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Abstract 
With increasing design complexity and limited simulation cycles, it becomes necessary to 
prototype designs.  Lab debug tools have traditionally consisted of voltmeters, oscilloscopes and 
logic analyzers, rendering tools developed specifically for simulation (i.e. waveform viewer 
scripts, interface assertions, checkers and transaction monitors) unusable.   
 
This paper documents how a new generation of FPGA and rapid prototyping debug tools can be 
used to leverage simulation tools for complex ASIC or SoC designs.  Two categories of tools 
will be discussed: the first increases visibility into the design; the second replays transactions 
captured in the lab in a simulator, allowing for the use of a bus interface transaction monitor. 
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Introduction 
Prototyping of complex RTL designs in an FPGA is becoming a necessity, rather than a luxury 
to chip designers today.  The increasing complexity of SoCs also require these designs to be 
prototyped and debugged in an FPGA.  With today’s large high-speed FPGAs it is possible to 
prototype an entire chip design running at system speed prior to ASIC tapeout.  Depending on 
product volumes it is possible that an FPGA may be the end product without any plans for an 
ASIC.   
 
Once problems of clocking and reset are corrected on the prototyping board or ASIC design, 
serious testing and debug can happen.  The beauty of the FPGA is that it can be reprogrammed 
without any cost other than time.  This allows FPGA-based prototyping to happen in parallel to 
the final stages of simulation verification.  Communication, or transactions, between the ASIC or 
SoC and other devices can now take place in real hardware at system speed.  Real-world bus 
transactions conducted using the FPGA can bring up sequences that were not envisioned during 
simulation verification planning.  For example, a software driver may setup the design in a 
different order of configuration transactions than what was run in simulation.  This different 
order of transactions may expose an error in the design. 
 
When an error occurs in the lab the engineer must determine the quickest way to perform the 
debug and determine if a functional issue has occurred.  The engineer must also determine an 
easy way to communicate the design flaw to the development team.  Communication can be 
further complicated with the possibility of multiple design blocks worked on by separate design 
and verification teams separated by thousands of miles, as well as IP from external vendors.  
Because of the scope and complexity, there may not be a single person with intimate knowledge 
of the entire design. 
 
Traditional FPGA Lab Debug 
Traditional debug involves the use of voltmeters, oscilloscopes and logic analyzers.  While these 
tried and true methods have served us well for many years there are limitations.   
 
Human Error and Equipment Failure 
Human error can cause delays in lab debug.  In assigning signal names to the logic analyzer it is 
possible to make a mistake and assign a signal to the wrong pod.  Equipment failure can cause 
unexpected results.  Logic analyzer cables can become damaged through repetitive use and lead 
the user to believe that a stuck-at-0 fault has occurred when in reality the signal is actually 
toggling correctly.  Imagine spending hours in the lab debugging an issue only to realize that 
human error or equipment failure has just rendered those hours as a waste. 
 
Unfamiliar Software 
Frequently, oscilloscopes and logic analyzers come with their own set of software.  This is 
software that RTL designers rarely see or use until presented with a problem originating from the 
lab.  Determining the correct download location to retrieve the software from and the correct 
version of the software is time wasted.  This slows down the communication and ownership of a 



problem due to the engineer in the lab not being equipped to “speak the language” of the 
designer or verification engineer. 
 
Budgets are Shrinking 
Unfortunately, limited human resources and, especially as of late, limited budget for lab 
equipment make traditional FPGA debug and ASIC prototyping even more difficult.  While your 
lab may be fully equipped a customer’s lab may not be so fortunate.  Imagine the frustration of 
asking a customer to use an oscilloscope to probe an FPGA pin only to be told that they do not 
have an oscilloscope. 
 
While the use of voltmeters, oscilloscopes or logic analyzers may never be completely 
abandoned, new methods must be used in order to meet time-to-market demands, while keeping 
costs down and preserving the sanity of engineers. 
 
FPGA Lab Debug Today 
This paper explains the current usage of two categories; increasing observability and replaying 
lab transactions in simulation in debugging a complex ASIC or SoC design. 
 
A fundamental problem with lab debug is that the engineer is removed from the FPGA itself.  
There may be layers of software that separate the stimulus that can be controlled and the actual 
input and output pins of the FPGA.   
 
When an error occurs the first step is to determine the source of the problem.  The problem could 
be in the software or in the hardware.  It would be wise to ask the question: “Did the transaction I 
stimulated in software actually reach the FPGA?”  If the transaction never reached the FPGA 
then there is a software issue or a hardware issue in the datapath before the FPGA.  If the 
transaction did reach the FPGA then there could be an FPGA design issue. 
 
Determining if a transaction is received by the FPGA could be difficult to determine depending 
on the board layout and FPGA package.  The input and output pins of the FPGA may be 
inaccessible to directly probe using an oscilloscope.  The board may have mictor connectors that 
can be connected to a Logic Analyzer, such as shown in Figure 1.  The board shown in Figure 1 
has 4 mictor connectors each supplying to 32 signals, for total access to 128 signals. 
 



 
Figure 1. Logic Analyzer Mictor Connectors 

 
If the mictor connectors are connected to FPGA general purpose I/O pins then internal signals 
can also be routed to these pins.  For example, internal state machine and control signals could 
be routed to the mictor connectors for observation with the Logic Analyzer. 
 
However, as designs increase in complexity the number of signals that can be routed to the 
available mictor connectors may become a limitation.  128 signals may not be enough to fully 
observe several internal data busses as well as controlling state machines.  Trade-offs would 
need to be made to determine which signals route to the mictor connectors. 
 
Increasing Observability 
There is a better way.  Using this first category of FPGA debug tools it is possible to increase the 
visibility of the internal signals of a design beyond the mictor connector limitation.   
 

FPGA and prototyping debug tools such as Synopsys Identify, Xilinx ChipScope or Altera SignalTap add 
logic analyzer capability inside the FPGA.  FPGA logic is used for triggering, and internal RAM Blocks are 



used for data storage.  These debug tools modify a typical design flow as shown in Figure 

2  
 

Figure 2. 
 
In the instrument phase, the instrumentation tool is used to select which signals to observe.  The 
RTL Instrumentor then automatically connects the internal signals to the RAM blocks and 
creates the necessary triggering logic.  The design with the instrumented logic is then 
synthesized into the FPGA. 
 



 
 

Figure 2. Design Flow When Adding Observability 
 
After the FPGA is configured, the RTL debugger software (Synopsys Identify tool) 
communicates with the FPGA using a JTAG interface as shown in Figure 3.  This software is 
used to set a trigger and capture the instrumented signals.  The captured signals can then be 
viewed using a standard waveform viewer. 
 



 
Figure 3. RTL Debugger Connection to FPGA via JTAG 

 
The debug tools can output data in the popular .vcd (Verilog Change Dump) file format that is 
used by many waveform viewers. This means that the same waveform viewer used by the design 
and verification teams use can also be used when viewing waveforms generated from the lab.   
 
Time can be saved when using the standard waveform viewer as well.  Naturally, the signals in 
the FPGA are ones and zeros.  For humans, this may not be as intuitive as using state machine 
names.  For example, in the Synopsys DesignWare PCI Express design the Link Training and 
Status State Machine state of “L0” is encoded as 5’b10001.  A User-Defined Radix in the 
waveform viewer can be used to automatically convert the 5’b10001 to the readable text of “L0”.  
In fact, in most cases these user-defined radices have already been written by the design and 
verification teams and can now be re-used to aid debug. 
 
Also, using the standard waveform viewer of the design and verification teams eliminates any 
software installation issues regarding specific logic analyzer software.  This removes the need for 
a design or verification engineer to install new software to effectively debug an issue originating 
in the lab.  The person performing debug can now focus on finding the source of the problem, 
rather than learning how to use a new tool.  
 
Using debug tools to increase observability can also save money.  Utilizing the FPGA’s internal 
RAM Blocks as data storage and logic as the triggering mechanism can reduce the need for logic 
analyzers. 
 
One drawback to this type of FPGA and prototyping debug tools is that the signals must be 
defined during the instrumentation phase of the design flow.  If more signals are needed, 
instrumentation and synthesis need to be rerun.  For large designs, FPGA synthesis may be an 
overnight process. 
 



Replaying Lab Transactions in Simulation 
The second category of FPGA or prototyping debug tools addresses this very issue by providing 
full-visibility into the instrumented portion of the design.  These tools automatically create a 
simulation environment using the stimulus captured in the lab.  The created simulation 
environment consists of a testbench containing only the portion of the design to be replayed 
along with the input stimulus captured in the lab.   
 

The design flow is similar to that shown in  
 

Figure 2 (page 7), with the exception that the Debug phase is replaced by a simulation phase and 
debug is performed in the simulator.  Figure 4 shows an example design prior to instrumentation 
for simulation replay.  The module_B portion of the design is suspected to contain a bug.  A 
tool such as Synopsys Identify Pro is used to instrument module_B for replay in simulation.   
 



 
Figure 4. Original Example FPGA Design 

 
In order to correctly replay lab transactions, two types of information are needed.  The first is the 
initial condition of the module to be simulated.  The second piece of information is the input 
stimulus to the module.  In order to obtain both sets of information Identify Pro modifies the 
original design as shown in Figure 5.   
 

 
Figure 5. FPGA Design Instrumented for Simulation 

 
Identify Pro replicates the instrumented module and inserts a FIFO buffer that stores the input 
stimulus to the instrumented block.  The depth of the FIFO buffer determines how many cycles 
the replicated_module_B is behind module_B.  When the trigger condition occurs in 
module_B the FIFO buffer is stopped.  Nothing more is loaded into the FIFO buffer or 
unloaded into replicated_module_B.  replicated_module_B now contains the 
initial condition of module_B and the FIFO buffer contains all of the stimulus that led to the 
trigger condition. 
 
Identify Pro then creates a testbench containing the replicated_module_B, clock 
generation logic that reproduces the clock timing relationships and the input stimulus captured in 
the FIFO buffer.  This is shown in Figure 6. 
 



 
Figure 6. Identify Pro Simulation Testbench 

 
Because the transactions are replayed in simulation the user will have full visibility at the RTL 
level of all of the signals in replicated_module_B.  Again the standard waveform viewer 
can be used during  debug in a simulation environment.  Notice that all of the information about 
replicated_module_B is contained in the simulation produced waveform.  There is no 
longer a need to rerun instrumentation and synthesis to observe more signals. 
 
To take this idea further, assertions, protocol checkers and monitors could be added to the 
Identify Pro testbench manually by the user.  Assertions, checkers and monitors are frequently 
written and used during the simulation stage of a project.  Now, with the ability to replay lab 
captured stimulus in simulation, these tools can be employed again.  Figure 7 shows an example 
of how these debug features could be added. 
 



 
Figure 7. Identify Pro Testbench with Additional Debug Features 

 
Bringing It All Together in a Real Design 
Theory is great, but FPGA lab or prototyping debug is all about making it real.  In order to 
provide concrete real-world examples of these concepts a design utilizing the Synopsys 
DesignWare SATA and PCI Express IP cores and Synopsys FPGA tools have been used.  This 
particular design involved separate IP design teams for SATA and PCI Express separated by 
both distance and time. Additionally, the design interfaces to the Rocket I/O Transceivers in the 
FPGA, which is equivalent to third party IP. 
 
Figure 8 shows the block diagram of a design used in this example.  This design acts as a simple 
PCI Express to SATA bridge.  The FPGA-based prototyping board plugs into the PCI Express 
slot of a PC motherboard and then bridges to a SATA DVD or HD drive. 
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Increasing Observability in the Real World  
An FPGA or prototyping debug tool such as Synopsys Identify, Altera SignalTap, or Xilinx 
ChipScope could be used to instrument the signals that need to be observed.  For increasing the 
observability into this design the Synopsys Identify tool is used.  The following steps are taken: 
 

1. Determine which signals to instrument. 
2. Use the Instrumentation tool to instrument the signals. 
3. Perform synthesis on the instrumented design. 
4. Set up the Debugger tool to trigger on the error. 
5. Use the standard waveform viewer to assess the situation. 

 
Determining the Signals to Instrument 
When working on any design there are always opportunities for bugs.  From the outset of testing, 
it can be assumed that being able to observe each of the major interfaces in the design would 
speed determining which blocks are at fault.  In the example design, the AHB busses as well as 
the ports of the DWC_pcie and DWC_ahsata IP blocks were identified even prior to initial 
synthesis.  By using this divide and conquer strategy it will be easier to determine which design 
team to contact for additional support. 
  
As mentioned earlier, the PCIe and SATA designs are independent IP blocks designed by 
separate design teams.  Each design team is an expert on their portion of the design.  The PCIe 
design team will know in advance which signals are important for debug of the PCIe subsystem.  
The SATA design team will know which signals are important for debug of the SATA 
subsystem.  Each subsystem or IP core may even have dedicated debug ports that bring out the 
signals to the top-level.  Major internal state machines can also be identified and instrumented in 
advance. 
 
Using the Instrumentation Tool to Instrument the Signals 
While the Identify Instrumentor TCL scripts may not already be written by the design or 
verification engineer, they can be written in a way that can be re-used for future FPGA designs 
using the same IP blocks.  An example Identify Instrumentor TCL script is shown in Figure 9.  
Notice that the rtl_path parameter could be changed when used in a future FPGA design. 
 
The first TCL procedure creates the Intelligent In-Circuit Emulator (IICE).  The IICE acts as the 
triggering mechanism similar to that of a logic analyzer.  The IICE can be configured to cross-
trigger from other IICEs in the design and have a state machine associated with it to allow for 
complex trigger mechanisms. 
 
The second TCL procedure shown in Figure 9, tells the Identify tool to instrument the specified 
signal, in this case the PCI Express Link Training and Status State Machine (LTSSM).  As a 
result of this command, Identify will connect this signal to an internal FPGA RAM Block for 
data capture. 



 
 
 
Perform Synthesis on the Instrumented Design 
Once the design has been instrumented for observability it must be synthesized.  Refer to the 
user manuals of your FPGA synthesis software for details. 
 
Set Up the FPGA Debugger Tool to Trigger on the Error 
In this example, we want to set the trigger condition to be when the DWC_pcie core receives a 
Configuration Read transaction.  This event is signaled with a low to high transition on the 
rcvd_cfg0rd_req signal.  Figure 10 through Figure 12 illustrate the setting of this trigger 
expression in Identify RTL Debugger. 
 

 
Figure 10. Setting the Trigger Expression 

## create the IICE 
proc DWC_pcie_create_iice_core_clk { \ 

{rtl_path /u_DWC_pcie_ep} \ 
{depth 4096} \ 
{iice_name IICE_DWC_pcie_core_clk} \ 
{crosstrigger 1} \ 
{qualified_sampling 0} } { 

  iice new ${iice_name} 
  iice sampler -iice ${iice_name} -depth ${depth} \ 

-qualified_sampling ${qualified_sampling} behavioral 
  iice controller -iice ${iice_name} \ 

-crosstrigger ${crosstrigger} statemachine 
  iice clock -iice ${iice_name} ${rtl_path}/core_clk 
} 
     
## signals to sample and trigger 
proc DWC_pcie_probe_ltssm { \ 

{rtl_path /u_DWC_pcie_ep} \ 
{iice_name IICE_DWC_pcie_core_clk} } { 

  iice current ${iice_name} 
 
  # xmlh_ltssm signals 
  signals add -sample –trigger \ 
  ${rtl_path}/u_cx_pl/u_xmlh/u_xmlh_ltssm/ltssm  
} 

Figure 9. Identify Instrumentor TCL script 



 
Figure 11. Low to High Transition 

 

 
Figure 12. Configuring the IICE State Machine 

 
Re-using Waveform Viewer and Scripts in the Lab 
Since the output of Identify RTL Debugger is the standard .vcd file format, the standard 
waveform viewer of the design and verification teams can be re-used for lab debug. By using the 
same waveform viewer, user-defined radices and signal groupings makes it easy for a design or 
verification engineer to assist in lab debug. There are no new tools to use and the waveform 
viewer is one that they are comfortable with.     
 



A portion of these waveform viewer scripts are shown in Figure 13 and Figure 14.  Note that 
these scripts were developed independently by each design team.   
 

 
 
 

 
 

 
Figure 15 shows the result of using the waveform viewer scripts.  Notice that the design and 
verification teams have already setup many user defined radices.  This saves time in the lab 
debug process. 

gui_set_userradix -name DWC_ahsata_tx_init_state_RADIX {  \ 
   { 4'd0  I_PHY_RESET     #ffffff #000000 } \ 
   { 4'd1  I_PHY_WAIT        #ffffff #000000 } \        
   { 4'd2  I_COMRESET        #ffffff #000000 } \       
   { 4'd3  I_WAIT_COMINIT    #ffffff #000000 } \       
   { 4'd4  I_WAIT_NO_COMINIT #ffffff #000000 } \        
   { 4'd5  I_COMWAKE         #ffffff #000000 } \       
…                            
} 

# Global: User-defined Radices 
gui_set_userradix -name DWC_pcie_LTSSM_RADIX { \  

{ 5'h00 S_DETECT_QUIET #ffffff #000000 } \ 
{ 5'h01 S_DETECT_ACT #ffffff #000000 } \   
{ 5'h02 S_POLL_ACTIVE #ffffff #000000 } \   
{ 5'h04 S_POLL_CONFIG #ffffff #000000 } \   

… 
} 

Figure 13. Example PCI Express Waveform Viewer Script 

Figure 14 Example SATA Waveform Viewer Script



 
Figure 15. Waveform Viewer User-Defined Radices 

 
For this design it was determined that the Link Training and Status State Machine in the PCIe 
subsystem is important in tracking the PCIe bus.  Additionally, the SATA team determined that 
the Device Initialization State Machine in the SATA subsystem is important to track during 
FPGA bring-up in the lab. 
 

 
Figure 16 shows the viewing of these two state machines during a lab debug session.  Note, the 
state machine names and waveform viewer are identical to the simulation and design 
environment.  There is no reason for the design or verification engineer to learn a new tool 
specific to a particular logic analyzer.  All functional debug can be conducted in tools that the 
design and verification engineers are familiar with. 
 

 
 

Figure 16. Waveform Viewer Common to Simulation and Lab Debug 
 
Replaying Lab Transactions in Simulation in the Real World 
As mentioned before, during a debug session it may be impossible to know all of the signals of 
interest.  For example, a first iteration may involve many high-level signals to determine which 
RTL blocks may be the source of the problem.  In communicating with the design team the bug 



is narrowed to a smaller portion of logic, and more signals from that portion of the design may 
need to be observed. 
 
In this example, a portion of the DWC_pcie IP core was instrumented with Synopsys Identify 
Pro.  Identify Pro was then used to trigger on an incoming Configuration Read transaction as 
indicated by the low to high transition of rcvd_cfg0rd_req signal as mentioned before.  
The set of transactions was then replayed in simulation. 
 

 
Figure 17 shows the result of the simulation.  Notice that the previous input stimulus, not shown 
in the figure, actually caused the rcvd_cfg0rd_req signal to transition.  Also notice how the 
lbc_proc_state machine responds to this signal.  Both of these transitions were never 
captured in the FIFO buffer added by Identify Pro, but are the result of replaying the input 
stimulus to the replicated block. 
 

 
 

Figure 17. Replaying Lab Captured Transactions 
 
To extend this idea further, a PCIe transaction monitor could be added to the Identify Pro created 
testbench to track transactions in simulation.  Transactions coming into the DWC_pcie module 
are 8-bit codes that make up the transactions.  With the use of the PCIe transaction monitor, the 
transactions could be presented in a more human readable format, such as shown in Figure 
18Error! Reference source not found..  
 



 
 
 
It should be noted that the initial conditions of the PCIe transaction monitor must also be set.  
The section of transactions captured in the FIFO buffer may not contain vital information such as 
the number of PCIe lanes negotiated between the components on either side of the PCIe link.   
This would have happened in the physical hardware much earlier in time.   
 
Conclusion 
In this paper we have explored ways that existing simulation tools can enhance and speed-up 
FPGA Lab and prototyping debug.  Through the use of a common waveform viewer 
environment, engineers are equipped to take advantage of already developed waveform viewer 
scripts.  Design and verification engineers are also not required to learn how to use a new piece 
of software specific to a particular logic analyzer.  
 
Taking it to the next level, we have also explored ways that transactions captured in the lab can 
be simulated, thus providing full visibility into the design as well as taking advantage of debug 
tools developed for simulation such as transaction monitors. 
 

---------+---------+-+----------+---------+--------------- 
         |         | |          |         |                
         |         | |          |         |                
         |         |D|          |         |     STATUS     
  START  |  FINISH |I|          |         |       /        
   TIME  |   TIME  |R|  COMMAND | ADDRESS |      MSG       
---------+---------+-+----------+---------+--------------- 
 31394000  31406000 U    Ifc2Cpl -------- --------------- 
 31758000  31802000 D     CfgWr0 00000004 --------------- 
--------- --------- - ---------- -------- --------------- 
 32186000  32198000 D        FcP -------- --------------- 
 32202000  32214000 D       FcNP -------- --------------- 
 32186000  32222000 U        Cpl 00000000         SUCCESS 
 32218000  32230000 D      FcCpl -------- --------------- 
 32298000  32342000 D     CfgWr0 00000010 --------------- 
--------- --------- - ---------- -------- --------------- 
 32466000  32478000 D        Ack -------- --------------- 
 32586000  32598000 U        Ack -------- --------------- 
 32666000  32678000 U       FcNP -------- --------------- 
 32714000  32750000 U        Cpl 00000000         SUCCESS 
 32826000  32862000 D      MRd32 ff000000 --------------- 
 32994000  33006000 D        Ack -------- --------------- 

Figure 18. Example Output of PCIe Transaction Monitor 


