
XAPP503 (v2.1) August 17, 2009 www.xilinx.com 1

® 2001–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary This application note provides users with a general understanding of the SVF and XSVF file
formats as they apply to Xilinx® devices. Some familiarity with IEEE STD 1149.1 (JTAG) is
assumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format
(XSVF) files in embedded programming applications, refer to [Ref 2].

Introduction SVF is an industry standard file format that is used to describe JTAG chain operations in a
compact, portable fashion. SVF files are portable because complicated vendor-specific
programming algorithms can be conveyed by generic SVF instructions, requiring no special
knowledge of the target device. Xilinx provides software that can directly generate SVF files for
in-system programming Xilinx devices. Xilinx also provides SVF-based embedded solutions for
remotely programming Xilinx devices in-system.

File formats are given in “Appendix A: SVF File Format for Xilinx Devices” and “Appendix B:
XSVF File Format.”

SVF – General

SVF files are used to record JTAG operations by describing the information that needs to be
shifted into the device chain. The JTAG operations are recorded in the SVF file with iMPACT or
JTAG Programmer. SVF files are written as ASCII text and, therefore, can be read, modified, or
written manually in any text editor.

Many third-party programming utilities use an SVF file as an input and can program Xilinx
devices in a JTAG chain with the information contained in the SVF file.

XSVF – General

To provide the functionality of an SVF file in a compact, binary format, Xilinx has defined the
XSVF format. XSVF files are optimized for performing JTAG operations on Xilinx devices and
are intended for use in embedded applications.

Creating SVF
and XSVF Files

Creating an SVF or XSVF File with iMPACT Software

Xilinx iMPACT software can directly generate SVF and XSVF files that apply supported
operations to Xilinx devices in a JTAG chain.

iMPACT software is available in ISE® Foundation™ and ISE WebPACK™ software. See
http://www.xilinx.com/products/design_resources/design_tool/index.htm. For instructions on
how to create an SVF or XSVF file with iMPACT, refer to the iMPACT help section of [Ref 1].

Creating an SVF or XSVF File with iMPACT Command Line

The iMPACT command line interface can be used to generate SVF or XSVF files from the DOS
or UNIX command line. This is useful for situations where an automated SVF or XSVF
generation flow is required. See the Command Line and Batch Mode section in the iMPACT
software help of [Ref 1].

Application Note: Xilinx Devices

XAPP503 (v2.1) August 17, 2009

SVF and XSVF File Formats for Xilinx Devices
Authors: Brendan Bridgford and Justin Cammon

R

http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.xilinx.com

Testing SVF and XSVF Files

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 2

R

Testing SVF
and XSVF Files

The iMPACT software can generate SVF or XSVF files for in-system programming of Xilinx
devices on various platforms and in embedded solutions. In addition, the iMPACT software can
execute an SVF or XSVF file to test the functionality of the file. When iMPACT executes the SVF
or XSVF file, iMPACT applies the corresponding JTAG sequences through a Xilinx cable to the
JTAG chain on a target board.

The basic steps to execute an SVF or XSVF file in iMPACT follow:

1. Connect the Xilinx cable to the JTAG chain on the target board and power the board.

2. Start the iMPACT software.

3. Create a new project in iMPACT.

4. Prepare iMPACT to configure devices in a boundary-scan chain and to allow manual entry
of devices in the chain.

5. When iMPACT asks which devices to add to the boundary-scan chain, select one SVF or
XSVF file to be added in the boundary-scan window.

6. Click on the SVF or XSVF file displayed in the boundary-scan window to select it.

7. Invoke the Operation → Execute XSVF/SVF to execute the selected file.

Understanding
SVF and XSVF
File Formats

BSDL Files and JTAG

The capabilities of any JTAG-compliant device is defined in its Boundary Scan Description
Language (BSDL) file. BSDL files are written in VHDL and describe a device’s pinout and all its
boundary-scan registers. All Xilinx BSDL files have a file extension of .bsd, although other
manufacturers can use different file extensions. Xilinx BSDL files are available through the
Xilinx download webpage at:

http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp

To understand SVF files, users need only be concerned with the following few sections of the
BSDL file:

• The Instruction Length Attribute:

This attribute defines the length of a device’s Instruction Register (IR). The IR length is
chosen by the device manufacturer and is of arbitrary size greater than 2 bits.

• The Instruction Opcode Attribute:

This attribute defines the available JTAG instructions. Each JTAG instruction has its own
opcode, such as BYPASS, IDCODE, EXTEST, INTEST, etc. Some opcodes, such as the
opcode for the BYPASS instruction, are defined by IEEE Std 1149.1. Other opcodes are
defined by the manufacturer.

• The IDCODE Register Attribute:

Many JTAG compliant devices have a 32-bit IDCODE, which is stored in a special Device
ID register. The IDCODE can be used to identify the device manufacturer and part number.
To scan the Device ID register, shift the IDCODE instruction into the device, then shift the
IDCODE through the device’s Data Register (Table 1). All Xilinx devices implement this
optional register.

All JTAG operations are controlled through a device’s Test Access Port (TAP). The TAP consists
of four signals: TMS, TDI, TDO, and TCK. These signals interact with the device through the
TAP Controller, a 16-state finite state machine (Figure 1).

http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp
http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 3

R

X-Ref Target - Figure 1

IEEE Std 1149.1 defines behavior of the TAP state machine and its output pins according to
specified activities on the TAP input pins. TAP state transitions occur on the rising edge of TCK.
The TMS input value determines the next state of a TAP state transition. The TDI input value is
sampled at the rising edge of TCK during the Shift-DR and Shift-IR TAP states. The TDO output
value is updated on the falling-edge of TCK. The TDO output is driven only when the TAP is
shifting data or instructions. The TDO output begins to drive when the TAP transitions into the
Shift-DR or Shift-IR state, the TDO output continues to drive while the TAP remains in the Shift-
DR or Shift-IR state, and the TAP returns to high-impedance at the falling-edge of TCK when
the TAP completes the shift operation in the Exit1-DR or Exit1-IR state. At other times, the TDO
output is maintained in a high-impedance condition.

One special TAP state sequence to note is the sequence that guarantees the TAP state
machine is put into the Test-Logic-Reset state. From any start state, holding TMS High for at
least five TCK cycles (five state transitions) leaves the TAP in the Test-Logic-Reset state. All
JTAG operations shift data into or out of JTAG instruction and data registers. The TAP
Controller provides direct access to all of these registers. There are two classes of JTAG
registers: the Instruction register (only one) and Data registers (many). Access to the
Instruction Register is provided through the Shift-IR state, while access to the Data Register is
provided through the Shift-DR state.

To shift data through these registers, the TAP Controller of the target device must be moved to
the corresponding state. For example, to shift data into the Instruction Register, the TAP
Controller must be moved to the Shift-IR state, and the data shifted in, LSB first (Figure 2).

Notes:
1. The TAP state transitions occur on the rising edge of TCK. The TMS input value, shown on the state

transition arcs, determines the next TAP state.

Figure 1: JTAG TAP Controller State Diagram

1

x503_01_04/05/02

TEST-LOGIC-RESET

0 RUN-TEST/IDLE
1

SELECT-DR-SCAN

0

1

0

CAPTURE-DR CAPTURE-IR

0

1

0

0SHIFT-DR SHIFT-IR

1

0

1

0

EXIT1-DR EXIT1-IR

0

1

0

PAUSE-DR PAUSE-IR

1

0

1

EXIT2-DR

1

EXIT2-IR

1

UPDATE-DR

1

UPDATE-IR

1 SELECT-IR-SCAN

0 1 0

0 0

1

1

0

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 4

R

X-Ref Target - Figure 2.

Basic SVF Commands

The SVF standard specifies several commands (refer to [Ref 5]) Most of the JTAG operations
on Xilinx devices can be performed with a few basic SVF commands.

Scan Instruction Register (SIR)
SIR length TDI (tdi) SMASK (smask) [TDO (tdo) MASK (mask)];

where:

length – specifies the number of bits to be shifted into the Shift-IR state.

TDI – specifies the scan pattern to be applied to the Shift-IR state.

SMASK – specifies “don’t care” bits in the scan pattern (1 = care, 0 = don’t care).

TDO – specifies the expected pattern on TDO while shifting through the Shift-DR state.

MASK – specifies “don’t care” bits in the expected TDO pattern (1 = care, 0 = don’t care).

Scan Data Register (SDR)
SDR length TDI (tdi) SMASK (smask) [TDO (tdo) MASK (mask)];

where:

length – specifies the number of bits to be shifted into the Shift-DR state.

TDI – specifies the scan pattern to be applied to the Shift-DR state.

SMASK – specifies “don’t care” bits in the scan pattern (1 = care, 0 = don’t care).

TDO – specifies the expected pattern on TDO while shifting through the Shift-DR state.

MASK – specifies “don’t care” bits in the expected TDO pattern (1 = care, 0 = don’t care).

The third SVF instruction of importance to Xilinx users is the RUNTEST instruction. The
RUNTEST instruction specifies an amount of time for the TAP Controller to wait in the Run-Test-
Idle state. This wait time is a required part of the programming algorithm for certain Xilinx devices.

Figure 2: Typical JTAG Architecture

IEEE Standard 1149.1 Compliant Device

TMS

Instruction Register

Instruction Decoder

Bypass[1] Register

IDCODE[32] Register

Boundary-Scan[N] Register

Select Data
Register

Shift-IR/Shift-DR
Select Next State

TAP State Machine

TCK

TDI

TDO

I/O I/O I/O I/O

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

XAPP503_05_030102

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 5

R

RUNTEST

RUNTEST run_count TCK;

where

run_count specifies the number of TCK cycles or number of microseconds to wait while the
TAP state machine is maintained within the TAP Run-Test state. By default, iMPACT maps
minimum wait periods and minimum TCK cycles to TCK run_count values. For minimum
wait periods, iMPACT maps the minimum wait period to an equivalent minimum number of
TCK cycles with the presumption that TCK is operating at 1 MHz (i.e., each cycle takes
1 microsecond). For minimum TCK cycle requirements, the run_count is equal to the
minimum number of TCK cycles. To satisfy both of the possible interpretations of the
RUNTEST command, SVF interpreters must apply the minimum number of TCK cycles
with a 1 MHz (or slower) TCK frequency.

To differentiate between the two possible RUNTEST requirements, set the iMPACT preference
to use absolute time in the SVF. When the iMPACT preference is set to use absolute time in the
SVF file, and when the SVF requires a minimum wait period regardless of the number of TCK
cycles, iMPACT generates an alternate form of the RUNTEST command in the SVF.

RUNTEST min_time SEC;

where

min_time – the minimum time to wait while maintaining the TAP in the Run-Test state.

STATE
STATE tap_state;

where:

tap_state – specifies a TAP state to move the TAP state machine to. Multiple states can be
specified in order to specify an explicit path through the TAP state machine.

Note: When RESET is specified as the tap_state, Xilinx tools interpret the state transition as
requiring the guaranteed TAP transition to the Test-Logic-Reset state, i.e., hold TMS High for a
minimum of five TCK cycles.

Specifying JTAG Shift Operations in SVF for Single-Device Chains

Table 1 shows the necessary activity on TDI and TMS to scan the IDCODE register of an
XC9572XL CPLD. The TAP states in Table 1 correspond to the diagram in Figure 1.

Table 1: JTAG Activity Required to Scan the IDCODE Register of an
XC9572XL Device

Current TAP State Next TAP
State(1) TDI TMS Notes

1.1 TLR RTI X(2) 0 TAP Reset State

1.2 RTI Select-DR-Scan X 1

1.3 Select-DR-Scan Select-IR-Scan X 1

1.4 Select-IR-Scan Capture-IR X 0

1.5 Capture-IR Shift-IR X 0

1.6 Shift-IR Shift-IR 0 0 Shift the least significant
bit (d0) first

1.7 Shift-IR Shift-IR 1 0 Shift d1

1.8 Shift-IR Shift-IR 1 0 Shift d2

1.9 Shift-IR Shift-IR 1 0 Shift d3

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 6

R

As Table 1 demonstrates, it is difficult to express JTAG operations in terms of the explicit activity
on TMS and TDI. SVF was created to address this problem. Table 2 gives the equivalent SVF
syntax to get an IDCODE from an XC9572XL device.

Explanation of Table 2

2.1 SIR 8 TDI (fe);

Shift 11111110 into the target Instruction Register (IDCODE Instruction).

2.2 SDR 32 TDI (00000000);

Shift 32 zeros through the Data Register to displace the 32-bit IDCODE. The expected
TDO values are 0xf9604093. This is the IDCODE for the XC9572XL.

1.10 Shift-IR Shift-IR 1 0 Shift d4

1.11 Shift-IR Shift-IR 1 0 Shift d5

1.12 Shift-IR Shift-IR 1 0 Shift d6

1.13 Shift-IR Exit1-IR 1(3) 1 Shift d7 while moving to
Exit1-IR

1.14
Exit1-IR Update-IR X 1 IDCODE instruction

(0xFE) has now been
passed to the device

1.15
Update-IR Select-DR-Scan X 1 The IDCODE register is

now connected through
the TAP Shift-DR state

1.16 Select-DR-Scan Capture-DR X 0

1.17 Capture-DR Shift-DR X 0

1.18 Shift-DR Shift-DR 0 0 Shift first bit of the device
IDCODE out on TDO

1.19
Shift-DR Shift-DR 0 0 Shift second bit of the

device IDCODE out on
TDO

1.20 Shift-DR Shift-DR 0 0 …repeat 29 times…

1.21

Shift-DR Exit1-DR 0 1 Shift last bit of the device
IDCODE out on TDO while
moving to
Exit1-DR

1.22 Exit1-DR Update-DR X 1

1.23 Update-DR RTI X 0 Return to Run-Test-Idle;
Operation complete

Notes:
1. All activity on TDI and TMS is synchronous to TCK.
2. ‘X’ indicates that TDI is ignored in this state.
3. The IR length of an XC9572XL is 8 bits; its IDCODE instruction is 0xFE .

Table 2: SVF Instructions to Scan the IDCODE Register of an XC9572XL Device

SVF Syntax Notes

2.1 SIR 8 TDI (fe) SMASK (ff); Shift the IDCODE Instruction to
the Instruction Register

2.2 SDR 32 TDI (00000000) TDO (f9604093) SMASK
(ffffffff) TDO (f9604093) MASK (0fffffff) ;

Shift the device IDCODE
through the Data Register

Table 1: JTAG Activity Required to Scan the IDCODE Register of an
XC9572XL Device (Continued)

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 7

R

Expected TDO output specified by the SDR instruction in Table 2 (item 2.2):

TDO – f9604093: 1111 1001 0110 0000 0100 0000 1001 0011
Mask – 0fffffff: 0000 1111 1111 1111 1111 1111 1111 1111
Expected output: xxxx 1001 0110 0000 0100 0000 1001 0011
9572XL IDCODE : xxxx 1001 0110 0000 0100 0000 1001 0011

Note: The SVF SIR and SDR instructions do not say how to move the TAP controller to the Shift-IR
and Shift-DR states. This transition is implied in the SVF standard and must be understood by the
program that reads the SVF file.

Specifying JTAG Shift Operations in SVF for Multiple Device Chains

When a JTAG chain contains more than one device, operations are typically performed on one
device at a time. Since the TMS and TCK signals are connected to all devices in parallel, it is
not possible to move the TAP Controller of one device independently of the TAP Controller of
another device. If an instruction is being shifted into one device in the chain, some instruction
must be shifted into each device in the chain (because each TAP Controller is in the Shift-IR
state simultaneously).
X-Ref Target - Figure 3

When an operation is going to be performed on a device in the chain, the Bypass instruction is
issued to all other devices. IEEE Std 1149.1 requires that an IR value of all 1s be interpreted as
the Bypass instruction for any JTAG device (i.e., if a device’s IR is 5 bits long, its Bypass
instruction is 11111; if a device’s IR is 8 bits long, its Bypass instruction is 11111111). To issue
the IDCODE instruction to the XC9572XL device in this example, the Bypass instruction is
given to the XC18V02 and the XCV150 devices.

Figure 3: TAP Controller State Diagrams and IR Contents Prior to IR Shift

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Instruction Register [7:0]

XC18V02

TDI TD0
Instruction Register [7:0]

XC9572XL

TDI TD0
Instruction Register [4:0]

XCV150
XAPP503_06_40502

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 8

R

X-Ref Target - Figure 4

Placing a device in Bypass mode connects its 1-bit Bypass register to the Data Register
(Figure 2).

After shifting in the IDCODE operation, the device Device ID register is scanned through the
Shift-DR TAP Controller state (Table 2, item 2.2). When the TAP Controllers in this example are
moved to the Shift-DR state, the datapath becomes a 34-bit pipeline: one bit for the XC18V04
Bypass register, 32 bits for the XC9572XL Device ID register, and one bit for the XCV150
Bypass register.

X-Ref Target - Figure 5

Figure 4: TAP Controller State Diagrams and IR Contents After Shifting the IDCODE Instruction

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Instruction Register [7:0]

XC18V02

TDI TD0
Instruction Register [7:0]

XC9572XL

TDI TD0
Instruction Register [4:0]

XCV150
XAPP503_07_040502

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10

Figure 5: TAP Controller State Diagrams and DR Contents after Shifting the IDCODE and BYPASS Instructions

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1

1

1

1

1 1

00
1 1

TDI TD0
Bypass Register [0:0]

XC18V02

TDI TD0
IDCODE Register [31:0]

XC9572XL

TDI TD0
Bypass Register [0:0]

XCV150
XAPP503_08_040502

0x39604093 00

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 9

R

Table 3 gives the equivalent SVF instructions to scan the IDCODE Register of the XC9572XL
device in this three-device chain.

Explanation of Table 3
3.1. Shift 0x1fffdf (1_1111_1111_1111_1101_1111) into the Instruction Register chain:

XC18V02 IR <= 11111111 (Bypass)

XC9572XL IR <= 11111110 (IDCODE)

V150 IR <= 11111 (Bypass)

Note that the IR length of the XCV150 is 5 bits, and the IR lengths of the XC18V02 and
XC9572XL devices are both 8 bits (to learn the IR length of a particular device, refer to its
BSDL file). The SMASK value indicates that all twenty-one TDI shift bits are relevant.

3.2. Move to the Data Register TAP state, and clock it 34 times to displace the contents of
the two Bypass registers and the 32-bit Device ID register. The expected output is the 34
Data Register bits plus six additional bits to account for TAP controller state transitions, for
a total of 40 expected TDO bits.

TDO – 0012c08126 : 0000 0000 0001 0010 1100 0000 1000 0001 0010 0110
Mask – 001ffffffe : 0000 0000 0001 1111 1111 1111 1111 1111 1111 1110
Expected output : xxxx xxxx xxx1 0010 1100 0000 1000 0001 0010 011x
9572XL IDCODE : x xxx1 0010 1100 0000 1000 0001 0010 011

SVF Header and Trailer Instructions

Whenever an SVF file is used to perform operations on a chain of devices, several bits must be
accounted for that are not of interest. In Table 3, the SIR instruction had to shift the Bypass
instruction into the two devices that were not being operated on, and the SDR instruction had
to account for two Bypass registers and six other padding bits.

The number of “don’t care” bits in an SVF file increases with the size of the device chain, which
can dramatically increase the size of the SVF file. In many cases, several consecutive
operations are performed on the same device, each requiring that several “don’t care” bits be
specified.

To reduce the size of an SVF file, the SVF specification provides four global padding
instructions: Header Instruction Register (HIR), Trailer Instruction Register (TIR), Header Data
Register (HDR), and Trailer Data Register (TDR).

HIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to follow subsequent Shift-IR instructions.

TIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to precede subsequent Shift-IR instructions.

HDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to follow subsequent Shift-DR instructions

TDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

Specifies bits to precede subsequent Shift-DR instructions.

Note: SVF “Header” instructions specify padding bits at the end of a shift pattern, while “Trailer”
instructions specify padding bits at the beginning of a shift pattern. This is a common point of
confusion and can initially seem counterintuitive.

Table 3: SVF Instructions to Scan the Device ID Register of an XC9572XL Device in a
Three-Device Chain (XC18V02 → XC9572XL →XCV150)

SVF Syntax Notes

3.1 SIR 21 TDI (1fffdf) SMASK (1fffff); Shift the IDCODE Instruction to
the Instruction Register chain

3.2 SDR 34 TDI (01fffffffe) SMASK (03ffffffff)
TDO (0012c08126) MASK (001ffffffe) ;

Shift the device IDCODE
through the Data Register chain

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 10

R

These global commands specify the number of bits to pad the beginning and end of a shift
operation, to account for bypassed devices, and provide a simple method of SVF file
compression. Once specified, these bits lead or follow every set of bits shifted for the SIR or
SDR commands.

Explanation of Table 4
4.5 SIR Instruction without TIR and HIR Instructions

SIR 21 TDI 1fffdf: 1 1111 1111 1111 1101 1111
SMASK 1fffff: 1 1111 1111 1111 1111 1111

Resulting IR Shift:1 1111 1111 1111 1101 1111

4.5 SIR Instruction with TIR and HIR Instructions

TIR 8 TDI ff: 1 1111 111
 SMASK ff: 1 1111 111
SIR 8 TDI fe 1 1111 110
 SMASK ff 1 1111 111
HIR 5 TDI 1f: 1 1111
 SMASK 1f: 1 1111
Resulting IR Shift:1 1111 1111 1111 1101 1111

Note: Each set of SVF instructions accomplishes the same Instruction Register Shift.

4.6 SDR Instruction without TDR and HDR Instructions

TDO 0012c08126: 00 0001 0010 1100 0000 1000 0001 0010 0110
MASK 001ffffffe: 00 0001 1111 1111 1111 1111 1111 1111 1110
Expected Output: xx xxx1 0010 1100 0000 1000 0001 0010 011x

4.6 SDR Instruction with TDR and HDR Instructions

TDR 1 TDI 00: 0
 SMASK 00: 0

SDR TDO f9604093: 1 1111 0010 1100 0000 1000 0001 0010 011
MASK 0fffffff: 0 0001 1111 1111 1111 1111 1111 1111 111

HDR 1 TDI 00: 0
 SMASK 00: 0
Expected Output: xx xxx1 0010 1100 0000 1000 0001 0010 011x

9572XL IDCODE: x xxx1 0010 1100 0000 1000 0001 0010 011

Note: Each set of SVF instructions expects the same output on the TDO pin.

Table 4: Comparison of the IDCODE Operation from Table 3 with and without Global
Padding Instructions

SVF Syntax from Table 3 (without global
padding instructions)

SVF Syntax from Table 3 (with global
padding instructions)

4.1 TIR 8 TDI (ff) SMASK (ff) ;

4.2 HIR 5 TDI (1f) SMASK (1f) ;

4.3 HDR 1 TDI (00) SMASK (00) ;

4.4 TDR 1 TDI (00) SMASK (00) ;

4.5 SIR 21 TDI (1fffdf) SMASK
(1fffff);

SIR 8 TDI (fe) SMASK (ff) ;

4.6
SDR 34 TDI (01fffffffe) SMASK
(03ffffffff) TDO (0012c08126)
MASK (001ffffffe) ;

SDR 32 TDI (00000000) SMASK
(ffffffff) TDO (f9604093) MASK
(0fffffff) ;

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 11

R

Special SVF Commands and their TAP State Sequences

The typical JTAG shift operation begins with the TAP in the Run-Test/Idle state and ends with
the TAP in the Run-Test/Idle state. The typical shift operation loads an instruction or data into
the device and enables the device to run the instructed internal operation upon returning to the
Run-Test/Idle state. A sample set of SVF commands comprised of typical shift operations is
shown below:

SIR 8 TDI(E8); // Shift the 0xE8 instruction value
SDR 8 TDI(34); // Shift the 0x34 data value

The corresponding TAP state sequence for these typical shift operations is:

1. Run-Test/Idle (start state)

2. Select-DR (beginning state transition for the SIR command)

3. Select-IR

4. Capture-IR

5. Shift-IR and repeat to shift the 0xE8 instruction value

6. Exit1-IR

7. Update-IR

8. Run-Test/Idle (end state for the SIR command)

9. Select-DR (beginning state transition for SDR command)

10. Capture-DR

11. Shift-DR and repeat to shift the 0x34 data value

12. Exit1-DR

13. Update-DR

14. Run-Test/Idle (end state for the SDR command)

Theoretically, the device can run the internal operation that corresponds to the loaded 0xE8
instruction whenever the instruction is active and when the TAP is in the Run-Test/Idle state. In the
above sequence, the internal operation for the 0xE8 instruction can run at step 8 and step 14.

In some cases, the device should not run the internal operation for the instruction until after the
data is loaded. In the above sequence, step 8 should not be performed. Instead, the TAP
sequence should go from the Update-IR state in step 7 directly to the Select-DR state in step 9.
The TAP state machine shown in Figure 1 permits the alternate transition from Update-IR to
Select-DR instead of the Update-IR to Run-Test/Idle transition shown in the above sequence.

A pair of SVF commands can indirectly affect the TAP state path that are taken between shift
operations: ENDIR and ENDDR.

ENDIR
ENDIR tap_state;

where

tap_state – specifies the state in which to finish any following SIR command. The tap_state
persists for all following SIR commands until another ENDIR command changes the
tap_state.

By default, the ENDIR tap_state is IDLE (Run-Test/Idle). When the ENDIR tap_state is IDLE,
the SIR command leaves the TAP in the Run-Test/Idle state after the instruction is shifted into
the device. The default ENDIR tap_state of IDLE means that typical SIR instructions end with
a transition through the Run-Test/Idle state.

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 12

R

When the ENDIR tap_state is IRPAUSE (Pause-IR), the TAP state machine is left in the Pause-
IR state after the instruction is shifted into the device. When the ENDIR tap_state is IRPAUSE,
the TAP sequence for the SIR command is:

1. Start state

2. Select-DR

3. Select-IR

4. Capture-IR

5. Shift-IR and repeat to shift the specified instruction

6. Exit1-IR

7. Pause-IR

The indirect effect of the ENDIR IRPAUSE condition is that the TAP sequence for a shift
instruction that follows the SIR instruction skips the Run-Test/Idle state. When an SVF
interpreter encounters a shift command and when the starting TAP state is a Pause state, the
SVF interpreter follows a TAP state path toward the Shift state that skips the Run-Test/Idle
state. For example, the ENDIR command can change the TAP sequence when the original
sample set of SVF commands is changed to the following:

ENDIR IRPAUSE;// Following SIR commands end in the Pause-IR state
SIR 8 TDI(E8);// Shift the 0xE8 instruction value
SDR 8 TDI(34);// Shift the 0x34 data value

The corresponding TAP state sequence for the above set of SVF commands is:

1. Run-Test/Idle (start state)

2. Select-DR (beginning state transition for the SIR command)

3. Select-IR

4. Capture-IR

5. Shift-IR and repeat to shift the 0xE8 instruction value

6. Exit1-IR

7. Pause-IR (end state for the SIR command, per the ENDIR command)

8. Exit2-IR (beginning state transition for the SDR command)

9. Update-IR

10. Select-DR

11. Capture-DR

12. Shift-DR and repeat to shift the 0x34 data value

13. Exit1-DR

14. Update-DR

15. Run-Test/Idle (end state for the SDR command)

The above TAP sequence shows that the Run-Test/Idle state is skipped between the SIR and
SDR commands due to the indirect effect of the ENDIR command. This prevents the internal
operation for the loaded instruction from being performed until after the data is shifted. The
internal operation can be performed in step 15.

ENDDR

ENDDR tap_state;

where

tap_state – specifies the state in which to finish any following SDR command. The
tap_state persists for all following SDR commands until another ENDDR command
changes the tap_state.

Note: The default tap_state for ENDDR is IDLE.

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 13

R

Specifying ENDDR DRPAUSE has the same indirect effect on the TAP state transitions
following an SDR command as ENDIR IRPAUSE has for the TAP state transitions following an
SIR command. Effectively, the Run-Test/Idle state is skipped between an SDR command and
any following Shift command. See the ENDIR section for examples of this effect.

XSVF Files

XSVF format is similar in form and function to the SVF format, but without the use of global
padding instructions. XSVF files are binary, making them far more compact than ASCII SVF
files. There are equivalent XSVF instructions for most SVF instructions:

Each XSVF instruction is 1 byte in length and is followed by an argument of variable length. A
detailed description of all XSVF instructions is provided in “Appendix B: XSVF File Format.”

Table 6 gives a side-by-side comparison of the SVF and XSVF instructions to scan the
IDCODE register of an XC9572XL device in a three-device chain.

Table 5: Equivalent XSVF Instructions for Some SVF Instructions

SVF XSVF

HIR, TIR Accounted for in XSIR instruction

SIR XSIR

HDR, TDR Accounted for in XSDR instruction

SDR XSDR, XSDRB, XSDRC, XSDRE, XSDRTDO, XSDRTDOB, XSDRTDOC

RUNTEST XRUNTEST

Table 6: SVF Instructions to Scan the IDCODE Register of an XC9572XL Device in a
Three-Device Chain (XC18V02 → XC9572XL → XCV150)

SVF File XSVF File

6.1 TIR 0 ;

6.2 HIR 0 ;

6.3 TDR 0 ;

6.4 HDR 0 ;

6.5 // Validating chain...

6.6 TIR 0 ;

6.7 HIR 0 ;

6.8 TDR 0 ; XREPEAT 0x08

6.9 HDR 0 ; XRUNTEST 0x00000000

6.10
SIR 21 TDI (1fffff) SMASK
(1fffff) TDO (002021) MASK
(1c7c63) ;

XSIR 0x1D 0x1fffffff

6.11 TIR 8 TDI (ff) SMASK (FF) ;

6.12 HIR 5 TDI (1f) SMASK (1F) ;

6.13 HDR 1 TDI (00) SMASK (01) ;

6.14 TDR 1 TDI (00) SMASK (01) ;

6.15 //Loading device with 'idcode'
instruction.

6.16 SIR 8 TDI (fe) SMASK (ff) ; XSIR 0x15 0x1fffdf

6.17 XSDRSIZE 0x00000022

6.18 XTDOMASK 0x001ffffffe

http://www.xilinx.com

Understanding SVF and XSVF File Formats

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 14

R

Explanation of Table 6
6.8: XREPEAT 0x08 – Some devices (especially flash-based devices like the XC18V02
and the XC9572XL) can require more than one attempt at a given operation. The
XREPEAT instruction specifies the number of times that an instruction should be retried
before exiting with a failure.

6.9: XRUNTEST 0x00000000 – Denotes the amount of time in microseconds to remain in
the Run-Test/Idle TAP Controller state after scanning the Data Register.

6.10: XSIR 0x1D 0x1fff ffff – Specifies a shift of 0x1D (29) bits into the Instruction
Register. The scan pattern is 1_1111_1111_1111_1111_1111_1111_1111, ensuring
that all devices are in Bypass mode.

6.16: XSIR 0x15 0x1fffdf – Specifies a shift of 0x15 (21) bits into the Instruction Register.

XSVF: XSIR 0x15 0x1fffdf : 1 1111 1111 1111 1101 1111
SVF: SIR 8 TDI(fe) SMASK(ff) : 1 1111 110
TIR/HIR bypass padding : 1 1111 111 1 1111
Resulting SVF IR shift : 1 1111 1111 1111 1101 1111

XC18V02 IR <= 11111111 (Bypass)

XC9572XL IR <= 11111110 (IDCODE)

V150 IR <= 11111 (Bypass)

6.17: XSDRSIZE 0x00000022 – Indicates that the length of the next XTDO shift
instruction is 0x22 (34) bits.

6.18: XTDOMASK 0x001ffffffe – Indicates which two bits are "don’t cares."

6.25: XSDRTDO 0x0000000000 0x01f2c08126 – TDO shift out.

XSVF: XSDRTDO 01f2c08126 : 01 1111 0010 1100 0000 1000 0001 0010 0110
XTDOMASK : 00 0001 1111 1111 1111 1111 1111 1111 1110
XSVF Expected Output : xx xxx1 0010 1100 0000 1000 0001 0010 011x

SVF: SDR f9604093 : 1 1111 0010 1100 0000 1000 0001 0010 011
TDR/HDR padding : 0 0
SVF Expected Output : 01 1111 0010 1100 0000 1000 0001 0010 0110

9572XL IDCODE : x xxx1 0010 1100 0000 1000 0001 0010 011

Note: There is a minor difference between the expected TDO output specified in the XSVF file and
the expected output given in the SVF file. The first and last bits expected by the XSVF file are “don’t
cares,” while the first and last bits expected by the SVF file are 0s.

When a device is placed in Bypass mode, its Bypass register is always initialized to 0. The
XSVF file ignores these bits; the SVF file expects to see 0s. Either method works.

6.19
SDR 32 TDI (00000000) SMASK
(00000000) TDO (f9604093) MASK
(0fffffff) ;

XSDRTDO 0x0000000000
0x01f2c08126

6.20 //Check for Read/Write Protect.

6.21

6.22 SIR 8 TDI (ff) TDO (01) MASK (e3) ; XSIR 0x15 0x1fffff

6.23 //Loading device with 'idcode'
instruction.

6.24 SIR 8 TDI (fe) ; XSIR 0x15 0x1fffdf

6.25 SDR 32 TDI (00000000) TDO
(f9604093) ;

XSDRTDO 0x0000000000
0x01f2c08126

Table 6: SVF Instructions to Scan the IDCODE Register of an XC9572XL Device in a
Three-Device Chain (XC18V02 → XC9572XL → XCV150) (Continued)

SVF File XSVF File

http://www.xilinx.com

Conclusion

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 15

R

Conclusion SVF files for Xilinx devices can be generated with Xilinx programming software — either
iMPACT or JTAG Programmer. XSVF files are created with the SVF2XSVF file translator, which
is available for download with [Ref 2].

SVF files are well suited for programming FPGA, EEPROM, and CPLD devices in-system,
because they shield the user from potentially complicated programming algorithms. They are
understood by many third-party SVF players and device programmers and have become a de
facto industry standard.

XSVF files are especially useful for embedded programming solutions, where in-system
configuration data can be stored in on-board memory. XSVF files can be read and played back
on a microprocessor using the source code provided in [Ref 2].

References 1. Xilinx Software Manuals

2. XAPP058, Xilinx In-System Programming Using an Embedded Microcontroller

3. XAPP067, Using Serial Vector Format Files to Program XC9500/XL/XV Devices In-System

4. Texas Instruments IEEE Std 1149.1 (JTAG) Testability Primer:

http://focus.ti.com/lit/an/ssya002c/ssya002c.pdf

5. ASSET-Intertech Serial Vector Format Specification:

http://www.asset-intertech.com/support/svf.pdf

6. IEEE 1149.1-2001 Standard Test Access Port and Boundary-Scan Architecture:

http://www.ieee.org

Appendix A:
SVF File Format
for Xilinx
Devices

SVF Overview

This appendix describes the Serial Vector Format syntax, as it applies to Xilinx devices; only
those commands and command options that apply to Xilinx devices are described.

An SVF file is the medium for exchanging descriptions of high-level IEEE Std 1149.1 bus
operations, which consist of scan operations and movements between different stable states
on the 1149.1 state diagram (as shown in Figure 2). SVF does not explicitly describe the state
of the 1149.1 bus at every Test Clock (TCK).

An SVF file contains a set of ASCII statements. Each statement consists of a command and its
associated parameters, terminated by a semicolon. SVF is case sensitive and comments are
indicated by an exclamation point (!) or double slashes (//).

Scan data within a statement is expressed in hexadecimal and is always enclosed in
parenthesis. The scan data cannot specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex string are not considered when
determining the string length. The bit order for scan data defines the Least Significant Bit (LSB)
(right most bit) as the first bit scanned into the device for TDI and SMASK scan data, and it is
the first bit scanned out for TDO and MASK data.

For the complete Serial Vector Format specification, see [Ref 5].

SVF Commands

The following SVF Commands are supported by the Xilinx devices:

• Scan Data Register (SDR)

• Scan Instruction Register (SIR)

• RUNTEST

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp067.pdf
http://www.xilinx.com

Appendix A: SVF File Format for Xilinx Devices

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 16

R

For each of the following command descriptions:

• The parameters are mandatory.

• Optional parameters are enclosed in brackets ([]).

• Variables are shown in italics.

• Parenthesis “()”are used to indicate hexadecimal values.

• A scan operation is defined as the execution of an SIR or SDR command and any
associated header or trailer commands.

SDR, SIR, SDR length TDI (tdi) SMASK (smask), [TDO (tdo) MASK (mask)];
SIR length TDI (tdi) TDO SMASK (smask);

These commands specify a scan pattern to be applied to the target scan registers. The Scan
Data Register (SDR) command specifies a data pattern to be scanned into the target device
Data Register. The Scan Instruction Register (SIR) command specifies a data pattern to be
scanned into the target device Instruction Register.

Prior to scanning the values specified in these commands, the last defined header command
(HDR or HIR) is added to the beginning of the SDR or SIR data pattern and the last defined
trailer command (TDR or TIR) is appended to the end of the SDR or SIR data pattern.

Parameters:

Length — A 32-bit decimal integer specifying the number of bits to be scanned.

[TDI (tdi)] — (optional) The value to be scanned into the target, expressed as a hex value. If this
parameter is not present, the value of TDI to be scanned into the target device is the TDI value
specified in the previous SDR/SIR statement. If a new scan command is specified, which
changes the length of the data pattern with respect to a previous scan, the TDI parameter must
be specified, otherwise the default TDI pattern is undetermined and is an error.

[TDO (tdo)] — (optional) The test values to be compared against the actual values scanned
out of the target device, expressed as a hex string. If this parameter is not present, no
comparison is performed. If no TDO parameter is present, the MASK is not used.

[MASK (mask)] — (optional) The mask to be used when comparing TDO values against the
actual values scanned out of the target device, expressed as a hex string. A “0” in a specific
bit position indicates a “don’t care” for that position. If this parameter is not present, the mask
equals the previously specified MASK value specified for the SIR/SDR statement. If a new
scan command is specified that changes the length of the data pattern with respect to a
previous scan, the MASK parameter must be specified. Otherwise, the default MASK pattern
is undefined and is an error. If no TDO parameter is present, the MASK is not used.

[SMASK (smask)] — (optional) Specifies which TDI data is “don’t care,” expressed as a hex
string. A “0” in a specific bit position indicates that the TDI data in that bit position is a “don’t
care.” If this parameter is not present, the mask equals the previously specified SMASK
value specified for the SDR/SIR statement. If a new scan command is specified which
changes the length of the data pattern with respect to a previous scan, the SMASK
parameter must be specified. Otherwise, the default SMASK pattern used is undefined and
is an error. The SMASK is used even if the TDI parameter is not present.

Example:

SDR 27 TDI (008003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
SIR 16 TDO (ABCD);
HDR, HIR, TDR, TIR
HDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
HIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 17

R

These commands specify header and trailer bits for data and instruction shifts. Once specified,
these bits lead or follow every set of bits shifted for the SIR or SDR commands. These
commands are used to specify bits for non-target (bypassed) devices in the scan chain.

The parameters are the same as the SIR and SDR commands.

Example:

HDR 1 TDI (0);
TDR 3 TDI (0);
HIR 8 TDI (ff);
TIR 24 TDI (ffffff);

RUNTEST, RUNTEST run_count TCK;

This command forces the target IEEE Std 1149.1 bus to the Run-Test/Idle state for a specific
number of microseconds, then moves the target device bus to the IDLE state.

The RUNTEST command is typically used to control RUNBIST operations in the target device.
Some Xilinx devices require a pause between programming operations; Xilinx uses the
RUNTEST operation for this purpose in SVF files. To calculate the number of TCK cycles
required for a pause, Xilinx software assumes a TCK frequency of 1 MHz.

Parameters:

run_count—The number of TCK clock periods that the 1149.1 bus remains in the Run
Test/Idle state, expressed as a 32 bit unsigned number.

Example:

RUNTEST 1000 TCK;

Appendix B:
XSVF File
Format

This appendix includes the XSVF commands, supported instructions, their arguments, and
definitions.

XSVF Commands

The following commands describe the IEEE Std 1149.1 operations in a way that is similar to the
SVF syntax. The key difference between SVF and XSVF is that the XSVF file format affords
better data compression and, therefore, produces smaller files.

The format of the XSVF file is a 1-byte instruction followed by a variable number of arguments
(as described in the command descriptions below). The binary (hex) value for each instruction
is shown in Table 7.

Table 7: Binary Encoding of XSVF Instructions

XSVF Instruction Binary Encoding (hex)

XCOMPLETE 0x00

XTDOMASK 0x01

XSIR 0x02

XSDR 0x03

XRUNTEST 0x04

XREPEAT 0x07

XSDRSIZE 0x08

XSDRTDO 0x09

XSETSDRMASKS 0x0a

XSDRINC 0x0b

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 18

R

XTDOMASK
XTDOMASK value<“length” bits>

XTDOMASK sets the TDO mask, which masks the value of all TDO values from the SDR
instructions. Length is defined by the last XSDRSIZE instruction. XTDOMASK can be used
multiple times in the XSVF file if the TDO mask changes for various SDR instructions.

Example:

XTDOMASK 0x00000003

This example defines that TDOMask is 32 bits long and equals 0x00000003.

XREPEAT
XREPEAT times<1 byte>

XREPEAT defines the number of times that TDO is tested against the expected value before
the ISP operation is considered a failure. By default, a device can fail an XSDR instruction
32 times before the ISP operation is terminated as a failure. This instruction is optional.

The recommended times value for XSVF containing operations for XC9500/XL/XV CPLDs is
16. For operations on other Xilinx devices, the XREPEAT has no benefit and the times value
should be set to zero. See the SDR Predicted TDO Values section in [Ref 3] for details
regarding the repeat loop for XC9500/XL/XV CPLDs.

Example:

XREPEAT 0x0f

This example sets the command repeat value to 15.

XSDRB 0x0c

XSDRC 0x0d

XSDRE 0x0e

XSDRTDOB 0x0f

XSDRTDOC 0x10

XSDRTDOE 0x11

XSTATE 0x12

XENDIR 0x13

XENDDR 0x14

XSIR2 0x15

XCOMMENT 0x16

XWAIT 0x17

Table 7: Binary Encoding of XSVF Instructions (Continued)

XSVF Instruction Binary Encoding (hex)

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 19

R

XRUNTEST
XRUNTEST number<4 bytes>

When the current XENDDR (or XENDIR) state is Run-Test/Idle (see “XENDDR” and “XENDIR”
commands), XRUNTEST defines the minimum number of TCK cycles to be applied in the
Run-Test/Idle state and the minimum number of microseconds the device should be in the
Run-Test/Idle state after each visit to the SDR (or SIR) state. The single XRUNTEST number is
a specification for both the minimum number of TCK cycles and minimum number of
microseconds to wait. After transitioning from SDR (or SIR) to the Run-Test/Idle state, the
XSVF interpreter must apply the minimum number of TCK cycles and also must stay within the
Run-Test/Idle state for a minimum number of microseconds as specified by the last XRUNTEST
command. If no prior XRUNTEST command exists, then the XSVF interpreter assumes an
initial XRUNTEST number of zero.

Example:

XRUNTEST 0x00000fa0

This example specifies a minimum idle time of 4,000 microseconds and minimum TCK toggle
count of 4,000 TCK cycles.

XSIR
XSIR length<1 byte> TDIValue<“length” bits>

Go to the Shift-IR state and shift in the TDIValue. If the last XRUNTEST time is non-zero, go to
the Run-Test/Idle state and wait for the last specified XRUNTEST time. Otherwise, go to the last
specified XENDIR state.

Example:

XSIR 0x08 0xec

XSDR
XSDR TDIValue<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value from the last
XSDRTDO instruction against the TDO value that was shifted out (use the TDOMask that was
generated by the last XTDOMASK instruction). Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, perform the exception handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to the XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

Example:

XSDR 02c003fe

XSDRSIZE
XSDRSIZE length<4 bytes>

Specifies the length of all XSDR/XSDRTDO records that follow.

Example:

XSDRSIZE 0x0000001b

This example defines the length of the following XSDR/XSDRTDO arguments to be 27 bits
(4 bytes) in length.

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 20

R

XSDRTDO
TDIValue<“length” bits>

TDOExpected<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value against the
TDO value that was shifted out (use the TDOMask which was generated by the last
XTDOMASK instruction). Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, perform the exception-handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

The TDOExpected Value is used in all successive XSDR instructions until the next XSDR
instruction is given.

Example:

XSDRTDO 0x000007fe 0x00000003

For this example, go to the Shift-DR state and shift in 0x000007fe. Perform a logical AND on
the TDO shifted out and the TDOMASK from the last XTDOMASK instruction and compare this
value to 0x00000003.

XSDRB
XSDRB TDIValue<“length” bits>

Go to the shift-DR state and shift in the TDI value. Continue to stay in the shift-DR state at the end
of the operation. No comparison of TDO value with the last specified TDOExpected is performed.

XSDRC
XSDRC TDIValue<“length” bits>

Shift in the TDI value. Continue to stay in the shift-DR state at the end of the operation. No
comparison of TDO value with the last specified TDOExpected is performed.

XSDRE
XSDRE TDIValue<“length” bits>

Shift in the TDI value. At the end of the operation, go to the XENDDR state. No comparison of
TDO value with the last specified TDOExpected is performed.

XSDRTDOB
XSDRTDOB TDIValue<“length” bits> TDOExpected<“length” bits>

Go to the shift-DR state and shift in TDI value; compare the TDOExpected value against the
TDO value that was shifted out. TDOMask is not applied. All bits of TDO are compared with the
TDOExpected. Length comes from the XSDRSIZE instruction.

Because this instruction is primarily meant for FPGAs, if the TDO value does not match
TDOExpected, the programming is stopped with an error message. At the end of the
operations, continue to stay in the SHIFT-DR state.

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 21

R

XSDRTDOC
XSDRTDOC TDIValue<“length” bits>

TDOExpected<“length” bits>

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the XSDRSIZE instruction. TDOMask is not applied. All bits of TDO are
compared with the TDOExpected.

If the TDO value does not match TDOExpected, stop the programming operation with an error
message. At the end of the operation, continue to stay in the SHIFT-DR state.

XSDRTDOE
XSDRTDOE TDIValue<“length” bits>

TDOExpected<“length” bits>

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the last XSDSIZE instruction. TDOMask is not applied. All bits of TDO
are compared with the TDOExpected.

If the TDO value does not match the TDOExpected, stop the programming operations with an
error message. At the end of the operation, go to the XENDDR state.

XSETSDRMASKS
XSETSDRMASKS addressMask<“length” bits> dataMask<“length” bits>

Set SDR Address and Data Masks. The address and data mask of future XSDRINC
instructions are indicated using the XSETSDRMASKS instructions. The bits that are 1 in
addressMask indicate the address bits of the XSDR instruction; those that are 1 in dataMask
indicate the data bits of the XSDR instruction. “Length” comes from the value of the last
XSDRSize instruction.

Example:

XSETSDRMASKS 00800000 000003fc

Notes:
1. XSETSDRMASKS is no longer used in the XSVF from the iMPACT software. XSETSDRMASKS is

described here for systems that are compatible with older XSVF files.

XSDRINC
XSDRINC startAddress<“length” bits> numTimes<1 byte>
data[1]<“length2” bits> ...data[numTimes]<“length2” bits>

Do successive XSDR instructions. Length is specified by the last XSDRSIZE instruction.
Length2 is specified as the number of 1 bits in the dataMask section of the last
XSETSDRMASKS instruction.

The startAddress is the first XSDR to be read in. For numTimes iterations, increment the
address portion (indicated by the addressMask section of the last XSETSDRMASKS
instruction) by 1, and load in the next data portion into the dataMask section.

Notes:
1. An XSDRINC <start> 255 data0 data1 ... data255 actually does 256 SDR instructions since the

start address also represents an S instruction.
2. XSDRINC is no longer used in the XSVF from the iMPACT software. XSDRINC is described here for

systems that are compatible with older XSVF files.

Example:

XSDRINC 004003fe 05 ff ff ff ff ff

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 22

R

XCOMPLETE
XCOMPLETE

End of XSVF file reached.

Example:

XCOMPLETE

XSTATE
XSTATE state<1 byte>

If the state is 0x00 (Test-Logic-Reset), then force the TAP to the Test-Logic-Reset state via the
guaranteed TAP reset sequence: hold TMS High and apply a minimum of five TCK cycles. For
non-zero state values, if the TAP is already in the specified state, then do nothing. Otherwise,
transition the TAP to the next specified state.

For special states known as stable states (Test-Logic-Reset, Run-Test/Idle, Pause-DR, Pause-
IR), an XSVF interpreter follows predefined TAP state paths when the starting state is a stable
state and when the XSTATE specifies a new stable state (see the STATE command in [Ref 5]
for the TAP state paths between stable states). For non-stable states, XSTATE should specify a
state that is only one TAP state transition distance from the current TAP state to avoid
undefined TAP state paths. A sequence of multiple XSTATE commands can be issued to
transition the TAP through a specific state path.

XENDIR
XENDIR state<1 byte>

Set the XSIR end state to Run-Test/Idle (0) or Pause-IR (1). The default is Run-Test/Idle.

Table 8: Valid State Values for the XSTATE Command

State Value TAP State Description

0x00 Test-Logic-Reset

0x01 Run-Test/Idle

0x02 Select-DR

0x03 Capture-DR

0x04 Shift-DR

0x05 Exit1-DR

0x06 Pause-DR

0x07 Exit2-DR

0x08 Update-DR

0x09 Select-IR

0x0A Capture-IR

0x0B Shift-IR

0x0C Exit1-IR

0x0D Pause-IR

0x0E Exit2-IR

0x0F Update-IR

http://www.xilinx.com

Appendix B: XSVF File Format

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 23

R

XENDDR
XENDDR state<1 byte>

Set the XSDR and XSDRTDO end state to Run-Test/Idle (0) or Pause-DR (1). The default is
Run-Test/Idle.

XSIR2
XSIR2 length<2 bytes> TDIValue<"length" bits>

Go to the Shift-IR state and shift in the TDIValue. If the last XRUNTEST time is non-zero, go to
the Run-Test/Idle state and wait for the last specified XRUNTEST time. Otherwise, go to the last
specified XENDIR state. The XSIR2 command is used for instruction shifts longer than 255 bits.
Otherwise, the XSIR command is used to specify instruction shifts of 255 bits or less in length.

Example:

XSIR2 0x0008 0xec

XCOMMENT
XCOMMENT char-string-ending-in-zero

The XCOMMENT command specifies an arbitrary length character string that ends with a zero
byte.

See Figure 6 for an example of a binary XSVF file, as viewed with a HEX editor (.xsvf files
are binary and cannot be viewed with a text editor).

XWAIT
XWAIT wait_state<1 byte> end_state<1 byte> wait_time<4 bytes>

Go to the TAP wait_state, stay in the TAP wait_state for a minimum of wait_time (microseconds),
and finally go to the TAP end_state to complete the command.

Table 9: Valid State Values for the XENDIR Command

State Value TAP State Description

0x00 Run-Test/Idle

0x01 Pause-IR

Table 10: Valid State Values for the XENDDR Command

State Value TAP State Description

0x00 Run-Test/Idle

0x01 Pause-DR

http://www.xilinx.com

Appendix C: Creating an SVF with JTAG Programmer 3.1i or XPLA Programmer for Legacy Applications

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 24

R

X-Ref Target - Figure 6

Appendix C:
Creating an SVF
with JTAG
Programmer
3.1i or XPLA
Programmer for
Legacy
Applications

A few legacy applications can require the SVF from the classic JTAG Programmer 3.1i or XPLA
Programmer software.

JTAG Programmer 3.1i and XPLA Programmer software are available for download from the
ISE Classics software webpage at http://www.xilinx.com/ise/logic_design_prod/classics.htm.
The software is available with the ISE WebPACK 3.3WP8.1 release. Choose the programmer
module that corresponds to the target device.

See the JTAG Programmer Guide in the 3.x Software Manuals for instructions on generating
SVF files.

Appendix D:
Using the
Stand-Alone
SVF2XSVF
Utility to
Translate SVF
to XSVF

For most applications, the iMPACT software directly generates the necessary XSVF file. For a
few applications that require customized XSVF files, a translation tool (SVF2XSVF) can be
used to convert custom SVF files to the XSVF format.

The SVF2XSVF tool is provided with the downloadable xapp058.zip associated with [Ref 2].
Both are available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=113970&license=RefDesLicense

The SVF2XSVF tool can take custom-created SVF or the modified SVF, that originated from
the iMPACT software, as input. The SVF2XSVF output is the XSVF formatted equivalent of the
SVF input file.

Note: The SVF2XSVF tool cannot translate all forms of SVF input. Only SVF commands that can be
represented by the supported XSVF commands can be translated correctly.

To create the XSVF file, first download the translator and unzip it to a directory. Use this syntax
to translate an SVF file to an equivalent XSVF file:

svf2xsvf -i <input_file.svf> -o <output_file.xsvf>
-a <text_xsvf.txt>

where:

-i designates the input file

-o designates the output file

-a designates an ASCII version of the XSVF file (optional)

The optional -a command-line switch provides a human-readable version of the XSVF that is
useful for interpreting the binary XSVF code.

Figure 6: A Binary XSVF File, as Viewed with a Hex Editor

07 08 04 00 00 00 00 02 1D 1F FF FF FF 02 15 1F

FF DF 08 00 00 00 22 01 00 1F FF FF FF 09 00 00

00 00 00 01 F2 C0 81 26 02 15 1F FF FF 02 15 1F

FF DF 09 00 00 00 00 00 01 F2 C0 81 26 02 0D 1F

FF D2 15 1F FF FF 08 00 00 00 03 01 00 09 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

XAPP503_03_030102

http://www.xilinx.com/ise/logic_design_prod/classics.htm
http://www.xilinx.com/ise/logic_design_prod/classics.htm
http://www.xilinx.com/support/sw_manuals/3_1i/index.htm
https://secure.xilinx.com/webreg/clickthrough.do?cid=113970&license=RefDesLicense
http://www.xilinx.com

Revision History

XAPP503 (v2.1) August 17, 2009 www.xilinx.com 25

R

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Revision

04/17/02 1.0 Xilinx initial release.

08/23/07 2.0 • Added the XSVF commands XSIR2, XCOMMENT, and XWAIT to
“XSVF Commands,” page 17.

• Added state values (Table 8, page 22) for the XSTATE command.
• Added “Special SVF Commands and their TAP State Sequences,”

page 11.
• Updated the software flows in “Creating SVF and XSVF Files,” page 1

to ISE iMPACT 9.2i.
• Added “Testing SVF and XSVF Files,” page 2.

08/17/09 2.1 • Updated instructions for generating SVF and interpreting the
parameters in “RUNTEST,” page 5 and “XRUNTEST,” page 19
sections.

http://www.xilinx.com

	SVF and XSVF File Formats for Xilinx Devices
	Summary
	Introduction
	SVF - General
	XSVF - General

	Creating SVF and XSVF Files
	Creating an SVF or XSVF File with iMPACT Software
	Creating an SVF or XSVF File with iMPACT Command Line

	Testing SVF and XSVF Files
	Understanding SVF and XSVF File Formats
	BSDL Files and JTAG
	Basic SVF Commands
	Scan Instruction Register (SIR)
	Scan Data Register (SDR)
	RUNTEST
	STATE

	Specifying JTAG Shift Operations in SVF for Single-Device Chains
	Explanation of Table 2

	Specifying JTAG Shift Operations in SVF for Multiple Device Chains
	Explanation of Table 3
	SVF Header and Trailer Instructions
	Explanation of Table 4

	Special SVF Commands and their TAP State Sequences
	ENDIR
	ENDDR

	XSVF Files
	Explanation of Table 6

	Conclusion
	References
	Appendix A: SVF File Format for Xilinx Devices
	SVF Overview
	SVF Commands
	SDR, SIR, SDR length TDI (tdi) SMASK (smask), [TDO (tdo) MASK (mask)]; SIR length TDI (tdi) TDO SMASK (smask);
	RUNTEST, RUNTEST run_count TCK;

	Appendix B: XSVF File Format
	XSVF Commands
	XTDOMASK
	XREPEAT
	XRUNTEST
	XSIR
	XSDR
	XSDRSIZE
	XSDRTDO
	XSDRB
	XSDRC
	XSDRE
	XSDRTDOB
	XSDRTDOC
	XSDRTDOE
	XSETSDRMASKS
	XSDRINC
	XCOMPLETE
	XSTATE
	XENDIR
	XENDDR
	XSIR2
	XCOMMENT
	XWAIT

	Appendix C: Creating an SVF with JTAG Programmer 3.1i or XPLA Programmer for Legacy Applications
	Appendix D: Using the Stand-Alone SVF2XSVF Utility to Translate SVF to XSVF
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

