
Future Technology Devices International Limited (FTDI)

Unit 1,2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2009 Future Technology Devices International Limited

Future Technology Devices International Ltd.

Application Note AN_129

Interfacing FT2232H Hi-Speed Devices

to a JTAG TAP

Document Reference No.: FT000183

Version 1.0

Issue Date: 2009-10-20

This application note describes the use of the FTDI FT2232H MPSSE to emulate a JTAG interface.

 Copyright © 2009 Future Technology Devices International Limited 1

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Table of Contents

1 Introduction.. 2

1.1 FTDI MPSSE Introduction ... 2

1.2 JTAG background ... 2

1.2.1 JTAG signalling.. 4

2 Example Circuit ... 5

3 Example Program .. 6

3.1 Code Listing ... 6

3.2 Program Output ... 11

4 Summary .. 12

5 Acronyms and Abbreviations ... 13

6 Contact Information... 14

Appendix A - References .. 16

Appendix B - List of Figures and Tables .. 17

Appendix C - Revision History .. 18

Revision Record Sheet .. 19

 Copyright © 2009 Future Technology Devices International Limited 2

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

1 Introduction

The FT2232H and FT4232H are the FTDI’s first USB 2.0 Hi-Speed (480Mbits/s) USB to UART/FIFO ICs.

They also have the capability of being configured in a variety of serial interfaces using the internal MPSSE

(Multi-Protocol Synchronous Serial Engine). The FT2232H device has two independent ports, both of

which can be configured to use the MPSSE while only Channel A and B of FT4232H can be configured to

use the MPSSE.

Using the MPSSE can simplify the synchronous serial protocol (USB to SPI, I2C, JTAG, etc.) design. This

application note focuses on the hardware and software required to emulate a connection to a JTAG TAP

test chain using the FT2232H. Users can use the example schematic and functional software code to

begin their design. Note that software code listing is provided as an illustration only and not supported by

FTDI.

The application example also duplicates the JTAG timing expected to be seen by the SN74BCT8244A to

prove the function.

1.1 FTDI MPSSE Introduction

The Multi-Protocol Synchronous Serial Engine (MPSSE) is a feature of certain FTDI client ICs that allow

emulation of several synchronous serial protocols including SPI, I2C and JTAG.

A single MPSSE is available in the FT2232D, a Full-Speed USB 2.0 client device. The FT2232D is capable

of synchronous serial communication up to 6Mbps.

As noted above, two MPSSEs are available in the FT2232H and the FT4232H, both Hi-Speed USB 2.0

client devices. Each of the engines is capable of synchronous serial communications up to 30Mbps. The

MPSSE in the FT2232H and FT4232H provide new commands for additional clock modes and is used in

CPU interface and synchronous FIFO (parallel) modes.

This application note describes the use of the MPSSE to emulate a JTAG interface. There are multiple

references to AN_108 - Command Processor for MPSSE and MCU Host Bus Emulation Modes, also

available from the FTDI Web Site.

1.2 JTAG background

Today’s electronic circuits consist of numerous complex integrated circuits. A typical embedded system

can contain multiple CPUs, programmable devices, memory, etc. With such complexity, it is often

impossible to directly probe and test the entire functionality of a given design.

In 1990, the Institute of Electrical and Electronics Engineers (IEEE) ratified the standard 1149.1, which

was the work of the Joint Test Action Group (JTAG). This standard defines a common means of

implementing boundary-scan test functionality in an integrated circuit. It allows devices from different

vendors to be present in a common chain to provide access to all of the Input and Output (I/O) pins.

Commonly used with additional facilities, such as a bed-of-nails device, it is possible to perform functional

and manufacturing tests on an entire circuit. It is common to refer to the IEEE 1149.1 standard as the

"JTAG standard". Many published documents and articles use these terms interchangeably.

The IEEE 1149.1 was most recently updated in 2001. Additional IEEE standards reference 1149.1 while

providing expanded features such as analog circuit tests in addition to digital circuit tests. These

additional standards are 1149.4 - Analog Boundary Scan, 1149.6 - Advanced I/O and 1532 - In System

Configuration. The latter is commonly used for programming memory devices and configuring

programmable digital logic such as FPGAs and CPLDs.

JTAG (IEEE 1149.1) defines a synchronous state machine consisting of 16 states as noted in Figure 1.1.

 Copyright © 2009 Future Technology Devices International Limited 3

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Figure 1.1 – IEEE 1149.1 (JTAG) state machine

The boundary scan circuitry is accessed through a Test Access Port (TAP) controller with four dedicated

and mandatory I/O signals: Test Clock (TCK) - the input clock for the state machine, Test Mode Select

(TMS) - the input used to navigate through the state machine, Test Data In (TDI) - the input containing

serial data or instructions and Test Data Out (TDO) - the output containing serial data or instructions. An

optional fifth signal, Test Reset (TRST#) can be implemented on a TAP. TRST# is an asynchronous reset

that forces the state machine immediately to the Test-Logic-Reset state. It is important to note that

even without TRST#, the state machine can always be forced to Test-Logic-Reset from any other state by

holding TMS high for a maximum of five clock cycles.

Figure 1.2 - IEEE 1149.1 (JTAG) TAP chain

As shown in Figure 1.2, devices in a JTAG chain share TCK and TMS. This forces all devices on a single

chain to be in the same state within the state machine. The JTAG master controller connects its data

output to TDI. Each device in the chain connects its TDI to the previous TDO. Finally, the last device in

the chain connects its TDO to the controllers data input. Other connection schemes are possible;

however, they are beyond the scope of this application note.

 Copyright © 2009 Future Technology Devices International Limited 4

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

1.2.1 JTAG signalling

The IEEE 1149.1 specification identifies state transitions based on the state of TMS at the rising edge of

TCK. Loading of instruction and data stimulus registers within the TAP as well as data shifting into TDI

and out of TDO are also performed on the rising edge of TCK. The falling edge of TCK is used to latch

data responses into the available registers in the boundary scan device. The registers within each JTAG

TAP have different widths. It is important to maintain the level of TMS while data is shifted into and/or

out of the registers.

The SN74BCT8244A contains the following JTAG TAP registers:

Register Size

Instruction 8-bit

Boundary-Scan 18-bit

Boundary-Scan Control 2-bit

Bypass 1-bit

Table 1.1 - SN74BCT8244 JTAG TAP registers

If there are multiple devices in a TAP chain each register type can be of a different length for each of the

devices. The JTAG master control program must account for these. There are six states throughout the

JTAG state diagram that are designed to accommodate different devices with different register lengths.

Referring to Figure 1.1, these states are: Test-Logic-Reset, Run-Test-Idle, Shift-DR, Pause-DR, Shift-IR

and Pause-IR. Holding TMS at the appropriate value holds the state machine in the required state until

valid bits are clocked to all registers for all devices in the TAP chain.

 Copyright © 2009 Future Technology Devices International Limited 5

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

2 Example Circuit

A simple integrated circuit with a JTAG TAP is the Texas Instruments SN74BCT8244A (www.ti.com). This

device consists of an octal buffer with two output enable pins and a JTAG TAP to provide the boundary

scan capability. For this example, the FT2232H Mini Module will be used as shown in the circuit excerpt

in Figure 2.1. USB and power connection details can be found in the FT2232H Datasheet, FT2232H Mini-

Module Datasheet and DLP-USB1232H Datasheet.

Figure 2.1 - Example circuit

When using the MPSSE, four pins of the FT2232H are defined for the synchronous serial interface. In

addition to the FT2232H itself, two modules that utilize the FT2232H are also listed along with the

corresponding pins.

JTAG Function
FT2232H IC Port A

Pin Number

FT2232H Mini Module

Pin Number

DLP-USB1232H

Pin Number

TCK (output) 16 CN2-7 18

TDI (output) 17 CN2-10 16

TDO (input) 18 CN2-9 2

TMS (output) 19 CN2-12 5

Table 2.1 - FT2232H JTAG pin assignments

TDI and TDO appear to be reversed; however, these are the correct signal names as referenced by the

JTAG TAP. The input pins of the SN74BCT8244A are internally pulled high. For this example circuit, they

are left open. This fixes the input values at logic "1" and forces the outputs into a high-impedance state.

For this application note, Port A of the FT2232H is connected to the SN74BCT8244A. With the FT2232H

and FT4232H, Port B could be used instead. In conjunction with the Port B pin assignments, the

application program (see next section) would also require modification to access the MPSSE for port B.

TRST# is supported on the SN74BCT8244A; however, it requires an input of 10V on the TMS pin. To

simplify the circuit, TRST# is not implemented in this example. Note that on a TAP with a standard I/O

voltage, one of the unused GPIO pins of the FT2232H could be used for this function.

The FT2232H requires a VCCIO of 3.3V, although its inputs are 5V tolerant. This allows a direct

connection with the 5V SN74BCT8244A. Inspection of the two datasheets will show the logic high and

low input thresholds are indeed satisfied as well as maximum voltages not exceeded.

1A1

1A2

1A3

1A4

2A1

2A2

2A3

2A4

1Y1

1Y2

1Y3

1Y4

2Y1

2Y2

2Y3

2Y4

EN1

EN2

TCK

TMS

TDI

TDO

SCAN

‘BCT8244A

DI/TDO

DO/TDI

CS/TMS

SK/TCK

FT2232H

(partial)

18

17

19

16

11

14

12

13

F
lo
a
ti
n
g
 I
n
p
u
ts

P
u
lle
d
 H
ig
h

 Copyright © 2009 Future Technology Devices International Limited 6

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

3 Example Program

The timing example on Page 14 of the Texas Instruments SN74BCT8244A datasheet is duplicated and the

resultant data observed. This example consists of 25 cycles of TCK. All states of the JTAG TAP controller

are utilized, with the exception of Pause-IR, Exit2-IR, Pause-DR and Exit2-DR. These unused states are

typically only needed when a device has a longer JTAG chain, or very large Boundary-Scan registers.

This example program utilizes the FTDI D2XX device driver. It is written in a linear fashion to

demonstrate the actual bytes being sent to the MPSSE and the resultant data read from the MPSSE.

There are sections where reading and writing the data pins (TDI & TDO) must be combined with

manipulating the control pin (TMS) in order to change states. The resultant data must be carefully

observed and acted upon. Data may need shifted into a format that is more useful to the programmer.

In addition to duplicating the timing example, the Hi-Speed FTDI chips (FT2232H and FT4232H) support

generation of TCK without clocking any data into our out of the MPSSE. This is demonstrated toward the

end of the program listing. The code listing is followed by scope plots of the expected timing.

3.1 Code Listing

The example program is written in C++ and compiled in Microsoft® Visual Studio 2008 as a console

application.

// AN_129_Hi-Speed_JTAG_with_MPSSE.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include "ftd2xx.h"

int _tmain(int argc, _TCHAR* argv[])
{
 FT_HANDLE ftHandle; // Handle of the FTDI device
 FT_STATUS ftStatus; // Result of each D2XX call

 DWORD dwNumDevs; // The number of devices
 unsigned int uiDevIndex = 0xF; // The device in the list that is used

 BYTE byOutputBuffer[1024]; // Buffer to hold MPSSE commands and data to be sent to the FT2232H
 BYTE byInputBuffer[1024]; // Buffer to hold data read from the FT2232H

 DWORD dwCount = 0; // General loop index
 DWORD dwNumBytesToSend = 0; // Index to the output buffer
 DWORD dwNumBytesSent = 0; // Count of actual bytes sent - used with FT_Write
 DWORD dwNumBytesToRead = 0; // Number of bytes available to read in the driver's input buffer
 DWORD dwNumBytesRead = 0; // Count of actual bytes read - used with FT_Read

 DWORD dwClockDivisor = 0x05DB; // Value of clock divisor, SCL Frequency = 60/((1+0x05DB)*2) (MHz) = 20khz

 // Does an FTDI device exist?

 printf("Checking for FTDI devices...\n");

 ftStatus = FT_CreateDeviceInfoList(&dwNumDevs);
 // Get the number of FTDI devices
 if (ftStatus != FT_OK) // Did the command execute OK?
 {
 printf("Error in getting the number of devices\n");
 return 1; // Exit with error
 }

 if (dwNumDevs < 1) // Exit if we don't see any
 {
 printf("There are no FTDI devices installed\n");
 return 1; // Exist with error
 }

 printf("%d FTDI devices found - the count includes individual ports on a single chip\n", dwNumDevs);

 // Open the port - For this application note, assume the first device is a FT2232H or FT4232H
 // Further checks can be made against the device descriptions, locations, serial numbers, etc.
 // before opening the port.

 printf("\nAssume first device has the MPSSE and open it...\n");

 ftStatus = FT_Open(0, &ftHandle);
 if (ftStatus != FT_OK)
 {
 printf("Open Failed with error %d\n", ftStatus);
 return 1; // Exit with error
 }

 // Configure port parameters

 printf("\nConfiguring port for MPSSE use...\n");

 ftStatus |= FT_ResetDevice(ftHandle);

 Copyright © 2009 Future Technology Devices International Limited 7

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

 //Reset USB device

 //Purge USB receive buffer first by reading out all old data from FT2232H receive buffer
 ftStatus |= FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);
 // Get the number of bytes in the FT2232H receive buffer
 if ((ftStatus == FT_OK) && (dwNumBytesToRead > 0))
 FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);
 //Read out the data from FT2232H receive buffer
 ftStatus |= FT_SetUSBParameters(ftHandle, 65536, 65535);
 //Set USB request transfer sizes to 64K
 ftStatus |= FT_SetChars(ftHandle, false, 0, false, 0);
 //Disable event and error characters
 ftStatus |= FT_SetTimeouts(ftHandle, 0, 5000);
 //Sets the read and write timeouts in milliseconds
 ftStatus |= FT_SetLatencyTimer(ftHandle, 16);
 //Set the latency timer (default is 16mS)
 ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x00);
 //Reset controller
 ftStatus |= FT_SetBitMode(ftHandle, 0x0, 0x02);
 //Enable MPSSE mode
 if (ftStatus != FT_OK)
 {
 printf("Error in initializing the MPSSE %d\n", ftStatus);
 FT_Close(ftHandle);
 return 1; // Exit with error
 }

 Sleep(50); // Wait for all the USB stuff to complete and work

 // ---
 // At this point, the MPSSE is ready for commands
 // ---
 // ---
 // Synchronize the MPSSE by sending a bogus opcode (0xAA),
 // The MPSSE will respond with "Bad Command" (0xFA) followed by
 // the bogus opcode itself.
 // ---

 byOutputBuffer[dwNumBytesToSend++] = 0xAA;//'\xAA';
 //Add bogus command ‘xAA’ to the queue
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the BAD commands
 dwNumBytesToSend = 0; // Reset output buffer pointer
 do
 {
 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);
 // Get the number of bytes in the device input buffer
 } while ((dwNumBytesToRead == 0) && (ftStatus == FT_OK));
 //or Timeout

 bool bCommandEchod = false;

 ftStatus = FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);
 //Read out the data from input buffer
 for (dwCount = 0; dwCount < dwNumBytesRead - 1; dwCount++)
 //Check if Bad command and echo command received
 {
 if ((byInputBuffer[dwCount] == 0xFA) && (byInputBuffer[dwCount+1] == 0xAA))
 {
 bCommandEchod = true;
 break;
 }
 }
 if (bCommandEchod == false)
 {
 printf("Error in synchronizing the MPSSE\n");
 FT_Close(ftHandle);
 return 1; // Exit with error
 }

 // ---
 // Configure the MPSSE settings for JTAG
 // Multple commands can be sent to the MPSSE with one FT_Write
 // ---

 dwNumBytesToSend = 0; // Start with a fresh index

// Set up the Hi-Speed specific commands for the FTx232H

 byOutputBuffer[dwNumBytesToSend++] = 0x8A;
 // Use 60MHz master clock (disable divide by 5)
 byOutputBuffer[dwNumBytesToSend++] = 0x97;
 // Turn off adaptive clocking (may be needed for ARM)
 byOutputBuffer[dwNumBytesToSend++] = 0x8D;
 // Disable three-phase clocking
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the HS-specific commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

// Set initial states of the MPSSE interface - low byte, both pin directions and output values
 // Pin name Signal Direction Config Initial State Config
 // ADBUS0 TCK output 1 low 0
 // ADBUS1 TDI output 1 low 0
 // ADBUS2 TDO input 0 0
 // ADBUS3 TMS output 1 high 1
 // ADBUS4 GPIOL0 input 0 0
 // ADBUS5 GPIOL1 input 0 0
 // ADBUS6 GPIOL2 input 0 0
 // ADBUS7 GPIOL3 input 0 0

 byOutputBuffer[dwNumBytesToSend++] = 0x80;
 // Set data bits low-byte of MPSSE port

 Copyright © 2009 Future Technology Devices International Limited 8

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

 byOutputBuffer[dwNumBytesToSend++] = 0x08;
 // Initial state config above
 byOutputBuffer[dwNumBytesToSend++] = 0x0B;
 // Direction config above

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the low GPIO config commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Set initial states of the MPSSE interface - high byte, both pin directions and output values
 // Pin name Signal Direction Config Initial State Config
 // ACBUS0 GPIOH0 input 0 0
 // ACBUS1 GPIOH1 input 0 0
 // ACBUS2 GPIOH2 input 0 0
 // ACBUS3 GPIOH3 input 0 0
 // ACBUS4 GPIOH4 input 0 0
 // ACBUS5 GPIOH5 input 0 0
 // ACBUS6 GPIOH6 input 0 0
 // ACBUS7 GPIOH7 input 0 0

 byOutputBuffer[dwNumBytesToSend++] = 0x82;
 // Set data bits low-byte of MPSSE port
 byOutputBuffer[dwNumBytesToSend++] = 0x00;
 // Initial state config above
 byOutputBuffer[dwNumBytesToSend++] = 0x00;
 // Direction config above

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the high GPIO config commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Set TCK frequency
 // TCK = 60MHz /((1 + [(1 +0xValueH*256) OR 0xValueL])*2)

 byOutputBuffer[dwNumBytesToSend++] = '\x86';
 //Command to set clock divisor
 byOutputBuffer[dwNumBytesToSend++] = dwClockDivisor & 0xFF;
 //Set 0xValueL of clock divisor
 byOutputBuffer[dwNumBytesToSend++] = (dwClockDivisor >> 8) & 0xFF;
 //Set 0xValueH of clock divisor
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the clock divisor commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Disable internal loop-back

 byOutputBuffer[dwNumBytesToSend++] = 0x85;
 // Disable loopback

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the loopback command

 dwNumBytesToSend = 0; // Reset output buffer pointer

// Navigage TMS through Test-Logic-Reset -> Run-Test-Idle -> Select-DR-Scan -> Select-IR-Scan
 // TMS=1 TMS=0 TMS=1 TMS=1

 byOutputBuffer[dwNumBytesToSend++] = 0x4B;
 // Don't read data in Test-Logic-Reset, Run-Test-Idle, Select-DR-Scan, Select-IR-Scan
 byOutputBuffer[dwNumBytesToSend++] = 0x05;
 // Number of clock pulses = Length + 1 (6 clocks here)
 byOutputBuffer[dwNumBytesToSend++] = 0x0D;
 // Data is shifted LSB first, so the TMS pattern is 101100
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

// TMS is currently low. State machine is in Shift-IR, so now use the TDI/TDO command to shift 1's out TDI/DO while reading

TDO/DI
 // Although 8 bits need shifted in, only 7 are clocked here. The 8th will be in conjunciton with a TMS command, coming next

 byOutputBuffer[dwNumBytesToSend++] = 0x3B;
 // Clock data out throuth states Capture-IR, Shift-IR and Exit-IR, read back result
 byOutputBuffer[dwNumBytesToSend++] = 0x06;
 // Number of clock pulses = Length + 1 (7 clocks here)
 byOutputBuffer[dwNumBytesToSend++] = 0xFF;
 // Shift out 1111111 (ignore last bit)
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Here is the TMS command for one clock. Data is also shifted in.

 byOutputBuffer[dwNumBytesToSend++] = 0x6B;
 // Clock out TMS, Read one bit.
 byOutputBuffer[dwNumBytesToSend++] = 0x00;
 // Number of clock pulses = Length + 0 (1 clock here)
 byOutputBuffer[dwNumBytesToSend++] = 0x83;
 // Data is shifted LSB first, so TMS becomes 1. Also, bit 7 is shifted into TDI/DO, also a 1
 // The 1 in bit 1 will leave TMS high for the next commands.
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);

 Copyright © 2009 Future Technology Devices International Limited 9

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

 // Navigage TMS from Exit-IR through Update-IR -> Select-DR-Scan -> Capture-DR
 // TMS=1 TMS=1 TMS=0

 byOutputBuffer[dwNumBytesToSend++] = 0x4B;
 // Don't read data in Update-IR -> Select-DR-Scan -> Capture-DR
 byOutputBuffer[dwNumBytesToSend++] = 0x03;
 // Number of clock pulses = Length + 1 (4 clocks here)
 byOutputBuffer[dwNumBytesToSend++] = 0x83;
 // Data is shifted LSB first, so the TMS pattern is 110
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

// TMS is currently low. State machine is in Shift-DR, so now use the TDI/TDO command to shift 101 out TDI/DO while reading
TDO/DI
 // Although 3 bits need shifted in, only 2 are clocked here. The 3rd will be in conjunciton with a TMS command, coming next

 byOutputBuffer[dwNumBytesToSend++] = 0x3B;
 // Clock data out throuth states Shift-DR and Exit-DR.
 byOutputBuffer[dwNumBytesToSend++] = 0x01;
 // Number of clock pulses = Length + 1 (2 clocks here)
 byOutputBuffer[dwNumBytesToSend++] = 0x01;
 // Shift out 101 (ignore last bit)
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

// Here is the TMS command for one clock. Data is also shifted in.

 byOutputBuffer[dwNumBytesToSend++] = 0x6B;
 // Clock out TMS, Read one bit.
 byOutputBuffer[dwNumBytesToSend++] = 0x00;
 // Number of clock pulses = Length + 0 (1 clock here)
 byOutputBuffer[dwNumBytesToSend++] = 0x83;
 // Data is shifted LSB first, so TMS becomes 1. Also, bit 7 is shifted into TDI/DO, also a 1
 // The 1 in bit 1 will leave TMS high for the next commands.
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

// Navigage TMS through Update-DR -> Select-DR-Scan -> Select-IR-Scan -> Test Logic Reset
 // TMS=1 TMS=1 TMS=1 TMS=1

 byOutputBuffer[dwNumBytesToSend++] = 0x4B;
 // Don't read data in Update-DR -> Select-DR-Scan -> Select-IR-Scan -> Test Logic Reset
 byOutputBuffer[dwNumBytesToSend++] = 0x03;
 // Number of clock pulses = Length + 1 (4 clocks here)
 byOutputBuffer[dwNumBytesToSend++] = 0xFF;
 // Data is shifted LSB first, so the TMS pattern is 101100
 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the TMS command
 dwNumBytesToSend = 0; // Reset output buffer pointer

 do
 {
 ftStatus = FT_GetQueueStatus(ftHandle, &dwNumBytesToRead);
 // Get the number of bytes in the device input buffer
 } while ((dwNumBytesToRead == 0) && (ftStatus == FT_OK));
 //or Timeout

 ftStatus = FT_Read(ftHandle, &byInputBuffer, dwNumBytesToRead, &dwNumBytesRead);
 //Read out the data from input buffer

printf("\n");
 printf("TI SN74BCT8244A IR default value is 0x81\n");
 printf("The value scanned by the FT2232H is 0x%x\n", byInputBuffer[dwNumBytesRead - 3]);
 printf("\n");
 printf("TI SN74BCT8244A DR bypass expected data is 00000010 = 0x2\n");
 printf(" The value scanned by the FT2232H = 0x%x\n", (byInputBuffer[dwNumBytesRead-1] >> 5));

 // Generate a clock while in Test-Logic-Reset
 // This will not do anything with the TAP in the Test-Logic-Reset state,
 // but will demonstrate generation of clocks without any data transfer

 byOutputBuffer[dwNumBytesToSend++] = 0x8F;
 // Generate clock pulses
 byOutputBuffer[dwNumBytesToSend++] = 0x02;
 // (0x0002 + 1) * 8 = 24 clocks
 byOutputBuffer[dwNumBytesToSend++] = 0x00;
 //

 ftStatus = FT_Write(ftHandle, byOutputBuffer, dwNumBytesToSend, &dwNumBytesSent);
 // Send off the clock commands

 dwNumBytesToSend = 0; // Reset output buffer pointer

 /*
 // ---
 // Start closing everything down
 // ---
 */

 printf("\nJTAG program executed successfully.\n");
 printf("Press <Enter> to continue\n");
 getchar(); // wait for a carriage return

 Copyright © 2009 Future Technology Devices International Limited 10

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

 FT_Close(ftHandle); // Close the port

 return 0; // Exit with success
}

 Copyright © 2009 Future Technology Devices International Limited 11

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

3.2 Program Output

The Texas Instruments example timing diagram is duplicated with an oscilloscope screen image:

Figure 3.1 - SN74BCT8244A timing example observation

Note that TDI/DO is always driven, and TDO/DI is pulled high by the SN74BCT8244A. The Texas

Instruments datasheet indicates several areas of “don’t care” which end up as logic “1” in this screen

shot.

TCK is generated without any activity on TDI, TDO or TMS.

Figure 3.2 - TCK generation

This is useful to run an internal test within a particular TAP. There are several options available which

include a specific number of pulses, or to pulse until a GPIO signal is set to a known value. In this

example, 24 clocks are generated.

 Copyright © 2009 Future Technology Devices International Limited 12

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

4 Summary

The circuit and application program described in this application note demonstrate the basics of

establishing communication with the MPSSE, configured for JTAG, on the FT2232H. In particular, the

timing diagram shown in the SN74BCT8244A datasheet is duplicated through an example program

utilizing the FTDI D2XX device driver to prove a known result.

 Copyright © 2009 Future Technology Devices International Limited 13

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

5 Acronyms and Abbreviations

Terms Description

MPSSE

Multi-Protocol Synchronous Serial Engine – a state machine in certain FTDI USB

client devices that can be used to emulate serial protocols such as SPI, I2C and

JTAG

JTAG

Joint Test Action Group – An industry organization responsible for generating a

standard for in-circuit testing of complex circuits. JTAG is also commonly used in

place of the full specification name IEEE 1149.1

IEEE Institute of Electrical and Electronics Engineers

IEEE 1149.1
Commonly referred to as “JTAG” – Industry standard describing building blocks

and software used to provide in-circuit test capabilities

Table 5.1 Acronyms and Abbreviations

 Copyright © 2009 Future Technology Devices International Limited 14

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

6 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited

Unit 1,2 Seaward Place, Centurion Business Park

Glasgow G41 1HH

United Kingdom

Tel: +44 (0) 141 429 2777

Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com

E-mail (Support) support1@ftdichip.com

E-mail (General Enquiries) admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)

2F, No. 516, Sec. 1, NeiHu Road

Taipei 114

Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570

Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com

E-mail (Support) tw.support1@ftdichip.com

E-mail (General Enquiries) tw.admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)

7235 NW Evergreen Parkway, Suite 600

Hillsboro, OR 97123-5803

USA

Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com

E-Mail (Support) us.support@ftdichip.com

E-Mail (General Enquiries) us.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)

Room 408, 317 Xianxia Road,

Shanghai, 200051

China

Tel: +86 21 62351596

Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com

E-mail (Support) cn.support@ftdichip.com

E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

 Copyright © 2009 Future Technology Devices International Limited 15

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and

sales representative(s) in your country.

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the information contained in, or the

product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of
the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any

particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages

howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is

not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to

result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to

use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International

Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Number: SC136640

 Copyright © 2009 Future Technology Devices International Limited 16

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Appendix A - References

• FT2232H Datasheet, Version 2.06, © 2009, FTDI Ltd.

• AN_108 Command Processor For MPSSE and MCU Host Bus Emulation Modes, Version 1.2, ©

2009, FTDI Ltd.

• Texas Instruments SN72BCT8244A Datasheet, © 1990, 1996

• The Boundary-Scan Handbook, 3rd Ed., Kenneth P. Parker, © 2003, Kluwer Academic Publishers,

ISBN 1-4020-7496-4

 Copyright © 2009 Future Technology Devices International Limited 17

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Appendix B - List of Figures and Tables

List of Figures

Figure 1.1 – IEEE 1149.1 (JTAG) state machine ... 3

Figure 1.2 - IEEE 1149.1 (JTAG) TAP chain... 3

Figure 2.1 - Example circuit ... 5

Figure 3.1 - SN74BCT8244A timing example observation .. 11

Figure 3.2 - TCK generation ... 11

List of Tables

Table 1.1 - SN74BCT8244 JTAG TAP registers ... 4

Table 2.1 - FT2232H JTAG pin assignments .. 5

Table 5.1 Acronyms and Abbreviations ... 13

 Copyright © 2009 Future Technology Devices International Limited 18

Document Reference No.: FT000183
Interfacing FT2232H Hi-Speed Devices to a JTAG TAP Application Note AN_129

Version 1.0
Clearance No.: FTDI# 114

Appendix C - Revision History

Revision History

Version 1.0 Initial Release 20th October, 2009

