these bits, so special commands can’t be
used and read bursts cannot be performed on PCI. Refer to PCI IP Core
Specification, Chapter 3.2.4 to see how Delayed Memory Reads depend on the
state of these bits. When new request can be accepted, WB slave state machine
stores the address provided by wb_addr_mux.v, SEL_| lines provided from
external WB Master and decoded PCI bus command by signaling new request to
delayed_sync.v included in wb_slave_unit.v. When requested read transaction
finishes on PCI bus, this status is signaled to WB slave state machine through
delayed_sync.v. The data fetched is stored in WB Read Fifo (wbw_wbr_fifo.v)
and is stored there until external WB Master repeats the same request. On any
occasion external WB Master starts a read cycle, address and select lines provided
are compared with stored values and result of this operation sampled into
registers, when WB slave state machine leaves IDLE or one of DECODE states.
If decoded address and select lines are the same and PCI Write Fifo is empty, then
WB slave state machine starts providing data from WB Read Fifo on SDAT_O
lines on WB bus. It keeps sending out data and acknowledging transfers until Fifo
is empty, data marked as last or error is fetched out from WB Read Fifo, or

http://www.opencores.org Rev 0.1 21

{)OpenCores PCI IP Core Design document 28.1.2002

external WB master stops a transfer. If external WB master stops a transfer before
Read Fifo is empty, state machine generates a flush signal, to get rid of stale data.

2.3.3.2 wb_addr_mux.v

Module provides address decoding functionality for WB Slave Unit. ADR_I bus from
WISHBONE is connected directly to this module. Configuration space is connected to
this module with all WISHBONE Base Addresses (WB_BAX), Translation Addresses (
WB_TAX) and Address Masks (WB_AMXx). Each triplet of those values is connected to
its own decoder (in decoder.v), while ADR_I bus is connected to all of them. Each
implemented decoder generates independent address and hit signal output. Addresses
from implemented decoders are multiplexed to one output address bus based on value of
hit signals. Output address is connected to WB Slave state machine, where it is used in
various functions. Each defined decoder instantiated in wbh_addr_mux.v is implemented
in decoder.v. This module is responsible for comparing decoded number of address lines
between provided base address and WISHBONE input address. If bus values are the
same, decoder sets hit signal to 1. Address Translation Enable input provided from
Configuration space is also checked. If it has a value of 1 and address translation is
implemented, then translation is performed by changing decoded number of WISHBONE
address bus input bits with decoded number of Translation Address inputs. Result is
provided on address output bus.

2.3.3.3 wbw_wbr_fifos.v

Module is the main storage unit for data passing through WISHBONE Slave Unit. It
instantiates synchronous dual port RAMs for each Fifo or one two port RAM used for
both Fifos. It also inferes two counters — one for incoming transactions and one for
outgoing transactions through WB Write Fifo. This is done to signal
pci_master32_sm_if.v interface when at least one complete Write Transaction is in the
Write Fifo and can be started on PCI bus. WB Read Fifo does not need such a counter,
because complete transaction is signalled through delayed_sync.v. The module is also
responsible for multiplexing read and write addresses in PCI and WB clock domain when
only one RAM is instantiated for both Fifos.

Data for WB Write Fifo is received from WB Slave state machine on multiplexed
address/data bus. It's written to WB Write Fifo on rising WB clock edge, when Fifo is not
full and WB Slave state machine asserts write enable signal. It's stored at write address
provided by wbw_fifo_control.v. If data witten to Fifo is marked as last on WB Write
Fifo control bus (also provided by WB Slave state machine), then incoming transaction
counter is incremented. When incoming and outgoing transaction counters are not equal,
Transaction Ready signal is generated on next rising PCI clock edge. Comparison is done
between Grey coded values, to provide glitch free comparator output.
pci_master32_sm_if.v signals a read from WB Write Fifo. If on rising PCI clock edge

http://www.opencores.org Rev 0.1 22

{)OpenCores PCI IP Core Design document 28.1.2002

WB Write Fifo read enable is active, read address from wbw_fifo_control.v is applied to
RAM interface, to provide next data at its data outputs. Address/data output from WB
Write Fifo is connected to pci_master32_sm_if.v. When data marked as last (determined
by monitoring control bus output) is read from Fifo, outgoing transaction counter is
incremented and Transaction Ready output is cleared. If there is another transaction ready
in the Fifo, Transaction Ready output will be set on next rising PCI clock edge.
wbw_fifo_control.v provides a module for generating synchronous RAM addresses for
WB Write Fifo. It provides write side RAM address (in WB clock domain) and read
side RAM address (in PCI clock domain). It also generates different statuses. Statuses
are always determined by comparing Grey coded read and write addresses to provide
glitch free comparator outputs. Status outputs are sampled in Flip-Flops in appropriate
clock domain. For example — WB clock domain always writes to WB Write Fifo, so it is
only interested in Fifo fullness. So Fifo's Almost Full and Full statuses are synchronized
to WB clock domain. On the other hand, PCI clock domain always just reads from this
Fifo and is therefore interested only in Fifo emptiness. Therefore statuses Two Lefft,
Almost Empty and Empty are syncronized to PCI clock domain. Grey code pipeline is
provided for generating statuses. Each clock domain has its own pipeline, values are
compared between clock domains and results sampled at appropriate clocks as stated
previously.

Data for WB Read Fifo is received from PCI M