
’

Summary This application note describes a method to configure Xilinx FPGAs, such as Spartan-IIETM
and Spartan-3TM FPGAs, using inexpensive small Serial Peripheral Interface (SPI) flash
memories. These devices are physically small with low-pin count, small outline packages.
Using a CoolRunner-IITM CPLD, the SPI bus and protocol are converted to those which are
used by the FPGA for configuration, specifically Master Serial configuration.

Introduction SPI Flash based memories are inexpensive and are available in footprint-compatible, low-pin
count, small outline packages that could reduce system cost if there was a way to interface the
SPI bus and protocol to the configuration pins of the FPGA. Using a CoolRunner-II CPLD, this
is now possible. The CPLD implements a simple state machine to read the SPI Flash memory
using the SPI protocol, and then routes the serial data stream to the DIN pin of the FPGA. The
cost of the CPLD is offset by the cost savings realized by using the SPI memory. Furthermore,
the SPI Flash memory is available after configuration, offering cost-effective, random
accessible, non-volatile data storage to the FPGA.
This application note discusses the design and provides reference source code, found at the
end of this document. The CPLD source code contains commented VHDL generics that allow
the designer to easily configure the design to implement the specific instruction set for several
manufacturers of this type of memory, such as STMicroelectronicsTM, AtmelTM, NexFlashTM,
PMCTM and SSTTM. By default, the CPLD code interfaces to an STMicroelectronics M25P20
memory and assumes only one memory device is used. The source code will need modification
to support multiple memory devices. The CPLD source code has been tested with the M25P20
implemented in hardware.
Software utilities are included in the downloadable zip file that allow the designer to perform
Program, Erase, and Verify operations to the SPI Flash memory after it has been soldered to
the PCB by using a cable and a PC. Currently, these software utilities only support the
STMicroelectronics M25Pxx and compatible devices as described later.

SPI Basics The SPI bus is a full duplex, synchronous serial data link. In other words, data is sent and
received on the same clock edge, in a serial fashion. As such, there are 4 signals associated
with SPI.
• SCK - Serial Clock
• MOSI - Master Out Slave In
• MISO - Master In Slave Out
• SS_n - Slave Select, active Low
Figure 1 displays these signals and a typical arrangement. This system is set up in a
Master/Slave configuration where the Master clocks data out of the Master and into the Slave
on the MOSI pin using SCK as the clock. During the same clock cycle, data is clocked out of the
Slave and into the Master on the MISO pin, although this is done on the opposite clock edge
than MOSI. Several Masters and Slaves can coexist on the same bus, and therefore a method

Application Note: CoolRunner-II CPLD

XAPP800 (v1.0) April 20, 2004

Configuring Xilinx FPGAs with SPI Flash
Memories Using CoolRunner-II CPLDs

R

XAPP800 (v1.0) April 20, 2004 www.xilinx.com 1
1-800-255-7778

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warran-
ties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
of arbitration is necessary when more than one Master attempts to gain access to the bus.
However, this reference design assumes that there is only one Master on the bus and therefore
no arbitration is implemented. Since more than one Slave can exist on the bus, the Master
needs a method to select which Slave is to be addressed during the transaction. The signal
SS_n selects the specified Slave. This reference design assumes only one Slave is present
and therefore must be modified to select additional Slave devices.

Clocking
SCK supports a variety of clock speeds, where this reference design assumes 20MHz in the
simulation test bench. There are 4 types of clocking relationships the clock maintains with
respect to the data. These are defined in the SPI Specification with two bits, CPOL and CPHA.

CPOL
CPOL dictates the idle state of the SCK. When CPOL is Low, the idle state of SCK is Low.
Similarly, when CPOL is High, the idle state of SCK is High.

CPHA
CPHA indicates which clock edge the data is valid. When CPHA is Low, data is valid on the first
edge of SCK, rising or falling. When CPHA is High, data is valid on the second edge of SCK.
Whether the data is valid on a rising or falling edge is dependent upon the state of CPOL.

Figure 1: Typical SPI System with a Single Master

SCK

SS_N[1:0]

MOSI

MISO

X800_01_121603

SPI Master

SPI Slave

SPI Slave
2 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
To illustrate the relationship between CPOL and CPHA, Figure 2 and Figure 3 are provided for
reference, where Figure 2 displays the data transfer when CPHA is Low, and Figure 3 when
CPHA is High.

Data is clocked out of the device (Master or Slave) on one edge of the period, whereas data is
clocked in on the next opposite edge of the period. For example, if data is clocked out of the
Slave on the rising edge of SCK, then that data is clocked into the Master on the next falling
edge of SCK. Simultaneously, the same sequence of data transfer occurs from the Master to
the Slave. This full duplex data transfer can be viewed as a circular 16 bit shift register with 8
bits in the Master and 8 bits in the slave. The data simply trades places between the devices.
The SPI Specification does not describe a protocol for the data on the bus. Therefore, it is up
to the designer to specify the protocol of the data transfer. SPI Flash memory devices define
their particular protocol in the respective data sheets. Please consult the manufacturers data
sheet for the appropriate protocol. Note that in particular, manufacturers implement different
addressing schemes.

Figure 2: Data Transfer on the SPI Bus with CPHA=0

SCK Cycle 1

MSB

SCK (CPOL=1)

SCK (CPOL=0)

MOSI

MISO

SS

6 5 1 LSB

MSB

** Not defined, but normally MSB of character just received.

6 5 1 LSB **

SCK Cycle 2 SCK Cycle 3 SCK Cycle 4-6 SCK Cycle 7 SCK Cycle 8

X800_02_121603

Figure 3: Data Transfer on the SPI Bus with CPHA=1

Cycle 1

MSB

SCK (CPOL=1)

SCK (CPOL=0)

MOSI

MISO

SS

6 5 1 LSB

MSB

** Not defined, but normally LSB of previously transmitted character.

6 5 1 LSB**

Cycle 2 Cycle 3 Cycle 4-6 Cycle 7 Cycle 8

X800_03_121603
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
Timing relationships must follow those specified in both the SPI Specification and the SPI Flash
memory data sheet.

System Design This reference design implements an SPI interface between a Spartan-IIE FPGA and a
STMicroelectronics M25P20, 2 Mbit SPI Flash memory. A working prototype has been built to
test the reference design and uses a CoolRunner-II CPLD (XC2C32-4-VQ44) to perform the
data transfer between the SPI bus and the FPGA configuration signals. Other Xilinx FPGAs
may be used with this reference design, and the subsections below describe the unique details
found using the Spartan-IIE and the Spartan-3 FPGAs.
Note: This design was tested on the STMicroelectronics M25P20, but will work with other M25Pxx
parts, including M25P05, M25P10, M25P40, and M25P80.

Figure 4 shows how this reference design should be implemented in a system with an SPI
Flash memory. This implementation provides a method of configuring the FPGA using an SPI
based memory upon power up, or after the FPGA requests a reconfiguration. Once the FPGA
has been configured, the FPGA may access the SPI memory as user space. This reference
design provides for three methods of programming the SPI memory while mounted to the PCB.
All of these scenarios are discussed in the subsections below.

FPGA Configuration
Upon power up, the FPGA requests configuration data using Master Serial mode in the usual
manner. Both the DONE and INIT pins go Low, followed by the INIT pin going High indicating
the start of configuration is requested. The state machine in the CPLD recognizes this event
and begins to set up the SPI memory for a read operation.
The operation begins by bringing spi_sn Low, followed by passing CCLK through to spi_c and
issuing the FAST_READ instruction. Once the instruction has been sent, the starting address is
immediately transmitted followed by dummy bits. When the prescribed number of dummy bits
has been sent to the memory, configuration data appears on the q pin of the memory. The state
machine in the CPLD recognizes this event and passes the data through to the DIN pin of the
FPGA. This data transfer continues until the DONE pin goes High. At this point, the CPLD does
one of two things to its I/Os depending upon a VHDL generic setting in the source code. These
two options are described in the next subsection.
After the FPGA has been successfully configured, the CPLD monitors the DONE pin to
determine when the FPGA requests a reconfiguration cycle. When the DONE pin goes Low
and the INIT pin cycles Low then High, the CPLD begins the SPI transaction again and
presents the data to the FPGA in a Master Serial mode. FPGA reconfiguration is initiated by
applying a Low value to the PROGRAMn pin of the FPGA.

Figure 4: SPI Memory Interface to a Xilinx FPGA

X800_04_121803

INIT

DIN

I/O

I/O

I/O

I/O

MOSI

MISO

SCK

Sn

Wn

HOLDn

SPI Flash
Memory

c

sn

d

q

wn

holdn

MOSI

MISO

SCK

Sn

Wn

HOLDn

Xilinx FPGA

DONE

CCLK

PROGRAMn

spi_d

spi_c

spi_q
Xilinx

CoolRunner-II
CPLD

fpga_io_clk

fpga_io_sn

fpga_io_wn

fpga_io_holdn

fpga_init

fpga_din

fpga_done

fpga_cclk

spi_holdn

spi_sn

spi_wn

ext_spi
4 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
SPI Memory as FPGA User Space
This reference design allows the designer to specify if the CPLD will be used as a simple buffer
after FPGA configuration, or if the CPLD becomes electrically invisible to the FPGA I/Os after
configuration has completed. The way the designer specifies either mode is by modifying the
VHDL generic cpld_buffer found in the VHDL file spi_cpld.vhd. If this generic constant is set to
a ’1’, the CPLD will become a buffer between the FPGA I/Os and the SPI memory I/Os. This
allows the FPGA to use the SPI memory as a user space post-configuration. Alternately, if the
generic cpld_buffer is set to a ’0’, the CPLD will become invisible to the FPGA I/Os so that it
does not interfere with future transactions on these I/Os. The CPLD I/Os in this case go to a
High-Z mode. It is up to the user do specify weak pull-ups on the CPLD I/Os as needed in the
particular system.
Although the SPI Flash memory is mainly used to store FPGA configuration data, the memory
can also be used as working memory space by the FPGA one it has been configured. As
discussed earlier, the CPLD becomes a simple buffer and passes all SPI bus signals between
the FPGA and the SPI memory post FPGA configuration. These signals can be then driven by
the FPGA as needed to conduct memory transactions. The SPI bus includes the typical SCK,
MOSI, MISO and SSn signals, but provided in this scenario are two other signals: Wn and
HOLDn. Some memories contain these signals which provide additional control of the memory.
This reference design is based on the STMicroelectronics M25P20 where Wn is a write protect
signal, active Low. HOLDn is an active Low hold signal used to pause any serial
communications with the device without actually deselecting the device on the SSn pin.
The FPGA can be set up with a design that uses this memory as working space. This may be
in the form of a state machine or a microcontroller, etc. This allows the FPGA to not only use the
unused memory as user storage, but can also be used to overwrite the configuration data in the
SPI memory. For example, if SPI Flash stored both the FPGA configuration data and the
application code for an embedded controller, then it would be possible to update both hardware
and software by writing a new image to the Flash. Alternatively, the configuration bits in the
memory could be overwritten or erased by the FPGA in a security type application.

Programming the SPI Memory
There are 3 primary methods of programming the SPI memory as described below.

3rd Party Programmer
The most obvious method of programming the SPI memory is using a 3rd party programmer as
would be done with PROMs. The advantage with this method is that mass production
programming is possible. But the disadvantage is that it will be difficult to reprogram the device
on the PCB unless the FPGA or some other controller on the SPI bus is set up to perform this
operation.

JTAG Chain
The CoolRunner-II CPLD has JTAG test capabilities which include the standard PRELOAD and
EXTEST commands. Using these commands, it is possible to drive and sample the pins of the
CPLD with the JTAG chain and thereby stimulate the pins of the SPI memory via the traces
routed on the PCB. This method is shown in Figure 5. Using a tool that understands the JTAG
protocol as well as converts the applied data to SPI bus relationships, the SPI memory can be
programmed via the JTAG chain of the CPLD
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
The advantage with this is by adding minimal hardware to the board, the memory can be
quickly programmed. The added benefit is that the user now has access to the CPLD for
configuration as well.

Directly
It is also possible to program the SPI Flash Memory directly on the PCB by adding a cable
connector to the PCB which taps into the SPI bus as shown in Figure 6. This method requires
a cable and minimal hardware to connect to the bus. In addition, software must be used on a
PC that can supply the data via an SPI protocol to the board via the PC Parallel Port. This
software is available as a downloadable zip file from a link at the end of this application note.
These tools are described in a following section.
To facilitate this method, the CPLD must have its I/Os in a high impedance state with no weak
pullup so that it does not interfere with SPI bus transactions during the programming operation.
A signal has been added to one CPLD I/O which allows for the CPLD to go into a High-Z
condition when needed. The pin that controls this function is called ext_spi and is shown in
Figure 4. When ext_spi is brought High by an external signal, such as the cable used to
program the memory, the CPLD I/Os that interface to the memory as well as those to the FPGA
will go into a High-Z condition. Note that since the software utility bundled with this reference
design does not drive spi_holdn or spi_wn, the CPLD will drive these pins High when ext_spi is

Figure 5: Programming SPI Flash with the JTAG Chain

X800_05_121903

INIT

DIN

I/O

I/O

I/O

I/O

MOSI

MISO

SCK

Sn

Wn

HOLDn

SPI Flash
Memory

c

sn

d

q

wn

holdn

MOSI

MISO

SCK

Sn

Wn

HOLDn

Xilinx FPGA

DONE

CCLK

PROGRAMn

Xilinx
CoolRunner-II

CPLD

T
C
K

T
D
I

T
D
O

T
M
S

6 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
High. Placing a Low value on the ext_spi pin allows the CPLD state machine to drive the I/Os
when required by the FPGA.

Spartan-IIE

Although this reference design targets a CoolRunner-II CPLD (XC2C32-4-VQ44), the device
selection can be substituted for any other Xilnx CPLD. In addition, this reference design
targeted a Spartan-IIE FPGA (XC2S200E PQ208) for testing purposes. Other Xilinx FPGAs
may be used with this reference design.
The most important thing to consider when using the Spartan-IIE is the I/O standard selected
on the I/Os. SPI memories are typically 3.3V driven devices. Although the CoolRunner-II
CPLDs have I/O banking, the 32 macrocell device (XC2C32) only has one bank. Therefore, the
FPGA and the memory must match I/O voltage capabilities. The CPLD, in this case, must be
configured with LVCMOS33 I/O functionality to properly interface to the SPI bus. Consequently,
the Spartan-IIE must be configured with 3.3V LVTTL I/Os where the Vcco pins of Bank 2 and
Bank 3 are supplied with 3.3V.

Spartan-3
As an example of another Xilinx FPGA that can be configured using this method, the Spartan-
3 FPGA can be set up with the CoolRunner-II CPLD for SPI transactions. The Spartan-3 dual
purpose configuration pins, in this case DIN and INITn, should be powered to 3.3V via VCCO_4
to interface to the 3.3V I/Os of the CPLD. Spartan-3 dedicated configuration pins, in this case
DONE and CCLK, are set up for 2.5V signaling and therefore require 2.5V supplied to VCCAUX.
To successfully interface to the 3.3V I/Os of the CPLD, modifications are necessary to the
interface between the FPGA and the CPLD as described in the Spartan-3 Functional
Description Data Sheet, DS099-2. According to this data sheet, it is advisable to add a pullup
resistors to both DONE and CCLK which are terminated to 3.3V. Both of these pins are set up
as outputs in the Master Serial configuration mode. The pullup resistors must be selected to
provide proper edge rates to the CPLD as described in the CoolRunner-II CPLD Data Sheet. In
addition, the power supply for VCCAUX must be able to tolerate reverse currents.
Again, a different Xilinx CPLD may be selected for the interface to acquire a different voltage
match between these components.

Figure 6: Programming SPI Flash with Direct Cable
X800_06_121903

INIT

DIN

I/O

I/O

I/O

I/O

MOSI

MISO

SCK

Sn

Wn

HOLDn

SPI Flash
Memory

c

sn

d

q

wn

holdn

MOSI

MISO

SCK

Sn

Wn

HOLDn

Xilinx FPGA

DONE

CCLK

PROGRAMn

Z

Z

Z
Xilinx

CoolRunner-II
CPLD

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ext_spi

3.3V
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
Software
Utilities

Xilinx provides two command line utilities for storing an FPGA bitstream into an SPI Flash
device:
• xmcsutil: reverse bytes in a Xilinx-generated bitstream file
• x_spi: erase/program/verify/read SPI device
These two utilities are described in this section. To obtain a copy of these tools, please follow
the link at the end of this application note. These files must be extracted to the path specified
by the XILINX environment variable.
These tools have been tested on Microsoft WindowsTM NT 4.0, Microsoft WindowsTM 2000,
and Microsoft WindowsTM XP. These tools have not been tested for use in Microsoft
WindowsTM 95, Microsoft WindowsTM 98, or Microsoft WindowsTM ME, but will likely work with
these operating systems.

xmcsutil
The FPGA configuration data bytes in a Xilinx-generated MCS file must be reversed before
programming into an SPI Flash. This is required for the FPGA configuration data bits to come
out of the memory in the correct order.
To reverse the bytes, run xmcsutil with the following options:

xmcsutil -i <MCS file> -o <new MCS file> -8

where:
• -i <MCS file> = FPGA bitstream in MCS format
• -o <new MCS file> = output filename for new MCS file
• -8 = reverse bytes in the input MCS file
Once modified with xmcsutil, the new MCS file can be programmed into the SPI Flash device
using a device programmer or with a PC using a Xilinx JTAG cable (Parallel Cable-III or Parallel
Cable-IV). The latter method is described in the next section.

x_spi
As discussed earlier, the SPI Flash device may be programmed on the PCB directly by placing
the CPLD into a High-Z state. This is done by asserting the ext_spi pin High and driving the SPI
flash pins directly from a PC. The x_spi tool is a PC command line utility for programming these
devices in this direct manner. Currently the x_spi tool supports the STMicroelectronics SPI
Flash devices as listed below:
• M25P05
• M25P10
• M25P20
• M25P40
• M25P80
It can also be used to program other STMicroelectronics SPI Flash devices using the same
erase, program, and read opcodes. Other supported vendors include NexFlash Technologies,
Inc., Programmable Microelectronics Corporation, Inc. (PMC), Atmel and Silicon Storage
Technology, Inc. (SST). For example, PMC and NexFlash supply the following devices
supported by this reference design:
• Pm25LV512
• Pm25LV010
• NX25P10
• NX25P20
• NX25P40
• NX25P80
8 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
The x_spi tool works with the Parallel Cable-III (PC-III) or Parallel Cable-IV (PC-IV) JTAG
cables with the following JTAG-to-SPI pin connections:

The HOLDn and Wn signals are driven Low by the CPLD during the programming process
when ext_spi is held High.
The following operations are supported by x_spi:
• Erase
• Program only
• Program and verify
• Verify only
• Read
• Blank Check
The below sections describe how to implement these operations in detail. Other options are
available but are not described here. To learn more about these options, simply type x_spi with
no options at the command prompt to view a complete list of all options.

Erase
An erase makes use of the -spi_e switch. At the command line, type the following to erase the
SPI Flash device:

x_spi -spi_e

Program Only
A program only function requires the -spi_p switch. Using an erased device, type the following
at a command prompt to perform a program only function on the SPI Flash device.

x_spi -spi_p -i system.mcs

Notice that the -i switch is used to specify the file that contains the FPGA bitstream to be
programmed into the SPI Flash device. In this example, system.mcs is the file containing the
FPGA bitstream.

Program and Verify
Program and verify operations are specified by using the -spi_pv switch. After an erase, type
the following at the command line to program and verify the SPI Flash memory with the FPGA
bitstream specified after the -i switch. In this case we specify the input file named system.mcs:

x_spi -spi_pv -i system.mcs -o verify.txt

Verify errors will be written to a file with a name as specified after the -o switch, in this case
verify.txt is the specified output file.

Verify Only
A verify only operation uses the -spi_v switch. To verify the SPI Flash device, specify the file
name for comparison using the -i switch as shown in the below example. In this case compare
the contents of the SPI Flash device with the bitstream contained in the file named
system.mcs.

x_spi -spi_v -i system.mcs -o verify.txt

JTAG SPI Flash

TCK C

TMS S

TDI D

TDO Q
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
If any errors occur, they will appear in a file named as specified after the -o switch. In this case,
the output file is named verify.txt.

Read
The read function requires the -spi_r switch. To read N kilobytes of data from the SPI Flash
device, type the following at the command prompt:

x_spi -spi_r 256 1 -o readback.mcs

Where:
• 256 = read 256 kilobytes (or 2 Mbits) starting from location 0
• 1 = write data to output file in MCS format
Note that the bits read out of the SPI Flash device will be contained in a file with a name as
specified after the -o switch. In this case, the readback.mcs file will contain the bits read from
the SPI Flash device.

Blank Check
The blank check function requires the -spi_b switch. This function simply verifies the device is
truly erased by reading N kilobytes of data from the SPI Flash device. Type the following at the
command prompt to perform a blank check function:

x_spi -spi_b 256 -o blank.txt

Where
• 256 = blank check 256 kilobytes (or 2Mbits) starting from location 0
Note that the results of the blank check are sent to an output file as specified by the -o switch.
In this case, the output file is named blank.txt

CPLD Design This reference design, as implemented in the XC2C32-4-PC44, can obtain speeds of over 300
MHz. However, the limiting factor with speed is the SPI Flash memory which is typically limited
to 25 MHz. The user must specify FPGA configuration speed by selecting the configuration
speed using BitGen found in Xilinx ISE software. Note that the fastest FPGA configuration
speed for Xilinx FPGAs is faster than the maximum speed of most SPI Flash memories.
10 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
State Machine
The main functionality of this reference design focuses around one state machine, found in
processes named statem_comb and statem_reg. The following discussion references
Figure 7.

STATE_RESET State
The state machine is clocked by fpga_cclk which arrives directly from the FPGA CCLK pin.
When the fpga_init (INITn) and fpga_done (DONE) pins go Low, the state machine is reset to
the STATE_RESET state.
While in this state, the variable bit width counter is reset. This counter tracks the number of
instruction bits, address bits, and dummy bits sent to the SPI bus in subsequent states.
The STATE_RESET state also applies High values to fpga_din (DIN) to provide benign data to
the FPGA DIN pin. This is necessary because there is a finite amount of time that the state
machine must set up the SPI memory before data is read out of the memory. Meanwhile, the
FPGA Master Serial configuration mode is expecting data to arrive on DIN once INITn goes
High. The entire state machine waits to submit valid data to DIN until it reaches the
READ_DATA state. To avoid erroneous data being applied to the DIN pin during this initial
phase, harmless data in the form of 1’s must be sent to DIN. During this time frame, the FPGA
simply waits for the synchronization word to arrive, which indicates the beginning of valid
configuration data.
Once in the STATE_RESET state, the state machine waits for the condition where fpga_init
goes High, and fpga_done is still Low. When this occurs, the state machine progresses to the
LOAD_READ_OPCODE state.

LOAD_READ_OPCODE State
This state sends the READ or FAST_READ instruction code to the SPI memory to set up the
device for a read operation. The instruction is stored in the generic variable
READ_INSTRUCTION and can be customized by the user for the specific SPI memory.
Sample instruction codes are provided in the generic statement for some common memories.
In this state, spi_sn is brought Low to initiate communication with the SPI memory as shown in
Figure 2 and Figure 3. At the same time, the counter is enabled and begins tracking the
number of instruction bits sent to the SPI memory.

Figure 7: State Machine

count < instruction_length

fpga_init = 0
fpga_done = 0

LOAD_READ_ADDRESS

LOAD_READ_OPCODE

STATE_RESET

READ_DATA

WAIT_STATE

fpga_init = 1
fpga_done = 0

count = instruction_length

count = address_length

count < address_length

fpga_init = 1
fpga_done = 1

fpga_init = 1
fpga_done = 0

X800_07_121903
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
While in this state, instruction code data is placed on the spi_d pin and is shifted out on every
clock edge, while the counter tracks the number of instruction code bits sent. The data and
spi_sn signal occur on the opposite edge of fpga_cclk than the state machine to retain proper
timing.
Simultaneously, 1’s continue to be applied to the DIN pin of the FPGA via the fpga_din output
signal.
When the counter reaches the bit length of the instruction as specified by the generic variable
INSTRUCTION_LENGTH, the state machine transitions to the next state
LOAD_READ_ADDRESS.

LOAD_READ_ADDRESS State
The purpose of this state is to shift out the starting address of the data located in the SPI
memory followed by shifting out dummy bits as required by the particular memory. As such,
spi_sn is held Low as it was in the previous state and the counter continues to increment
without a reset.
The counter tracks the number of address bits shifted as well as the number of dummy bits.
With this in mind, the terminal count is the sum of the number of address bits, dummy bits, and
instruction bits (since the counter is not reset). Therefore, the user must set the size of variable
width counter to a value which corresponds to the sum of these three values. This is done by
adjusting the generic variable COUNTER_WIDTH.
Address bits are shifted out serially on the spi_d pin. This address is defined by the variable
START_ADDRESS generic. The ADDRESS_LENGTH generic variable should be specified by
the user to match the number of bits in the starting address. Once the starting address is shifted
out, dummy bits are shifted out and are zeros in this reference design. The user needs to
specify the number of dummy bits in the DUMMY_LENGTH generic variable.
During this process, the DIN pin of the FPGA continues to receive 1’s as they are applied via
the fpga_din output.
When the counter reaches terminal count, which again is defined as the sum of instruction bits,
address bits and dummy bits, the state machine transitions to the READ_DATA state.

READ_DATA State
Once the SPI Memory is setup with the instruction, starting address, and any necessary
dummy bits, data appears on the SPI Flash’s q pin. At this point the state machine is in the
READ_DATA state which simply applies a Low value on spi_sn and passes the data from the
memory straight through the CPLD to the FPGA DIN pin via fpga_din. The pin spi_sn is held
Low to continue receiving data from the memory.
When the FPGA’s DONE pin goes High indicating the FPGA has completed receiving needed
configuration bits, the state machine transitions to the WAIT_STATE state.

WAIT_STATE State
The controller waits in this state indefinitely until the FPGA’s INIT and DONE pins go Low as
sensed on the fpga_init and fpga_done pins respectively. This indicates a reconfiguration
request by the FPGA, and the state machine moves to the RESET state to begin the cycle
again.

CoolRunner-II
Implementation

This reference design has targeted the CoolRunner-II XC2C32-4-VQ44 device. Using this
device, 26 macrocells are used, which corresponds to 81% utilization. This utilization level
allows for minor changes to the design such as adding support for multiple SPI Memory
devices without exceeding the device resource limits.
Other Xilinx CPLDs may be used in lieu of the XC2C32-4-VQ44 device, allowing for a flexible
selection of system voltage ranges and feature choices.
12 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
VHDL Code and
Software
Download

VHDL Code Disclaimer
This application note supports the STMicroelectronics M25P-series SPI Flash memories and
directly compatible versions from NexFlash and PMC. With small modifications, this same
CPLD design likely supports SPI Flash memories from Atmel Corporation and Silicon Storage
Technology, Inc.
All VHDL source code, VHDL testbenches, and software files associated with this design are
available. THE DESIGN IS PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE
NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE.
This design should be used only as an example design, not as a fully functional core. XILINX
does not warrant the performance, functionality, or operation of this Design will meet your
requirements, or that the operation of the Design will be uninterrupted or error free, or that
defects in the Design will be corrected. Furthermore, XILINX does not warrant or make any
representations regarding use or the results of the use of the Design in terms of correctness,
accuracy, reliability or otherwise.
THIRD PARTIES INCLUDING MOTOROLA® MAY HAVE PATENTS ON THE SERIAL
PERIPHERAL INTERFACE (SPI) BUS. BY PROVIDING THIS HDL CODE AS ONE
POSSIBLE IMPLEMENTATION OF THIS STANDARD, XILINX IS MAKING NO
REPRESENTATION THAT THE PROVIDED IMPLEMENTATION OF THE SPI BUS IS FREE
FROM ANY CLAIMS OF INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY
DISCLAIMS ANY WARRANTY OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE,
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY OR REPRESENTATION THAT THE IMPLEMENTATION IS FREE FROM
CLAIMS OF ANY THIRD PARTY. FURTHERMORE, XILINX IS PROVIDING THIS
REFERENCE DESIGNS "AS IS" AS A COURTESY TO YOU.

Xilinx Software License
BY USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS LICENSE. CLICKING THE APPLICATION NOTE LINK BELOW AND
DOWNLOADING THE ZIP FILES INDICATES THAT YOU ACCEPT THE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, DO NOT USE
THE SOFTWARE. IF YOU HAVE ALREADY PURCHASED THE SOFTWARE, PROMPTLY
RETURN THE SOFTWARE TO THE PLACE WHERE YOU OBTAINED IT AND YOUR
MONEY WILL BE REFUNDED.

1. License. XILINX, INC. ("XILINX") hereby grants you a nonexclusive license to use the
software included on this website, disk, diskette, tape or CD ROM, and related
documentation (collectively the "Software"), solely for your use in developing designs for
XILINX Programmable Logic devices, or to copy the Software for backup or archival
purposes, or for distribution as part of your company's program product(s) which is sold to
customers. No right is granted hereunder to use the Software, or its products, to develop
designs for third party Programmable Logic devices. XILINX and its licensors own and
retain title to the Software and to any patents, copyrights, trade secrets and other
intellectual property rights therein and all copies you make of it. Except as expressly
provided herein, no right, title or other interest in or to the Software is transferred to you.

2. Restrictions. The Software contains copyrighted material, trade secrets, and other
proprietary information. In order to protect them you may not decompile, reverse engineer,
disassemble, or otherwise reduce the Software to a human-perceivable form. You agree
not for any purpose to transmit the Software or display the Software's object code on any
computer screen or to make any hard copy memory dumps of the Software's object code.
You may not modify or prepare derivative works of the Software in whole or in part. You
may not publish or disclose the results of any benchmarking of the Software, or use such
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
results for your own competing software development activities, without the prior written
permission of Xilinx. You may not make any copies of the Software, except to the extent
necessary to be used on separate non-simultaneous computers as permitted herein, and
one copy of the Software in machine-readable form for backup purposes only. You must
reproduce on each copy of the Software the copyright and any other proprietary legends
that were on the original copy of the Software.

This Software may be time-based to permit you to evaluate certain products only for a
predetermined time. After the predetermined time expires, the Software will be
automatically disabled. Xilinx requests that you inform users that the Software will time-out
after a predetermined time and that a full license can be obtained thereafter. XILINX
MAKES NO REPRESENTATION OR WARRANTY THAT TIME-BASED ROUTINE
CANNOT BE DISABLED; AND YOU ACKNOWLEDGE THAT YOU WILL BEAR ALL RISK
AND LIABILITY IF THE TIME-BASED ROUTINE IS UNLAWFULLY DISABLED TO
ALLOW THE UNLICENSED USE OF THE SOFTWARE.

3. LIMITED WARRANTY AND DISCLAIMER. SUBJECT TO APPLICABLE LAWS: (1)
XILINX'S AND ITS LICENSORS' ENTIRE LIABILITY TO YOU AND YOUR EXCLUSIVE
REMEDY UNDER THIS WARRANTY WILL BE FOR XILINX, AT ITS OPTION, AFTER
RETURN OF THE DEFECTIVE SOFTWARE MEDIA, TO EITHER REPLACE SUCH
MEDIA OR TO REFUND THE PURCHASE PRICE PAID THEREFOR AND TERMINATE
THIS LICENSE; (2) EXCEPT FOR THE ABOVE EXPRESS LIMITED WARRANTY, THE
SOFTWARE IS PROVIDED TO YOU AS IS; (3) XILINX AND ITS LICENSORS MAKE AND
YOU RECEIVE NO OTHER WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, AND XILINX AND ITS LICENSORS SPECIFICALLY
DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT,
OR FITNESS FOR A PARTICULAR PURPOSE. XILINX DOES NOT WARRANT THAT
THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED OR ERROR FREE, OR THAT DEFECTS IN THE SOFTWARE WILL
BE CORRECTED. FURTHERMORE, XILINX DOES NOT WARRANT OR MAKE ANY
REPRESENTATIONS REGARDING USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY OR
OTHERWISE. XILINX CANNOT PROVIDE TECHNICAL SUPPORT FOR THE
SOFTWARE AND WILL NOT BE RESPONSIBLE FOR ANY CONSEQUENCES OF THE
USE OF THE SOFTWARE.

4. LIMITATION OF LIABILITY. SUBJECT TO APPLICABLE LAWS: (1) IN NO EVENT WILL
XILINX OR ITS LICENSORS BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS,
COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES ARISING FROM
THE USE OR OPERATION OF THE SOFTWARE OR ACCOMPANYING
DOCUMENTATION, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY; (2)
THIS LIMITATION WILL APPLY EVEN IF XILINX HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE; (3) THIS LIMITATION SHALL APPLY
NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY LIMITED
REMEDIES HEREIN; AND (4) XILINX'S AND ITS LICENSORS' LIMITATIONS OF
LIABILITIES ARE NOT CUMULATIVE. THE LIMITATIONS OF REMEDIES AND
DAMAGES IN THIS SOFTWARE LICENSE SHALL NOT APPLY TO PERSONAL INJURY
(INCLUDING DEATH) TO ANY PERSON CAUSED BY XILINX'S NEGLIGENCE AND ARE
SUBJECT TO THE PROVISION SET OUT BELOW UNDER THE HEADING GOVERNING
LAW.

5. Term & Termination. You may terminate this License at any time by destroying the Software
and all copies thereof. This License will terminate immediately without notice from Xilinx if
you fail to comply with any provision of this License. Upon termination you must destroy the
Software and all copies thereof.
14 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs R
6. Governmental Use. The Software is commercial computer software developed exclusively
at Xilinx's expense. Accordingly, pursuant to the Federal Acquisition Regulations (FAR)
Section 12.212 and Defense FAR Supplement Section 227.2702, use, duplication and
disclosure of the Software by or for the Government is subject to the restrictions set forth in
this License. Manufacturer is XILINX, INC., 2100 Logic Drive, San Jose, California 95124.

7. Export Restriction. You agree that you will not export or reexport the Software, reference
images or accompanying documentation in any form without the appropriate government
licenses. Your failure to comply with this provision is a material breach of this License.

8. Third Party Beneficiary. You understand that portions of the Software and related
documentation have been licensed to XILINX from third parties and that such third parties
are intended third party beneficiaries of the provisions of this License, including without
limitation the limitation of liabilities set forth herein. Xilinx has assumed responsibility for the
selection of all materials licensed from third parties, and the use of such materials as
licensed hereunder.

9. Interoperability. If you acquired the Software in the European Union (EU), even if you
believe you require information related to the interoperability of the Software with other
programs, you shall not decompile or disassemble the Software to obtain such information,
and you agree to request such information from Xilinx at the address listed above. Upon
receiving such a request, Xilinx shall determine whether you require such information for a
legitimate purpose and, if so, Xilinx will provide such information to you within a reasonable
time and on reasonable conditions.

10. Governing Law. This License shall be governed by the laws of the State of California,
without reference to conflict of laws principles, provided that if the Software is acquired in
the EU, this License shall be governed by the laws of the Republic of Ireland. The local
language version of this License shall apply to Software acquired in the EU. Irish law
provides that certain conditions and warranties may be implied in contracts for the sale of
goods and in contracts for the supply of services. Such conditions and warranties are
hereby excluded, to the extent such exclusion, in the context of this transaction, is lawful
under Irish law. Conversely, such conditions and warranties, insofar as they may not be
lawfully excluded, shall apply. Accordingly nothing in this License shall prejudice any rights
that you may enjoy by virtue of Sections 12, 13, 14 or 15 of the Irish Sale of Goods Act
1893 (as amended). Nothing in this Agreement will be interpreted or construed so as to
limit or exclude the rights or obligations of either party (if any) which it is unlawful to limit or
exclude under the relevant national laws and, where applicable, the laws of any Member
State of the EU which implement relevant European Communities Council Directives.
Nothing in this Agreement will be interpreted or construed so as to limit or exclude the
rights or obligations of either party (if any) which it is unlawful to limit or exclude under the
relevant national laws and, where applicable, the laws of any Member State of the EU
which implement relevant European Communities Council Directives.

11. General. If for any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the License shall be
enforced to the maximum extent permissible to effect the intent of the parties, and the
remainder of this License shall continue in full force and effect. This License constitutes the
entire agreement between the parties with respect to the use of this Software and related
documentation, and supersedes all prior or contemporaneous understandings or
agreements, written or oral, regarding such subject matter.

XAPP800 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

STMicroelectronics Simulation Models
Included in the above reference design are the simulation models for the STMicroelectronics
SPI Flash Memories. To obtain the latest simulation models as well as any assistance
regarding these memories, please visit the STMicroelectronics website at:
http://www.st.com/stonline/products/families/memories/fl_ser/snvm_fo.htm
XAPP800 (v1.0) April 20, 2004 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.st.com/stonline/products/families/memories/fl_ser/snvm_fo.htm

Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDsR
Conclusion The CoolRunner-II CPLD is an excellent choice for configuring Xilinx FPGAs using SPI Flash
memories since these CPLDs are low cost. Together with the low cost SPI Flash memory and
the CoolRunner-II CPLD, overall configuration bit storage costs are reduced over conventional
methods allowing for a more cost effective solution. Further, the low power characteristics of
the CoolRunner-II CPLD provide a minimal impact to the power consumption of the total
configuration bit storage solution.

Additional
Information

CoolRunner-II Data Sheets, Application Notes, and White Papers
Device Packages
Online Store

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/20/04 1.0 Initial Xilinx release.
16 www.xilinx.com XAPP800 (v1.0) April 20, 2004
1-800-255-7778

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?BV_SessionID=@@@@2127949898.1083105846@@@@&BV_EngineID=cccfadclejekjfgcflgcefldfhndfmo.0&sGlobalNavPick=&sSecondaryNavPick=&category=-19214&iLanguageID=1
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?iLanguageID=1&category=Package+Drawings&com.broadvision.session.new=Yes&BV_SessionID=@@@@2094320280.1083105893@@@@&BV_EngineID=cccfadclejekjfgcflgcefldfhndfmo.0
http://www.xilinx.com/xlnx/xebiz/onlinestore.jsp?sGlobalNavPick=PURCHASE
http://www.xilinx.com

	Summary
	Introduction
	SPI Basics
	Clocking
	CPOL
	CPHA

	System Design
	FPGA Configuration
	SPI Memory as FPGA User Space
	Programming the SPI Memory
	3rd Party Programmer
	JTAG Chain
	Directly

	Spartan-IIE
	Although this reference design targets a CoolRunner-II CPLD (XC2C32-4-VQ44), the device selection...
	Spartan-3

	Software Utilities
	xmcsutil
	x_spi
	Erase
	Program Only
	Program and Verify
	Verify Only

	Read
	Blank Check

	CPLD Design
	State Machine
	STATE_RESET State
	LOAD_READ_OPCODE State
	LOAD_READ_ADDRESS State
	READ_DATA State
	WAIT_STATE State

	CoolRunner-II Implementation
	VHDL Code and Software Download
	VHDL Code Disclaimer
	Xilinx Software License
	STMicroelectronics Simulation Models

	Conclusion
	Additional Information
	Revision History

