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Preface

About This Guide

This user guide provides guidance on how customers can use the architectural features of 
each platform in the Spartan®-3 generation FPGAs: the Extended Spartan-3A family, 
which includes the Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms, and the 
Spartan-3 and Spartan-3E families. By combining documentation for these families, 
similarities and differences are easier to learn, and less material needs to be duplicated in 
multiple sources. For an overview of how these platforms compare, see “Section I: 
Designing with Spartan-3 Generation FPGAs”.

This user guide includes much of the information previously included in Module 2 
(Functional Description) of the Spartan FPGA data sheets and in device application notes. 
The data sheets should still be referenced for the platform-specific DC and Switching 
Characteristics (located in Module 3) and the pinout information (located in Module 4). All 
features of the Spartan-3E and Extended Spartan-3A families are described in this user 
guide, but some differences in the Spartan-3 family, such as DCI or the clocking structure, 
are discussed in Module 2 of the Spartan-3 FPGA data sheet or in the device application 
notes.

Information on the configuration features of the Spartan-3 generation FPGAs is located in 
UG332, the Spartan-3 Generation Configuration User Guide. Information on using the internal 
SPI flash of the Spartan-3AN FPGAs is located in UG333, Spartan-3AN FPGA In-System 
Flash User Guide. Together with the device specifications in the data sheets, these user 
guides provide complete documentation on the Spartan-3 generation architecture.

Check for updates on xilinx.com at: 
http://www.xilinx.com/support/documentation/spartan-3a.htm. To get an automatic 
notification of any updates to this document, click the “Subscribe to Alerts” link on the top 
of the page.

Guide Contents
This user guide contains the following chapters:

• “Section I: Designing with Spartan-3 Generation FPGAs”

♦ Chapter 1, “Overview”

♦ Chapter 2, “Using Global Clock Resources”

♦ Chapter 3, “Using Digital Clock Managers (DCMs)”

♦ Chapter 5, “Using Block RAM”

♦ Chapter 4, “Using Configurable Logic Blocks (CLBs)”

♦ Chapter 6, “Using Look-Up Tables as Distributed RAM”

♦ Chapter 7, “Using Look-Up Tables as Shift Registers (SRL16)”

♦ Chapter 8, “Using Dedicated Multiplexers”

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/spartan-3a.htm
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♦ Chapter 9, “Using Carry and Arithmetic Logic”

♦ Chapter 10, “Using I/O Resources”

♦ Chapter 11, “Using Embedded Multipliers”

♦ Chapter 12, “Using Interconnect”

• “Section II: Design Software”

♦ Chapter 13, “Using ISE Design Tools”

♦ Chapter 14, “Using IP Cores”

♦ Chapter 15, “Embedded Processing and Control Solutions”

• “Section III: PCB Design Considerations”

♦ Chapter 16, “Packages and Pinouts”

♦ Chapter 17, “Package Drawings”

♦ Chapter 18, “Powering Spartan-3 Generation FPGAs”

♦ Chapter 19, “Power Management Solutions”

♦ Chapter 20, “Using IBIS Models”

♦ Chapter 21, “Using Boundary-Scan and BSDL Files”

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm. 

To search the Answer Database of silicon, software, and IP questions and answers, or to 
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and 
program files that the system 
displays

speed grade: - 100

Courier bold
Literal commands that you enter 
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from 
a menu

File → Open

Keyboard shortcuts Ctrl+C

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support
http://www.xilinx.com
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Online Document
The following conventions are used in this document:

Italic font

Variables in a syntax statement 
for which you must supply 
values

ngdbuild design_name

References to other manuals
See the Development System 
Reference Guide for more 
information.

Emphasis in text
If a wire is drawn so that it 
overlaps the pin of a symbol, the 
two nets are not connected.

Square brackets    [ ]

An optional entry or parameter. 
However, in bus specifications, 
such as bus[7:0], they are 
required.

ngdbuild [option_name] 
design_name

Braces    { }
A list of items from which you 
must choose one or more

lowpwr ={on|off}

Vertical bar    |
Separates items in a list of 
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has 
been omitted

IOB #1: Name = QOUT’ 
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis …
Repetitive material that has 
been omitted

allow block block_name loc1 
loc2… locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text Cross-reference link to a location 
in the current document

See the section “Additional 
Resources” for details.

Refer to “Title Formats” in 
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com 
for the latest speed files.

http://www.xilinx.com
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Section I:  Designing with Spartan-3 Generation 
FPGAs

“Overview”

“Using Global Clock Resources”

“Using Digital Clock Managers (DCMs)”

“Using Block RAM”

“Using Configurable Logic Blocks (CLBs)”

“Using Look-Up Tables as Distributed RAM”

“Using Look-Up Tables as Shift Registers (SRL16)”

“Using Dedicated Multiplexers”

“Using Carry and Arithmetic Logic”

“Using I/O Resources”

“Using Embedded Multipliers”

“Using Interconnect”
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Chapter 1

Overview

This chapter provides an overview of the Spartan®-3 generation platforms. Refer to the 
links in Table 1-1 for more information.

Introduction
The Spartan-3 generation of FPGAs includes the Extended Spartan-3A family (Spartan-3A, 
Spartan-3AN, and Spartan-3A DSP platforms), along with the earlier Spartan-3 and 
Spartan-3E families. These families of Field Programmable Gate Arrays (FPGAs) are 
specifically designed to meet the needs of high volume, cost-sensitive electronic 
applications, such as consumer products. The Spartan-3 generation includes 25 devices 
offering densities ranging from 50,000 to 5 million system gates, as shown in Table 1-5 
through Table 1-7.

The Spartan-3 platform was the industry’s first 90 nm FPGA, delivering more functionality 
and bandwidth per dollar than was previously possible, setting new standards in the 
programmable logic industry. The Spartan-3E platform builds on the success of the earlier 
Spartan-3 platform by adding new features that improve system performance and reduce 
the cost of configuration. The Extended Spartan-3A family builds on the success of the 
earlier Spartan-3E platform by further enhancing configuration and reducing power to 
provide the lowest total cost. The Spartan-3AN platform provides the additional benefits 
of non-volatility and large amounts of on-board user flash. The Spartan-3A DSP platform 
extends the density range and adds resources often required in digital signal processing 
(DSP) applications.

Because of their exceptionally low cost, Spartan-3 generation FPGAs are ideally suited to a 
wide range of consumer electronics applications, including broadband access, home 
networking, display/projection, and digital television equipment.

The Spartan-3 generation FPGAs provide a superior alternative to mask-programmed 
ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent 
inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades 
in the field with no hardware replacement necessary, an impossibility with ASICs.

Table 1-1: Spartan-3 Generation Platforms

Family Platform Product Information Technical Documentation

Extended
Spartan-3A

Spartan-3A DSP FPGAs www.xilinx.com/spartan3adsp www.xilinx.com/support/documentation/spartan-3a_dsp.htm

Spartan-3AN FPGAs www.xilinx.com/spartan3an www.xilinx.com/support/documentation/spartan-3an.htm

Spartan-3A FPGAs www.xilinx.com/spartan3a www.xilinx.com/support/documentation/spartan-3a.htm

Spartan-3E Spartan-3E FPGAs www.xilinx.com/spartan3e www.xilinx.com/support/documentation/spartan-3e.htm

Spartan-3 Spartan-3 FPGAs www.xilinx.com/spartan3 www.xilinx.com/support/documentation/spartan-3.htm

http://www.xilinx.com/spartan3adsp
http://www.xilinx.com//support/documentation/spartan-3a_dsp.htm
http://www.xilinx.com/spartan3an
http://www.xilinx.com
http://www.xilinx.com/support/documentation/spartan-3an.htm
http://www.xilinx.com/spartan3a
http://www.xilinx.com/support/documentation/spartan-3a.htm
http://www.xilinx.com/spartan3e
http://www.xilinx.com/support/documentation/spartan-3e.htm
http://www.xilinx.com/spartan3
http://www.xilinx.com/support/documentation/spartan-3.htm
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Spartan-3 Generation Families
Extended Spartan-3A family:

• Lowest total cost

♦ Spartan-3A Platform

- Ideal for bridging, differential signaling, and memory interfacing

♦ Spartan-3A DSP Platform

- Higher density option in Extended Spartan-3A family

- DSP48A resources for digital signal processing (DSP) applications

♦ Spartan-3AN Platform

- Non-volatile

- Ideal for space-constrained applications

Spartan-3E Family

Spartan-3 Family

Table 1-2: Spartan-3 Generation Platform Selection

Application/Function

Spartan-3 Generation Platform

Spartan-3 
FPGAs

Spartan-3E 
FPGAs

Spartan-3A 
FPGAs

Spartan-3AN 
FPGAs

Spartan-3A DSP 
FPGAs

Basic Design Characteristics

More than 1.5M system gates + +

500 or less I/O pins + + ++ ++ ++

More than 500 I/O pins +

Embedded Processing

32-bit MicroBlaze Processor + + ++ ++ ++

8-bit PicoBlaze Controller + + + + +

DDR SDRAM Memory Interfaces

DDR SDRAM + + ++ ++ ++

DDR2 SDRAM ++ + ++ ++ ++

Differential I/O

LVDS + ++ +++ +++ +++

RSDS + ++ +++ +++ +++

miniLVDS + ++ ++ ++

TMDS/PPDS + + +

PCI®/PCI Express® Interface

33 MHz PCI Interface + + ++ ++ ++

66 MHz PCI Interface + ++ ++ ++

PCI Express PIPE Interface + + + + +

http://www.xilinx.com
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Power Management + + +

I/O Capabilities

Hot Swap + + ++ ++ ++

High Output Drive Current + ++ ++ ++

Programmable Input Delay + ++ +++ +++ +++

3.3V-only Applications + + ++ ++ ++

Clocking Resources

Digital Clock Managers (DCMs) + ++ ++ ++ ++

Low-Skew Global Clocks + ++ ++ ++ ++

FPGA Configuration

Platform Flash PROM + + + + +

SPI Flash Configuration + + + +

Parallel Flash Configuration + + + +

MultiBoot + + + +

Low-Cost Design Protection + ++ +++ ++

Non-Volatile +

Integrated User Flash +

Digital Signal Processing (DSP)

18x18 Hardware Multipliers + ++ ++ ++ +++

DSP48A +

Block RAM Registers + + ++ ++ +++

Notes: 
1. + = supported, ++ = better, +++ = best.

Table 1-2: Spartan-3 Generation Platform Selection (Continued)

Application/Function

Spartan-3 Generation Platform

Spartan-3 
FPGAs

Spartan-3E 
FPGAs

Spartan-3A 
FPGAs

Spartan-3AN 
FPGAs

Spartan-3A DSP 
FPGAs

http://www.xilinx.com
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Extended Spartan-3A Family Features
• Very low cost, high-performance logic solution for high-volume consumer-oriented 

applications

• Proven advanced 90-nanometer process technology

• Dual-range VCCAUX supply at 2.5V or 3.3V simplifies the power supply design and 
eliminates one power rail

• Suspend mode reduces system power consumption

♦ Retains all design state and FPGA configuration data

♦ Activated with SUSPEND pin 

♦ FPGA drops to minimal quiescent power

♦ I/Os have user-controlled behavior

♦ Quick wake-up time

♦ AWAKE pin indicates present status

• 3.3V ±10% supply compatibility

• 4.6V maximum input voltage

• Full hot swap compliance

♦ No connector sequencing required

♦ FPGA I/O can be driven externally before VCCO powers up without damage to 
the device and without disturbing the external bus

♦ FPGA does not drive out before or during power-up sequence except for 
dedicated pins

• Multi-voltage, multi-standard SelectIO™ interface pins

♦ Up to 519 I/O pins or 227 differential signal pairs

♦ LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards

♦ 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling

♦ Up to 24 mA output drive

♦ 622+ Mb/s data transfer rate per I/O

♦ True LVDS, RSDS, mini-LVDS, PPDS, HSTL/SSTL differential I/O

♦ Double Data Rate (DDR) support with clock alignment

♦ DDR/DDR2 SDRAM support up to 400 Mb/s

♦ Programmable input delays for finer timing control

• Abundant, flexible logic resources

♦ Densities up to 53,712 logic cells

♦ Optional SRL16 shift register or distributed RAM support

♦ Efficient wide multiplexers, wide logic

♦ Fast look-ahead carry logic

♦ Dedicated 18 x 18 multipliers with optional pipeline for higher performance

♦ IEEE 1149.1/1532 JTAG programming/debug port

• Hierarchical SelectRAM™ memory architecture

♦ Up to 2,268 Kbits of fast block RAM with byte write enables for efficient use in 
processor applications

http://www.xilinx.com
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♦ Up to 373 Kbits of efficient distributed RAM

• Up to eight Digital Clock Managers (DCMs)

♦ Clock skew elimination (delay locked loop)

♦ Frequency synthesis, multiplication, division

♦ High-resolution phase shifting

♦ Wide frequency range (5 MHz to over 300 MHz)

• Eight global clocks, plus abundant low-skew routing

♦ Eight additional clocks per each half of the device

♦ Additional clock inputs for pinout flexibility and differential clocks

• Configuration interface to low-cost Xilinx Platform Flash with JTAG

• Configuration interface to industry-standard PROMs

♦ Low-cost, space-saving SPI serial Flash PROM

♦ x8 or x8/x16 parallel NOR Flash PROM

• Configuration watchdog timer automatically recovers from configuration errors

• Unique ID (Device DNA) in each device useful for copy protection algorithms

♦ Device DNA authentication restricts copying

• MultiBoot automatic reconfiguration between two files

• Complete Xilinx ISE® and WebPACK™ development system support

• Low-cost Starter Kit development systems and advanced demo boards

• 32-bit MicroBlaze™ and 8-bit PicoBlaze™ embedded processor cores

• Fully compliant 32-/64-bit 66 MHz PCI support

• PCI Express PIPE endpoint and other IP cores

• Supported by major EDA partners

• Low-cost QFP and BGA packaging options

♦ Common footprints support easy density migration within each platform

♦ Pb-free (RoHS) packaging options

• Automotive XA platform variants

Spartan-3AN Platform Additional Features
• Integrated robust configuration memory 

♦ Saves board space 

♦ Improves ease-of-use 

♦ Simplifies design 

♦ Reduces support issues 

• Plentiful amounts of non-volatile memory available to the user 

♦ Up to 11+ Mb available 

♦ MultiBoot support 

♦ Embedded processing and code shadowing 

♦ Scratchpad memory 

• Robust 100K Flash memory program/erase cycles per page 

http://www.xilinx.com/products/silicon_solutions/automotive/index.htm
http://www.xilinx.com/microblaze
http://www.xilinx.com
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/ise
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.xilinx.com/picoblaze
http://www.xilinx.com/pci
http://www.xilinx.com/products/ipcenter/DO-DI-PCIEXP.htm
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• 20 years Flash memory data retention 

• Security features provide bitstream anti-cloning protection 

♦ Buried configuration interface enhances Device DNA authentication

♦ Flash memory sector protection and lockdown 

Spartan-3A DSP Platform Additional Features
• Optimized for low-cost DSP systems

♦ High logic capacity, 33K to 47K look-up tables (LUTs)

♦ Increased block RAM of 85 to 126 blocks and 1.5 to 2.3 Mbits of memory

• High-performance DSP48A blocks

♦ Based on Virtex®-4 FPGA DSP block architecture

♦ Full multiply-accumulate functionality

♦ Integrated 48-bit post adder

♦ Integrated 18-bit pre-adder for symmetric FIR filters

♦ Independent routing 

♦ 250 MHz operation

• Improved block RAM

♦ Internal output register

♦ 250 MHz operation

Spartan-3 Generation Resources
Table 1-3 through Table 1-7 show the number of resources available in each member of the 
Spartan-3A DSP, Spartan-3AN, Spartan-3A, Spartan-3E, and Spartan-3 platforms.

Note: By convention, 1K bits is equivalent to 1,024 bits.

Table 1-3: Summary of Spartan-3A DSP FPGA Attributes

Device
System 
Gates

Equivalent 
Logic 
Cells

CLB Array 
(One CLB = Four Slices) Distributed 

RAM Bits

Block 
RAM 
Bits

DSP48As DCMs
Maximum 
User I/O

Maximum 
Differential 

I/O PairsRows Columns
Total
CLBs

Total
Slices

XC3SD1800A 1800K 37,440 88 48 4,160 16,640 260K 1,512K 84 8 519 227

XC3SD3400A 3400K 53,712 104 58 5,968 23,872 373K 2,268K 126 8 469 213

Table 1-4: Summary of Spartan-3AN FPGA Attributes

Device
System 
Gates

Equivalent 
Logic 
Cells

CLBs Slices
Distributed 
RAM Bits

Block 
RAM 
Bits

Dedicated 
Multipliers

DCMs
Maximum 
User I/O

Maximum 
Differential 

I/O Pairs

In-System 
Flash bits

XC3S50AN 50K 1,584 176 704 11K 54K 3 2 108 50 1M

XC3S200AN 200K 4,032 448 1,792 28K 288K 16 4 195 90 4M

XC3S400AN 400K 8,064 896 3,584 56K 360K 20 4 311 142 4M

XC3S700AN 700K 13,248 1472 5,888 92K 360K 20 8 372 165 8M

XC3S1400AN 1400K 25,344 2816 11,264 176K 576K 32 8 502 227 16M
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Table 1-5: Summary of Spartan-3A FPGA Attributes

Device
System 
Gates

Equivalent 
Logic Cells

CLB Array 
(One CLB = Four Slices) Distributed 

RAM Bits

Block 
RAM 
Bits

Dedicated 
Multipliers

DCMs
Maximum 
User I/O

Maximum 
Differential 

I/O PairsRows Columns
Total
CLBs

Total
Slices

XC3S50A 50K 1,584 16 12 176 704 11K 54K 3 2 144 64

XC3S200A 200K 4,032 32 16 448 1,792 28K 288K 16 4 248 112

XC3S400A 400K 8,064 40 24 896 3,584 56K 360K 20 4 311 142

XC3S700A 700K 13,248 48 32 1472 5,888 92K 360K 20 8 372 165

XC3S1400A 1400K 25,344 72 40 2816 11,264 176K 576K 32 8 502 227

Table 1-6: Summary of Spartan-3E FPGA Attributes

Device
System 
Gates

Equivalent 
Logic Cells

CLB Array 
(One CLB = Four Slices) Distributed 

RAM Bits

Block 
RAM 
Bits

Dedicated 
Multipliers

DCMs
Maximum 
User I/O

Maximum 
Differential 

I/O PairsRows Columns
Total
CLBs

Total
Slices

XC3S100E 100K 2,160 22 16 240 960 15K 72K 4 2 108 40

XC3S250E 250K 5,508 34 26 612 2,448 38K 216K 12 4 172 68

XC3S500E 500K 10,476 46 34 1,164 4,656 73K 360K 20 4 232 92

XC3S1200E 1200K 19,512 60 46 2,168 8,672 136K 504K 28 8 304 124

XC3S1600E 1600K 33,192 76 58 3,688 14,752 231K 648K 36 8 376 156

Table 1-7: Summary of Spartan-3 FPGA Attributes

Device
System 
Gates

Equivalent 
Logic Cells

CLB Array 
(One CLB = Four Slices) Distributed 

RAM Bits
Block 

RAM Bits
Dedicated 
Multipliers

DCMs
Maximum 
User I/O

Maximum 
Differential 

I/O PairsRows Columns
Total 
CLBs 

Total 
Slices

XC3S50 50K 1,728 16 12 192 768 12K 72K 4 2 124 56

XC3S200 200K 4,320 24 20 480 1,920 30K 216K 12 4 173 76

XC3S400 400K 8,064 32 28 896 3,584 56K 288K 16 4 264 116

XC3S1000 1000K 17,280 48 40 1,920 7,680 120K 432K 24 4 391 175

XC3S1500 1500K 29,952 64 52 3,328 13,312 208K 576K 32 4 487 221

XC3S2000 2000K 46,080 80 64 5,120 20,480 320K 720K 40 4 565 270

XC3S4000 4000K 62,208 96 72 6,912 27,648 432K 1,728K 96 4 633 300

XC3S5000 5000K 74,880 104 80 8,320 33,280 520K 1,872K 104 4 633 300

http://www.xilinx.com
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Architectural Overview
The Spartan-3 generation architecture consists of five fundamental programmable 
functional elements:

• Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that 
implement logic plus storage elements used as flip-flops or latches. CLBs perform a 
wide variety of logical functions as well as store data.

• Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the 
internal logic of the device. IOBs support bidirectional data flow plus 3-state 
operation. Supports a variety of signal standards, including several high-performance 
differential standards. Double Data-Rate (DDR) registers are included.

• Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

• Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the 
product. The Spartan-3A DSP platform includes special DSP multiply-accumulate 
blocks.

• Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions 
for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1-1, using the Spartan-3A array as an 
example. A dual ring of staggered IOBs surrounds a regular array of CLBs in the Spartan-3 
and Extended Spartan-3A family. The Spartan-3E family has a single ring of inline IOBs. 
Each block RAM column consists of several 18-Kbit RAM blocks. Each block RAM is 
associated with a dedicated multiplier. The DCMs are positioned with two at the top and 
two at the bottom of the device, plus additional DCMs on the sides for the larger devices.

The Spartan-3 generation features a rich network of traces that interconnect all five 
functional elements, transmitting signals among them. Each functional element has an 
associated switch matrix that permits multiple connections to the routing.

http://www.xilinx.com
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Configuration
Spartan-3 generation FPGAs are programmed by loading configuration data into robust, 
reprogrammable, static CMOS configuration latches (CCLs) that collectively control all 
functional elements and routing resources. The FPGA’s configuration data is stored 
externally in a PROM or some other non-volatile medium, either on or off the board. The 
Spartan-3AN platform contains its own internal SPI flash configuration memory. After 
applying power, the configuration data is written to the FPGA using one of several 
different modes: 

• Master Serial from a Xilinx Platform Flash PROM

• Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash

♦ Spartan-3E and Extended Spartan-3A FPGAs only

• Byte Peripheral Interface (BPI) from an industry-standard x8 or x8/x16 parallel NOR 
Flash 

♦ Spartan-3E and Extended Spartan-3A FPGAs only

• Slave Serial, typically downloaded from a processor

• Slave Parallel, typically downloaded from a processor

• Boundary Scan (JTAG), typically downloaded from a processor or system tester

Figure 1-1: Spartan-3A Platform Architecture
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I/O Capabilities
The Spartan-3 generation SelectIO interface supports many popular single-ended and 
differential standards, as shown in Table 1-8 and Table 1-9. Table 1-10 through Table 1-14 
show the number of user I/Os as well as the number of differential I/O pairs available for 
each device/package combination for the Extended Spartan-3A, Spartan-3E, and 
Spartan-3 families, respectively. Some of the user I/Os are unidirectional input-only pins 
as indicated in the tables.

Table 1-8: Single-Ended I/O Standards

Standard VCCO Class
Spartan-3 

FPGAs
Spartan-3E 

FPGAs
Extended Spartan-3A 

FPGAs

LVCMOS

1.2V - up to 6 mA 2 mA up to 6 mA

1.5V - up to 12 mA up to 6 mA up to 12 mA

1.8V - up to 16 mA up to 8 mA up to 16 mA

2.5V - up to 24 mA up to 12 mA up to 24 mA

3.3V - up to 24 mA up to 16 mA up to 24 mA

LVTTL 3.3V - up to 24 mA up to 16 mA up to 24 mA

PCI33
3.0V - √ √ √

3.3V - √ √ √

PCI66
3.0V - √ √

3.3V - √ √

SSTL

1.8V
I √ √ √

II √ √

2.5V
I √ √ √

II √ √

3.3V
I √

II √

HSTL

1.5V
I √ √

III √ √

1.8V

I √ √ √

II √ √

III √ √ √

GTL
- - √ 

- Plus √ 

DCI option - - √

http://www.xilinx.com
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Table 1-9: Differential I/O Standards

Standard VCCO
Spartan-3

FPGAs
Spartan-3E

FPGAs
Extended Spartan-3A 

FPGAs

LVDS
2.5V √ √ √

3.3V √

BLVDS 2.5V √ √ √

MINI_LVDS
2.5V √ √

3.3V √

LVPECL
2.5V √ √ √

3.3V √

RSDS
2.5V √ √ √

3.3V √

TMDS
2.5V

3.3V √

PPDS
2.5V √

3.3V √

LDT 2.5V √

LVDSEXT 2.5V √

DIFF_SSTL - √ √ √

DIFF_HSTL - √ √ √

DIFF_TERM - √ √

Table 1-10: Spartan-3A DSP Available User I/Os and Differential (Diff) I/O Pairs

Device

CS484
CSG484

FG676
FGG676

User Diff User Diff

XC3SD1800A 
309
(56)

140
(78)

519
(110)

227
(131)

XC3SD3400A 
309
(56)

140
(78)

469
(60)

213
(117)

Notes: 
1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics 

indicates the number of input-only pins. The differential (Diff) input-only pin count includes both 
differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are 
restricted to differential inputs.

http://www.xilinx.com
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Table 1-11: Spartan-3AN Available User I/Os and Differential (Diff) I/O Pairs

Device
TQG144 FTG256 FGG400 FGG484 FGG676

User Diff User Diff User Diff User Diff User Diff

XC3S50AN 
108
(7)

50
(24)

 -  -  -  -  -  -  -  -

XC3S200AN  -  -
195
(35)

90
(50)

 -  -  -  -  -  -

XC3S400AN  -  -  -  -
311
(63)

142
(78)

 -  -  -  -

XC3S700AN  -  -  -  -  -  -
372
(84)

165
(93)

 -  -

XC3S1400AN  -  -  -  -  -  -  -  -
502
(94)

227
(131)

Notes: 
1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics indicates the number of 

input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs 
on I/O pins within I/O banks that are restricted to differential inputs.

2. Spartan-3AN FPGAs are available in Pb-free packaging options. The Pb-free packages include a ‘G’ character in the ordering code. 
Leaded (non-Pb-free) packages might be available for selected devices, with the same pinout and without the ‘G’ in the ordering 
code. Contact Xilinx sales for more information.
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Table 1-12: Spartan-3A Available User I/Os and Differential (Diff) I/O Pairs

Device

VQ100
VQG100

TQ144
TQG144

FT256
FTG256

FG320
FGG320

FG400
FGG400

FG484
FGG484

FG676
FGG676

User Diff User Diff User Diff User Diff User Diff User Diff User Diff

XC3S50A 
68

(13)
60

(24)
108
(7)

50
(24)

144
 (32)

64 
(32)

 -  -  -  -  -  -  -  -

XC3S200A 
68

(13)
60

(24)
 -  -

195
(35)

90
(50)

248
(56)

112 
(64) 

 -  -  -  -  -  -

XC3S400A  -  -  -
195
(35)

90
(50)

251
(59)

112 
(64) 

311
(63)

142
(78)

 -  -  -  -

XC3S700A  -  -  -
161
(13)

74
(36)

 -  -
311
(63)

142
(78)

372
(84)

165
(93)

 -  -

XC3S1400A  -  -  -
161
(13)

74
(36)

 -  -  -  -
375
(87)

165
(93)

502
(94)

227
(131)

Notes: 
1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics indicates the number of 

input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs 
on I/O pins within I/O banks that are restricted to differential inputs.

Table 1-13: Spartan-3E Available User I/Os and Differential (Diff) I/O Pairs

Device

VQ100
VQG100

CP132
CPG132

TQ144
TQG144

PQ208
PQG208

FT256
FTG256

FG320
FGG320

FG400
FGG400

FG484
FGG484

User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff

XC3S100E
66
(7)

30
(2)

83
(11)

35
(2)

108
(28)

40
(4)

- - - - - - - - - -

XC3S250E
66
(7)

30
(2)

92
(7)

41
(2)

108
(28)

40
(4)

158
(32)

65
(5)

172
(40)

68
(8)

- - - - - -

XC3S500E
66
(7)

30
(2)

92
(7)

41
(2)

- -
158
(32)

65
(5)

190
(41)

77
(8)

232
(56)

92
(12)

- - - -

XC3S1200E - - - - - - - -
190
(40)

77
(8)

250
(56)

99
(12)

304
(72)

124
(20)

- -

XC3S1600E - - - - - - - - - -
250
(56)

99
(12)

304
(72)

124
(20)

376
(82)

156
(21)

Notes: 
1. The number in bold indicates the maximum number of I/O and input-only pins. The number in italics indicates the number of 

input-only pins.
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Package Marking
Figure 1-2 provides a top marking example for a Spartan-3A FPGA in the quad-flat 
packages. Figure 1-3 shows the top marking for a Spartan-3A FPGA in a BGA package. The 
markings for the BGA packages are nearly identical to those for the quad-flat packages, 
except that the marking is rotated with respect to the ball A1 indicator. 

On Spartan-3E and Extended Spartan-3A family FPGAs, the “5C” and “4I” part 
combinations can be dual marked as “5C/4I”.

Table 1-14: Spartan-3 Available User I/Os and Differential (Diff) I/O Pairs

Device

VQ100
VQG100

TQ144
TQG144

PQ208
PQG208

FT256
FTG256

FG320
FGG320

FG456
FGG456

FG676
FGG676

FG900
FGG900

User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff

XC3S50 63 29 97 46 124 56 - - - - - - - - - -

XC3S200 63 29 97 46 141 62 173 76 - - - - - - - -

XC3S400 - - 97 46 141 62 173 76 221 100 264 116 - - - -

XC3S1000 - - - - - - 173 76 221 100 333 149 391 175 - -

XC3S1500 - - - - - - - - 221 100 333 149 487 221 - -

XC3S2000 - - - - - - - - - - 333 149 489 221 565 270

XC3S4000 - - - - - - - - - - - - 489 221 633 300

XC3S5000 - - - - - - - - - - - - 489 221 633 300

Figure 1-2: Spartan-3A QFP Package Marking Example

Figure 1-3: Spartan-3A BGA Package Marking Example

Date Code

Mask Revision Code

Process Technology

XC3S50ATM

TQ144AGQ0625
D1234567A

4C

SPARTAN
Device Type

Package

Speed Grade

Temperature Range

Fabrication Code

Pin P1

R

R

DS529-1_03_080406

Lot Code

Lot Code

Date Code
XC3S50ATM

4C

SPARTAN
Device Type

BGA Ball A1

Package

Speed Grade

Temperature Range

R

R

DS529-1_02_021206

FT256 AGQ0625
D1234567A

Mask Revision Code

Process Code
Fabrication Code
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Ordering Information
Spartan-3 generation FPGAs are available in both standard and Pb-free packaging options 
for most device/package combinations. The Pb-free packages include a ‘G’ character in the 
ordering code. The automotive device part numbers begin with XA instead of XC, and the 
automotive temperature ranges include both the I Industrial range and the Q Automotive 
range between -40C and +125C.

Figure 1-4 shows an example of the part ordering code. The Industrial Temperature Range 
is available exclusively for the Standard (-4) Speed Grade. See Table 1-10 through 
Table 1-14 for specific part/package combinations, and see the XA data sheets for specific 
automotive ordering codes available.

Figure 1-4: Spartan-3A FPGA Ordering Example

XC3S50A -4 FT 256 C

Device Type

Speed Grade
-4: Standard Performance
-5: High Performance (Commercial only)

Temperature Range:

Package Type

Number of Pins

Pb-free

GExample:

UG331-c1_04_122208

C = Commercial (TJ = 0oC to 85oC)
I  = Industrial (TJ = -40oC to 100oC)
Q = Automotive (TJ = -40oC to 125oC)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/automotive_xa_devices.htm
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Chapter 2

Using Global Clock Resources

Summary
This chapter describes how to take advantage of the Spartan®-3 generation global clock 
resources, including the dedicated clock inputs, buffers, and routing. The clocking 
infrastructure provides a series of low-capacitance, low-skew interconnect lines well-
suited to carrying high-frequency signals throughout the FPGA, minimizing clock skew 
and improving performance, and should be used for all clock signals. Third-party 
synthesis tools, and Xilinx synthesis and implementation tools, automatically use these 
resources for high-fanout clock signals.

This chapter focuses on the global clock resources found in all Spartan-3 generation 
platforms, and the quadrant clock resources found in the Spartan-3E and Extended 
Spartan-3A families. The clock routing can be used in conjunction with the DCMs, which 
are discussed in more detail in Chapter 3, “Using Digital Clock Managers (DCMs).” For 
information on the special clock inputs used for configuration (CCLK) and Boundary-Scan 
(TCK), see UG332, Spartan-3 Generation Configuration User Guide.

Introduction
Each Spartan-3 generation FPGA device offers eight high-speed, low-skew global clock 
resources to optimize performance. These resources are used automatically by the Xilinx 
tools. Even if the clock rate is relatively slow, it is still important to use the global routing 
resources to eliminate any potential for timing hazards. It is important to understand how 
to define and best take advantage of these resources.

Global Clock Resource Differences between Spartan-3 Generation 
Families

The Spartan-3E and Extended Spartan-3A family FPGAs have identical global clock 
resources, with eight global clock inputs and an additional eight clocks on the left and right 
sides of the device. The original Spartan-3 family offers only the eight global clock inputs. 
Although the clock resources and routing are similar, there will be timing differences 
between each platform and between different densities within a platform. This chapter 
focuses on the architecture of the Spartan-3E and Extended Spartan-3A families. The 
Spartan-3 family offers a simpler set of dedicated clock inputs and routing – for details, see 
the Spartan-3 FPGA Family Data Sheet.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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Global Clock Resources
The global clock resources consist of three connected components: GCLK Global Clock 
input pads, BUFGMUX Global Clock Multiplexers, and Global Clock routing. See 
Figure 2-1.

The primary clock path is shown with bold lines, with a dedicated clock pad (GCLK) 
driving a global clock buffer (BUFGMUX) that connects through global routing resources 
to clock inputs on flip-flops and other clocked elements. The GCLK pads can be used as 
general-purpose I/O, and include the LHCLK and RHCLK inputs described later. A DCM 
can be inserted into the path between the clock pad and clock buffer to manipulate the 
clock, or the DCM can acquire the clock signal from general-purpose resources. Internally 
generated clocks can also be brought into a clock buffer through general purpose double 
lines (see Figure 12-4). The BUFGMUX can multiplex between two clock sources or be used 
as a simple BUFG clock buffer. The clock buffer can only drive the clock routing resources, 
which in turn can only drive clock inputs. However, clock inputs on flip-flops can also 
come from general-purpose routing, although their use should be limited due to higher 
skew.

Clocking Infrastructure
The detailed Spartan-3E and Extended Spartan-3A family clocking infrastructure is shown 
in Figure 2-2.

Figure 2-1: Overall View of Clock Connections

Clocks

UG331_c2_01_111008

BUFGMUXGCLK
Pad
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Global
Routing
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Figure 2-2: Spartan-3E and Extended Spartan-3A Internal Quadrant-Based Clock Structure
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Notes: 
1. The diagram presents electrical connectivity. The diagram locations do not necessarily match the physical location on the device, 

although the coordinate locations shown are correct.
2. Number of DCMs and locations of these DCM varies for different device densities. See Table 2-1.
3. See Figure 2-12a, which shows how the eight clock lines are multiplexed on the left-hand side of the device.
4. See Figure 2-12b, which shows how the eight clock lines are multiplexed on the right-hand side of the device.
5. For best direct clock inputs to a particular clock buffer, not a DCM, see Table 2-7.
6. For best direct clock inputs to a particular DCM, not a BUFGMUX, see Chapter 3, “Using Digital Clock Managers (DCMs).”
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Clock Inputs
Clock pins accept external clock signals and connect directly to DCMs and BUFGMUX 
elements. Clock pins can also be used as general-purpose I/Os. Each Spartan-3E and 
Extended Spartan-3A family FPGA has:

• 16 Global Clock inputs (GCLK0 through GCLK15) located along the top and bottom 
edges of the FPGA

• 8 Right-Half Clock inputs (RHCLK0 through RHCLK7) located along the right edge

• 8 Left-Half Clock inputs (LHCLK0 through LHCLK7) located along the left edge

Clock input pins are used automatically when external signals drive clock buffers. The 
user can specify a particular pin using a LOC constraint in order to force a clock onto the 
left or right regional clocks, or to force a clock into a particular clock buffer and then into a 
desired clock routing resource. Table 2-2, page 47 through Table 2-4, page 49 show the 
clock inputs for each package with the Extended Spartan-3A, Spartan-3E, and Spartan-3 
families, respectively.

Extended Spartan-3A Family Clock Inputs
The Extended Spartan-3A family clock inputs are all on bidirectional I/O pins, and none 
are shared with configuration functions. The VQ100 package offers only 23 global clock 
inputs. The XC3S50A/AN in the TQ144 package has only six global clock inputs on the 
bottom edge, with GCLK12 and GCLK13 not available in the package.

Table 2-1: Spartan-3E and Extended Spartan-3A Family DCM Location Designations

Top, 
Left

Top, 
Right

Right, 
Bottom

Right, 
Top

Bottom, 
Right

Bottom, 
Left

Left, 
Top

Left, 
Bottom

Spartan-3A DSP FPGAs

XC3SD1800A X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

XC3SD3400A X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

Spartan-3A/3AN FPGAs

XC3S50A/AN X0Y0 X1Y0 N/A N/A N/A N/A N/A N/A

XC3S200A/AN X0Y1 X1Y1 N/A N/A X1Y0 X0Y0 N/A N/A

XC3S400A/AN X0Y1 X1Y1 N/A N/A X1Y0 X0Y0 N/A N/A

XC3S700A/AN X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

XC3S1400A/AN X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

Spartan-3E FPGAs

XC3S100E N/A X0Y1 N/A N/A X0Y0 N/A N/A N/A

XC3S250E X0Y1 X1Y1 N/A N/A X1Y0 X0Y0 N/A N/A

XC3S500E X0Y1 X1Y1 N/A N/A X1Y0 X0Y0 N/A N/A

XC3S1200E X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

XC3S1600E X1Y3 X2Y3 X3Y1 X3Y2 X2Y0 X1Y0 X0Y2 X0Y1

http://www.xilinx.com
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Table 2-2: Global Clock Input Pads for Extended Spartan-3A Family FPGAs

Pad Bank VQ100 TQ144 FT256 FG320 FG400 CS484 FG484 FG676

GCLK0 2 P43 P57 N9 U10 Y11 U12 AA12 Y14

GCLK1 2 P44 P59 P9 T10 V11 V12 AB12 AA14

GCLK2 2 N/A P58 R9 V11 U11 AB13 V12 AF14

GCLK3 2 N/A P60 T9 U11 V12 AA14 U12 AE14

GCLK4 0 P83 P124 C10 B10 D11 E12 C12 K14

GCLK5 0 P84 P126 D9 C9 E11 F11 E12 J14

GCLK6 0 P85 P125 C9 A10 A10 A9 A12 B14

GCLK7 0 P86 P127 A9 B9 C10 B9 A11 A14

GCLK8 0 P88 P129 C8 A8 D10 F10 B11 F13

GCLK9 0 P89 P131 D8 B7 E10 E11 C11 G13

GCLK10 0 N/A P130 A8 B8 A9 A8 D11 B13

GCLK11 0 P90 P132 B8 C8 A8 B8 E11 C13

GCLK12 2 N/A N/A R7(1) U8 W9 Y11 U11 AA13

GCLK13 2 N/A N/A T7(1) V8 Y9 Y10 V11 Y13

GCLK14 2 P40 P54 P8 U9 V10 AA12 W12 AF13

GCLK15 2 P41 P55 T8 V9 W10 AB12 Y12 AE13

LHCLK0 3 P9 P12 G2 H3 J1 L6 L5 N6

LHCLK1 3 P10 P13 H1 J3 K2 M5 L3 N7

LHCLK2 3 P12 P15 H3 J2 K3 K1 K1 P1

LHCLK3 3 P13 P16 J3 J1 L3 L1 L1 P2

LHCLK4 3 N/A P18 J2 J4 K4 L3 M1 P4

LHCLK5 3 N/A P20 J1 K5 L5 M2 M2 P3

LHCLK6 3 P15 P19 K3 K2 L1 M6 M3 N9

LHCLK7 3 P16 P21 K1 K3 M1 N7 M4 P10

RHCLK0 1 P59 P83 K15 L18 M19 N18 M22 P21

RHCLK1 1 P60 P85 K14 K17 M20 M17 L22 P20

RHCLK2 1 P61 P87 K16 K18 L19 N21 L21 P26

RHCLK3 1 P62 P88 J16 J17 L18 M20 L20 P25

RHCLK4 1 N/A P90 J14 J16 K18 L21 M18 P23

RHCLK5 1 N/A P92 H14 K15 L17 L20 M20 N24

RHCLK6 1 P64 P91 H15 H18 K20 M18 K20 P18

RHCLK7 1 P65 P93 H16 H17 J20 L17 K19 N19

Notes: 
1. N/A in XC3S50A.

http://www.xilinx.com
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Spartan-3E FPGA Clock Inputs
In the Spartan-3E family, avoid using global clock input GCLK1 as it is always shared with 
the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, 
GCLK14, and GCLK15 have shared functionality in some configuration modes, and all the 
RHCLK inputs share functionality with address lines for BPI mode. Make sure there is no 
conflict between the pin’s use during and after configuration.

Also in the Spartan-3E family, some clock pad pins are input-only pins as indicated in the 
“Pinout Descriptions” section of the data sheet. These might be more useful as clock inputs 
because using them does not take away the use of an I/O pin.

Table 2-3: Global Clock Input Pads for Spartan-3E FPGAs

Pad Bank VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484

GCLK0 2 P38 M6 P56 P80 T9 U10 P11 R12

GCLK1 2 P39 N6 P57 P81 R9 T10 P12 P12

GCLK2 2 P40 P6 P58 P82 P9 R10 V10 Y12

GCLK3 2 P41 P7 P59 P83 N9 P10 V11 W12

GCLK4 0 P83 A10 P122 P177 E9 D10 F11 F12

GCLK5 0 P84 C9 P123 P178 F9 E10 G11 E12

GCLK6 0 P85 B9 P125 P180 A10 B10 E11 B12

GCLK7 0 P86 A9 P126 P181 A9 A10 E10 C12

GCLK8 0 P88 B8 P128 P183 A8 B8 H10 H12

GCLK9 0 P89 C8 P129 P184 B8 B9 G10 H11

GCLK10 0 P90 A7 P130 P185 C8 C9 A10 C11

GCLK11 0 P91 B7 P131 P186 D8 D9 A9 B11

GCLK12 2 P32 M4 P50 P74 M8 N9 W9 V11

GCLK13 2 P33 N4 P51 P75 L8 M9 W10 U11

GCLK14 2 P35 M5 P53 P77 N8 U9 R10 R11

GCLK15 2 P36 N5 P54 P78 P8 V9 P10 T11

LHCLK0 3 P9 F3 P14 P22 H5 J5 K3 M5

LHCLK1 3 P10 F2 P15 P23 H6 J4 K2 L5

LHCLK2 3 P11 F1 P16 P24 H3 J1 K7 L8

LHCLK3 3 P12 G1 P17 P25 H4 J2 L7 M8

LHCLK4 3 P15 G3 P20 P28 J2 K3 M1 M1

LHCLK5 3 P16 H1 P21 P29 J3 K4 L1 N1

LHCLK6 3 P17 H2 P22 P30 J5 K6 M31 M3

LHCLK7 3 P18 H3 P23 P31 J4 K5 L3 M4

RHCLK0 1 P60 K14 P85 P126 K16 K13 M16 N22

RHCLK1 1 P61 J12 P86 P127 J16 K12 L16 M22

RHCLK2 1 P62 J13 P87 P128 J14 K15 L15 M15

RHCLK3 1 P63 J14 P88 P129 J13 K14 L14 M16
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Spartan-3 FPGA Clock Inputs
Spartan-3 devices have eight Global Clock input pads called GCLK0 through GCLK7. 
GCLK0 through GCLK3 are placed at the center of the die’s bottom edge. GCLK4 through 
GCLK7 are placed at the center of the die’s top edge. Any of the eight Global Clock inputs 
can connect to any resource on the die. There are no restrictions by quadrant, and no 
differentiation of primary and secondary clocks, simplifying I/O and logic placement. In 
the Spartan-3 family, none of the clock inputs share functionality with configuration pins, 
and all are on I/O pins. 

The pin locations for the global clock input pads are shown in Table 2-4.

Clock Inputs and DCMs
Clock inputs optionally connect directly to DCMs using dedicated connections. For more 
information on the clock inputs that best feed a specific DCM within a given device in each 
family, see Chapter 3, “Using Digital Clock Managers (DCMs).”

Differential Clocks Using Two Inputs 
A differential clock input requires two global clock inputs. The P and N inputs follow the 
same configuration as for standard inputs on those pins. The clock inputs that get paired 
together are consecutive pins in clock number, an even clock number and the next higher 

RHCLK4 1 P65 H13 P91 P132 H15 J17 K13 L20

RHCLK5 1 P66 H12 P92 P133 H14 J16 K14 L21

RHCLK6 1 P67 G14 P93 P134 H12 J15 K20 L18

RHCLK7 1 P68 G13 P94 P135 H11 J14 J20 L19

Table 2-3: Global Clock Input Pads for Spartan-3E FPGAs (Continued)

Pad Bank VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484

Table 2-4: Global Clock Input Pads for Spartan-3 FPGAs

Pad Bank VQ100 CP132(1) TQ144 PQ208 FT256 FG320 FG456 FG676 FG900 FG1156(2)

GCLK0 4 P38 M7 P55 P79 T9 P10 AB12 AF14 AK16 AP18

GCLK1 4 P39 P8 P56 P80 R9 N10 AA12 AE14 AJ16 AN18

GCLK2 5 P36 P6 P52 P76 N8  P9 Y11 AD13 AH15 AM17

GCLK3 5 P37 P7 P53 P77 P8 N9 AA11 AE13 AJ15 AN17

GCLK4 1 P87 A9 P124 P180 D9 F10 C12 C14 C16 C18

GCLK5 1 P88 A8 P125 P181 C9 E10 B12 B14 B16 B18

GCLK6 0 P89 C8 P128 P183 A8 F9 A11 A13 A15 A17

GCLK7 0 P90 A7 P127 P184 B8 E9 B11 B13 B15 B17

Notes: 
1. The CP(G)132 package is being discontinued and is not recommended for new designs. See 

http://www.xilinx.com/support/documentation/customer_notices/xcn08011.pdf for details.
2. The FG(G)1156 package is being discontinued and is not recommended for new designs. See 

http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf for details.

http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf
http://www.xilinx.com/support/documentation/customer_notices/xcn08011.pdf
http://www.xilinx.com
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odd value. For example, GCLK0 and GCLK1 are a differential pair as are LHCLK6 and 
LHCLK7.

In the Spartan-3E and Extended Spartan-3A families, two clock inputs are available for 
each clock buffer, allowing up to twelve differential global clock inputs. In the Spartan-3 
family, only four differential clock inputs are allowed.

Using Dedicated Clock Inputs in a Design
All clock input pins, including the LHCLK and RHCLK pins, are represented in a design 
by the IBUFG component. In general, an IBUFG is inferred by the synthesis tool on any 
top-level clock port. If it is desired to have more control over this process, an IBUFG can be 
instantiated. The I port should be connected directly to the top-level port and the O port 
should be connected to a DCM, BUFG, or general logic. Most synthesis tools can infer the 
BUFG automatically when connecting an IBUFG to the clock resources of the FPGA.

IBUFG

IBUFG (see Figure 2-3) represents the dedicated input buffers for driving the BUFGMUX 
or its alternatives, or the DCM. 

IBUFGDS

IBUFGDS (see Figure 2-4) is a dedicated differential signaling input buffer for connection 
to the clock buffer (BUFG) or DCM. In IBUFGDS, a design level interface signal is 
represented as two distinct ports (I and IB), one called the master and the other called the 
slave. The master and the slave are opposite phases of the same logical signal (for example, 
MYNET and MYNETB).

Figure 2-3: IBUFG Component
UG331_c4_03_080906
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The default IBUFGDS I/O standard is LVDS_25.

Clock Buffers/Multiplexers
Clock buffers/multiplexers either drive clock input signals directly onto a clock line 
(BUFG) or optionally provide a multiplexer to switch between two unrelated, possibly 
asynchronous clock signals (BUFGMUX).

Each BUFGMUX element, shown in Figure 2-5, is a 2-to-1 multiplexer. The select line, S, 
chooses which of the two inputs, I0 or I1, drives the BUFGMUX output signal, O, as 
described in Table 2-5. As specified in each data sheet’s “DC and Switching 
Characteristics” section, the S input has a setup time requirement. It also has 
programmable polarity.

Figure 2-4: IBUFGDS Component and Truth Table

UG331_c4_04_080906

I
O

IB

Inputs Outputs

I IB O

0 0 -(1)

0 1 0

1 0 1

1 1 -(1)

Notes: 
1. The dash (-) means no change.

Figure 2-5: BUFGMUX Clock Multiplexer

Table 2-5: BUFGMUX Select Mechanism

S Input O Output

0 I0 Input

1 I1 Input

I0

I1

S

BUFGMUX

O

UG331_c4_05_080906
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BUFGMUX Multiplexing Details
The BUFGMUX not only multiplexes two clock signals but does it in a way that eliminates 
any timing hazards. This allows switching from one clock source to a completely 
asynchronous clock source without glitches. The element guarantees that when the select 
line S is toggled to choose the other clock source, the output remains in the inactive state 
until the next active clock edge on either input. The output can be either High or Low when 
disabled (when toggling between clock inputs). The default is Low. A cross-coupled 
register pair ensures the BUFGMUX output does not inadvertently generate a clock edge.

When the S input changes, the BUFGMUX does not drive the new input to the output until 
the previous clock input is Low and the new clock input has a High-to-Low transition. By 
not toggling on the first Low-to-High transition of the input, the output clock pulse is 
never shorter than the shortest input clock pulse.

The S input selects clock input I0 when Low and I1 when High, but also has built-in 
programmable polarity, equivalent to swapping I0 and I1. Programmable polarity on the 
clock signal is available at each flip-flop, which can be rising-edge or falling-edge 
triggered, avoiding having to generate and propagate two separate clock signals.

If only one clock input is needed the second clock input and select lines do not need to be 
used.

The BUFGMUX is initialized with I0 selected at power-up and after the assertion of the 
Global Set/Reset (GSR). Simulation should also start with S = 0 at time 0. If S = 1 at time 0, 
the output is unknown until the next falling edge of I1.

The select line can change at almost any time, independent of the clock states or transitions. 
The only exception is a short setup time prior to a Low-to-High transition on the selected 
clock input, which can result in an undefined runt pulse output.

Using Clock Buffers/Multiplexers in a Design
All major synthesis tools infer clock buffers on the highest fanout clock nets. If there are 
more clocks than buffers, the most-utilized clocks get priority for the buffers. The library 
components are used to specify the buffers explicitly or to use the multiplexer 
functionality.

BUFGMUX and BUFGMUX_1

BUFGMUX and BUFGMUX_1 are distinguished by which state the output assumes when 
it switches between clocks in response to a change in its select input. BUFGMUX assumes 
output state 0 and BUFGMUX_1 assumes output state 1.

Table 2-6: BUFGMUX Functionality

Inputs Outputs

I0 I1 S O

I0 X 0 I0

X I1 1 I1

X X ↑ 0

X X ↓ 0
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BUFG

The BUFGMUX is the physical clock buffer in the device, but it can be used as a simple 
single-input clock buffer. The BUFG clock buffer primitive (see Figure 2-6) drives a single 
clock signal onto the clock network and is essentially the same element as a BUFGMUX, 
just without the clock select mechanism. BUFG is the generic primitive for clock buffers 
across multiple architectures. 

The BUFG is built from the BUFGMUX as shown in Figure 2-7.

The dedicated zero on the select line is actually implemented with a dedicated VCC source 
and using the programmable polarity on the S input. 

BUFGCE and BUFGCE_1

The BUFGCE primitive creates an enabled clock buffer using the BUFGMUX select 
mechanism. BUFGCE is a global clock buffer with a single gated input. Its O output is "0" 
when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is 
transferred to the O output. 

The BUFGCE is built from the BUFGMUX by multiplexing a fixed value for one input. The 
default value is Low when disabled. The BUFGCE_1 primitive is similar with VCC 

Figure 2-6: BUFG Component

Figure 2-7: BUFG Built from BUFGMUX
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Figure 2-8: BUFGCE Component and Truth Table

UG331_c4_08_080906

BUFGCE

I

CE

O

Inputs Outputs

I CE O

X 0 0

I 1 I

http://www.xilinx.com


54 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 2: Using Global Clock Resources
R

connected to I1, making the output High when disabled. It also uses the BUFGMUX_1 
primitive to guarantee there are no glitches during the transition between inputs. 
Figure 2-9 shows the equivalent functionality, although the library component truly is a 
primitive. The CE inversion is built into the BUFGMUX functionality. The "0" source can be 
fed from any convenient unused LUT.

XST Synthesis of Clock Buffers
XST automatically infers clock buffers on the highest fanout clock nets, but synthesis 
constraints can be used to control the usage of clock buffers.

BUFFER_TYPE selects the type of buffer to be inserted on the input port. The default is 
BUFGP, which is equivalent to a BUFG.

NET “signal_name” buffer_type={bufgdll|ibufg|bufgp|ibuf|bufr|none};

The BUFFER_TYPE parameter can be used on a generic input to make sure that the global 
clock buffer is used (= BUFGP). It can also be set to NONE to prevent the automatic usage 
of a global clock buffer. This replaces the older constraint CLOCK_BUFFER, which should 
not be used in new designs. 

If a common clock enable is used for all loads on a clock net, the BUFGCE = YES constraint 
can be used to move the high-fanout clock enable to a single line on a BUFGCE:

NET “primary_clock_signal” bufgce={yes|no|true|false}; 

CLOCK_SIGNAL is a synthesis constraint. In the case where a clock signal goes through 
combinatorial logic before being connected to the clock input of a flip-flop, XST cannot 
identify what input pin is the real clock pin. This constraint can be used to define the clock 
pin:

NET “primary_clock_signal” clock_signal={yes|no|true|false};

BUFGMUX Connection Details

BUFGMUX Inputs
The I0 and I1 inputs to a BUFGMUX element originate from clock input pins, DCMs, or 
Double-Line interconnect, as shown in Figure 2-10. As shown in Figure 2-2, page 45, there 
are 24 BUFGMUX elements distributed around the four edges of the device. Clock signals 
from the four BUFGMUX elements at the top edge and the four at the bottom edge are 
truly global and connect to all clocking quadrants. The eight left-edge BUFGMUX 
elements only connect to the two clock quadrants in the left half of the device. Similarly, the 
eight right-edge BUFGMUX elements only connect to the right half of the device.

Figure 2-9: Equivalent Functionality of BUFGCE
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BUFGMUX elements are organized in pairs and share I0 and I1 connections with adjacent 
BUFGMUX elements from a common clock switch matrix as shown in Figure 2-10. For 
example, the input on I0 of one BUFGMUX is also a shared input to I1 of the adjacent 
BUFGMUX.

The clock switch matrix for the left- and right-edge BUFGMUX elements receive signals 
from any of the three following sources: an LHCLK or RHCLK pin as appropriate, a 
Double-Line interconnect, or a DCM in the larger devices. These devices include the 
XC3S1200E and XC3S1600E devices in the Spartan-3E family, and the XC3S700A/AN, 
XC3S1400A/AN, XC3SD1800A, and XC3SD3400A devices in the Extended Spartan-3A 
family.

By contrast, the clock switch matrixes on the top and bottom edges receive signals from 
any of the five following sources: two GCLK pins, two DCM outputs, or one Double-Line 
interconnect.

Table 2-7 indicates permissible connections between clock inputs and BUFGMUX 
elements. The I0 input provides the best input path to a clock buffer. The I1 input provides 
the secondary input for the clock multiplexer function. 

Figure 2-10: Spartan-3E and Extended Spartan-3A Family Clock Switch Matrix for 
BUFGMUX Pair Connectivity
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Table 2-7: Spartan-3E and Extended Spartan-3A Family Connections from Clock Inputs to BUFGMUX 
Elements and Associated Quadrant Clock

Quadrant
Clock
Line(1)

Left-Half BUFGMUX Top or Bottom BUFGMUX Right-Half BUFGMUX

Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input

H X0Y9 LHCLK7 LHCLK6 X1Y10

Extended Spartan-3A:
GCLK6 or GCLK10

Spartan-3E:
GCLK7 or GCLK11

Extended Spartan-3A:
GCLK7 or GCLK11

Spartan-3E:
GCLK6 or GCLK10

X3Y9 RHCLK3 RHCLK2

G X0Y8 LHCLK6 LHCLK7 X1Y11

Extended Spartan-3A:
GCLK7 or GCLK11

Spartan-3E:
GCLK6 or GCLK10

Extended Spartan-3A:
GCLK6 or GCLK10

Spartan-3E:
GCLK7 or GCLK11

X3Y8 RHCLK2 RHCLK3

F X0Y7 LHCLK5 LHCLK4 X2Y10

Extended Spartan-3A:
GCLK4 or GCLK8

Spartan-3E:
GCLK5 or GCLK9

Extended Spartan-3A:
GCLK5 or GCLK9

Spartan-3E:
GCLK4 or GCLK8

X3Y7 RHCLK1 RHCLK0

E X0Y6 LHCLK4 LHCLK5 X2Y11

Extended Spartan-3A:
GCLK5 or GCLK9

Spartan-3E:
GCLK4 or GCLK8

Extended Spartan-3A:
GCLK4 or GCLK8

Spartan-3E:
GCLK5 or GCLK9

X3Y6 RHCLK0 RHCLK1

D X0Y5 LHCLK3 LHCLK2 X1Y0 GCLK3 or GCLK15 GCLK2 or GCLK14 X3Y5 RHCLK7 RHCLK6

C X0Y4 LHCLK2 LHCLK3 X1Y1 GCLK2 or GCLK14 GCLK3 or GCLK15 X3Y4 RHCLK6 RHCLK7

B X0Y3 LHCLK1 LHCLK0 X2Y0 GCLK1 or GCLK13 GCLK0 or GCLK12 X3Y3 RHCLK5 RHCLK4

A X0Y2 LHCLK0 LHCLK1 X2Y1 GCLK0 or GCLK12 GCLK1 or GCLK13 X3Y2 RHCLK4 RHCLK5

Notes: 
1. See “Quadrant Clock Routing,” page 57 for connectivity details for the eight quadrant clocks.
2. See Figure 2-2 for specific BUFGMUX locations, and Figure 2-12 for information on how BUFGMUX elements drive onto a specific clock line 

within a quadrant.
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The four BUFGMUX elements on the top edge are paired together and share inputs from 
the eight global clock inputs along the top edge. Each BUFGMUX pair connects to four of 
the eight global clock inputs, as shown in Figure 2-2, page 45. This optionally allows 
differential inputs to the global clock inputs without wasting a BUFGMUX element.

The connections for the bottom-edge BUFGMUX elements are similar to the top-edge 
connections (see Figure 2-10). On the left and right edges, only two clock inputs feed each 
pair of BUFGMUX elements.

BUFGMUX Outputs
The BUFGMUX drives the global clock routing, which in turn connects to clock inputs on 
device resources. The BUFGMUX can also connect to a DCM, typically used for internal 
feedback to the DCM CLKFB input, as shown in Figure 2-11.

For more details on using the DCMs, see Chapter 3, “Using Digital Clock Managers 
(DCMs).”

Spartan-3 Global Clock Buffers
The Spartan-3 family has only eight global clock buffers. Four BUFGMUX elements are 
placed at the center of the die’s bottom edge, just above the GCLK0 - GCLK3 inputs. The 
remaining four BUFGMUX elements are placed at the center of the die’s top edge, just 
below the GCLK4 - GCLK7 inputs. Each pair of BUFGMUX elements shares two sources; 
each source feeds the I0 input of one BUFGMUX and the I1 input of the adjacent 
BUFGMUX. Thus two completely independent pairs of clock inputs to be multiplexed 
could be on the same side of the die but not on the adjacent BUFGMUX elements. For more 
details, see the Spartan-3 data sheet.

Quadrant Clock Routing
The clock routing within the Spartan-3E and Extended Spartan-3A family FPGA is 
quadrant-based, as shown in Figure 2-2, page 45. Each clock quadrant supports eight total 
clock signals, labeled A through H in Table 2-7 and Figure 2-12. The clock source for an 
individual clock line originates either from a global BUFGMUX element along the top and 
bottom edges or from a BUFGMUX element along the associated left/right edge, as shown 
in Figure 2-12. The clock lines feed the synchronous resource elements (CLBs, IOBs, block 
RAM, multipliers, and DCMs) within the quadrant. Those resources have programmable 
polarity on the clock input.

Figure 2-11: Using a DCM to Eliminate Clock Skew

I O

IBUFG

I O

BUFG

Global
Buffer Input

Global
Clock Buffer

Low-Skew
Global Clock

Network

Digital Clock
Manager

CLKIN Output

CLKFB

DCM

UG331_c4_11_080906

GCLK

http://www.xilinx.com


58 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 2: Using Global Clock Resources
R

The four quadrants of the device are:

• Top Right (TR)

• Bottom Right (BR)

• Bottom Left (BL)

• Top Left (TL)

The quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB 
placement constraints.

The outputs of the top or bottom BUFGMUX elements connect to two vertical spines, each 
comprising four vertical clock lines as shown in Figure 2-2, page 45. At the center of the 
die, these clock signals connect to the eight-line horizontal clock spine. By bringing the 
clock to the center of the device and then radiating outward, the skew is minimized across 
the device.

Outputs of the left and right BUFGMUX elements are routed onto the left or right 
horizontal spines, each comprising eight horizontal clock lines.

Each of the eight clock signals in a clock quadrant derives either from a global clock signal 
or a half clock signal. In other words, there are up to 24 total potential clock inputs to the 
FPGA, eight of which can connect to clocked elements in a single clock quadrant. 
Figure 2-12 shows how the clock lines in each quadrant are selected from associated 
BUFGMUX sources. For example, if quadrant clock A in the bottom left (BL) quadrant 
originates from BUFGMUX_X2Y1, then the clock signal from BUFGMUX_X0Y2 is 

Figure 2-12: Spartan-3E and Extended Spartan-3A Family Clock Sources for the Eight Clock Lines within a 
Clock Quadrant
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unavailable in the bottom left quadrant. However, the top left (TL) quadrant clock A can 
still solely use the output from either BUFGMUX_X2Y1 or BUFGMUX_X0Y2 as the source.

Choosing Top/Bottom and Left-/Right-Half Global Buffers
The software generally use the top/bottom global buffers as the first choice for high-fanout 
clock signals. If there are more than eight clocks in a design, the left-/right-half buffers can 
be used. Floorplanning is recommended for designs requiring more than eight clocks, 
since the loads on the left-/right-half buffers must be restricted to one half of the device, or 
restricted to one quadrant to allow the most freedom for the global input using the same 
routing resource.

Spartan-3 Global Clock Routing
The Spartan-3 BUFGMUX drives the vertical global clock spine belonging to the same side 
of the die — top or bottom — as the BUFGMUX element in use. The two spines — top and 
bottom — each comprise four vertical clock lines, each running from one of the BUFGMUX 
elements on the same side towards the center of the die. At the center of the die, clock 
signals reach the eight-line horizontal spine, which spans the width of the die. In turn, the 
horizontal spine branches out into a subsidiary clock interconnect that accesses the CLBs, 
IOBs, block RAM, and multipliers. For more details, see the Spartan-3 Family Data Sheet.

Other Information

Clock Power Consumption
Dynamic power dissipation can be reduced through optimization of the clocks used in a 
design.

To minimize the dynamic power dissipation of the clock network, the Xilinx development 
software automatically disables all clock segments not in use. To take full advantage of 
this, concentrate logic in the fewest possible clock column regions. Use floorplanning to 
reduce the number of clock columns in use. To further reduce clock power, reduce the 
number of rows that the clock is driving.

Using a slower clock also reduces power. The DCM can be used to divide clocks, or slow 
clocks can be further divided using registers. A design can be organized according to 
required clock frequency and then each part clocked at the lowest possible frequency.

Stopping a clock eliminates the power consumed by the clock routing and by the elements 
it drives. If possible, stop the clock externally where it enters the FPGA. If you can not stop 
the clock externally, then disable it inside the FPGA by using the BUFGMUX or BUFGCE. 
Gating a clock through internal CLB logic is not recommended because it introduces route-
dependent skew and makes the design sensitive to lot-to-lot variations, and might require 
manual routing.

The alternative is to use the clock enables to disable the clock loads. This is useful when the 
clock is still needed in some locations, but it does not reduce the clock distribution power.

Clock Setup and Hold Timing
See the data sheets for detailed clock timing information. Delay parameters are provided 
for both pin-to-pin paths through the device and individual component delays. All delay 
parameters that begin or end at a device pin are defined for the LVCMOS25 I/O standard, 
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which is the default. Outputs are defined for 12 mA drive, which is the default, and Fast 
slew rate (Slow is the default). Parameters are adjusted by the timing report tools for other 
I/O standards. For pin-to-pin setup times, which are calculated as the data delay minus 
the clock delay, the clock pin "adder" is actually subtracted from the result. For hold times, 
the data pin "adder" is subtracted. A negative hold time means that the data can be 
released before the clock edge. This is often considered simply as a zero hold time, allowing 
the clock and data to change at the same time. The previous data gets clocked before the 
new data arrives.

Delay parameters for an input flip-flop are affected by the IFD_DELAY_VALUE setting. 
The default is AUTO, which selects a specific value according to the density of the device. 
For exact timing for your design, see the timing reports provided by the ISE® development 
tools.

Summary
Global clock inputs, buffers, and routing are automatically used for a design’s highest 
fanout clock signals. Implementation reports should be checked to verify the usage of 
clock buffers where desired. The user can specify the details of global clock usage in order 
to take advantage of special features such as multiplexing and clock enables, or to 
maximize the number of clocks using global resources in a design.

Additional Information
For other types of routing resources, see Chapter 12, “Using Interconnect.”

Using the general-purpose interconnect to distribute clock signals is called local clocking, as 
described in XAPP609 and elsewhere on the Xilinx website.

For more details on the DCMs, see Chapter 3, “Using Digital Clock Managers (DCMs).” 

This chapter focuses on the Spartan-3E and Extended Spartan-3A architectures. For details 
on Spartan-3 FPGA clocks, see DS099, Spartan-3 FPGA Family Data Sheet.

For more information on input delay elements and IOSTANDARD options, see 
Chapter 10, “Using I/O Resources.”

For information on the clocked resources in the FPGA, such as the CLB flip-flops and the 
block RAM, see the appropriate chapters elsewhere in this user guide.

For information on setting clock performance constraints, see the ISE Constraints Guide on 
the Xilinx website.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp609.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
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Chapter 3

Using Digital Clock Managers (DCMs)

Summary
Digital Clock Managers (DCMs) provide advanced clocking capabilities to Spartan®-3 
generation FPGA applications (Spartan-3, Spartan-3E, and Extended Spartan-3A families). 
Primarily, DCMs eliminate clock skew, thereby improving system performance. Similarly, 
a DCM optionally phase shifts the clock output to delay the incoming clock by a fraction of 
the clock period. DCMs optionally multiply or divide the incoming clock frequency to 
synthesize a new clock frequency. The DCMs integrate directly with the FPGA’s global 
low-skew clock distribution network.

Introduction
DCMs integrate advanced clocking capabilities directly into the FPGA’s global clock 
distribution network. Consequently, DCMs solve a variety of common clocking issues, 
especially in high-performance, high-frequency applications:

• Eliminate Clock Skew, either within the device or to external components, to 
improve overall system performance and to eliminate clock distribution delays.

• Phase Shift a clock signal, either by a fixed fraction of a clock period or by 
incremental amounts.

• Multiply or Divide an Incoming Clock Frequency or synthesize a completely new 
frequency by a mixture of clock multiplication and division. 

• Condition a Clock, ensuring a clean output clock with a 50% duty cycle.

• Mirror, Forward, or Rebuffer a Clock Signal, often to deskew and convert the 
incoming clock signal to a different I/O standard—for example, forwarding and 
converting an incoming LVTTL clock to LVDS.

• Any or all the above functions, simultaneously.

Table 3-1: Digital Clock Manager Features and Capabilities

Feature Description DCM Signals

Digital Clock Managers (DCMs) per Device Two to eight DCMs, depending on 
array size. See Figure 3-1, page 64.

All

Clock Input Sources • Global buffer input pad
• Global buffer output
• General-purpose I/O (no deskew)
• Internal logic (no deskew)

CLKIN

Frequency Synthesizer Output Multiply CLKIN by the fraction (M/D) 
where M = {2..32}, D = {1..32}

• CLKFX
• CLKFX180
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Document Overview
This chapter covers an assortment of topics related to Digital Clock Managers, not all of 
which are relevant to every specific FPGA application.

The “DCM Functional Overview” section provides a brief introduction to the DCM and its 
functions. Similarly the “DCM Primitive” section describes all the connection ports and 
attributes or constraints associated with a DCM. Likewise the “Clocking Wizard” and the 
“VHDL and Verilog Instantiation” sections demonstrate the various methods to specify a 
DCM design.

The “DCM Clock Requirements” and the “Input and Output Clock Frequency 
Restrictions” sections explain the frequency requirements on the DCM clock input and the 
various DCM clock outputs. Similarly, the “Clock Jitter or Phase Noise” section highlights 
the effect jitter has on output clock quality.

Finally, the “Eliminating Clock Skew”, “Clock Conditioning”, “Phase Shifting – Delaying 
Clock Outputs by a Fraction of a Period”, “Clock Multiplication, Clock Division, and 
Frequency Synthesis”, and “Clock Forwarding, Mirroring, Rebuffering” sections illustrate 
various applications using the DCM block.

Clock Divider Output Divide CLKIN by 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 
5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 
15, or 16

CLKDV

Clock Doubler Output Multiply CLKIN frequency by 2 • CLK2X
• CLK2X180

Clock Conditioning, Duty-Cycle Correction Always provided on most outputs. 
Optional on Spartan-3 FPGA outputs 
CLK0, CLK90, CLK180, and CLK270.

All

Quadrant Phase Shift Outputs 0º (no phase shift),
90º (¼ period),
180º (½ period),
270º (¾ period)

• CLK0
• CLK90
• CLK180
• CLK270

Half-Period Phase Shift Outputs Output pairs with 0º and 180º phase 
shift, ideal for DDR applications

• CLK0, 
CLK180

• CLK2X, 
CLK2X180

• CLKFX, 
CLKFX180

Number of DCM Clock Outputs Connected to General-
Purpose Interconnect

Up to all 9 All

Number of DCM Clock Outputs Connected to Global 
Clock Network

Any 4 of 9 All

Number of Clock Outputs Connected to Output Pins Up to all 9 All

Table 3-1: Digital Clock Manager Features and Capabilities (Continued)

Feature Description DCM Signals
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Compatibility and Comparison with Other Xilinx FPGA Families
Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs include a fourth-generation DCM 
design, incorporating a variety of enhancements and improvements over previous FPGA 
families. The Spartan-3 DCM, a third-generation design, is nearly functionally identical to 
the DCM units found in Virtex®-II and Virtex-II Pro FPGA families.

The DCM feature is nearly identical between all Spartan-3 generation FPGA families. 
Table 3-2 summarizes the primary DCM differences between families. Mid- and large-
density Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs have additional DCMs along 
the left and right sides of the FPGA. The Spartan-3E and Spartan-3A/3AN/3A DSP DCMs 
automatically determine their operating range and, unlike Spartan-3 FPGAs, are not 
limited to either a Low or High operating frequency range. Furthermore, Spartan-3E and 
Spartan-3A/3AN/3A DSP DCMs support a broader range of input frequencies. There are 
also important differences in the way that Spartan-3E and Spartan-3A/3AN/3A DSP 
FPGAs implement Variable Phase Shift operations, further described in “Important 
Differences Between Spartan-3 Generation FPGA Families,” page 118.

The Spartan-3 DCM is a significant enhancement over the Spartan-II/Spartan-IIE DLL 
function. A Spartan-3 DCM provides all the capabilities of the Spartan-II/Spartan-IIE DLL 
with new capabilities, such as the Frequency Synthesizer and phase shifting functions. The 
Spartan-3 Frequency Synthesizer multiplies an input clock by up to a factor of 32. The 
Spartan-II/IIE DLL has limited frequency multiplication capabilities—namely, an input 
clock can be doubled. Similarly, the Spartan-3 DCM has a wider divider range compared to 
Spartan-IIE DLLs.

Table 3-2: DCM Differences between Spartan-3 Generation FPGAs

Spartan-3 
FPGAs

Spartan-3E
FPGAs

Spartan-3A/3AN/3A DSP 
FPGAs

Design primitive DCM DCM_SP DCM_SP

DCMs per device 
(Figure 3-1, page 64)

2 to 4 global
2 to 4 global plus
0 to 4 side DCMs

2 to 4 global plus
0 to 4 side DCMs

DLL minimum input 
clock frequency

18 MHz 5 MHz 5 MHz

Distinct DLL 
operating frequency 
ranges

Two: 
Low and High

One One

Distinct DFS operating 
frequency range

Two: 
Low and High

One One 

DFS input clock 
frequency range

1 to 280 MHz 0.2 to 333 MHz 0.2 to 333 MHz

Variable Phase Shift 
increment or 
decrement unit

1/256th of 
CLKIN Period

(degrees)

DCM_DELAY_STEP, 
between 20 to 40 ps 

(time)

DCM_DELAY_STEP, 
between 15 to 35 ps

(time)

DCM 

VCCAUX voltage 
supply

2.5V 2.5V
Spartan-3A/3A DSP: 

2.5V or 3.3V

Spartan-3AN: 3.3V
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DCM Locations and Clock Distribution Network Interface
Figure 3-1 shows the number and relative location of DCMs on various Spartan-3 
generation FPGAs. The smallest FPGA in each family has two DCMs, although the 
physical location varies between families. All larger Spartan-3 FPGAs and the middle-
sized members of the Spartan-3E and Extended Spartan-3A families have four DCM 
blocks. The larger members of the Spartan-3E and Extended Spartan-3A families have 
eight total DCMs. The two DCMs at the top and the two at the bottom connect into the 
FPGA’s global clock network. The DCMs along the left and right edges connect to the clock 
network on their respective half of the FPGA.

The DCM blocks have dedicated connections to the global buffer inputs and global buffer 
multiplexers on the same edge of the device, either top or bottom. They are an integral part 
of the FPGA’s global clocking infrastructure. DCMs are an optional element in the clock 
distribution network and are available when required by the application. In Figure 3-2a, a 
clock input feeds directly into the low-skew, high-fanout global clock network via a global 
input buffer and global clock buffer.

If the application requires some or all of the DCM’s advanced clocking features, the DCM 
fits neatly between the global buffer input and the buffer itself, as shown in Figure 3-2b.

Figure 3-1: Number and Location of DCMs on Spartan-3 Generation FPGAs
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DCM Functional Overview
The single entity that is generically called a Digital Clock Manager (DCM) consists of four 
distinct functional units as depicted in the simplified diagram shown in Figure 3-3 and 
described below. These units operate independently or in tandem.

Figure 3-2: DCMs are an Integral Part of the FPGA's Global Clock Network
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a. Global Buffer Inputs and Clock Buffers Drive a Low-Skew Global Network in the FPGA

b. A Digital Clock Manager (DCM) Inserts Directly into the Global Clock Path

Figure 3-3: DCM Functional Block Diagram
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Delay-Locked Loop (DLL)
The Delay-Locked Loop (DLL) unit provides an on-chip digital deskew circuit that 
effectively generates clock output signals with a net zero delay. The deskew circuit 
compensates for the delay on the clock routing network by monitoring an output clock, 
from either the DCM’s CLK0 or the CLK2X outputs. The DLL unit effectively eliminates 
the delay from the external clock input port to the individual clock loads within the device. 
The well-buffered global network minimizes the clock skew on the network caused by 
loading differences.

The input signals to the DLL unit are CLKIN and CLKFB. The output signals from the DLL 
are CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.

The DLL unit generates the outputs for the Clock Doubler (CLK2X, CLK2X180), the Clock 
Divider (CLKDV) and the Quadrant Phase Shifted Outputs functions.

Digital Frequency Synthesizer (DFS)
The Digital Frequency Synthesizer (DFS) provides a wide and flexible range of output 
frequencies based on the ratio of two user-defined integers, a Multiplier 
(CLKFX_MULTIPLY) and a Divisor (CLKFX_DIVIDE). The output frequency is derived 
from the input clock (CLKIN) by simultaneous frequency division and multiplication. The 
DFS feature can be used in conjunction with or separately from the DLL feature of the 
DCM. If the DLL is not used, then there is no phase relationship between CLKIN and the 
DFS outputs.

The DFS unit generates the Frequency Synthesizer (CLKFX, CLKFX180) outputs. 

Phase Shift (PS)
The Phase Shift (PS) unit controls the phase relations of the DCM’s clock outputs to the 
CLKIN input. 

The Phase Shift unit shifts the phase of all nine DCM clock output signals by a fixed 
fraction of the input clock period. The fixed phase shift value is set at design time and 
loaded into the DCM during FPGA configuration. Note that if the DLL is not used, then 
there is no phase relationship between CLKIN and the DFS outputs.

The Phase Shift unit also provides a digital interface for the FPGA application to 
dynamically advance or retard the current shift value, called Variable Phase Shift. As 
shown in Table 3-3, the Spartan-3 Variable Phase Shift changes by 1/256th of the CLKIN 
clock period. On Spartan-3E and Extended Spartan-3A families, the Variable Phase Shift 
changes by one DCM_DELAY_STEP, which has a fixed range as defined in the 
corresponding data sheet.

The input signals to the Phase Shift unit are PSINCDEC, PSEN, and PSCLK. The output 
signals are PSDONE and the STATUS[0] signal.

Table 3-3: Variable Phase Shift Differences

FPGA Family Smallest Phase Shift Unit

Spartan-3 FPGA 1/256th of the CLKIN clock period, but not less than 30 to 60 ps

Spartan-3E FPGA DCM_DELAY_STEP, which ranges between 20 to 40 ps per step

Extended Spartan-3A 
FPGA

DCM_DELAY_STEP, which ranges between 15 to 35 ps per step
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Status Logic
The Status Logic indicates the current state of the DCM via the LOCKED and STATUS[0] 
(Spartan-3/3A/3AN/3A DSP FPGAs only), STATUS[1], and STATUS[2] output signals. 
The LOCKED output signal indicates whether the DCM outputs are in phase with the 
CLKIN input. The STATUS output signals indicate the state of the DLL and PS operations.

The RST input signal resets the DCM logic and returns it to its post-configuration state. 
Likewise, a reset forces the DCM to reacquire and lock to the CLKIN input.

DCM Primitive
The DCM design primitive, shown in Figure 3-4, represents all the sub-features within the 
Digital Clock Manager. The name of the DCM primitive differs slightly between Spartan-3 
generation FPGA families, as shown in Table 3-4. Spartan-3 FPGAs support the DCM 
primitive, while Spartan-3E and Extended Spartan-3A FPGAs support the more advanced 
DCM_SP primitive. The Xilinx ISE® software automatically maps a Spartan-3 DCM 
primitive to the appropriate equivalent in a Spartan-3E or Extended Spartan-3A FPGA 
design.

The DCM’s Connection Ports and Attributes, Properties, or Constraints are summarized 
below.

Symbol

Table 3-4: Digital Clock Manager Primitive by Spartan-3 Generation FPGA Family

FPGA Family Primitive

Spartan-3E FPGA
DCM_SP

Extended Spartan-3A FPGA

Spartan-3 FPGA DCM

Figure 3-4: DCM Design Primitive
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Connection Ports
Table 3-6 lists the various connection ports to the Digital Clock Manager. Each port 
connection has a brief description, which includes the signal direction, and which DCM 
function units require the connection. Table 3-5 provides the abbreviated name for each 
function unit used in Table 3-6.

Table 3-5: Functional Unit Abbreviations for Table 3-6

Abbreviation Functional Unit

DLL Delay-Locked Loop

PS Phase Shifter

DFS Digital Frequency Synthesizer

Table 3-6: DCM Connection Ports

Port Direction Description
Functional Unit

DLL PS DFS

CLKIN Clock 
Input

Clock input to DCM. Always required. The CLKIN frequency and 
jitter must fall within the limits specified in the data sheet. On 
Spartan-3 FPGAs, the frequency limits are further defined by the 
DLL_FREQUENCY_MODE and DFS_FREQUENCY_MODE 
attributes.

9 9 9

CLKFB Input Clock feedback input to DCM. The feedback input is required 
unless the Digital Frequency Synthesis outputs, CLKFX or 
CLKFX180, are used stand-alone. The source of the CLKFB input 
must be the CLK0 or CLK2X output from the DCM and the 
CLK_FEEDBACK must be set to 1X or 2X accordingly. The 
feedback point ideally includes the delay added by the clock 
distribution network, either internally or externally. See 
“Feedback from a Reliable Source.”

9 Optional 9

RST Input Asynchronous reset input. Resets the DCM logic to its post-
configuration state. Causes DCM to reacquire and relock to the 
CLKIN input. Invertible within DCM block. Non-inverted 
behavior shown below. See “RST Input Behavior.”

9 9 9

PSEN Input Variable Phase Shift enable. Invertible within DCM block. Non-
inverted behavior shown below. See “Variable Fine Phase 
Shifting,” page 118.

9

0 No effect.

1 Reset DCM block. Hold RST pulse High for at least 
three valid CLKIN cycles.

0 Disable Variable Phase Shifter. Ignore inputs to phase 
shifter.

1 Enable Variable Phase Shifter operations on next 
rising PSCLK clock edge.
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PSINCDEC Input Increment/decrement Variable Phase Shift. Invertible within 
DCM block. Non-inverted behavior shown below. See “Variable 
Fine Phase Shifting,” page 118.

9

PSCLK Clock 
Input

Clock input to Variable Phase Shifter, clocked on rising edge. 
Invertible within DCM block. See “Variable Fine Phase Shifting,” 
page 118.

9

CLK0 Clock 
Output

Same frequency as CLKIN, 0° phase shift (i.e., not phase shifted). 
Always conditioned to a 50% duty cycle on 
Spartan-3E/3A/3AN/3A DSP FPGAs or on Spartan-3 FPGAs 
when the DUTY_CYCLE_CORRECTION attribute is TRUE. 
Either CLK0 or CLK2X is required as a feedback source for DLL 
functions. See “Half-Period Phase Shifted Outputs,” and 
“Quadrant Phase Shifted Outputs.”

9

CLK90 Clock 
Output

Same frequency as CLKIN, 90° phase shifted (quarter period). 
Not available if the DLL_FREQUENCY_MODE attribute is 
HIGH. Always conditioned to a 50% duty cycle on 
Spartan-3E/3A/3AN/3A DSP FPGAs or on Spartan-3 FPGAs 
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See 
“Quadrant Phase Shifted Outputs.”

9

CLK180 Clock 
Output

Same frequency as CLKIN, 180° phase shifted (half period). 
Always conditioned to a 50% duty cycle on 
Spartan-3E/3A/3AN/3A DSP FPGAs or on Spartan-3 FPGAs 
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See 
“Half-Period Phase Shifted Outputs,” and “Quadrant Phase 
Shifted Outputs.”

9

CLK270 Clock 
Output

Same frequency as CLKIN, 270° phase shifted (three-quarters 
period). Not available if the DLL_FREQUENCY_MODE attribute 
is HIGH. Always conditioned to a 50% duty cycle on 
Spartan-3E/3A/3AN/3A DSP FPGAs or on Spartan-3 FPGAs 
when the DUTY_CYCLE_CORRECTION attribute is TRUE. See 
“Quadrant Phase Shifted Outputs.”

9

CLK2X Clock 
Output

Double-frequency clock output, 0° phase shift. Not available if the 
DLL_FREQUENCY_MODE attribute is HIGH. When available, 
the CLK2X output always has a 50% duty cycle. Either CLK0 or 
CLK2X is required as a feedback source for DLL functions. Clock 
Doubler (CLK2X, CLK2X180) output. See “Half-Period Phase 
Shifted Outputs.”

9

Table 3-6: DCM Connection Ports (Continued)

Port Direction Description
Functional Unit

DLL PS DFS

0 Decrement phase shift value on next enabled, rising 
PSCLK clock edge.

1 Increment phase shift value on next enabled, rising 
PSCLK clock edge.
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CLK2X180 Clock 
Output

Double-frequency clock output, 180° phase shifted. Not available 
if the DLL_FREQUENCY_MODE attribute is HIGH. When 
available, the CLK2X180 output always has a 50% duty cycle. 
Clock Doubler (CLK2X, CLK2X180) output. See “Half-Period 
Phase Shifted Outputs.”

9

CLKDV Clock 
Output

Divided clock output, controlled by the CLKDV_DIVIDE 
attribute. The CLKDV output has a 50% duty cycle unless the 
DLL_FREQUENCY_MODE attribute is HIGH and the 
CLKDV_DIVIDE attribute is a non-integer value. The locking 
time is longer when CLKDV_DIVIDE has a non-integer value. 
See the Clock Divider (CLKDV) output.

9

CLKFX Clock 
Output

Synthesized clock output, controlled by the CLKFX_MULTIPLY 
and CLKFX_DIVIDE attributes. Always has a 50% duty cycle. If 
the CLKFX or CLKFX180 clock outputs are used standalone, then 
no clock feedback is required. See “Frequency Synthesizer 
(CLKFX, CLKFX180),” and “Half-Period Phase Shifted Outputs.”

9

CLKFX180 Clock 
Output

Synthesized clock output CLKFX, phase shifted by 180° (appears 
to be an inverted version of CLKFX). Always has a 50% duty 
cycle. If only CLKFX or CLKFX180 clock outputs are used on the 
DCM, then no feedback loop is required. See “Frequency 
Synthesizer (CLKFX, CLKFX180),” and “Half-Period Phase 
Shifted Outputs.”

9

STATUS[0] Output Variable Phase Shift Overflow. Control output for “Variable Fine 
Phase Shifting.” The Variable Phase Shifter has reached its 
minimum or maximum limit value. The limit value is either ±255 
or a lesser value if the phase shifter reached the end of the delay 
line. See “Variable Fine Phase Shifting,” page 118.

Caution! This function is not supported in the Spartan-3E 
family. In the Spartan-3 family, STATUS[0] also indicates 
overflow for a fixed phase shift selection.

9

Table 3-6: DCM Connection Ports (Continued)

Port Direction Description
Functional Unit

DLL PS DFS

FCLKDV
FCLKIN

CLKDV_DIVIDE
------------------------------------------------=

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------------•=

0 The Phase Shifter has not yet reached its limit value.

1 The Phase Shifter has reached its limit value.
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Attributes, Properties, or Constraints
Table 3-7 lists the various attributes for the Digital Clock Manager. All attributes are set at 
design time and programmed during configuration. Most, except for the Dynamic Fine 
Phase Shift function, cannot be changed by the FPGA application at run-time. To set an 
attribute, set <ATTRIBUTE>=<SETTING> as appropriate for the design entry tool.

STATUS[1] Output CLKIN Input Stopped Indicator. Available only when the CLKFB 
feedback input is connected. Held in reset until the LOCKED 
output is asserted. Requires at least one CLKIN cycle to become 
active. Never asserted if CLKIN never toggles. 

9 9 9

STATUS[2] Output CLKFX or CLKFX180 Output Stopped Indicator. See Frequency 
Synthesizer (CLKFX, CLKFX180).

9

STATUS[7:3] Output Reserved

LOCKED Output All DCM features have locked onto the CLKIN frequency. Clock 
outputs are now valid, assuming CLKIN is within specified limits 
(as described in “DCM Clock Requirements”). See “Frequency 
Synthesizer (CLKFX, CLKFX180).”

9 9 9

PSDONE Output Variable Phase Shift operation complete. See “Variable Fine Phase 
Shifting,” page 118.

9

Table 3-6: DCM Connection Ports (Continued)

Port Direction Description
Functional Unit

DLL PS DFS

0 CLKIN input is toggling.

1 CLKIN input is not toggling, even though the 
LOCKED output might still be High. See 
“Momentarily Stopping CLKIN”.

0 CLKFX and CLKFX180 outputs are toggling.

1 CLKFX and CLKFX180 outputs are not toggling, 
even though the LOCKED output might still be 
High. See “Momentarily Stopping CLKIN”.

0 DCM is attempting to lock onto CLKIN frequency. 
DCM clock outputs are not valid.

1 DCM is locked onto CLKIN frequency. DCM clock 
outputs are valid.

1-to-0 DCM lost lock. Reset DCM.

0 No phase shift operation is active or phase shift 
operation is in progress.

1 Requested phase shift operation is complete. Output 
High for one PSCLK cycle. Okay to provide next 
Variable Phase Shift operation.
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Table 3-7: DCM Attributes

Attribute Allowable Settings and Description

DLL_FREQUENCY_MODE Spartan-3 FPGA Family Only. Specifies the allowable frequency range for the 
CLKIN input and for the output clocks from the DCM’s Delay-Locked Loop 
(DLL) unit. The DLL clock outputs include CLK0, CLK90, CLK180, CLK270, 
CLK2X, CLK2X180, CLKDV.

CLKIN_PERIOD Specifies in ns the period of the clock used to drive the CLKIN pin of the DCM. 
Optional input, primarily used only for DRC checks. On Spartan-3E and 
Spartan-3A/3AN/3A DSP FPGAs, setting CLKIN_PERIOD helps reduce DFS 
jitter and results in faster locking time.

CLK_FEEDBACK Defines the frequency of the feedback clock.

DUTY_CYCLE_CORRECTION Spartan-3 FPGAs only. Enables or disables the 50% duty-cycle correction for the 
CLK0, CLK90, CLK180, and CLK270 outputs from the DLL unit. The duty cycles 
for all outputs on Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs are always 
corrected to 50%.

CLKDV_DIVIDE Defines the frequency of the CLKDV output. Allowable values for 
CLKDV_DIVIDE include 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 
13, 14, 15, 16.

The locking time is longer, and there is more output jitter when CLKDV_DIVIDE 
is a non-integer value.

LOW Default. The DLL function unit operates in its low-frequency mode. 
All DLL-related outputs are available. The frequency for all clock 
inputs and outputs must fall within the low-frequency DLL limits 
specified in the Spartan-3 Data Sheet.

HIGH The DLL function unit operates in its high-frequency mode. The 
Clock Doubler (CLK2X, CLK2X180) outputs are not available. The 
Quadrant Phase Shifted Outputs CLK90 and CLK270 are not 
available. The duty cycle for the CLKDV output is not 50% if the 
CLKDV_DIVIDE attribute has a non-integer value. The frequency 
for all clock inputs and outputs must fall within the high-frequency 
DLL limits specified in the Spartan-3 FPGA Family Data Sheet.

1X Default. CLK0 feedback. Same frequency as CLKIN.

2X CLK2X feedback. Double the frequency of CLKIN.

None No feedback. Allowed if using only the CLKFX or CLKFX180 
outputs.

TRUE Default. Enable duty-cycle correction.

FALSE Disable duty-cycle correction.

FCLKDV
FCLKIN

CLKDV_DIVIDE
------------------------------------------------=
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CLKFX_MULTIPLY Defines the multiplication factor for the frequency of the CLKFX and CLKFX180 
outputs. Used in conjunction with the CLKFX_DIVIDE attribute. Allowable 
values for CLKFX_MULTIPLY include integers ranging from 2 to 32. Default 
value is 4.

CLKFX_DIVIDE Defines the division factor for the frequency of the CLKFX and CLKFX180 
outputs. Used in conjunction with the CLKFX_MULTIPLY attribute. Allowable 
values for CLKFX_DIVIDE include integers ranging from 1 to 32. Default value 
is 1.

PHASE_SHIFT The PHASE_SHIFT attribute is applicable only if the CLKOUT_PHASE_SHIFT 
attribute is set to FIXED or VARIABLE. Defines the rising-edge skew between 
CLKIN and all the DCM clock outputs at configuration and consequently phase 
shifts the DCM clock outputs.

The skew or phase shift value is specified as an integer that represents a fraction 
of the clock period as expressed in the equations in “Fine Phase Shifting.” The 
integer value must range from –255 to 255. The default is 0. Actual allowable 
values depend on input clock frequency. The actual range is less when TCLKIN > 
FINE_SHIFT_RANGE. The FINE_SHIFT_RANGE specification represents the 
total delay of all taps in the delay line. See “Fine Phase Shifting,” for more 
information.

CLKOUT_PHASE_SHIFT Sets the phase shift mode. Together with the PHASE_SHIFT constraint, 
implements the Digital Phase Shifter (DPS) feature of the DCM. Affects all DCM 
clock outputs from both the DLL and DFS units. See “Fine Phase Shifting,” for 
more information.

Table 3-7: DCM Attributes (Continued)

Attribute Allowable Settings and Description

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------------•=

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------------•=

NONE Default. CLKIN and CLKFB are in phase (no skew) and phase 
relationship cannot be changed. Equivalent to FIXED setting 
with a PHASE_SHIFT value of 0.

FIXED Phase relationship is set at configuration by the PHASE_SHIFT 
attribute value and cannot be changed by the application.

VARIABLE Phase relationship is set at configuration by the PHASE_SHIFT 
attribute value but can be changed by the application using the 
Variable Phase Shift controls, PSEN, PSCLK, PSINCDEC, and 
PSDONE.
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DESKEW_ADJUST Controls the clock delay alignment between the FPGA clock input pin and the 
DCM output clocks. See “Skew Adjustment.”

Do not use this setting to phase shift DCM clock outputs. Instead, use the 
CLKOUT_PHASE_SHIFT and PHASE_SHIFT constraints to achieve accurate 
phase shifting.

DFS_FREQUENCY_MODE Spartan-3 FPGA Family Only. Specifies the allowable frequency range for the 
CLKFX and CLKFX180 output clocks from the DCM’s Digital Frequency 
Synthesizer (DFS). If any DLL clock outputs are used, then the more restrictive 
DLL_FREQUENCY_MODE limits the CLKIN input frequency.

STARTUP_WAIT Controls whether the FPGA configuration signal DONE waits for the DCM to 
assert its LOCKED signal before going High.

If more than one DCM is so configured, the FPGA waits until all DCMs are 
locked.

Table 3-7: DCM Attributes (Continued)

Attribute Allowable Settings and Description

SYSTEM_SYNCHRONOUS Default. All devices clocked by a common, 
system-wide clock source.

SOURCE_SYNCHRONOUS Clock is provided by the data source, i.e., 
source-synchronous applications.

LOW Default. The DFS function unit operates in its low-frequency mode. 
The frequency for the CLKFX and CLKFX180 outputs must fall 
within the low-frequency DFS limits specified in the Spartan-3 Data 
Sheet. The frequency limits for the CLKIN input depend on if any 
DLL clock outputs are used.

HIGH The DFS function unit operates in its high-frequency mode. The 
frequency for the CLKFX and CLKFX180 outputs must fall within 
the high-frequency DFS limits specified in the Spartan-3 Data Sheet. 
The frequency limits for the CLKIN input depend on if any DLL 
clock outputs are used.

FALSE Default. DONE is asserted at the end of configuration without 
waiting for the DCM to assert LOCKED.

TRUE The DONE signal does not go High until the LOCKED signal goes 
HIGH on the associated DCM. STARTUP_WAIT does not prevent 
LOCKED from going High. The FPGA startup sequence must also 
be modified to insert a LCK (lock) cycle before the postponed cycle 
(see “Bitstream Generation Settings”). Either the DONE cycle or 
GWE cycle are typical choices.
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DCM Clock Requirements
The DCM is built for maximum flexibility, but there are certain requirements on clock 
frequency and clock stability, both frequency variation and clock jitter.

Input Clock Frequency Range
The DCM clock input frequency depends on whether the DLL functional unit, the DFS 
unit, or both are utilized in the application.

Table 3-8 shows the clock input, CLKIN, frequency range for the Digital Frequency 
Synthesizer (DFS) unit. The DFS unit, if used stand-alone, has a wider frequency range 

CLKIN_DIVIDE_BY_2 Optionally divides the CLKIN in half before entering DCM block. In some 
applications, reduces the input clock frequency to within acceptable limits. Can 
be used for either DLL or DFS.

FACTORY_JF Spartan-3 FPGA Family Only. Controls how often the DCM’s DLL unit adjusts 
its tap settings. The FACTORY_JF setting affects the jitter characteristics of the 
DLL element.

The settings are automatically adjusted based on the DLL_FREQUENCY_MODE 
attribute.

Do not change the default values unless otherwise recommended (see 
“Adjusting FACTORY_JF Setting (Spartan-3 FPGA Family Only)”). 

LOC Specifies the physical location of the DCM. 

Table 3-7: DCM Attributes (Continued)

Attribute Allowable Settings and Description

FALSE Default. CLKIN input directly feeds the DCM block.

TRUE Divides CLKIN frequency in half and provides roughly a 50% duty-
cycle clock before entering the DCM block. Helpful with high-
frequency clocks to meet the DCM input clock frequency or duty-
cycle requirements. Divides the clock frequency in half when 
determining operating frequency modes and calculating phase shift 
limits. 

DLL_FREQUENCY_MODE FACTORY_JF

LOW 0x8080

HIGH 0x8080

Table 3-8: DFS Unit Clock Input Frequency Requirements (-4 Speed Grade)

Function Minimum Frequency Maximum Frequency Units

Data Sheet Specification CLKIN_FREQ_FX_MIN CLKIN_FREQ_FX_MAX

Spartan-3 FPGA 1 280 MHz

Spartan-3E FPGA 0.200 333 MHz

Spartan-3A/3AN/3A DSP 
FPGA

0.200 333 MHz
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than the DLL unit. If the application uses both units, then the more restrictive DLL 
requirements apply. The table shows the data sheet specification name and an estimated 
value. The actual value depends on which speed grade is required for the design and the 
value specified in the data sheet takes precedence over the estimate.

Table 3-9 and Table 3-10 show the clock input, CLKIN, frequency range for the Delay-
Locked Loop (DLL) unit. The DLL frequency restrictions apply regardless if the DLL is 
used stand-alone or with the DFS unit. The table shows the data sheet specification name 
and value. The actual value depends on which speed grade is required for the design, and 
the value specified in the data sheet takes precedence over any values shown in this user 
guide.

Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs have a single DLL operating range, as 
shown in Table 3-9. The frequencies shown for Spartan-3E FPGAs are for the Stepping 1 
revision.

Table 3-10 shows the frequency range for Spartan-3 FPGAs, where the DLL has two 
distinct operating frequency ranges, called Low and High. The operating mode is 
controlled by the DLL_FREQUENCY_MODE attribute.

Spartan-3E and Spartan-3A/3AN/3A DSP DLLs support input clock frequencies as low as 
5 MHz, whereas the Spartan-3 DLL requires at least 18 MHz.

Output Clock Frequency Range
The various DCM output clocks also have a specified frequency range. See the “Input and 
Output Clock Frequency Restrictions” section for more information.

Input Clock and Clock Feedback Variation
As described later in the “A Stable, Monotonic Clock Input” section, the DCM expects a 
stable, monotonic clock input. However, for maximum flexibility, the DCM tolerates a 

Table 3-9: Spartan-3E/3A/3AN/3A DSP FPGAs: DLL Unit Clock Input Frequency Requirements

Spartan-3 Generation 
FPGA Family

Speed 
Grade

Minimum Maximum
Units

CLKIN_FREQ_DLL_MIN CLKIN_FREQ_DLL_MAX

Extended Spartan-3A
FPGAs

-4

5

250 MHz

-5 280 MHz

Spartan-3E 
(Stepping 1) FPGAs

-4 240 MHz

-5 270 MHz

Table 3-10: Spartan-3 FPGAs: DLL Unit Clock Input Frequency Requirements

Spartan-3 
Generation 

FPGA 
Family

DLL Frequency Mode Attribute (DLL_FREQUENCY_MODE)

= LOW = HIGH

Minimum Frequency Maximum Frequency Minimum Frequency Maximum Frequency

CLKIN_FREQ_DLL_LF_MIN CLKIN_FREQ_DLL_LF_MAX CLKIN_FREQ_DLL_HF_MIN CLKIN_FREQ_DLL_HF_MIN

Spartan-3 
FPGAs 18 MHz 167 MHz 48 MHz 280 MHz
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certain amount of clock jitter on the CLKIN input and a reasonable amount of frequency 
variation on both the CLKIN input and the CLKFB clock feedback input.

There are two types of jitter tolerance on the CLKIN input. 

• Cycle-to-cycle jitter

• Period jitter

Cycle-to-Cycle Jitter

Cycle-to-cycle jitter indicates how much the CLKIN input period is allowed to change 
from one cycle to the next. The maximum allowable cycle-to-cycle change is shown in 
Table 3-11, including the data sheet specification name and an estimated value. The table 
also indicates when the specification applies. While Spartan-3E and Spartan-3A/3AN/3A 
DSP FPGAs have one distinct operating range, the acceptable amount of cycle-to-cycle 
jitter decreases at input frequencies about 150 MHz. For Spartan-3 FPGAs, the limits apply 
depending on the DLL_FREQUENCY_MODE attribute setting.

Period Jitter

The other applicable type of jitter is called period jitter. Period jitter indicates the maximum 
variation in the clock period over millions of clock cycles. Cycle-to-cycle jitter shows the 
change from one clock cycle to the next while period jitter indicates the maximum range of 
change over time. The maximum allowable period jitter appears in Table 3-12, including 
the data sheet specification name and an estimated value.

Table 3-11: Maximum Allowable Cycle-to-Cycle Jitter

Functional Unit
Frequency Mode/Frequency Range

Low High

DLL CLKIN_CYC_JITT_DLL_LF CLKIN_CYC_JITT_DLL_HF

DFS CLKIN_CYC_JITT_FX_LF CLKIN_CYC_JITT_FX_HF

Cycle-to-cycle jitter ±300 ps ±150 ps

Spartan-3E, Spartan-3A/3AN/3A DSP 
FPGAs

When FCLKIN/FX ≤ 150 MHz When FCLKIN/FX > 150 MHz

Spartan-3 FPGAs When 
DLL_FREQUENCY_MODE = LOW

When 
DLL_FREQUENCY_MODE = HIGH

Table 3-12: Maximum Allowable Period Jitter

Functional Unit
Frequency Mode

Low High

DLL CLKIN_PER_JITT_DLL_LF CLKIN_PER_JITT_DLL_HF

DFS CLKIN_PER_JITT_FX_LF CLKIN_PER_JITT_FX_HF

Period jitter ± 1,000 ps (± 1 ns)
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DLL Feedback Delay Variance

Another source of stability for the DCM is the clock feedback path used by the DLL unit. 
The feedback path delay variance must also be within the limit shown in Table 3-13. This 
limit only applies to an external feedback path as any on-chip variance is minimal when 
connected to a global clock line.

Spread Spectrum Clocks
The Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA DCMs accept 
typical spread spectrum clocks. The DLL part of the DCM tracks the frequency changes 
created by the typical spread spectrum clock, to drive the global clocks to the FPGA fabric. 
The spread spectrum clock must meet the DLL input requirements as specified in the 
device data sheets. See the Input Clock Jitter Tolerance and Delay Path Variation 
specifications in the Recommended Operating Conditions for the DLL, 
CLKIN_CYC_JITT_DLL and CLKIN_PER_JITT_DLL.

The DFS can track a typical spread spectrum input as long as it meets the input clock 
specifications. If phase shift is used, it should be set to FIXED. See XAPP469 for more 
details.

Table 3-13: External Feedback Path Delay Variation

Description Specification

Maximum allowable variation in off-chip CLKFB feedback path
CLKFB_DELAY_VAR_EXT 

±1,000 ps (±1 ns)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp469.pdf
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Optimal DCM Clock and External Feedback Inputs
Each DCM has multiple optimal inputs for an incoming clock signal or external feedback 
signal.

Spartan-3E FPGA DCM Clock Inputs

Table 3-14 through Table 3-16 list the direct inputs to each DCM on Spartan-3E FPGAs. 
Each DCM has up to four direct input pins, used for clock or external feedback 
connections. Optionally, these pins are also the direct inputs to the global buffers on the 
FPGA. Each table shows all four possible direct inputs, the associated pin number by 
package, the associated GCLK, RHCLK, or LHCLK clock input, and the BUFGMUX clock 
buffers associated with each DCM. Lastly, each table also includes the LOC location 
attribute string from the DCM, the associated BUFGMUX buffers, and the direct input 
pins.

The pin number is shown for each potential direct input. Two associated pins can be 
combined to form a differential clock input.

Table 3-14, page 80 shows the direct connections to the DCMs associated with the global 
clock network. These DCMs are the best choice for the highest-speed clocks in the design 
and for clocks with the highest fanout. The top DCMs are associated with I/O Bank 0, and 
the bottom DCMs are associated with I/O Bank 2. The XC3S100E has only two “global” 
DCMs, located in the upper right and lower right. The outputs from a “global” DCM drive 
up to four BUFGMUX clock buffers along the same edge. The two DCMs along an edge 
share these four clock buffers. Each of these buffers, in turn, connects to one of the eight 
global clock lines. 

Table 3-15, page 81 and Table 3-16, page 81 show the direct connections to the left- and 
right-edge DCMs available on the XC3S1200E and XC3S1600E FPGAs. The output clocks 
from these DCMs are available on the associated half of the FPGA. The left-edge DCMs are 
associated with I/O Bank 3, and the right-edge DCMs are associated with I/O Bank 1. The 
outputs from a left-edge or right-edge DCM each drive up to four BUFGMUX clock buffers 
along the same edge, each of which connects to one of the eight clock lines. These 
BUFGMUX buffers provide clocks to half of the chip, whereas the “global” DCMs provide 
clocks to the entire FPGA.

http://www.xilinx.com
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Table 3-14: Spartan-3E FPGA: Direct Input Connections and Optional External Feedback to Associated 
DCMs

Package

I/O Bank 0

Differential Pair Differential Pair Differential Pair Differential Pair

N P N P N P N P

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 P91 P90 P89 P88 P86 P85 P84 P83

CP132 B7 A7 C8 B8 A9 B9 C9 A10

TQ144 P131 P130 P129 P128 P126 P125 P123 P122

PQ208 P186 P185 P184 P183 P181 P180 P178 P177

FT256 D8 C8 B8 A8 A9 A10 F9 E9

FG320 D9 C9 B9 B8 A10 B10 E10 D10

FG400 A9 A10 G10 H10 E10 E11 G11 F11

FG484 B11 C11 H11 H12 C12 B12 E12 F12

Ð Ð Ð Ð Associated Global Buffers Ð Ð Ð Ð

GCLK11 GCLK10 GCLK9 GCLK8
B

U
F

G
M

U
X

_X
1Y

10

B
U

F
G

M
U

X
_X

1Y
11

B
U

F
G

M
U

X
_X

2Y
10

B
U

F
G

M
U

X
_X

2Y
11 GCLK7 GCLK6 GCLK5 GCLK4

Top Left DCM
XC3S100E: N/A

XC3S250E, XC3S500E: DCM_X0Y1

XC3S1200E, XC3S1600E: DCM_X1Y3

Top Right DCM
XC3S100E: DCM_X0Y1

XC3S250E, XC3S500E: DCM_X1Y1

XC3S1200E, XC3S1600E: DCM_X2Y3

Ð Ð Ð Ð

H G F E

Global Clock Line

D C B A

Ï Ï Ï Ï

Bottom Left DCM
XC3S100E: N/A

XC3S250E, XC3S500E: DCM_X0Y0
XC3S1200E, XC3S1600E: DCM_X1Y0

B
U

FG
M

U
X

_X
1Y

0

B
U

FG
M

U
X

_X
1Y

1

B
U

FG
M

U
X

_X
2Y

0

B
U

FG
M

U
X

_X
2Y

1 Bottom Right DCM
XC3S100E: DCM_X0Y0

XC3S250E, XC3S500E: DCM_X1Y0
XC3S1200E, XC3S1600E: DCM_X2Y0

GCLK12 GCLK13 GCLK14 GCLK15 GCLK0 GCLK1 GCLK2 GCLK3

Ï Ï Ï Ï Associated Global Buffers Ï Ï Ï Ï

Package

Differential Pair Differential Pair Differential Pair Differential Pair

P N P N P N P N

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 P32 P33 P35 P36 P38 P39 P40 P41

CP132 M4 N4 M5 N5 M6 N6 P6 P7

TQ144 P50 P51 P53 P54 P56 P57 P58 P59

PQ208 P74 P75 P77 P78 P80 P81 P82 P83

FT256 M8 L8 N8 P8 T9 R9 P9 N9

FG320 N9 M9 U9 V9 U10 T10 R10 P10

FG400 W9 W10 R10 P10 P11 P12 V10 V11

FG484 V11 U11 R11 T11 R12 P12 Y12 W12

I/O Bank 2

http://www.xilinx.com
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Table 3-15: Spartan-3E FPGA: Direct Input and Optional External Feedback to Left-Edge DCMs 
(XC3S1200E and XC3S1600E)

Diff.
Clock

Single-Ended Pin Number by Package Type Left Edge

VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484 LHCLK DCM/BUFGMUX

I/O
 B

an
k 

3

BUFGMUX_X0Y5 Î D

BUFGMUX_X0Y4 Î C

P
ai

r P P9 F3 P14 P22 H5 J5 K3 M5 Î LHCLK0

DCM_X0Y2

C
lo

ck
 L

in
es

N P10 F2 P15 P23 H6 J4 K2 L5 Î LHCLK1

P
ai

r P P11 F1 P16 P24 H3 J1 K7 L8 Î LHCLK2

N P12 G1 P17 P25 H4 J2 L7 M8 Î LHCLK3

BUFGMUX_X0Y3 Î B

BUFGMUX_X0Y2 Î A

BUFGMUX_X0Y9 Î H

BUFGMUX_X0Y8 Î G

P
ai

r P P15 G3 P20 P28 J2 K3 M1 M1 Î LHCLK4

DCM_X0Y1

C
lo

ck
 L

in
es

N P16 H1 P21 P29 J3 K4 L1 N1 Î LHCLK5

P
ai

r P P17 H2 P22 P30 J5 K6 M3 M3 Î LHCLK6

N P18 H3 P23 P31 J4 K5 L3 M4 Î LHCLK7

BUFGMUX_X0Y7 Î F

BUFGMUX_X0Y6 Î E

Table 3-16: Spartan-3E FPGA: Direct Input and Optional External Feedback to Right-Edge DCMs 
(XC3S1200E and XC3S1600E)

Right Edge Single-Ended Pin Number by Package Type Diff. 
ClockDCM/BUFGMUX RHCLK VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484

D  BUFGMUX_X3Y5

I/O
 B

an
k 

1

C  BUFGMUX_X3Y4

C
lo

ck
 L

in
es

DCM_X3Y2

RHCLK7  P68 G13 P94 P135 H11 J14 J20 L19 N

P
ai

r

RHCLK6  P67 G14 P93 P134 H12 J15 K20 L18 P

RHCLK5  P66 H12 P92 P133 H14 J16 K14 L21 N
P

ai
r

RHCLK4  P65 H13 P91 P132 H15 J17 K13 L20 P

B  BUFGMUX_X3Y3

A  BUFGMUX_X3Y2

H  BUFGMUX_X3Y9

G  BUFGMUX_X3Y8

C
lo

ck
 L

in
es

DCM_X3Y1

RHCLK3  P63 J14 P88 P129 J13 K14 L14 M16 N

P
ai

r

RHCLK2  P62 J13 P87 P128 J14 K15 L15 M15 P

RHCLK1  P61 J12 P86 P127 J16 K12 L16 M22 N

P
ai

r

RHCLK0  P60 K14 P85 P126 K16 K13 M16 N22 P

F  BUFGMUX_X3Y7

E  BUFGMUX_X3Y6
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Spartan-3A/3AN/3A DSP FPGA DCM Clock Inputs

Table 3-18 through Table 3-20 list the direct inputs to each DCM on Extended Spartan-3A 
family FPGAs. References to Spartan-3A platform part numbers also apply to the Spartan-
3AN platform. Each DCM has up to four direct input pins, used for clock or external 
feedback connections. Optionally, these pins are also the direct inputs to the global buffers 
on the FPGA. Each table shows all four possible direct inputs, the associated pin number 
by package, the associated GCLK, RHCLK, or LHCLK clock input, and the BUFGMUX 
clock buffers associated with each DCM. Lastly, each table also includes the LOC location 
attribute string from the DCM, the associated BUFGMUX buffers, and the direct input 
pins.

The pin number is shown for each potential direct input. Two associated pins can be 
combined to form a differential clock input.

Table 3-18, page 83 shows the direct connections to the DCMs associated with the global 
clock network. These DCMs are the best choice for the highest-speed clocks in the design 
and for clocks with the highest fanout. The top DCMs are associated with I/O Bank 0, and 
the bottom DCMs are associated with I/O Bank 2. The XC3S50A has only two “global” 
DCMs, those located in the upper left and upper right. The outputs from a “global” DCM 
drive up to four BUFGMUX clock buffers along the same edge. The two DCMs along an 
edge share these four clock buffers. Each of these buffers, in turn, connects to one of the 
eight global clock lines. 

Table 3-19, page 84 and Table 3-20, page 84 show the direct connections to the left- and 
right-edge DCMs available on the XC3S700A and XC3S1400A and Spartan-3A DSP 
FPGAs. The output clocks from these DCMs are available on the associated half of the 
FPGA. The left-edge DCMs are associated with I/O Bank 3, and the right-edge DCMs are 
associated with I/O Bank 1. The outputs from a left-edge or right-edge DCM each drive up 
to four BUFGMUX clock buffers along the same edge, each of which connects to one of the 
eight clock lines. These BUFGMUX buffers provide clocks to half of the chip, whereas the 
“global” DCMs provide clocks to the entire FPGA.

When using the DCM to generate high speed clocks to drive the double data rate ODDR2, 
a specific BUFGMUX is recommended for CLKFX and another BUFGMUX is 
recommended for CLKFX180 to minimize period jitter. See Table 3-17.

Table 3-17: Recommended DCM/BUFG Connections

DCM Recommended BUFGMUX

XC3S50A/AN
XC3S200A/AN
XC3S400A/AN

XC3S700A/AN
XC3S1400A/AN
XC3SD1800A
XC3SD3400A

CLKFX CLKFX180

- X0Y0 X1Y0 X2Y1 X1Y0

- X1Y0 X2Y0 X2Y1 X1Y0

- - X0Y1 X0Y6 X0Y9

- - X0Y2 X0Y2 X0Y5

X0Y0 X0Y1 X1Y3 X2Y11 X1Y10

X1Y0 X1Y1 X2Y3 X2Y11 X1Y10

- - X3Y2 X3Y2 X3Y5

- - X3Y1 X3Y6 X3Y9

http://www.xilinx.com
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Table 3-18: Spartan-3A/3AN/3A DSP FPGA: Direct Input Connections & Optional External DCM Feedback

Package

I/O Bank 0
Differential Pair Differential Pair Differential Pair Differential Pair

N P N P N P N P

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 P90 N/A P89 P88 P86 P85 P84 P83

TQ144 P132 P130 P131 P129 P127 P125 P126 P124

FT256 B8 A8 D8 C8 A9 C9 D9 C10

FG320 C8 B8 B7 A8 B9 A10 C9 B10

FG400 A9 A10 G10 D10 E10 E11 G11 F11

CS484 B8 A8 E11 F10 B9 A9 F11 E12

FG484 E11 D11 C11 B11 A11 A12 E12 C12

FG676 C13 B13 G13 F13 A14 B14 J14 K14

Ð Ð Ð Ð Associated Global Buffers Ð Ð Ð Ð

GCLK11 GCLK10 GCLK9 GCLK8
B

U
FG

M
U

X
_X

1Y
10

B
U

FG
M

U
X

_X
1Y

11

B
U

FG
M

U
X

_X
2Y

10

B
U

FG
M

U
X

_X
2Y

11 GCLK7 GCLK6 GCLK5 GCLK4

Top Left DCM

XC3S50A: DCM_X0Y0

XC3S200A, XC3S400A: DCM_X0Y1

XC3S700A/1400A, Spartan-3A DSP: 
DCM_X1Y3

Top Right DCM

XC3S50A: DCM_X1Y0

XC3S200A, XC3S400A: DCM_X1Y1

XC3S700A/1400A, Spartan-3A DSP: 
DCM_X2Y3

Ð Ð Ð Ð

H G F E

Global Clock Line

D C B A

Ï Ï Ï Ï

Bottom Left DCM

XC3S50A: N/A

XC3S200A, XC3S400A: DCM_X0Y0

XC3S700A/1400A, Spartan-3A DSP: 
DCM_X1Y0

B
U

FG
M

U
X

_X
1Y

0

B
U

FG
M

U
X

_X
1Y

1

B
U

FG
M

U
X

_X
2Y

0

B
U

FG
M

U
X

_X
2Y

1 Bottom Right DCM

XC3S50A: N/A

XC3S200A, XC3S400A: DCM_X1Y0

XC3S700A/1400A, Spartan-3A DSP: 
DCM_X2Y0

GCLK12 GCLK13 GCLK14 GCLK15 GCLK0 GCLK1 GCLK2 GCLK3

Ï Ï Ï Ï Associated Global Buffers Ï Ï Ï Ï

Package

Differential Pair Differential Pair Differential Pair Differential Pair

P N P N P N P N

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 N/A N/A P40 P41 P43 P44 N/A N/A

TQ144 N/A N/A P54 P55 P57 P59 P58 P60

FT256 R7(1) T7(1) P8 T8 N9 P9 R9 T9

FG320 U8 V8 U9 V9 U10 T10 V11 U11

FG400 W9 Y9 V10 W10 Y11 V11 U11 V12

CS484 Y11 Y10 AA12 AB12 U12 V12 AB13 AA14

FG484 U11 V11 W12 Y12 AA12 AB12 V12 U12

FG676 AA13 Y13 AF13 AE13 Y14 AA14 AF14 AE14

I/O Bank 2
1. N/A in XC3S50A
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Table 3-19: Spartan-3A/3AN/3A DSP FPGA: Direct Clock Input and Optional External Feedback to Left-
Edge DCMs (XC3S700A/AN, XC3S1400A/AN, and Spartan-3A DSP FPGAs)

Diff.
Clock

Single-Ended Pin Number by Package Type Left Edge

FT256 FG400 FG484 CS484 FG676 LHCLK DCM/BUFGMUX

I/O
 B

an
k 

3

BUFGMUX_X0Y5 Î D

BUFGMUX_X0Y4 Î C

P
ai

r P G2 J1 L5 L6 N6 Î LHCLK0

DCM_X0Y2

C
lo

ck
 L

in
es

N H1 K2 L3 M5 N7 Î LHCLK1

P
ai

r P H3 K3 K1 K1 P1 Î LHCLK2

N J3 L3 L1 L1 P2 Î LHCLK3

BUFGMUX_X0Y3 Î B

BUFGMUX_X0Y2 Î A

BUFGMUX_X0Y9 Î H

BUFGMUX_X0Y8 Î G

P
ai

r P J2 K4 M1 L3 P4 Î LHCLK4

DCM_X0Y1

C
lo

ck
 L

in
es

N J1 L5 M2 M2 P3 Î LHCLK5

P
ai

r P K3 L1 M3 M6 N9 Î LHCLK6

N K1 M1 M4 N7 P10 Î LHCLK7

BUFGMUX_X0Y7 Î F

BUFGMUX_X0Y6 Î E

Table 3-20: Spartan-3A/3AN/3A DSP FPGA: Direct Clock Input and Optional External Feedback to Right-
Edge DCMs (XC3S700A/AN, XC3S1400A/AN, and Spartan-3A DSP FPGAs)

Right Edge Single-Ended Pin Number by Package Type Diff. 
ClockDCM/BUFGMUX RHCLK FT256 FG400 FG484 CS484 FG676

D  BUFGMUX_X3Y5

I/O
 B

an
k 

1

C  BUFGMUX_X3Y4

C
lo

ck
 L

in
es

DCM_X3Y2

RHCLK7  H16 J20 K19 L17 N19 N

P
ai

r

RHCLK6  H15 K20 K20 M18 P18 P

RHCLK5  H14 L17 M20 L20 N24 N
P

ai
r

RHCLK4  J14 K18 M18 L21 P23 P

B  BUFGMUX_X3Y3

A  BUFGMUX_X3Y2

H  BUFGMUX_X3Y9

G  BUFGMUX_X3Y8

C
lo

ck
 L

in
es

DCM_X3Y1

RHCLK3  J16 L18 L20 M20 P25 N

P
ai

r

RHCLK2  K16 L19 L21 N21 P26 P
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LOCKED Output Behavior
The DCM’s LOCKED output indicates when all the enabled DCM functions have locked to 
the CLKIN input. When the DCM asserts LOCKED, the output clocks are valid for use 
within the FPGA application.

Figure 3-5 shows the behavior of the LOCKED output. The LOCKED output is Low 
immediately after the FPGA finishes its configuration process and is Low whenever the 
RST input is asserted. 

After configuration, the DCM always attempts to lock, whether the CLKIN signal is valid 
yet or not. If the input clock changes, assert the RST input until the CLKIN input stabilizes. 
Once the RST input is released, the DCM again relocks to the new CLKIN input frequency. 
The DLL unit uses both the CLKIN input and the CLKFB feedback input to determine 
when locking is complete, that is, when the rising edges of CLKIN and CLKFB are phase-
aligned. The DFS unit monitors the CLKIN input to determine if a valid frequency is 
present on CLKIN. To achieve lock, the DCM might need to sample several thousand clock 
cycles.

The DCM asserts its LOCKED output High when its internal state machine has locked onto 
the CLKIN input. The DCM clock outputs are then valid and available for use within the 
FPGA application. The DCM timing section of the data sheet provides worst-case locking 
times. In general, the DLL unit outputs lock faster with increasing clock frequency. The 
DFS unit outputs require significantly longer to lock, depending on the multiply and 
divide factors. Smaller multiply and divide factors result in faster lock times.

To guarantee that the system clock is established before the FPGA completes its 
configuration process, the DCM can optionally delay the completion of the configuration 
process until after the DCM locks. The STARTUP_WAIT attribute activates this feature.

Until LOCKED is High, there is no guarantee how the DCM clock outputs behave. The 
DCM output clocks are not valid until LOCKED is High and before that time can exhibit 
glitches, spikes, or other spurious behavior.

The LOCKED signal might stay High when CLKIN stops - see “Momentarily Stopping 
CLKIN”. The LOCKED signal might also stay High when CLKIN varies considerably - see 
“A Stable, Monotonic Clock Input”.

In the Extended Spartan-3A families, when two adjacent DCMs are used, the outputs 
should be considered valid once both DCMs are LOCKED. Adjacent DCMs should share 
the same reset signal.
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While the CLKIN input stays within the specified limits, the DCM continues to adjust its 
internal delay taps to maintain lock. However, if the CLKIN input strays well beyond the 
specified limits, then the DCM potentially loses lock and deasserts the LOCKED output.

Once the DCM loses lock, it does not automatically attempt to reacquire lock. When the 
DCM loses lock—i.e., LOCKED was High, then goes Low—the FPGA application must 
take the appropriate action. For example, once lock is lost, resetting the DCM via the RST 
input forces the DCM to reacquire lock.

Using the LOCKED Signal
To operate properly, the DCM requires a stable, monotonic clock input. Once locked, the 
DCM tolerates clock period variations up to the value specified in the specific FPGA data 
sheet. If the input clock stays within the specified limits, then the output clocks always are 
valid when the LOCKED output is High. However, it is possible for the clock to stray well 
outside the limits, for the LOCKED output to stay High, and for the DCM outputs to be 
invalid. It is good design practice to monitor both LOCKED and the STATUS signals. 
Monitoring STATUS[1] is recommended as this will indicate when CLKIN has stopped 
(moved outside the acceptable CLKIN tolerances). STATUS[1] will go High after one 
missed CLKIN cycle. However, the DCM might not lose LOCKED unless CLKIN is 
stopped for more than 100 ms. STATUS[1] is not a sticky bit; it will go Low once CLKIN has 
returned. For the most robust indicator of the status of your DCM's output clock, 
monitoring both the LOCKED and STATUS[1] bits is recommended.

Figure 3-5: Functional Behavior of LOCKED Output
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Spartan-3A DCM Digital Frequency Synthesizer Requires Additional Lock 
Circuitry

To help guarantee DFS lock, a circuit is automatically inserted by the ISE development 
software starting with version 9.1i for the Spartan-3A, Spartan-3AN, and Spartan-3A DSP 
FPGAs (Figure 3-6). Using FPGA logic, the circuit monitors both the LOCKED output from 
the DCM_SP function and the STATUS[2] bit, which indicates that the DFS output CLKFX 
has stopped. If LOCKED = 0 and STATUS[2] = 1, then the circuit asserts the DCM RESET 
input. If the FPGA application also resets the DCM, then OR the reset signal from the 
FPGA application with the monitored output signals.

RST Input Behavior
The asynchronous RST input forces the DCM to its post-configuration state. Use the RST 
pin when changing the input clock frequency beyond the allowable range. The active-High 
RST pin either must connect to a dynamic signal or must be tied to ground. The RST input 
must be asserted for three valid CLKIN cycles or longer.

If the input clock frequency is not yet stable after configuration, assert RST until the clock 
stabilizes. When using external feedback, hold the DCM in reset immediately after 
configuration. Figure 3-20, page 102 shows an example reset technique using an SRL16 
shift register primitive.

If the DCM loses lock—i.e., the LOCKED output was High then goes Low—then the FPGA 
application must assert RST to force the DCM to reacquire the input clock frequency.

If the DCM LOCKED output is High, then the LOCKED signal deactivates within four 
source clock cycles after RST is asserted. Asserting RST forces the DCM to reacquire lock.

Asserting RST also resets the DCM’s delay tap position to zero. Due to the tap position 
changes, glitches might occur on the DCM clock output pins. Similarly, the duty cycle on 
the clock outputs might be affected when RST is asserted.

Asserting RST also resets the present variable phase shift value back to the value specified 
by the PHASE_SHIFT attribute.

Figure 3-6: Spartan-3A DCM DFS Lock Logic
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Clocking Wizard
To simplify applications using DCMs, the Xilinx ISE development software includes a 
software wizard that provides step-by-step instructions for configuring a DCM. As shown 
in Figure 3-7, Clocking Wizard generates a vendor-specific logic synthesis file instantiating 
the DCM in either VHDL or Verilog syntax. Similarly, Clocking Wizard generates a user 
constraints file (UCF) for the specific implementation. Finally, all the user specifications are 
saved in a Xilinx Architecture Wizard (XAW) settings file.

Invoking Clocking Wizard
There are multiple methods to invoke Clocking Wizard, either from the Windows Start 
button or from within the Xilinx ISE Project Navigator software.

From Windows Start Button

To invoke Clocking Wizard from the Windows Start button, click Start Æ Programs Æ 
Xilinx ISE Æ Accessories Æ Architecture Wizard. The setup window shown in Figure 3-8 
appears. 

• Specify the name of the Xilinx Architecture Wizard (.xaw) file that holds the option 
settings for this DCM.

• Optionally, click Browse and select a directory location for the *.xaw file.

• Select the logic synthesis language for the output file, either VHDL or Verilog.

• Choose the targeted logic synthesis tool. Clocking Wizard creates vendor-specific 
output for the specified synthesis tool.

• Select the targeted Spartan-3 generation FPGA.

Figure 3-7: Clocking Wizard Provides a Graphical Interface for Configuring Digital 
Clock Managers
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From within Project Navigator

Optionally, invoke Clocking Wizard from within Project Navigator, either from the menu 
bar or from within the “Sources in Project” window. From the menu bar, select Project Æ 
New Source. Alternatively, right-click in the “Sources in Project” window and choose New 
Source.

Select IP (Coregen & Architecture Wizard) from the available list, as shown in Figure 3-9. 
Enter the file name for the Xilinx Architecture Wizard (*.xaw) file, and select the directory 
where the file will be saved. Click Next > to continue.

Figure 3-8: Set Up the Architecture Wizard
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Figure 3-9: Configuring a New Architecture Wizard in the Project Navigator
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General Setup
Specify most of the DCM’s options using the Xilinx Clocking Wizard General Setup panel, 
as shown in Figure 3-10. The text in blue ovals shows the DCM primitive attribute name 
for the corresponding setting.

• To select the outputs and functions used in the final application, check the option 
boxes next to the desired DCM clock outputs. Checking the output boxes enables 
related option settings below.

• Enter the frequency of the CLKIN clock input. Either specify the frequency in MHz, or 
specify the clock period in nanoseconds. The specified value also sets the DCM’s 
DLL_FREQUENCY_MODE attribute for Spartan-3 FPGA designs.

• Specify whether the CLKIN source is internal or external to the FPGA. If External, 
then Clocking Wizard automatically inserts a global buffer input (IBUFG) primitive. If 
Internal, then the source signal is provided as a top-level input within the generated 
HDL source file.

• If the CLKDV output box is checked, then specify the Divide by Value for the Clock 
Divider circuit. This setting defines the DCM’s CLKDV_DIVIDE attribute.

• Specify the feedback path to the DCM. If only the CLKFX or CLKFX180 outputs are 
used, then select None. Otherwise, feedback is required. If the feedback is from within 
the FPGA, choose Internal. If the feedback loop is from outside the FPGA, choose 
External. Furthermore, specify the source of the DCM feedback, either from CLK0 
(1X) or from CLK2X (2X). This setting defines the DCM’s CLK_FEEDBACK attribute.
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• Specify whether to phase shift all DCM outputs. By default, there is no phase shifting 
(None). If phase shifting is required by the application, choose whether the phase shift 
value is Fixed or Variable. Selecting Variable also enables the Variable Phase Shift 
controls, PSEN, PSINCDEC, PSCLK, and PSDONE. This setting defines the DCM’s 
CLKOUT_PHASE_SHIFT attribute. For both Fixed and Variable modes, specify the 
related Phase Shift Value, which provides either the fixed phase shift value or the 

Figure 3-10: A Majority of DCM Options are Set in the General Setup Panel
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initial value for the Variable Phase Shift. This setting defines the DCM’s 
PHASE_SHIFT attribute.

• To open the Advanced Options window, click Advanced.

• When finished, click Next > to continue to the Clock Buffers panel.

Advanced Options
Various advanced DCM options are grouped together in the Advanced Options window, 
shown in Figure 3-11:

• By default, the DCM has no effect on the FPGA’s configuration process. Click Wait for 
DCM lock before DONE signal goes high to have the FPGA wait for the DCM to 
assert its LOCKED output before asserting the DONE signal at the end of 
configuration. This setting defines the DCM’s STARTUP_WAIT attribute. If checked, 
additional bitstream generation option changes are required, as described in the 
“Setting Configuration Logic to Wait for DCM LOCKED Output” section.

• If the CLKIN input frequency is too high for a particular DCM feature, check Divide 
Input Clock by 2 to reduce the input frequency by half with nearly ideal 50% duty 
cycle before entering the DCM block. This setting defines the DCM’s 
CLKIN_DIVIDE_BY_2 attribute.

• If required for source-synchronous data transfer applications, modify the DCM 
Deskew Adjust value to SOURCE_SYNCHRONOUS. Do not use any values other 
than SOURCE_SYNCHRONOUS or SYSTEM_SYNCHRONOUS without first 
consulting Xilinx. This setting defines the DCM’s DESKEW_ADJUST attribute. See 
“Skew Adjustment.”

• Click OK when finished to apply any changes and return to the General Setup 
window.

Figure 3-11: DCM Advanced Options Panel
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Clock Buffers
Define the clock buffer output type for each DCM clock output, shown in Figure 3-12. By 
default, Clocking Wizard automatically assigns all outputs to a global buffer (BUFG). 
However, there are only four global buffers along each the top or bottom edge of the 
device, shared by two DCMs. In the XC3S50, there is a single DCM along the top or bottom 
edge that optionally connects to all four global buffers along the edge.

• To assign clock buffer types for each DCM clock output, click Customize under Clock 
Buffer Settings.

• For each DCM clock output, select a Clock Buffer output type using the drop-down 
list. Table 3-21 lists the available Clock Buffer options.

• If using an Enabled Buffer output type, either specify a signal name for the buffer 
enable (CE) input or use the automatically generated name.

• If using a Clock Mux output type, either specify a signal name for the select (S) input 
or use the automatically generated name.

• When finished, click Next > or Finish to continue. The Next > option only appears if 
the CLKFX or CLKFX180 outputs were selected in the General Setup panel. 
Otherwise, click Finish to generate the HDL output (see “Generating HDL Output”).

Figure 3-12: Clocking Wizard Provides a Variety of Buffer Options for each DCM Output

By default, Clock 
Wizard places 
global buffers 
(BUFG) on all the 
selected DCM 
clock outputs

Optionally , 
customize how 
the DCM clock 
outputs connect to 
the other FPGA 
logic using the 
buttons below

Click Next to 
continue

For each clock 
output , select the 
type of buffer 
connecting the 
signal to the 
FPGA

UG331_c3_09_120206

http://www.xilinx.com


94 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 3: Using Digital Clock Managers (DCMs)
R

Clock Frequency Synthesizer
The Clock Frequency Synthesizer panel, shown in Figure 3-13, only appears if the CLKFX 
or CLKFX180 outputs were selected in the General Setup panel.

Here, specify either the desired output frequency or enter the specific values for the 
Multiply and Divide factors. The frequency limits—or delay limits if CLKIN was specified 
in ns—appear under Valid Ranges for Selected Speed Grade. The range is displayed for 
possible values of the DFS_FREQUENCY_MODE attribute, which only applies to 
Spartan-3 FPGAs. The range is tighter if the DCM uses any of the DLL-related clock 
outputs.

• Click Use output frequency and enter the requested value, in as much precision as 
possible, either in megahertz (MHz) or in nanoseconds (ns). Click Calculate to 
compute the values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes. If no 
solution is available using the possible multiply and divide values, Clocking Wizard 
issues an error message asking for another output frequency value. If a solution exists, 
then the multiply and divide values, plus the resulting jitter values (see “Clock Jitter 
or Phase Noise”) appear under Generated Output.

Table 3-21: Settings for Clock Buffer Output Types

Clock Buffer 
Selection

Diagram Description

Global Buffer Connect to one of four global buffers (BUFG) along the same edge as the DCM.

Enabled Buffer Connect to one of the four global buffers configured as an enable clock buffer 
(BUFGCE). The CE input enables the buffer when High. When CE is Low, the 
buffer output is zero.

Clock Mux Connect to one of the four global buffers configured as a clock multiplexer 
(BUFGMUX). The S input selects the clock source.

Lowskewline Connect to low-skew programmable interconnect.

Local Routing Connect to local interconnect, skew not critical.
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• Optionally, click Use Multiply (M) and Divide (D) values and enter the desired 
values. Click Calculate to calculate the resulting output frequency and jitter, 
displayed under Generated Output.

• Finally, click Next to generate the HDL output (see “Generating HDL Output”).

Generating HDL Output
After reviewing that all the parameters are correct, as shown in Figure 3-14, click Finish. 
Clocking Wizard then generates the requested VHDL or Verilog HDL output file. Clocking 
Wizard also generates a User Constraints File (UCF) based on the settings.

Figure 3-13: Set the Multiply and Divide Values for the Digital Frequency Synthesizer and Calculate the 
Resulting Jitter
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VHDL and Verilog Instantiation
Clocking Wizard is the easiest method to create a VHDL or Verilog HDL description of a 
DCM. However, Verilog and VHDL source examples are also available.

Language Templates within Project Navigator

There are DCM language templates available within the ISE Project Navigator. To select a 
DCM template, select Edit Æ Language Templates from the Project Navigator menu. From 
the Templates tree shown in Figure 3-15, expand either the Verilog or VHDL folder, then 
the Device Primitive Instantiation folder, then FPGA Æ Clock Components Æ Digital 
Clock Manager (DCM) folder. Under the DCM folder, select the desired DCM source file. 
The source file for the selected DCM appears in the adjacent window.

Figure 3-14: Review Settings, Then Click Finish
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generate output file
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Use the file either as a reference or cut the content of the window into a new source file.

Eliminating Clock Skew
One of the fundamental functions of a DCM is to eliminate clock skew. Eliminating clock 
skew is especially important for higher-performance designs operating at 50 MHz or more. 
Furthermore, the concepts involved in clock skew elimination also apply to many of the 
other applications of a DCM.

What is Clock Skew?
Clock skew inherently exists in every synchronous system. A pristine clock edge generated 
by the clock source actually arrives at different times at different points in the system—
either within a single device or on the clock inputs to the different devices connected to the 
clock. This difference in arrival times is called clock skew.

Figure 3-16 illustrates clock skew in an example system. A clock source drives the clock 
input to an FPGA. The clock enters through an input pin on the FPGA, is distributed 
within the FPGA using the internal low-skew global clock network, and arrives at a flip-
flop within the FPGA. Each element in the clock path delays the arrival of the clock edge at 
the flip-flop. Consequently, the clock input at the flip-flop—Point (B)—is delayed, or 
skewed compared to the original clock source at Point (A). In this example, this clock skew 
or difference in arrival time for this path is called Δb.

Figure 3-15: DCM Coding Examples in Project Navigator Language Templates
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Similarly, the clock source is rebuffered in the FPGA and drives another device on the 
board. In this case, again the clock source enters the FPGA via an input pin, is distributed 
via the global clock network, feeds an output pin on the FPGA, and finally connects to the 
other device via a trace on the printed circuit board (PCB). Because there is more total delay 
in this clock path, the resulting skew, Δc, is also larger.

Clock Skew: The Performance Thief
Clock skew potentially reduces the overall performance of the design by increasing setup 
times and lengthening clock-to-output delays—both of which increase the clock cycle time. 
Similarly, clock skew might require lengthy hold times on some devices. Otherwise, 
unreliable operation might result.

Make It Go Away!
Is there a way to eliminate clock skew? Fortunately, a DCM provides such capabilities. 
Figure 3-17 shows the same example design as Figure 3-16, except this time implemented 
in a Spartan-3 generation FPGA. Two DCMs eliminate the clock skew: one DCM eliminates 
the skew for clocked items within the FPGA, the other DCM eliminates the skew when 
clocking the other device on the board. The result is practically ideal alignment between 
the clock at Points (A), (B), and (C)!

How is clock skew elimination accomplished? Remember, clock skew is caused by the 
delay in the clock path. In Figure 3-17, the clock at Point (B) was skewed by Δb and the 
clock at Point (C) was skewed by Δc. What if there was a way to provide Point (B) with an 
early version of the clock, advanced by Δb and a way to provide Point (C) with an early 
version of the clock, advanced by Δc? The result would be that all clocks would arrive at 
their destinations with perfect clock edge alignment. Such perfect alignment reduces setup 
times, shortens clock-to-output delays, and increases overall system performance.

Figure 3-16: Clock Skew Inherently Exists in Every Synchronous System
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Predicting the Future by Closely Examining the Past
Even though Spartan-3 generation FPGAs employ highly advanced digital logic, they 
cannot predict the future. However, a DCM applies its knowledge of the past behavior of 
the clock to predict the future. Most input clocks to a system have a never-changing, 
monotonic frequency. Consequently, the input clock has a nearly constant period, T.

Because it is impossible to insert a negative delay to counteract the clock skew, the DCM 
actually delays the output clocks enough so that they appear to be advanced in time. How 
is this accomplished? The clock cycle is repetitive and has a fixed period, T. As shown in 
Figure 3-18, the clock at Point (B) appears to be advanced in time by the delay Δb. In reality 
however, the clock is delayed by (T – Δb). Similarly, the clock at Point (C) is delayed by 
(T – Δc).

Figure 3-17: Eliminating Clock Skew in a Spartan-3 Generation FPGA Design
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The clock period, T, is easy to derive knowing the frequency of the incoming monotonic 
clock signal. But what are the clock skew delays Δb and Δc? With careful analysis, they can 
be determined after examining the behavior of multiple systems under different 
conditions. In reality, this is impractical. Furthermore, the values of Δb and Δc are different 
between devices and vary with temperature and voltage on the same device.

Instead of attempting to determine the Δb and Δc delays in advance, the Spartan-3 DCM 
employs a DLL that constantly monitors the delay via a feedback loop, as shown in 
Figure 3-17. In this particular example, two DCMs are required—one to compensate for the 
clock skew to internal signals and another to compensate for the skew to external devices, 
each with their own clock feedback loop. The DLL constantly adapts to subtle changes 
caused by temperature and voltage.

Locked on Target
In order to determine and insert the correct delay, the DCM samples up to several 
thousand clock cycles. Once the DCM inserts the correct delay, the DCM asserts its 
LOCKED output signal.

Do not use the DCM clock outputs until the DCM asserts its LOCKED signal. Until the 
DCM locks onto the input clock signal, the output clocks are invalid. While the DCM 
attempts to lock onto the clock signal, the output clocks can exhibit glitches, spikes, or 
other spurious movements.

In an application, the LOCKED signal qualifies the output clock. Think of LOCKED as a 
“clock signal good” indicator.

A Stable, Monotonic Clock Input
To operate properly, the DCM requires a stable, monotonic clock input. Consequently, the 
DCM can predict future clock periods and adjust the output clock timing appropriately. 
Once locked, the DCM tolerates clock period variations up to the value specified in the 
specific FPGA data sheet. See the “DCM Clock Requirements” section.

Should the input clock vary well outside the specified limits, the DCM loses lock and the 
LOCKED output switches Low. If the DCM loses lock, reset the DCM to reacquire lock. If 
the input clock stays within the specified limits, then the output clocks always are valid 
when the LOCKED output is High. However, it is possible for the clock to stray well 
outside the limits, for the LOCKED output to stay High, and for either the CLKDV or 
CLKFX outputs to be invalid. In short, a stable, monotonic clock input guarantees 
problem-free designs. 

The recommended input path to a DCM’s CLKIN input is via one of the four global buffer 
inputs (IBUFG) along the same half of the device. Using the IBUFG path, the delay from 

Figure 3-18: Delaying a Fixed Frequency Clock Appears to Predict the Future
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the pad, through the global buffer, to the DCM is eliminated from the deskewed output. 
Other paths are possible, however, as shown in Table 3-22. The signal driving the CLKIN 
input can also originate a general-purpose input pin (IBUF primitive) via general-purpose 
interconnect, from a global buffer input (IBUFG), or from a global buffer multiplexer 
(BUFGMUX, BUFGCE). Similarly, an LVDS clock input can provide the clock signal. The 
deskew logic is characterized for a single-ended clock input such as LVCMOS or LVTTL. 
Differential signals might incur a slight amount of phase error due to I/O timing. See the 
corresponding FPGA data sheet for specific I/O timing differences.

Feedback from a Reliable Source
In order to lock in on the proper delay, the DCM monitors both the incoming clock and a 
feedback clock, tapped after the clock distribution delay. There are no restrictions on the 
total delay in the clock feedback path. If required, the DLL effectively delays the output 
clock by multiple clock periods. Consequently, a DCM can compensate for either internal 
or external delays, but the clock feedback must connect to the correct feedback point.

Removing Skew from an Internal Clock
To eliminate skew within the FPGA, the feedback tap is the same clock as that seen by the 
clocked elements within the FPGA, shown in Figure 3-19. The feedback clock is typically 
the CLK0 output (no phase shift) from the DCM, connected to the output of a global clock 

Table 3-22: CLKIN Input Sources

CLKIN Source Description

Via global buffer input A global buffer input, IBUFG, is the preferred source for an external clock to the DCM. 
The delay from the pad, through the global buffer, to the CLKIN input is characterized, 
and this delay is removed from the deskewed clock output.

Global Clock Buffer A global clock buffer, using either a BUFG, BUFGCE, or BUFGMUX primitive, is a 
preferred source for an internally generated clock to the DCM. The delay through the 
global buffer is characterized, and this delay is removed from the deskewed clock 
output.

When using BUFGCE or BUFGMUX, the input clock might change frequency or stop, 
depending on the design. The DCM should be reset after enabling a BUFGCE or 
changing inputs on a BUFGMUX. Also see “Momentarily Stopping CLKIN,” page 148.

Via general-purpose I/O Any user-I/O pin, IBUF, becomes an alternate source for an external clock. The pad-to-
DCM delay cannot be predetermined due to the numerous potential input paths, and 
consequently, the delay is not compensated by the DCM.

Derived from internal logic Logic within the FPGA also can be the clock source. Again, the logic-to-DCM delay 
cannot be predetermined and it is not compensated by the DCM.
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buffer (BUFG) or a global clock multiplexer (BUFGMUX or BUFGCE primitive) on the 
same edge of the device. If a BUFGMUX or BUFGCE global clock multiplexer is used, the 
DCM should be reset after the clock is switched or enabled. Alternatively, the DCM’s 
CLK2X output (no phase shift, frequency doubled) can be used instead of the CLK0 
output.

Removing Skew from an External Clock
Constructing the DCM feedback for an external clock is slightly more complex. Ideally, the 
clock feedback originates from the point where the signal feeds any external clocked 
inputs, after any long printed-circuit board traces or external clock rebuffering, as shown 
in Figure 3-20.

The LOCKED signal indicates when the DCM achieves lock, qualifying the clock signal. 
The LOCKED signal can enable external devices or an inverted version can connect to an 
active-Low chip enable.

Reset DCM After Configuration

When using external feedback, apply a reset pulse to the DCM immediately after 
configuration to ensure consistent locking. An SRL16 primitive, initialized with 0x000F, 
supplies the necessary reset pulse, as shown in Figure 3-20. See “RST Input Behavior.”

Figure 3-19: Eliminating Skew on Internal Clock Signals
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Figure 3-20: Eliminating Skew on External Clock Signals
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Why Reset?

Why is this extra reset pulse required? For an optimum locking process, a DCM configured 
with external feedback requires both the CLKIN and either the CLK0 or CLK2X signals to 
be present and stable when the DCM begins to lock. During the configuration process, the 
external feedback, CLKFB, is not available because the FPGA’s I/O buffers are not yet 
active.

At the end of configuration, the DCM begins the capture process once the device enters the 
startup sequence. Because the FPGA’s global 3-state signal (GTS) still is asserted at this 
time, any output pins remain in a 3-state (high-impedance, floating) condition. 
Consequently, the CLKFB signal is in an unknown logic state.

When CLKFB eventually appears after the GTS is deasserted, the DCM proceeds to 
capture. However, without the reset pulse, the DCM might not lock at the optimal point, 
which potentially introduces slightly more jitter and greater clock cycle latency through 
the DCM.

Without the reset, another possible issue might occur if the CLKFB signal, while in the 
3-state condition, cross-couples with another signal on the board due to a printed-circuit 
board signal integrity problem. The DCM might sense this invalid cross-coupled signal as 
CLKFB and use it to proceed with a lock. This possibly prevents the DCM from properly 
locking once the GTS signal deasserts and the true CLKFB signal appears.
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What is a Delay-Locked Loop?
Two basic types of circuits remove clock delay:

• Delay-Locked Loops (DLLs) and

• Phase-Locked Loops (PLLs) 

In addition to their primary function of removing clock distribution delay, DLLs and PLLs typically provide 
additional functionality such as frequency synthesis, clock conditioning, and phase shifting.

Delay-Locked Loop (DLL)

As shown in Figure 3-21, a DLL in its simplest form consists of a tapped delay line and control logic. The delay line 
produces a delayed version of the input clock CLKIN. The clock distribution network routes the clock to all 
internal registers and to the clock feedback CLKFB pin. The control logic continuously samples the input clock as 
well as the feedback clock to properly adjust the delay line. Delay lines are constructed either using a voltage 
controlled delay or as a series of discrete delay elements. For best, ruggedly stable performance, the Spartan-3 DLL 
uses an all-digital delay line.

A DLL works by inserting delay between the input clock and the feedback clock until the two rising edges align, 
effectively delaying the feedback clock by almost an entire period—minus the clock distribution delay, of course. In 
DLL and PLL parlance, the feedback clock is 360°  out of phase, which means that they appear to be exactly in phase 
again. 

After the edges from the input clock line up with the edges from the feedback clock, the DLL “locks”, and the two 
clocks have no discernible difference. Thus, the DLL output clock compensates for the delay in the clock 
distribution network, effectively removing the delay between the source clock and its loads. Voila!

Figure 3-21: Delay-Locked Loop (DLL) Block Diagram
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Skew Adjustment
Most of this section discusses how to remove skew and how to phase align an internal or 
external clock to the clock source. In actuality, the DCM purposely adds a small amount of 
skew via an advanced attribute called DESKEW_ADJUST. In Clocking Wizard, the 
DESKEW_ADJUST attribute is controlled via the Advanced Options window.

There are two primary applications for this attribute, SYSTEM_SYNCHRONOUS and 
SOURCE_SYNCHRONOUS. The overwhelming majority of applications use the default 
SYSTEM_SYNCHRONOUS setting. The purpose of each mode is described below.

System Synchronous

In a System Synchronous design, all devices within a data path share a common clock 
source, as shown in Figure 3-23. This is the traditional and most-common system 
configuration. The SYSTEM_SYNCHRONOUS option, which is the default value, adds a 

Phase-Locked Loop (PLL)

While designed for the same basic function, a PLL uses a different architecture to accomplish the task. As shown in 
Figure 3-22, the fundamental difference between the PLL and DLL is that instead of a delay line, the PLL uses a 
voltage-controlled oscillator, which generates a clock signal that approximates the input clock CLKIN. The control 
logic, consisting of a phase detector and filter, adjusts the oscillator frequency and phase to compensate for the 
clock distribution delay. The PLL control logic compares the input clock to the feedback clock CLKFB and adjusts 
the oscillator clock until the rising edge of the input clock aligns with the feedback clock. The PLL then “locks.”

Implementation

A DLL or PLL is assembled using either analog or digital circuitry; each approach has its own advantages. An 
analog implementation with careful circuit design produces a DLL or PLL with a finer timing resolution. 
Additionally, analog implementations sometimes consume less silicon area.

Conversely, digital implementations offer advantages in noise immunity, lower power consumption and better 
jitter performance. Digital implementations also provide the ability to stop the clock, facilitating power 
management. Analog implementations can require additional power supplies, require close control of the power 
supply, and pose problems in migrating to new process technologies.

DLL vs. PLL

When choosing between a PLL or a DLL for a particular application, understand the differences in the 
architectures. The oscillator used in the PLL inherently introduces some instability, which degrades the 
performance of the PLL when attempting to compensate for the delay of the clock distribution network. 
Conversely, the unconditionally stable DLL architecture excels at delay compensation and clock conditioning. On 
the other hand, the PLL typically has more flexibility when synthesizing a new clock frequency.

Figure 3-22: Phase-Locked Loop (PLL) Block Diagram
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small amount of clock delay so that there is zero hold time when capturing data. Hold time 
is essentially the timing difference between the best-case data path and the worst-case 
clock path. The DCM’s clock skew elimination function advances the clock, essentially 
dramatically shortening the worst-case clock path. However, if the clock path is advanced 
so far that the clock appears before the data, then hold time results. The 
SYSTEM_SYNCHRONOUS setting injects enough additional skew on the clock path to 
guarantee zero hold times, but at the expense of a slightly longer clock-to-output time.

The extra delay is injected in the SYSTEM_SYNCHRONOUS setting by adding an internal 
delay on the feedback path. However, there are some situations where the DCM does not 
add this extra delay, and therefore the DESKEW_ADJUST parameter has no affect. These 
situations include DCMs that are cascaded, have external feedback, or have an external 
CLKIN that does not come from a clock input.

Source Synchronous

SOURCE_SYNCHRONOUS mode is an advanced setting, used primarily in high-speed 
data communications interfaces. In Source Synchronous applications, both the data and 
the clock are derived from the same clock source, as shown in Figure 3-24. The transmitting 
devices sends both data and clock to the receiving device. The receiving device then 
adjusts the clock timing for best data reception. High-speed Dual-Data Rate (DDR) and 
LVDS connections are examples of such systems.

The SOURCE_SYNCHRONOUS setting essentially zeros out any phase difference 
between the incoming clock and the deskewed output clock from the DCM. The FPGA 
application must then adjust the clock timing using either the Fixed or Dynamic Fine Phase 
Shift mode. The following application notes provide additional information on Source 
Synchronous design and using dynamic phase alignment:

• XAPP268: Dynamic Phase Alignment
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf 

• XAPP622: SDR LVDS Transmitter/Receiver
http://www.xilinx.com/support/documentation/application_notes/xapp622.pdf 

Figure 3-23: System-Synchronous Applications are Clocked by a Single, System-
Wide Clock Source

Clock
Source

DATA_INDATA_OUT

x462_23_061903

Figure 3-24: In Source-Synchronous Applications, the Data Clock is Provided by 
the Data Source

Clock
Source

DATA_INDATA_OUT

DATA_CLK

x462_24_061903

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp622.pdf


Spartan-3 Generation FPGA User Guide www.xilinx.com 107
UG331 (v1.5) January 21, 2009

Clock Conditioning
R

Similarly, the following application note delves into more details on system-level timing. 
Although the application note is written for the Virtex-II and Virtex-II Pro FPGA 
architectures, most of the concepts apply directly to Spartan-3 FPGAs. 

• XAPP259: System Interface Timing Parameters 
http://www.xilinx.com/support/documentation/application_notes/xapp259.pdf 

Timing Comparisons

Figure 3-25 compares the effect of both SYSTEM_SYNCHRONOUS and 
SOURCE_SYNCHRONOUS settings using a Dual-Data Rate (DDR) application. In DDR 
applications, two data bits appear on each data line—one during the first half-period of the 
clock, the second during the second half-period.

In SYSTEM_SYNCHRONOUS mode, a small amount of skew is purposely added to the 
DCM clock path so that there is zero hold time.

In SOURCE_SYNCHRONOUS mode, no additional skew is inserted to the DCM clock 
path. However, the FPGA application must insert additional skew or phase shifting so that 
the clock appears at the ideal location in the data window.

Clock Conditioning
Clock conditioning is a function where an incoming clock with a duty cycle other than 50% 
is reshaped to have a 50% duty cycle. Figure 3-26 shows an example where an incoming 
clock, with roughly a 45% High time and a 55% Low time (45%/55% duty cycle), is 
reshaped into a nearly perfect 50% duty cycle—nearly perfect because there is some 
residual duty-cycle distortion specified by the CLKOUT_DUTY_CYCLE_DLL and 
CLKOUT_DUTY_CYCLE_FX values in the applicable FPGA family data sheet. The DCM 
itself adds little to no distortion. Most of the distortion is caused by the difference in rise 
and fall times in the internal routing and clock networks. The distortion is estimated at 
100 ps to 400 ps, depending on the device.

Figure 3-25: Comparing SYSTEM_SYNCHRONOUS and 
SOURCE_SYNCHRONOUS Timing in a Dual-Data Rate (DDR) Application
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Clocks with 50% duty cycle are mandatory for high-speed communications interfaces such 
as LVDS or Dual-Data Rate (DDR) and for clock forwarding or clock mirroring 
applications. See “Dual-Data Rate (DDR) Clocking Example.”

Spartan-3E and Spartan-3A/3AN/3A DSP FPGA Output Clock 
Conditioning

The DCM automatically conditions all clock outputs on Spartan-3E and 
Spartan-3A/3AN/3A DSP FPGAs so that they have a 50% duty cycle. 

Spartan-3 FPGA Output Clock Conditioning
On Spartan-3 FPGAs, most of the of the output clocks are conditioned to a 50% duty cycle, 
although other outputs are optionally conditioned, depending either on the operating 
conditions or on attribute settings, as shown in Table 3-23.

Figure 3-26: DCM Duty-Cycle Correction Feature Provides 50% Duty Cycle Outputs
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Table 3-23: Spartan-3 FPGA Family: Clock Outputs with Conditioned 50% Duty Cycle

DCM Clock 
Output

50% Duty Cycle Output

CLK0
CLK180

When DUTY_CYCLE_CORRECTION attribute set to TRUE

CLK90
CLK270

CLK2X
CLK2X180

DLL_FREQUENCY_MODE Attribute

LOW HIGH

When DUTY_CYCLE_CORRECTION attribute set to TRUE Outputs not available

DLL_FREQUENCY_MODE Attribute

LOW HIGH

Always Outputs not available
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The Quadrant Phase Shifted Outputs, CLK0, CLK90, CLK180, and CLK270 have optional 
clock conditioning, controlled by the DUTY_CYCLE_CORRECTION attribute. By default, 
the DUTY_CYCLE_CORRECTION attribute is set to TRUE, meaning that these outputs 
are conditioned to a 50% duty cycle. Setting this attribute to FALSE disables the clock-
conditioning feature, in which case the effected clock outputs have roughly the same duty 
cycle as the incoming clock. Exact replication of the CLKIN duty cycle is not guaranteed.

Phase Shifting – Delaying Clock Outputs by a Fraction of a Period
A DCM also optionally phase shifts an incoming clock, effectively delaying the clock by a 
fraction of the clock period.

The DCM supports four different types of phase shifting. Each type can be used 
independently, or in conjunction with other phase shifting modes. The phase shift 
capabilities for each clock output appear in Table 3-24.

1. Half-Period Phase Shifted Outputs provide a pair of outputs, one with a rising edge at 
0° phase shift and the other at 180° phase shift, at the half-period point during the clock 
period.

2. Quadrant Phase Shifted Outputs of 0° (CLK0), 90° (CLK90), 180° (CLK180), and 270° 
(CLK270).

3. Fixed Fine Phase Shifting of all DCM clock outputs with a resolution of 1/256th of a 
clock cycle.

4. Variable Fine Phase Shifting of all DCM clock outputs from within the FPGA 
application. For variable phase shifting, there are significant differences between the 
Spartan-3 FPGA family and the Spartan-3E and Extended Spartan-3A families. 
Spartan-3 FPGAs provide variable phase shift with a step size of 1/256th of a CLKIN 
clock cycle. The size of the step varies depending on the CLKIN input frequency. On 
Spartan-3E and Extended Spartan-3A FPGAs, the step size, called 
DCM_DELAY_STEP, is independent of the CLKIN clock frequency.

CLKDV

CLKFX
CLKFX180

Always

Table 3-23: Spartan-3 FPGA Family: Clock Outputs with Conditioned 50% Duty Cycle (Continued)

DCM Clock 
Output

50% Duty Cycle Output

DLL_FREQUENCY_MODE Attribute

LOW HIGH

Always When CLKDV_DIVIDE attribute is an integer value

Table 3-24: Phase Shift Capabilities by Clock Output

Clock Output Half-Period Quadrant Fixed or Dynamic

CLK0 9 9 9

CLK90 9 9

CLK180 9 9 9

CLK270 9 9

CLK2X 9 9
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Half-Period Phase Shifted Outputs
The Half-Period Phase Shift outputs provide a non-shifted clock output, and the 
equivalent clock output but shifted by half a period (180° phase shift). The Half-Period 
Phase Shift outputs appear in pairs, as shown in Table 3-25.

The Half-Period Phase Shift outputs are ideal for duty-cycle critical applications such as 
high-speed Dual-Data Rate (DDR) designs and clock mirrors. The Half-Period Phase Shift 
output pairs provide two clocks, one with a rising edge at the beginning of the clock 
period, and another rising edge precisely aligned at half the clock period, as shown in 
Figure 3-27.

CLK2X180 9 9

CLKDV 9

CLKFX 9 9

CLKFX180 9 9

Table 3-24: Phase Shift Capabilities by Clock Output (Continued)

Clock Output Half-Period Quadrant Fixed or Dynamic

Table 3-25: Half-Period Phase Shifted Outputs

Output Pairs
Comment

No Phase Shift 180° Phase Shift

CLK0 CLK180 Same frequency as CLKIN input. Spartan-3E and Spartan-3A/3AN/3A DSP 
FPGAs always have a 50% duty cycle. On Spartan-3 FPGAs, duty cycles for 
outputs are corrected to 50% by default, controlled by the 
DUTY_CYCLE_CORRECTION attribute.

CLK2X CLK2X180 Outputs from the Clock Doubler (CLK2X, CLK2X180). Twice the frequency of 
the CLKIN input, always has a 50% duty cycle.

CLKFX CLKFX180 Outputs from the Frequency Synthesizer (CLKFX, CLKFX180). Output 
frequency depends on Frequency Synthesizer attributes. Always has a 50% 
duty cycle.

Figure 3-27: Half-Period Phase Shift Outputs
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Half-Period Phase Shift Outputs Reduce Duty-Cycle Distortion

When the DCM clock outputs are duty-cycle corrected to 50%, it appears that the 180° 
phase-shifted clock is just an inverted version on the non-shifted clock. For low-frequency 
applications, this is essentially true.

However, at very high operating frequencies, duty-cycle distortion—due to differences in 
rise and fall times of individual transistors—becomes relevant within the FPGA device. 
Starting with a 50% clock cycle, such distortion causes differences between the clock High 
and clock Low times, which is consistent from cycle to cycle.

Dual-Data Rate (DDR) Clocking Example

In Figure 3-28, a single DCM clock output, CLKx, drives both clocks on a Dual-Data Rate 
(DDR) output flip-flop. One DDR clock input uses the clock output as is, the other input 
inverts the clock within the DDR flip-flop. The CLKx output from the DCM has a 50% duty 
cycle, but after traveling through the FPGA’s clock network, the duty cycle becomes 
slightly distorted. In this exaggerated example, the distortion truncates the clock High time 
and elongates the clock Low time. Consequently, the C1 clock input triggers slightly before 
half the clock period. At lower frequencies, this distortion is usually negligible. However, 
high-performance DDR-based systems require precise clocking due to the extremely short 
half-period timing.

Figure 3-29 shows a slightly modified circuit compared to Figure 3-28. In this case, the 
DCM provides both a non-shifted and a 180° phase-shifted output to the DDR output flip-
flop. The CLKx clock signal precisely triggers the DDR flip-flop’s C0 input at the start of 
the clock period. Similarly, the CLKx180 clock signal precisely triggers the DDR flip-flop’s 
C1 input halfway through the clock period. The cost of this approach is an additional 

Figure 3-28: Dual-Data Rate (DDR) Output Using Both Edges of a Single Clock 
Induces Duty-Cycle Distortion
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global buffer and global clock line, but it potentially reduces the potential duty-cycle 
distortion by approximately 300 ps.

Table 3-26 shows the specified duty-cycle distortion values as measured using DDR output 
flip-flops and LVDS outputs. There might be additional distortion on other output types 
caused by asymmetrical rise and fall times, which can be simulated using IBIS.

When using the DCM to generate high speed clocks to drive the double data rate ODDR2, 
BUFGMUX_X1Y1 is recommended for CLKFX and BUFGMUX_X2Y0 is recommended for 
CLKFX180 to minimize period jitter.

Quadrant Phase Shifted Outputs
The Quadrant Phase Shift outputs shift the CLKIN input, each by a quarter period, as 
shown in Figure 3-30 and Table 3-28. Because the Quadrant Phase Shift outputs require a 
feedback path back to the CLKFB input, the CLK0 output is phase aligned to the rising 
edge of the CLKIN input. The CLK90 output is phase shifted 90° from the CLKIN input, 
and so forth.

Figure 3-29: Using Half-Period Phase Shift Outputs Reduces Potential Duty-Cycle 
Distortion
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Table 3-26: Duty-Cycle Distortion Parameters

Parameter Description
Estimated 

Value

TDCD_CLK0 Duty-cycle distortion when local inversion provides negative-edge clock to DDR 
element in an I/O block. See Figure 3-28.

~400 ps

TDCD_CLK180 Duty-cycle distortion when DCM CLKx180 output provides clock to DDR element in 
an I/O block. See Figure 3-29.

~60 ps
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Output Availability Depends on DLL Frequency Mode

The availability of the Quadrant Phase Shift outputs depends on the DLL’s frequency 
mode. On Spartan-3 FPGAs, the range is controlled by the DLL_FREQUENCY_MODE 
attribute. On Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs, the outputs depend on 
whether the CLKIN input frequency is above or below 167 MHz.

All four Quadrant Phase Shift outputs are available in low-frequency mode 
(DLL_FREQUENCY_MODE = LOW), as shown in Table 3-27. Only the CLK0 and CLK180 
outputs are available in both modes.

Spartan-3 FPGA: Optional 50/50 Duty Cycle Correction

On Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs, the quadrant outputs are always 
conditioned to a 50% duty cycle. On Spartan-3 FPGAs, the outputs are optionally 
conditioned to a 50% duty cycle, controlled by the DUTY_CYCLE_CORRECTION 

Figure 3-30: Quadrant Phase Shift Outputs Shift CLKIN, Each by a Quarter Period 
(Shown with Duty-Cycle Correction Enabled)

270˚180˚90˚0˚

¼T ½ T ¾T 1T

CLK0

CLK90

CLK180

CLK270

360˚

0

Phase Shift  (degrees)

Delay  (fraction of
clock period)

Clock Period  (T)
x462_30_061903

Table 3-27: Quadrant Phase Shift Output Availability by DLL Frequency Mode

Output

Spartan-3 FPGAs

DLL_FREQUENCY_MODE = LOW DLL_FREQUENCY_MODE = HIGH

Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs

CLKIN ≤ 167 MHz CLKIN > 167 MHz

CLK0 9 9

CLK90 9

CLK180 9 9

CLK270 9
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attribute. When TRUE, which is the default, all four outputs have a 50% duty cycle. When 
FALSE, the outputs do not necessarily have the same duty cycle as the CLKIN input. See 
the “Clock Conditioning” section for more information.

Four Phases, Delayed Clock Edges, Phased Pulses

One view of the Quadrant Phase Shift outputs is that each provides a rising clock that is 
delayed one quarter period from the preceding pulse, as shown in Table 3-28. These 
outputs provide flexible timing for such applications as memory interfaces and peripheral 
control.

When these outputs are conditioned with a 50% duty cycle, there are other ways to view 
these signals. For example, the outputs also provide falling-edge clocks separated by a 
quarter phase. Again, see Table 3-28. Similarly, each output produces a High-going pulse, 
and a Low-going pulse, both half a period wide. For example, the CLK90 output shown in 
Figure 3-30 produces a High-going pulse, centered within the CLK0 clock period.

Fine Phase Shifting
The DCM provides additional controls over clock skew using fine phase shifting. Fine-
phase adjustment affects all nine DCM output clocks simultaneously. The fine phase shift 
capability requires the DCM’s DLL functional unit. Consequently, clock feedback via the 
CLKFB input is required. Phase Shifter operation in the Spartan-3 family is only supported 
when DLL_FREQUENCY_MODE = LOW.

Caution! This user guide describes phase shift operations for designs compiled using the 
Xilinx ISE 8.1.03i (ISE 8.1i with Service Pack 3 installed) or later versions. All new FPGA designs 
must use the latest available software.

Physically, the fine phase shift control adjusts the phase relationship between the rising 
edges of the CLKIN and CLKFB inputs. The net effect, however, is that all DCM outputs 
are phase shifted with relation to the CLKIN input.

By default, fine phase shifting is disabled (CLKOUT_PHASE_SHIFT = NONE), meaning 
that the clock outputs are phase aligned with the CLKIN input clock. In this case, there is 
no skew between the input clock, CLKIN, and the feedback clock, measured at the 
appropriate feedback point (see “Feedback from a Reliable Source” section). When fine 
phase shifting is enabled, the output clock edges can be phase shifted so that they are 
advanced or are delayed compared to the CLKIN input, as shown in Figure 3-32.

There are two fine phase shift modes as described below. Both are commonly used in high-
speed data communications applications. See the “Source Synchronous” section.

1. Fixed Fine Phase Shift mode sets the phase shift value at design time. The phase shift 
value is loaded into the FPGA during configuration and cannot be changed by the 

Table 3-28: Quadrant Phase Shift Outputs and Characteristics (DUTY_CYCLE_CORRECTION=TRUE)

DCM Output
Phase 
Shift

Delayed by 
Period 

Fraction

Rising 
Edge

Falling 
Edge

Comment

CLK0 0° 0 0 ½T Deskewed input clock, no phase shift

CLK90 90° ¼T ¼T ¾T High-going pulse, ½T wide, in middle of period

CLK180 180° ½T ½T 0T Inverted CLK0, rising clock edge in middle of 
period

CLK270 270° ¾T ¾T ¼T Low-going pulse, ½T wide, in middle of period
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application. The Fixed phase shift feature is identical among Spartan-3 generation 
FPGAs.

2. Variable Fine Phase Shift mode has an initial phase shift value, similar to Fixed Fine 
Phase Shift, which is set during FPGA configuration. However, the phase shift value 
can be changed by the application after the DCM’s LOCKED output goes High.

Caution! There are important differences between the Variable phase shift feature on 
Spartan-3 FPGAs and that found on Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs. See 
“Important Differences Between Spartan-3 Generation FPGA Families,” page 118.

Fixed Fine Phase Shifting
In Fixed Fine Phase Shift mode, the phase shift value is specified at design time and set 
during the FPGA configuration process. The application cannot change the value during 
run time.

Caution! Fixed Fine Phase Shift in the Spartan-3 family should be implemented using the 
latest available software update.

Two attributes control this mode. The CLKOUT_PHASE_SHIFT attribute is set to FIXED, 
and the PHASE_SHIFT attribute controls the amount of phase shift. If PHASE_SHIFT is 0, 
then the output clocks and the CLKIN input are phase aligned, as shown in Figure 3-32. If 
PHASE_SHIFT is a negative integer, then the clock output(s) are phase shifted before 
CLKIN. If PHASE_SHIFT is a positive integer, then the clock output(s) are phase shifted 
after CLKIN.

The size of each phase shift unit is always the same at 1/256
th of the CLKIN clock period, as 

shown in Figure 3-31, which equates to 1.40625° per step. The physical delay of each step 
depends on the CLKIN input clock frequency, as shown in Equation 3-5.

Figure 3-31: Each PHASE_SHIFT Unit is 1/256th of the CLKIN Period
UG331_c3_19_022407

0

CLKIN Period (TCLKIN) 

128 255

180°
180°

64 192
90° 270°0° 0°

1
256 of CLKIN clock period

(=1.40625°)

90°270°

0°

Time = 
256

Phase Shift TCLKIN

Phase = 
256

Phase Shift
360o = Phase Shift 1.40625o

PHASE_SHIFT = 

http://www.xilinx.com


116 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 3: Using Digital Clock Managers (DCMs)
R

Spartan-3 Family Fixed Fine Phase Shift Range

The PHASE_SHIFT attribute is always an integer value, ranging between –255 and +255. 
However, the actual limits for the Spartan-3 FPGA family can be lower depending on the 
CLKIN input frequency, as described below.

The minimum and maximum limits of the PHASE_SHIFT attribute depend on two values.

1. The period of the CLKIN input, TCLKIN, measured in nanoseconds.

2. For Spartan-3 family FPGAs, FINE_SHIFT_RANGE defines the maximum guaranteed 
delay achievable by the phase shift delay line. The actual delay line within a given 
device can be longer, but only the delay up to FINE_SHIFT_RANGE is guaranteed. 
The Extended Spartan-3A family does not have a FINE_SHIFT_RANGE limit for fixed 
phase shifting.

Using these two values, calculate the SHIFT_DELAY_RATIO using Equation 3-1. The 
limits for the PHASE_SHIFT attribute are different, depending on whether the result is less 
than or if it is greater than or equal to one.

Equation 3-1

SHIFT_DELAY_RATIO < 1

If the Spartan-3 FPGA clock period is longer than the specified FINE_SHIFT_RANGE, then 
the SHIFT_DELAY_RATIO < 1, meaning that maximum fine phase shift is limited by 
FINE_SHIFT_RANGE. When SHIFT_DELAY_RATIO < 1, then the PHASE_SHIFT limits 
are set according to Equation 3-2:

Equation 3-2

For example, assume that FCLKIN is 75 MHz (TCLKIN = 13.33 ns) and FINE_SHIFT_RANGE 
is 10.00 ns. In this case, the PHASE_SHIFT value is limited to ±191.

Consequently, the phase shift value when SHIFT_DELAY_RATIO < 1 is shown by 
Equation 3-3. To determine the phase shift resolution, set PHASE_SHIFT = 1.

Equation 3-3

Figure 3-32: Fixed-Value Fine Phase Shift Control

0

Fixed Phase Shift
- Limit

Fixed Phase Shift
+ Limit

Clock Outputs

The PHASE_SHIFT attribute, set at design
time, controls the amount of phase shift on the
DCM clock outputs relative to the CLKIN input.

CLKIN

x462_31_061903

SHIFT_DELAY_RATIO FINE_SHIFT_RANGE
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---------------------------------------------------------------=

PHASE_SHIFTLIMITS  ± INTEGER 256 FINE_SHIFT_RANGE
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---------------------------------------------------------------•⎝ ⎠
⎛ ⎞=
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SHIFT_DELAY_RATIO ≥ 1

By contrast, if the Spartan-3 FPGA clock period is shorter than the specified 
FINE_SHIFT_RANGE, then the SHIFT_DELAY_RATIO ≥ 1, meaning that maximum fine 
phase shift is limited to ±255.

Equation 3-4

Consequently, the phase shift value when SHIFT_DELAY_RATIO ≥ 1 is shown by 
Equation 3-5. To determine the phase shift resolution, set PHASE_SHIFT = 1.

Equation 3-5

Minimum Phase Shift Size

The minimum phase shift size is controlled by the greater of two limiting factors.

1. 1/256
th of the CLKIN clock period. However, the phase shift delay is physically 

implemented using delay elements.

2. The smallest phase shift amount must be at least as large as the minimum delay 
element resolution, listed by FPGA family in Table 3-29.

Other Design Considerations

In Fixed Phase Shift mode, the Variable Phase Shift control inputs must be tied to GND, 
which Clocking Wizard and the ISE software do automatically.

Clocking Wizard

To use Fixed Phase Shift mode, select Fixed in the Phase Shift section of Clocking Wizard’s 
General Setup panel, shown in Figure 3-33. This action sets the CLKOUT_PHASE_SHIFT 
attribute to FIXED.

PHASE_SHIFTLIMITS 255±=

TPhaseShift
PHASE_SHIFT

256
-------------------------------------------⎝ ⎠

⎛ ⎞ TCLKIN•=

Table 3-29: Delay Element Step Size

Spartan-3 Generation
FPGA Family

Delay Element 
Specification Symbol

Delay Element Value

Spartan-3 FPGA DCM_TAP 30 to 60 ps

Spartan-3E FPGA DCM_DELAY_STEP 20 to 40 ps, 25 ps typical

Extended Spartan-3A FPGA DCM_DELAY_STEP 15 to 35 ps, 23 ps typical
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Enter the phase shift Value, which must be an integer within the limits described above. 
This action sets the PHASE_SHIFT attribute value. Clocking Wizard checks that the phase 
shift value is within the limits.

Variable Fine Phase Shifting
In Variable Fine Phase Shift mode, the initial skew or phase shift is still controlled by the 
PHASE_SHIFT attribute during configuration, just as it is for Fixed Fine Shift mode. 
However, in dynamic mode, the FPGA application can adjust the current phase shift 
location after the DCM’s LOCKED output goes High using the Dynamic Fine Phase Shift 
control inputs, PSEN, PSCLK, and PSINCDEC.

The total resulting phase shift is the sum of the initial Fixed phase shift plus any Variable 
phase shift adjustments, as shown in Equation 3-6, assuming the same units.

Equation 3-6

Important Differences Between Spartan-3 Generation FPGA Families

For Variable Phase Shift mode, there are important differences between Spartan-3 
generation FPGA families. Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs both use a 
silicon-efficient delay-based variable phase shifting method. Spartan-3 FPGAs use a more 
elaborate method based on the fraction of the clock period. Although both methods 
perform phase shifting, they are completely different.

Table 3-30 summarizes the differences. All Spartan-3 generation FPGAs perform Fixed 
Phase Shift identically, as illustrated in Figure 3-31, page 115. The resulting phase shift is 
always 1/256

th of the CLKIN period. Similarly, all Spartan-3 generation FPGAs use the 
identical Variable phase shift control mechanism using the PSEN, PSINCDEC, PSCLK, and 
PSDONE connections to the DCM.

The major difference is the result of each Variable Phase Shift operation. For Spartan-3 
FPGAs, a Variable phase shift operation is similar to a Fixed phase shift operation. The 
operation always results in a phase change measured in degrees, as shown in Figure 3-31, 
page 115. The phase shift measured in degrees never changes; the phase shift measured in 
time depends on the CLKIN input frequency.

Figure 3-33: Selecting Fixed Fine Shift Mode
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phase shift 
Value Allowable 
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On Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs, however, a Variable Phase Shift 
operation results in a delay change, not a phase change. The phase shift is implemented by 
cascaded delay elements, as shown in Figure 3-34. Each DCM_DELAY_STEP element 
ranges from the minimum and maximum values shown in Table 3-29, page 117. 
Consequently, the actual amount of phase shift time added to the clock outputs ranges 
between the cumulative minimum and maximum delay through all the selected elements. 
This time is relatively constant and does not change with the CLKIN frequency. The 
corresponding phase shift, measured in degrees, does change with frequency.

Table 3-30: FIXED and VARIABLE Phase Shift Implementations by Spartan-3 Generation FPGA Family

Spartan-3 Generation FPGA Family

Spartan-3 FPGA Spartan-3E FPGA
Extended Spartan-3A 

FPGA

FIXED Phase Shift unit increment or 
decrement unit

1/256
th of CLKIN Period

FIXED Phase Shift measurement 
unit

Degrees

VARIABLE Phase Shift control 
mechanism

PSEN, PSINCDEC, PSCLK, and PSDONE signals 
on the DCM

VARIABLE Phase Shift increment or 
decrement unit

1/256
th of CLKIN 
Period

(1.4065°)

DCM_DELAY_STEP, 
between 20 to 40 ps

DCM_DELAY_STEP, 
between 15 to 35 ps

Figure showing VARIABLE Phase 
Shift logic

Figure 3-31, 
page 115 Figure 3-34, page 120

VARIABLE Phase Shift equation Equation 3-5 Equation 3-7, Equation 3-8

VARIABLE Phase Shift 
measurement unit

Degrees Time

Does Phase Shift, measured in 
degrees, change with CLKIN input 
frequency?

No Yes

Does Phase Shift, measured in time, 
change with CLKIN input 
frequency?

Yes No
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Spartan-3E and Spartan-3A/3AN/3A DSP Variable Phase Shift Operations

The results of a Variable phase shift operation on a Spartan-3E or Spartan-3A/3AN/3A 
DSP FPGA is always measured in time, as shown in Equation 3-7 and Equation 3-8. The 
resulting phase shift has minimum and maximum values due to the variation of the delay 
in each DCM_DELAY_STEP, as shown in Table 3-29, page 117.

Equation 3-7

Equation 3-8

Based on the results from Equation 3-7 and Equation 3-8, the resulting phase shift, 
measured in degrees, is determined from Equation 3-9. TCLKIN is the period of the CLKIN 
input.

Equation 3-9

Operation

Use the phase shift control inputs to adjust the current phase shift value, as shown in 
Figure 3-35. The rising edge of PSCLK synchronizes all Variable Phase Shift operations. A 
valid operation starts by asserting the PSEN enable input for one and only one PSCLK 
clock period. Asserting PSEN for more than one rising PSCLK clock edge might cause 
undesired behavior.

Figure 3-34: Spartan-3E and Spartan-3A/3AN/3A DSP Variable Phase Shift Logic
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The value on the PSINCDEC increment/decrement control input determines the phase 
shift direction. When PSINCDEC is High, the present Variable Phase Shift value is 
incremented by one unit. Similarly, when PSINCDEC is Low, the present Variable Phase 
Shift value is decremented by one unit.

The actual phase shift operation timing varies and the operation completes when the DCM 
asserts the PSDONE output High for a single PSCLK clock period. Between enabling PSEN 
until PSDONE is asserted, the DCM output clocks slide, bit by bit, from their original 
phase shift value to their new phase shift value. During this time, the DCM remains locked 
on the incoming clock and continues to assert its LOCKED output.

The phase adjustment might require as many as 100 CLKIN cycles plus 3 PSCLK cycles to 
take effect, at which point the DCM’s PSDONE output goes High for one PSCLK cycle. 
This pulse indicates that the PS unit completed the previous adjustment and is now ready 
for the next request.

To enable Dynamic Fine Phase Shift mode, set the CLKOUT_PHASE_SHIFT attribute to 
VARIABLE. The PHASE_SHIFT attribute value sets the initial phase shift location, 
established after FPGA configuration. The FPGA application can the dynamically adjust 
the skew or phase shift on the DCM’s output clocks after the DCM's LOCKED output goes 
High. If the DCM is reset, the PHASE_SHIFT value reverts to its initial configuration value.

Figure 3-35: Dynamic Fine Phase Shift Control Interface
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Variable Fine Phase Shift Range

Just as the PHASE_SHIFT attribute has minimum and maximum phase shift limits, so does 
the Variable Phase Shift, as shown in Figure 3-36. Due to the differences between Spartan-3 
FPGAs and Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs, the limits are also different.

Spartan-3 FPGA Family Variable Phase Shift Range

For Spartan-3 FPGAs, the limits again depend on the ratio of the FINE_SHIFT_RANGE 
versus the input clock period, as calculated by the SHIFT_DELAY_RATIO equation above. 
However, since the Spartan-3 FPGA FINE_SHIFT_RANGE is 10 ns, and Phase Shift is only 
supported in the Low Frequency Mode (up to 167 MHz), the SHIFT_DELAY_RATIO will 
always be <2.

The maximum dynamic fine phase shift value is limited by FINE_SHIFT_RANGE, the 
maximum delay tap value. The Variable Phase Shift limits are set according to 
Equation 3-10.

Equation 3-10

For example, assume that FCLKIN is 75 MHz (TCLKIN = 13.33 ns) and FINE_SHIFT_RANGE 
is 10.00 ns. In this case, the Variable Phase Shift value is limited to ±96.

Figure 3-36: Variable Phase Shift Controls
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The Variable Phase Shift value is shown by Equation 3-11. To determine the Variable Phase 
Shift resolution, set Variable Phase Shift = 1.

Equation 3-11

Spartan-3E and Extended Spartan-3A Family Variable Phase Shift Range

For Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs, variable phase shifting is 
performed using delay elements. There is a physical maximum for the number of delay 
steps, depending on the CLKIN input period, TCLKIN, as shown in Table 3-31.

For example, assume that the CLKIN clock entering the DCM is 100 MHz, which equates 
to a clock period of TCLKIN = 10 ns. Using the equation in Table 3-31, the Variable Phase 
Shifter is limited to phase shift operations of ±105 steps. On a Spartan-3E FPGA, this 
equates to a maximum variable phase shift measured in time of up to ±2.1 ns to ±4.2 ns. 
Measured in degrees, this equates to a maximum between ±75.6° and 151.2°.

Controls

As shown in Figure 3-35, page 121 and Figure 3-36, page 122, the DCM’s Variable Phase 
Shift control signals allow the FPGA application to adjust the present phase relationship 
between the CLKIN input and the DCM clock outputs. Table 3-32 shows the detailed 
relationship between control inputs, the current and next phase relationship, how the 
operation affects the delay tap, and the control outputs.

TPhaseShift
DynamicPhaseShift

DynamicPhaseShiftLIMITS
--------------------------------------------------------------------------⎝ ⎠

⎛ ⎞ FINE_SHIFT_RANGE•=

Table 3-31: Maximum Number of DCM Delay Steps

CLKIN 
Frequency

CLKIN Period
TCLKIN

Maximum Number of DCM Delay Steps Unit

< 60 MHz > 16.67 ns ±[INTEGER(10 • (TCLKIN – 3 ns))]
Steps

≥ 60 MHz < 16.67 ns ±[INTEGER(15 • (TCLKIN – 3 ns))]
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When PSEN is Low, the Variable Phase Shifter is disabled and all other inputs are ignored. 
All present shift values and the delay line position remain unchanged.

If the delay line has not reached its limits (-Limit or –255 when decrementing, +Limit or 
+255 when incrementing), then the FPGA application can change the existing phase shift 
value by asserting PSEN High and the appropriate increment/decrement value on 
PSINCDEC before the next rising edge of PSCLK. The phase shift value increments or 
decrements as instructed. At the end of the operation, PSDONE goes High for a single 
PSCLK period indicating that the phase shift operation is complete. STATUS[0] remains 
Low because no phase shift overflow condition occurred.

When the DCM is incremented beyond +255 or below –255, the delay line position remains 
unchanged at its limit value of +255 or –255 and no phase change occurs. STATUS[0] goes 
High, indicating a Variable Phase Shift overflow (not available in Spartan-3E FPGAs). 
When a new phase shift operation changes the value in the opposition direction—i.e., 
away from the limit value—STATUS[0] returns Low. 

If the phase shift does not reach +255 or –255, but the phase shift exceeds the delay-line 
range—indicated by +Limit and –Limit in Table 3-32—then no phase change occurs. 
However, STATUS[0] again goes High. In the Spartan-3 and Extended Spartan-3A families 
only, the STATUS[0] output indicates when the delay tap reaches the end of the delay line. 
In the FPGA application, however, use the limit value calculated using Equation 3-10. The 
calculated delay limit is a guaranteed value. A specific device, due to processing, voltage, 
or temperature, might have a longer line delay, but this cannot be guaranteed from device 
to device. The phase shift value—but not the delay line positions—continues to increment 
or decrement until it reaches its +255 or –255 limit. When a new phase shift operation 
changes the value in the opposition direction—i.e., away from the limit value—the 

Table 3-32: Variable Phase Shifter Control (assumes no internal inversion)

PSEN PSINC-DEC PSCLK
Current 

Phase Shift
Next 

Phase Shift
Delay Line PSDONE

STATUS[0]
(Overflow - Not 

Available in 
Spartan-3E 

FPGAs)

Operation

0 X X X No change No change ? ? Variable Phase Shift disabled.

1 0 · > -Limit Current – 1 Current – 1 1* 0 Decrement phase shift and phase 
pointer.

1 0 · ≤ -Limit and
> –255

Current – 1 No Change 1* 1 End of delay line. No phase shift 
change. Phase pointer decremented.

1 0 · –255 –255 No Change 1* 1 End of delay line. No phase shift 
change. Phase pointer at limit.

1 1 · < +Limit Current + 1 Current + 1 1* 0 Increment phase shift and phase 
pointer.

1 1 · ≥ +Limit and 
< +255

Current + 1 No Change 1* 1 End of delay line. No phase shift 
change. Phase pointer incremented.

1 1 · +255 +255 No Change 1* 1 End of delay line. No phase shift 
change. Phase pointer at limit.

Notes: 
X = don’t care.
? = indeterminate, depends on current application state.
1* = PSDONE asserted High for one PSCLK period.
-Limit = minimum delay line position.
+Limit = maximum delay line position.
Assert PSEN for only one PSCLK cycle.

http://www.xilinx.com
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STATUS[0] signal returns Low. The phase shift value is incremented or decremented back 
to a value that corresponds to a valid absolute delay in the delay line.

Clocking Wizard

The Variable Phase Shift options are part of the Clocking Wizard’s General Setup panel, 
shown in Figure 3-37. To enable dynamic fine phase shifting, select VARIABLE, as shown 
in Figure 3-37. Enter an initial Phase Shift Value in the text box provided. The initial value 
behaves exactly like the Fixed Fine Phase Shifting mode described above.

Choosing Variable mode also enables the Variable Phase Shift control signals, PSEN, 
PSINCDEC, PSCLK, and PSDONE. For the Spartan-3 family, check the STATUS output box 
to enable the STATUS[0] signal. STATUS[0] indicates when the Variable Phase Shifter 
reaches its maximum or minimum limit value (not available in Spartan-3E family).

Example Applications

See application note XAPP268 for an example of how to use the Variable Phase Shift 
function to perform dynamic phase alignment.

• XAPP268: Dynamic Phase Alignment
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf 

Clock Multiplication, Clock Division, and Frequency Synthesis
A DCM provides flexible methods for generating new clock frequencies—one of the most 
common DCM applications. Spartan-3 generation DCMs provide up to three independent 
frequency synthesis functions, listed below, and in Figure 3-38, and summarized in 
Table 3-33. An application can use one or all three functions simultaneously. Detailed 
descriptions for each function follows.

1. A Clock Doubler (CLK2X, CLK2X180) that doubles the frequency of the input clock.

2. A Clock Divider (CLKDV) that reduces the input frequency by a fixed divider value.

3. A Frequency Synthesizer (CLKFX, CLKFX180) for generating a completely new 
frequency from an incoming clock frequency.

Figure 3-37: Selecting Variable Fine Phase Shift Mode in Clocking Wizard

Select 
VARIABLE

Selecting VARIABLE 
enables the phase shift 
controls PSEN, 
PSINCDEC, PSCLK, and 
PSDONE

Check STATUS output to 
access STATUS[0], the 
Dynamic Phase Shift 
Overflow status bit

UG331_c3_14_120206
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All the frequency synthesis outputs, except CLKDV, always have a 50/50 duty cycle. 
CLKDV usually has a 50% duty cycle except when dividing by a non-integer value at high 
frequency, as shown in Table 3-37. The Clock Doubler (CLK2X, CLK2X180) circuit is not 
available at high frequencies.

All the DCM clock outputs, except CLKFX and CLKFX180, are generated by the DCM’s 
Delay-Locked Loop (DLL) unit and consequently require some form of clock feedback to 
the CLKFB pin. The DCM’s Digital Frequency Synthesizer (DFS) unit generates the CLKFX 
and CLKFX180 clock outputs. If the application uses only the CLKFX or CLKFX180 
outputs, then the feedback path can be eliminated, which also extends the DCM’s 
operating range. The Frequency Synthesizer has a feedback path within the DCM, based 
on CLKIN.

Figure 3-38: Clock Synthesis Options

CLKIN CLK0

CLKFB

DCM or
DCM_SP

CLKFX

CLKFX180

Frequency Synthesizer

F = FCLKIN  CLKFX_MULTIPLY

CLKFX_DIVIDE

CLKDV

Clock Divider

F =
FCLKIN

CLKDV_DIVIDE

CLK2X

CLK2X180
F = 2 FCLKIN 
Clock Doubler

Clock
Distribution

Delay

CLK0
or

CLK2X

Clock Feedback Loop
A clock feedback loop to CLKFB
is required when using the 
CLK0, CLK2X, CLK2X180, or
CLKDV outputs.  Use only CLK0
or CLK2X as the feedback
source.  Feedback is not
required when using only the
CLKFX or CLKFX180 outputs.

50% duty cycle

Usually 50% duty cycle,
depending on conditions

Deskewed Clock
F = FCLKIN

Output clocks are phase-aligned
when using clock feedback via
the CLKFB input.

UG331_c3_022407

Table 3-33: DCM Frequency Synthesis Options

Function
DCM 

Output(s)
Frequency

DCM 
Functional 

Unit

Feedback 
Required?

50% 
Duty Cycle?

Deskewed 
Clock

CLK0 DLL Yes When DUTY_CYCLE_
CORRECTION = TRUE

Clock 
Doubler

CLK2X
CLK2X180

DLL Yes Always

Clock 
Divider

CLKDV DLL Yes Always except when 
dividing by non-integer value 
in high-frequency mode

Frequency 
Synthesizer

CLKFX
CLKFX180

DFS Optional. No 
feedback extends 

clock input 
frequency limits.

Always

FCLKIN

2 FCLKIN•

FCLKIN
CLKDV_DIVIDE
------------------------------------------------

FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------------⎝ ⎠

⎛ ⎞•
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Output Alignment

If clock feedback is used, then all the output clocks are phase aligned. Obviously, full clock-
edge alignment across all the DCM outputs occurs only occasionally because some of the 
outputs are divided clock values. For example, the CLKDV output is aligned to CLKIN 
and CLK0 every CLKDV_DIVIDE cycles. Similarly, the CLK2X output is aligned to CLK0 
every other clock cycle. The CLKFX output is aligned to CLKIN every CLKFX_DIVIDE 
cycles of CLKIN and every CLKFX_MULTIPLY cycles of CLKFX.

Individual outputs are aligned to CLKIN, but when using divided clocks the DCM 
arbitrarily picks a rising edge to align to; therefore, the rising edge of the CLKFX output 
might not be aligned to the other outputs. For example, a divide-by-two function on 
CLKDV and a divide-by-four function on CLKFX could be aligned on a falling edge 
instead of a rising edge. To align the rising edges in this case, use CLKIN_DIVIDE_BY_2 on 
the input, and use the CLK0 output for the divide-by-two and the CLKDV output (with D 
= 2) for the divide-by-four. If this is not possible, the CLKDV output of one DCM can be 
cascaded to a second DCM and CLKDV, with D = 2 for both. Also note that the first rising 
edge of CLKFX after LOCKED is High is not always the one aligned to the rising edge of 
CLK0. For example, if CLKFX is set to a 1.5X multiple of CLK0, the first rising edge of 
CLK0 after LOCKED is achieved might be aligned to the falling edge of CLKFX, or it might 
be aligned to the rising edge of CLKFX. In this case, you will have alignment on rising 
edges at every other CLK0, but not for the very first CLK0 after LOCKED is High. 

Frequency Synthesis Applications
The potential applications for frequency synthesis are almost boundless. Some example 
applications include the following.

• Generating a completely new clock frequency for the FPGA and external logic using 
an available clock frequency on the board.

• Generate a high-frequency internal clock from a slower external clock source to 
reduce system EMI.

• Dividing a high-speed serial data clock to process data in parallel within the FPGA, as 
shown in Figure 3-39.

• Multiplying a parallel data clock before converting to a high-speed serial data format, 
also shown in Figure 3-39.

• Multiplying an input clock to overclock internal logic to reduce resources by time-
sharing logic when implementing moderately fast functions.

http://www.xilinx.com
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Input and Output Clock Frequency Restrictions
The input and output clock frequency restrictions for frequency synthesis depend on 
which DCM clock outputs are used. For example, the CLKFX and CLKFX180 outputs only 
use the DCM’s DFS unit. All the other clock outputs use the DCM’s DLL unit. The DLL 
unit has tighter frequency restrictions than the DFS. Consequently, operating the DFS unit 
without the DLL allows a wider frequency operating range. When using both the DFS and 
DLL units, the DLL frequency range limits the application.

Also, for the Spartan-3 FPGA family, both the DLL and DFS have a low- and a high-
frequency operating mode and the mode settings determine the allowable frequency 
operating range.

A valid DCM design requires that the CLKIN frequency be within the operating range 
specified in the FPGA data sheet, summarized in Table 3-9, page 76 and Table 3-10, 
page 76. Likewise, the output frequency for any of the clock outputs used must fall within 
their respective specified operating range.

The example shown in Figure 3-40 uses a Spartan-3 family FPGA because of the extra 
restrictions imposed by the High and Low operating frequency modes. Figure 3-40 shows 
how the various clock input and clock output specifications line up by frequency range. 
Only the low-frequency operating modes are shown. The Spartan-3 FPGA family data 
sheet specification for each name is shown within the shaded boxes. Table 3-34, page 129 
provides example DCM applications and how the frequency restrictions apply.

Figure 3-39: Common Applications of Frequency Synthesis

DCM DCM

F
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Clock Doubler (CLK2X, CLK2X180)
The Clock Doubler unit doubles the frequency of the incoming CLKIN input, as 
summarized in Table 3-35. The Clock Doubler is part of the DLL functional unit and 
requires a clock feedback path back to CLKFB from either the CLK0 or CLK2X output. The 
outputs from the Clock Doubler are CLK2X and CLK2X180. Both outputs are always 
conditioned to a 50% duty cycle. Both have the same output frequency but CLK2X180 is 
180° phase shifted from CLK2X, essentially inverting the CLK2X output. Having both 
phases is essential for high-performance Dual-Data Rate (DDR) or clock forwarding 
applications.

The CLK2X and CLK2X180 outputs are available in the Spartan-3 family only when the 
DLL_FREQUENCY_MODE attribute is LOW. If required by the application, reduce the 
CLKIN input frequency using the optional divide-by-two feature (see “Advanced 
Options,” page 92).

Figure 3-40: Input and Output Clock Frequency Restrictions (Spartan-3 FPGA Family, Low-Frequency 
Mode Example)

DFS
(CLKIN_FREQ_FX_{MIN,MAX})

DLL (Low-Frequency Mode)
(CLKIN_FREQ_DLL_LF_{MIN,MAX})

1 MHz 280 MHz

18 MHz 167 MHz
FCLKIN

DFS (Low-Frequency Mode)
(CLKOUT_FREQ_FX_LF_{MIN,MAX})

18 MHz 210 MHz

DLL, CLKDV (Low-Frequency Mode)
(CLKOUT_FREQ_DV_LF_{MIN,MAX})

1.125 MHz 110 MHz

DLL, CLK2X (Low-Frequency Mode)
(CLKOUT_FREQ_2X_LF_{MIN,MAX})

36 MHz 334 MHz

FCLKFX
FCLKFX180

FCLKDV

FCLK2X
FCLK2X180

Frequency

Data sheet
specification name

X462_39_011008

See Module 3 of DS099, Spartan-3 FPGA Family: Complete Data Sheet for details.

Table 3-34: DCM Frequency Restriction Examples (Spartan-3 FPGA Family, Low-Frequency Mode Example)

Input 
Frequency

Output 
Frequency

Comments

1.2 MHz 12.8 MHz Not possible in a single DCM. FCLKIN is within acceptable range for DFS unit, but FCLKFX 
requires at least an 18 MHz output frequency.

1.2 MHz 32.4 MHz Possible in a single DCM using DFS unit. Set CLKFX_MULTIPLY = 27. FCLKFX is within 
the DFS output frequency range.

25 MHz 2.5 MHz

30 MHz

Possible in a single DCM using both the DFS and DLL units. Use the CLKDV output for a 
2.5 MHz signal, setting CLKDV_DIVIDE=10. Use the CLKFX output for a 30 MHz signal, 
setting CLKFX_MULTIPLY = 6 and CLKFX_DIVIDE = 5. All input and output 
frequencies are within appropriate ranges.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
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Clock Divider (CLKDV)
The Clock Divider unit, summarized in Table 3-36, divides the incoming CLKIN frequency 
by the value specified by the CLKDV_DIVIDE attribute, set at design time. The Clock 
Divider unit is part of the DLL functional unit and requires a clock feedback path back to 
CLKFB from either the CLK0 or CLK2X output.

Table 3-35: Clock Doubler Summary

DCM Output(s) CLK2X

CLK2X180

Output Frequency

DCM Functional Unit Delay-Locked Loop (DLL)

Feedback Required? Yes

50% Duty Cycle? Yes

Controlling Attributes 

Spartan-3 FPGAs only:
DLL_FREQUENCY_MODE

On Spartan-3 FPGAs, the CLK2X and CLK2X180 outputs are only valid when 
DLL_FREQUENCY_MODE = LOW.

CLKIN Generally, the CLK2X and CLK2X180 outputs are only available up to a CLKIN of 167 
MHz, primarily because the output frequency is limited to 334 MHz. On Spartan-3 
FPGAs, the CLKIN frequency limits are determined by the DLL_FREQUENCY_MODE 
attribute.

CLK2X

CLK2X180

On Spartan-3 FPGAs, the CLK2X frequency limits are determined by the 
DLL_FREQUENCY_MODE attribute.

2 FCLKIN•

Spartan-3 Generation 
FPGA Family

Minimum Frequency Maximum Frequency

Spartan-3 FPGA
CLKIN_FREQ_DLL_LF_MIN 

18 MHz
CLKIN_FREQ_DLL_LF_MAX 

167 MHz

Spartan-3E FPGA
(Stepping 1)

CLKIN_FREQ_DLL_MIN
5 MHz

Limited to half maximum 
CLK2X frequency

-4: 155.5 MHz
-5: 167 MHz

Extended Spartan-3A 
FPGA

CLKIN_FREQ_DLL_MIN
5 MHz

Limited to half maximum 
CLK2X frequency

167 MHz

Spartan-3 Generation 
FPGA Family

Minimum Frequency Maximum Frequency

Spartan-3 FPGA
CLKOUT_FREQ_2X_LF_MIN 

36 MHz
CLKOUT_FREQ_2X_LF_MAX 

334 MHz

Spartan-3E FPGA
(Stepping 1)

CLKOUT_FREQ_2X_MIN

10 MHz

CLKOUT_FREQ_2X_MAX

-4: 311 MHz
-5: 334 MHz

Extended Spartan-3A 
FPGA

CLKOUT_FREQ_2X_MIN

10 MHz

CLKOUT_FREQ_2X_MAX

334 MHz
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CLKDV Clock Conditioning

The CLKDV output is conditioned to a 50% duty cycle unless the 
DLL_FREQUENCY_MODE attribute is set to HIGH and CLKDV_DIVIDE is a non-integer 
value. Under these conditions, the CLKDV duty cycle is shown in Table 3-37. A Spartan-3, 
Spartan-3E, or Extended Spartan-3A family DCM requires CLKIN to have at least a 

Table 3-36: Clock Divider Summary

DCM Output(s) CLKDV

Output Frequency

DCM Functional Unit Delay-Locked Loop (DLL)

Feedback Required? Yes, using either CLK0 or CLK2X output from DCM

50% Duty Cycle? Yes, except when DLL_FREQUENCY_MODE=HIGH and CLKDV_DIVIDE is a non-
integer value

Controlling Attributes

Spartan-3 FPGAs only:
DLL_FREQUENCY_MODE

CLKDV is available in both modes. Potentially affects duty cycle of output (see “CLKDV 
Clock Conditioning”), depending on divider value.

CLKDV_DIVIDE Controls the output frequency per the equation above. Legal values include 1.5, 2, 2.5, 3, 
3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The DLL locks faster on 
integer values than on non-integer values. Likewise, integer values result in lower 
output jitter.

Frequency Constraints

CLKIN The CLKIN frequency limits are listed in the following tables.

Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs: Table 3-9, page 76

Spartan-3 FPGAs: Table 3-10, page 76

CLKDV On Spartan-3 FPGAs, the CLKDV frequency limits are determined by the 
DLL_FREQUENCY_MODE attribute.

FCLKIN

CLKDV_DIVIDE
------------------------------------------------

Spartan-3 Generation 
FPGA Family

Minimum Frequency Maximum Frequency

Spartan-3 FPGA

CLKOUT_FREQ_DV_LF_MIN 
1.125 MHz

CLKOUT_FREQ_DV_LF_MAX 
110 MHz

CLKOUT_FREQ_DV_HF_MIN 
3.0 MHz

CLKOUT_FREQ_DV_HF_MAX 
185 MHz

Spartan-3E FPGA
(Stepping 1)

CLKOUT_FREQ_DV_MIN
0.3125 MHz (312.5 kHz)

CLKOUT_FREQ_DV_MAX
-4: 160 MHz
-5: 183 MHz

Extended Spartan-3A 
FPGA

CLKOUT_FREQ_DV_MIN
0.3125 MHz (312.5 kHz)

CLKOUT_FREQ_DV_MAX
-4: 166 MHz
-5: 186 MHz

http://www.xilinx.com
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60%/40% (or 40%/60%) or better duty cycle. Consequently, the CLKDV output, divided 
by 1.5 in high-frequency mode cannot provide a clock input to a second cascaded DCM.

CLKDV Jitter Depends on Frequency Mode and Integer or Non-Integer Value

Similarly, integer values for the CLKDV_DIVIDE attribute result in lower output jitter and 
faster DLL locking times.

Clocking Wizard

The Clock Divider controls are in Clocking Wizard’s General Setup window. Check the 
CLKDV output box, shown in Figure 3-41a. Then, choose the Clock Divider’s Divide by 
Value using the drop-down list, shown in Figure 3-41b.

Frequency Synthesizer (CLKFX, CLKFX180)
The Frequency Synthesizer provides the most flexible means to multiply, divide, or 
multiply and divide an input frequency. As shown in Table 3-39, the two Frequency 
Synthesizer outputs are CLKFX and CLKFX180. The CLKFX180 output has the same 

Table 3-37: CLKDV Duty Cycle with DLL_FREQUENCY_MODE=HIGH

CLKDV_DIVIDE Attribute Duty Cycle
High Time/
Total Cycle

Integer 50.000% 1/2

1.5 33.333% 1/3

2.5 40.000% 2/5

3.5 42.857% 3/7

4.5 44.444% 4/9

5.5 45.454% 5/11

6.5 46.154% 6/13

7.5 46.667% 7/15

Table 3-38: CLKDV Output Jitter

CLKDV_DIVIDE Data Sheet Symbol
Spartan-3 Generation 

FPGA Family
CLKDV Output 

Period Jitter

Integer Value CLKOUT_PER_JITT_DV1 All ±150 ps

Non-Integer 
Value

CLKOUT_PER_JITT_DV2 Spartan-3 FPGA ±300 ps

Spartan-3E FPGA
Extended Spartan-3A 
FPGA

±[1% of CLKIN 
period + 150] ps

a. Check the CLKDV Output Box b. Select the Divide by Value from the Drop-Down List

Figure 3-41: Specifying the Clock Divider in Clocking Wizard

CLKDV
UG331_c3_21_120306

2

Divide By Value

x462_40b_061903
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frequency as CLKFX but is phase shifted 180°, or half a clock period. Because both 
Frequency Synthesizer outputs have 50% duty cycles, CLKFX180 appears to be an inverted 
version of CLKFX.

Two attributes, set at design time, control the synthesized output frequency, as shown in 
the equation in Table 3-39. The CLKIN clock input is multiplied the fraction formed by 
CLKFX_MULTIPLY as the numerator and CLKFX_DIVIDE as the denominator. For 
example, to create a 155 MHz output using a 75 MHz CLKIN input, the Frequency 
Synthesizer multiplies CLKIN by the fraction 31/15. Note that it does not multiply CLKIN 
by 31 first, then divide by the result by 15. Multiplying CLKIN by 31 would result in a 
2.325 GHz output frequency—well outside the frequency range of the Spartan-3 DCM.

The multiplier and divider values should be reduced to their simplest form, which results 
in faster lock times. For example, reduce the fraction 6/8 to 3/4.

Frequency synthesis always requires some form of clock feedback. However, the DFS unit 
has an internal feedback loop based on CLKIN and does not require a separate loop on 
CLKFB if used without the DLL unit.

The CLKFX output is phase aligned with the CLKIN input every CLKFX_DIVIDE cycles of 
CLKIN and every CLKFX_MULTIPLY cycles of CLKFX. For example, if 
CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 5, then the CLKFX output is phase aligned 
with the CLKIN input every five CLKIN cycles and every three CLKFX cycles. After the 
DCM asserts its LOCKED output, the DFS unit is resynchronized to the CLKIN input at 
each concurrence and phase alignment is nearly perfect at these edges.

Table 3-39: Frequency Synthesizer Summary

DCM Output(s) CLKFX

CLKFX180 (same as CLKFX, phase shifted 180°)

Output Frequency

DCM Functional Unit Digital Frequency Synthesizer (DFS)

Feedback Required? No. Uses internal feedback based on CLKIN. Optionally can use CLKFB input if required 
for Delay-Locked Loop (DLL) functions.

50% Duty Cycle? Yes, always.

Controlling Attributes

Spartan-3 FPGAs only:
DFS_FREQUENCY_MODE

Affects frequency limits on CLKIN and the CLKFX, CLKFX180 outputs.

Spartan-3 FPGAs only:
DLL_FREQUENCY_MODE

Only affects the Frequency Synthesizer if the application uses any DLL outputs. 
Potentially reduces the CLKIN frequency to the more restrictive DLL limits. If only the 
CLKFX or CLKFX180 outputs are used, then DFS_FREQUENCY_MODE alone defines 
the frequency limits.

CLKFX_MULTIPLY Controls the output frequency per the equation above. Legal values include integer 
values ranging from 2 to 32. Default value is 4.

CLKFX_DIVIDE Controls the output frequency per the equation above. Legal values include integer 
values ranging from 1 to 32. Default value is 1.

FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------------•

http://www.xilinx.com
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Clocking Wizard

To enable the Frequency Synthesizer in Clocking Wizard, check the CLKFX, CLKFX180, or 
both clock outputs in the General Setup window, as shown in Figure 3-42.

If using the CLKFX or CLKFX180 clock outputs stand-alone, then optionally extend the 
frequency limits by disabling any DLL clock outputs and any feedback.

• Disable DCM feedback by selecting None, as shown in Figure 3-43. Without feedback, 
the CLKFX and CLKFX180 frequency range is extended to both lower and higher 
frequencies and disables the CLK0 and other DLL outputs.

Frequency Constraints

CLKIN The CLKIN frequency limits depend on whether the application uses any outputs from 
the Delay-Locked Loop (DLL) unit. If the DLL unit is used, then the more restrictive DLL 
clock limits apply.

DFS Alone: Table 3-10, page 76

DFS Used with DLL: 

Spartan-3 FPGAs: Table 3-10, page 76

Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs: Table 3-9, page 76.

CLKFX

CLKFX180

The CLKFX and CLKFX180 output frequency limits are determined by the 
DFS_FREQUENCY_MODE attribute.

Table 3-39: Frequency Synthesizer Summary (Continued)

Spartan-3 
Generation FPGA 

Family
Minimum Frequency Maximum Frequency

Spartan-3 FPGA

(Mask Rev ‘E’)

CLKOUT_FREQ_FX_LF_MIN
18 MHz

CLKOUT_FREQ_FX_LF_MAX
210 MHz

CLKOUT_FREQ_FX_HF_MIN
210 MHz

CLKOUT_FREQ_FX_HF_MAX
-4: 307 MHz
-5: 326 MHz

Spartan-3E FPGA

(Stepping 1)

CLKOUT_FREQ_FX_MIN
5 MHz

CLKOUT_FREQ_FX_MAX
-4: 311 MHz
-5: 333 MHz

Extended 
Spartan-3A FPGA

CLKOUT_FREQ_FX_MIN
5 MHz

CLKOUT_FREQ_FX_MAX
-4: 320 MHz
-5: 350 MHz

Figure 3-42: Enabling Frequency Synthesizer in Clocking Wizard

CLK0

CLKFX
CLKFX180

Check CLKFX or
CLKFX180 to enable
the Frequency
Synthesizer options
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Finally, enter the desired output frequency or the Multiply and Divide values, as described 
in the Clocking Wizard Clock Frequency Synthesizer panel section.

Clock Forwarding, Mirroring, Rebuffering
Because DCMs provide advanced clock control features and Spartan-3 generation I/O pins 
support a variety of I/O voltage standards, Spartan-3 generation FPGAs commonly are 
used to rebuffer or mirror clock signals, often changing the input clock from one voltage 
standard to another. Likewise, the DCM conditions an incoming clock signal so that it has 
a 50% duty cycle.

Figure 3-20 shows a simple example where a DCM conditions an incoming clock to a 50% 
duty cycle, and then either forwards the clock at the same frequency using the CLK0 
output, or doubles the frequency using the DCM CLK2X output. Similarly, the input and 
output clocks are phase aligned once the DCM asserts its LOCKED output. The clock 
feedback path to CLKFB monitors and eliminates the clock distribution delay at the 
external clock feedback point.

If a 50/50 duty cycle is important on the output clock, make sure that the output I/O 
standard can switch fast enough to preserve the 50% duty cycle. Verify the duty cycle 
performance using IBIS simulation on the output signal. Some I/O standards have 
asymmetric rise and fall times that distort the duty cycle higher frequencies. On the 
Spartan-3 FPGA family, the DCI versions of HSTL, SSTL, and LVCMOS I/O standards 
have better symmetry. Generally, differential I/Os also have less distortion.

To guarantee a 50/50 duty cycle above 100 MHz, the DCM’s duty cycle correction 
capability is mandatory for the Spartan-3 FPGA family, even if the CLKIN source provides 
a clean 50% duty cycle. Consequently, the DUTY_CYCLE_CORRECTION attribute must 
equal TRUE when using the CLK0, CLK90, CLK180, or CLK270 outputs for clock 
forwarding. The other DCM clock outputs are normally always clock corrected to a 50% 
duty cycle (see “Clock Conditioning”).

For best duty-cycle performance—especially at 200 MHz and greater—use a circuit similar 
to that shown in Figure 3-44. Use both the CLKx and CLKx180 outputs from the DCM to 
drive the C0 and C1 inputs, respectively, on a Dual-Data Rate (DDR) output flip-flop. The 
Spartan-3 family provides the OFDDRCPE and variations, while the Spartan-3E and 
Extended Spartan-3A families provide the superset ODDR2 component. Connect the D0 
input of the DDR flip-flop to VCC and the D1 input to GND. Each DCM output drives a 
separate global buffer, which minimizes duty-cycle distortion. At higher frequencies, it is 
best not to distribute just one clock and invert one phase locally within the DDR flip-flop, 
as this adds approximately 400 ps of duty-cycle distortion.

At frequencies of 250 MHz or higher, distribute clocks using a differential signaling 
standard, such as LVDS. In Figure 3-44, for example, both the CLKIN clock input and the 
clock output use LVDS. Additionally, the clock feedback path uses LVDS. For optimal 

Figure 3-43: Select No Feedback (None) to Extend Frequency Synthesizer 
Frequency Limits
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Feedback

Internal External None
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extend the DCM frequency limits.
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performance, both the clock input and the clock feedback paths require differential global 
buffer inputs (IBUFGDS), which unfortunately consumes all the global buffer inputs along 
one edge of the device. However, this solution provides the best-quality clock forwarding 
solution at high frequencies.

Clock Jitter or Phase Noise
All clocks, including the most expensive, high-precision sources, exhibit some amount of 
clock jitter or phase noise. The Spartan-3 Digital Clock Managers have their own jitter 
characteristics, as described in this section. When operating at low frequencies—20 MHz, 
for example—the effects of jitter usually can be ignored. However, when operating at high 
frequencies—200 MHz, for example, especially in dual-data rate (DDR) applications—
clock jitter becomes a relevant design factor. Clock jitter directly subtracts from the time 
available to the FPGA application by effectively reducing the available time between active 
clock edges.

What is Clock Jitter?
Clock jitter is the variation of a clock edge from its ideal position in time, as illustrated in 
Figure 3-45. The heavy line shows the ideal position on the clock signal. On each clock 
edge, there is some amount of variation between the actual clock edge and its ideal 
location. The difference between the maximum and minimum variations is called peak-to-
peak jitter. Jitter is only relevant on the active clock edge. For example, in single-data rate 
(SDR) applications, data is clocked at each rising clock edge and the specified jitter only 
subtracts from the total clock period. In dual-data rate (DDR) application, data is clocked at 
the start of each period and halfway into the period. Therefore, jitter affects each half 
period.

Figure 3-44: High-Frequency (250+ MHz) LVDS Clock Forwarding Circuit with 50% Duty Cycle
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What Causes Clock Jitter?
Clock jitter is unavoidable and exists in all systems. Clock jitter is caused by the various 
sources of noise or by signal imperfections within the system. In fact, jitter is the 
manifestation of noise in the time domain. The incoming clock source, for example, has its 
own jitter characteristics due to random thermal or mechanical vibration noise from the 
crystal. A large number of simultaneous switching outputs (SSOs) adds substrate noise 
that slightly changes internal switching thresholds and therefore adds jitter. Similarly, an 
improperly designed power supply or insufficient decoupling also contributes to jitter. 
Other sources of clock jitter include cross talk from adjacent signals, poor termination, 
ground bounce, and electromagnetic interference (EMI).

This chapter only discusses the jitter behavior of Spartan-3 Digital Clock Managers 
(DCMs) and how to improve overall jitter performance within the FPGA.

Understanding Clock Jitter Specifications
Clock jitter is specified in a variety of manners, and the various specifications show 
different aspects of the same phenomenon.

Cycle-to-Cycle Jitter

Cycle-to-cycle jitter, also called adjacent cycle jitter, indicates the maximum clock period 
variance from one clock cycle to the next, as shown in Figure 3-46. In this simple example, 
the maximum change from one cycle to the next is +100 ps and –100 ps, or put simply, 
±100 ps. Although the clock period can change by larger absolute amounts when measured 
over millions of clock cycles, the clock period never changes by more than ±100 ps from one 
clock cycle to the next.

Figure 3-45: Jitter in Clock Signals
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Figure 3-46: Cycle-to-Cycle Jitter Example
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Cycle-to-cycle is an important measure of the quality of a clock output or oscillator but has 
little use in analyzing the timing of an application.

Period Jitter

Period jitter is the summation of all the cycle-to-cycle jitter values over millions of clock 
cycles. Peak jitter indicates the earliest and the latest transition times compared to the ideal 
clock transition time over consecutive clocks.

Period jitter for Digital Clock Mangers is random and is expressed as peak-to-peak jitter. 
Conceptually, the position of the clock transition is a probabilistic distribution or 
histogram, centered around the ideal, desired clock position, as shown in Figure 3-47. The 
actual distribution might not appear purely Gaussian and can be bimodal. Regardless, 
most actual clock transitions occur near the desired ideal position. However, measured 
over millions of clock cycles, some clock transitions occur far from the desired position.

The statistical distance from the desired position is measured in standard deviations, also 
called σ (sigma). Because the DCM is an all-digital design, it is highly stable and Xilinx 
specifies jitter deviation to ±7σ or peak-to-peak jitter to 14σ. As a point of reference, ±7σ 
guarantees that 99.99999999974% of the jitter values are less than the specified worst-case 
jitter value. A 14σ peak-to-peak jitter, ±7σ jitter deviation, equates to a maximum bit error 
rate (BER) of 1.28 x 10-12.

Unit Interval (UI)

Another method to specify jitter is as a fraction of the Unit Interval (UI). One UI represents 
the time equivalent to one bit time, irrespective of frequency. In single-data rate (SDR) 
applications where either the rising or the falling clock edge captures data, one UI equals 
one clock period. In dual-data rate (DDR) applications where data is clocked at twice the 
clock rate, one UI equals half the clock period.

The peak-to-peak jitter amplitude, quantified in UIs, is the fraction of the peak-to-peak 
jitter value compared to the total bit period time.

Figure 3-47: Peak-to-Peak Period Jitter Example
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Calculating Total Jitter
The FPGA family data sheet specifies the output jitter from the DCM clock outputs, except 
for the CLKFX/CLKFX180 outputs, which sometime use a separate jitter calculator. The 
DFS jitter is calculated based on the multiplier and divider settings.

The clock outputs from the DLL unit—i.e., every clock output except CLKFX and 
CLKFX180—have a worst-case specified jitter listed in the data sheet. This specified value 
includes the jitter added by the DLL unit. The DLL unit does not remove jitter, so the total 
jitter on the DLL clock output includes the jitter on the input clock, CLKIN, plus the 
specified value from the data sheet.

The DFS clock outputs, CLKFX and CLKFX180, remove some amount of incoming clock 
jitter, so the calculated output jitter is the total jitter.

Adding Input Jitter to DLL Output Jitter

When adding the input jitter and the DLL output jitter, use a root-mean-square (RMS) 
calculation, similar to noise calculations.

Peak-to-Peak

Equation 3-12

Peak-to-Peak Deviation

Equation 3-13

where

Example

Assume that an input clock has 150 ps peak-to-peak period jitter, optionally expressed as 
±75 ps. The incoming clock is duty-cycle corrected, using the same frequency, on the CLK0 
DCM output.

Figure 3-48: Period Jitter Specified as a Fraction of a Unit Interval
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JITTERINPUT = The input period jitter, measured at the clock input pin of the FPGA

JITTERSPEC = The DLL clock output period jitter, as specified in the FPGA family 
data sheet for the associated output port

JITTERPK PK– JITTERINPUT( )2 JITTERSPEC( )2
+=

JITTERPK

JITTERINPUT( )2 JITTERSPEC( )2
+

2
-----------------------------------------------------------------------------------------------±=
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In this case, JITTERINPUT = 150 ps. The value for JITTERSPEC is the Spartan-3 Data Sheet 
specification called CLKOUT_JITT_PER_0, which is estimated here as ±100 ps, or 200 ps 
peak-to-peak.

Equation 3-14

Consequently, the total jitter on the DCM output is 250 ps peak-to-peak or ±125 ps.

Calculating Jitter for Cascaded DCMs
Figure 3-49 shows an example application where multiple DCMs are cascaded together to 
create various output frequencies. The jitter at any point depends on:

• the incoming jitter from the previous sources and

• which DCM output is used.

Each DCM output has slightly different jitter characteristics, as specified in the data sheet. 
Also, the CLKFX and CLKFX180 outputs from the DFS unit remove some amount of input 
jitter and Clocking Wizard calculates their jitter values (see “Clock Frequency 
Synthesizer”).

Consequently, the jitter at any point in the cascaded DCM chain depends on the factors 
described above. The following examples illustrate how to calculate total jitter at the 
various points in the circuit.

Example 1: All DCMs Use DLL Outputs

In this example, assume that all the FPGAs are from the Spartan-3 family and that the input 
clock has 150 ps (±75 ps) of period jitter.

Assume that DCM (A) uses the CLK2X output. Use the Spartan-3 Data Sheet specification 
called CLKOUT_PER_JITT_2X for the DCM output jitter, estimated here as 400 ps (±200 
ps). Calculate the total period jitter on clock (A) using Equation 3-12.

Equation 3-15

Assume that DCM (B) uses the CLKDV output with an integer divider value. Use the 
Spartan-3 Data Sheet specification called CLKOUT_PER_JITT_DV1 for the DCM output 
jitter, estimated here as 300 ps (±150 ps). Calculate the total period jitter on clock (B) using 
Equation 3-12. Because there are now three elements involved—the input jitter, the jitter 
from DCM (A), and the jitter from DCM (B)—expand the RMS equation appropriately.

Equation 3-16

JITTERPK PK– 150 ps( )2 200 ps( )2
+ 250 ps= =

Figure 3-49: Calculating Jitter for Cascaded DCMs Depends on which DCM Outputs are Used

DCM
CLKIN

RST

CLKx

LOCKED

DCM
CLKIN

RST

CLKx

LOCKED

DCM
CLKIN

RST

CLKx

LOCKED

A B C

x462_48_061903

JITTERPK PK A( )– 150ps( )2 400ps( )2
+ 427ps 214ps±= = =

JITTERPK PK B( )– 150ps( )2 400ps( )2 300ps( )2
+ + 522ps 261ps±= = =
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Finally, assume that DCM (C) phase shifts the output from DCM (B) by 90°. Use the 
Spartan-3 Data Sheet specification called CLKOUT_PER_JITT_90 for the DCM output jitter, 
estimated here as 300 ps (±150 ps). Calculate the total period jitter on clock (C) using 
Equation 3-12. Because there are now four elements involved—the input jitter, the jitter 
from DCM (A), the jitter from DCM (B), and the jitter from DCM (C)—expand the RMS 
equation appropriately.

Equation 3-17

Example 2: Some DCMs Use the CLKFX or CLKFX180 Outputs

This example is similar to Example 1: All DCMs Use DLL Outputs above except that some 
DCMs use the CLKFX or CLKFX180 outputs from the DCM’s DFS unit.

In this example, assume that the 75 MHz input clock has 150 ps (±75 ps) of period jitter.

As in Example 1, assume again that DCM (A) uses the CLK2X output. The resulting output 
jitter is the same as that shown in the following equation.

In this example, assume that DCM (B) synthesizes a 90 MHz clock using the 150 MHz 
clock generated by DCM (A). Per the Clocking Wizard (see “Clock Frequency 
Synthesizer”), set the attributes CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 5. 
Clocking Wizard also specifies the worst-case output period jitter as 700 ps.

Equation 3-18

Finally, assume again that DCM (C) phase shifts the output from DCM (B) by 90°. Use the 
Spartan-3 Data Sheet specification called CLKOUT_PER_JITT_90 for the DCM output jitter, 
estimated here as 300 ps (±150 ps). Calculate the total period jitter on clock (C) using the 
following equation. Because the preceding DCM used the CLKFX output, the total 
incoming jitter is set at 700 ps, worst-case. Use the RMS equation to calculate the resulting 
output jitter as shown below.

Equation 3-19

Cascaded DCM Design Recommendations

When cascading DCMs, be sure that the LOCKED output of the preceding DCM controls 
the cascaded DCM’s RST input, as shown in Figure 3-49. The cascaded DCM should not 
attempt to lock to the input clock until the preceding DCM asserts its LOCKED output, 
indicating that the clock is stable.

When cascading DCMs, place the most jitter-critical clock output on the first DCM in the 
cascaded chain.

Jitter Effect on System Performance
Clock jitter, along with other effects, adversely affects system performance by reducing the 
effective bit period. The bit period available to the FPGA application is the total bit period, 
TBIT, minus the following effects, as shown in the following equation. In single-data rate 

JITTERPK PK C( )– 150ps( )2 400ps( )2 300ps( )2 300ps( )2
+ + +=

602ps= ±301ps=

JITTERPK PK B( )– 700ps 350ps±= =

JITTERPK PK C( )– 700ps( )2 300ps( )2
+ 762ps 381ps±= = =
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(SDR) applications, the clock period and the bit period are equal. However, in dual-data-
rate (DDR) applications, the bit period is half the clock period.

Equation 3-20

where

If the total jitter is specified as a positive value instead of a deviation from the clock 
period—e.g., 200 ps instead of ±100 ps—subtract half the positive value—i.e., 100 ps. The 
bit period is only shortened by the negative deviation. The positive deviation adds to the 
bit period, adding more timing slack.

Example

Assume that an incoming clock signal enters the FPGA at 75 MHz and that the clock source 
has ±100 ps of jitter. The application clocks data on the rising edge of an internally 
generated 150 MHz clock, or a total bit period, TBIT, of 6.67 ns. How long is the available bit 
period, TAVAILABLE, after considering the effects of jitter?

The CLK2X output from the Clock Doubler generates a 150 MHz clock from the 75 MHz 
clock input. The Clock Doubler output, CLK2X, has ±200 ps of worst-case jitter according to 
the CLKOUT_PER_JITT_2X specification in the Spartan-3 Data Sheet. Adding the DCM’s 
±200 ps of jitter to the clock source’s ±100 ps of jitter using root-mean square (RMS), the 
total jitter, tTOTAL_JITTER, is ±0.223 ns.

Equation 3-21

Because data is only clocked on the rising clock edge, there are no duty-cycle distortion 
effects and tDUTY_CYCLE_DISTORTION = 0.

Therefore, the total available clock period, TAVAILABLE is reduced down to 6.444 ns from a 
total bit period of 6.667 ns. Effectively, this forces the logic to operate at 155.1831 MHz 
instead of 150 MHz.

Equation 3-22

Recommended Design Practices to Minimize Clock Jitter
In higher-performance applications, clock jitter steals valuable bit period time. Adhere to 
the following recommendations to minimize the amount of system-wide clock jitter.

TBIT = Bit period time

tTOTAL_JITTER = Total clock jitter. Includes the clock input jitter plus any DCM 
output jitter or cascaded DCM output jitter.

tDUTY_CYCLE_DISTORTION = Duty cycle distortion specification. Only required for dual-
data rate (DDR) applications; otherwise zero. Either data 
sheet specification CLKOUT_DUTY_CYCLE_DLL or 
CLKOUT_DUTY_CYCLE_FX depending on which DCM 
clock output is used.

TAVAILABLE TBIT tTOTAL_JITTER– tDUTY_CYCLE_DISTORTION–=

tTOTAL_JITTER 100ps±( )2 200ps±( )2
+ 223.60ps± 0.223ns±= = =

TAVAILABLE 6.667ns 0.223ns– 6.444ns= =
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Properly Design the Power Distribution System

A properly designed power distribution system (PDS), including proper power-plane 
decoupling, reduces system jitter by creating a stable power environment. Application 
note XAPP623 discusses recommended design practices for PDS design.

• XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors
http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf 

Properly Design the Printed Circuit Board

Design the printed circuit board for expected operating frequency range and application 
environment.

• WP174: Methodologies for Efficient FPGA Integration into PCBs
http://www.xilinx.com/support/documentation/white_papers/wp174.pdf 

• PCB Checklist
www.xilinx.com/products/design_resources/signal_integrity/si_pcbcheck.htm 

Obey Simultaneous Switching Output (SSO) Recommendations

To avoid signal-related corruption of clock inputs to or clock outputs from a DCM, be sure 
to follow the Simultaneous Switching Output (SSO) recommendations outlined in the 
associated FPGA family data sheet.

Whenever possible, avoid placing DCM inputs or outputs near heavily switching I/Os, 
especially those with large output voltage swings or with high current drive.

Optionally Place Virtual Ground Pins Around DCM Input and Output 
Connections

On sensitive, high frequency DCM inputs or outputs, use additional user-I/O pins to 
create extra connections to the PCB ground—i.e., create virtual ground pins. Place these 
virtual ground pins on the I/O pads adjacent to the sensitive DCM signal. Make sure that 
the I/O pads are on adjacent pads on the FPGA die level, not just on adjacent pins or balls 
on the package. Adjacent balls on BGA packages do not necessarily connect to adjacent 
pads on the FPGA. These techniques reduce the internal voltage drop and improve the 
jitter. 

To create a “virtual ground”, configure an IOB as a high-drive output driving GND (Low 
logic level) and connect the IOB externally directly to the ground plane, as shown in 
Figure 3-50.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf
http://www.xilinx.com/support/documentation/white_papers/wp174.pdf
http://www.xilinx.com/products/design_resources/signal_integrity/si_pcbcheck.htm
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The same technique can be used to provide a virtual VCC rail connection. Turning I/O into 
virtual GND or virtual VCC can not only help with sensitive signals, but also help with pin 
migration. For more information on virtual grounds, see white paper 
WP323: Signal Integrity Tips and Tricks.

VCCAUX Considerations for Improving Jitter Performance

The Digital Clock Managers are powered by the VCCAUX supply input. Any excessive 
noise on the VCCAUX supply input to the FPGA adversely affects the DCM’s 
characteristics, especially its jitter performance. For best DCM performance, please follow 
these recommendations. 

Caution! Spartan-3A/3A DSP FPGAs optionally support VCCAUX = 3.3V, making it possible to 
eliminate the 2.5V supply rail in a 3.3-volt only application. Isolate the VCCAUX inputs from 
possible switching noise originating from the 3.3V supply connected to VCCO inputs. 
Spartan-3AN FPGAs require VCCAUX = 3.3V.

1. Limit changes on the VCCAUX power supply or ground potentials to less than 10 mV 
total or 10 mV in any 1 ms interval, as shown in Figure 3-51. This recommendation 
allows the DCM to properly track out the change.

2. Limit the noise at the power supply to be within 200 mV peak-to-peak, as shown in 
Figure 3-51.

3. If VCCAUX and VCCO are of the same power plane, every VCCAUX/VCCO pin must be 
properly decoupled or bypassed (see “Properly Design the Power Distribution 

Figure 3-50: Place Virtual Ground Pins Adjacent to Sensitive DCM Input or Output 
Clock Signals
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Figure 3-51: Recommended VCCAUX Supply Considerations Avoid Voltage Droop
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System”). Separate the VCCAUX supply from any VCCO supplies if Guidelines 1 and 2 
above cannot be maintained. 

4. The CLK2X output is especially affected by the power or ground shift. Consequently, 
the CLKFX output, using CLKFX_MULTIPLY =2 and CLKFX_DIVIDE=1, might 
provide a better quality output when all IOBs and CLBs are switching. The CLKFX 
circuitry updates the tap every three input clocks in the DFS mode, as opposed to the 
slower update rate for the CLK2X output.

Adjusting FACTORY_JF Setting (Spartan-3 FPGA Family Only)

Caution! The FACTORY_JF attribute only applies for the Spartan-3 FPGA family, not to 
Spartan-3E or Spartan-3A/3AN/3A DSP FPGAs. 

A well-designed, stable, properly decoupled power supply is the best overall solution to 
reducing clock skew and jitter within the FPGA. However, increasing the FACTORY_JF 
attribute setting to 0xFFFF might improve jitter performance on a problem board. When 
FACTORY_JF=FFFF, the DCM updates its tap settings approximately every twenty input 
clocks. The frequency-based default settings update the tap settings much more slowly.

Increasing the FACTORY_JF setting might introduce a small amount of jitter (~30 ps) 
because the DCM frequently updates its delay line, which is why FACTORY_JF is not set to 
the maximum value by default. If the power supply is unstable, the phase error introduced 
can be much bigger than the extra jitter introduced; therefore, increasing the FACTORY_JF 
setting might improve the design.

Miscellaneous Advanced Topics

Bitstream Generation Settings
There are two bitstream generation (BitGen) options related to the DCM. Also see 
UG332: Spartan-3 Generation Configuration User Guide for more information.

• -g lck_cycle: This option causes the FPGA configuration startup sequence to wait 
until all instantiated DCMs assert their LOCKED outputs.

• -g DCMShutdown: This option resets the DCM logic if the "SHUTDOWN" 
configuration command is loaded into the configuration logic, as during either partial 
reconfiguration or during full reconfiguration via the JTAG port.

Setting Bitstream Generation Options in Project Navigator

If using the ISE Project Navigator graphical interface, set the bitstream generation options 
by right-mouse clicking Generate Programming File in the Processes for Current Source 
panel, as shown in Figure 3-52. Select Properties from the resulting menu.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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See the "Configuration Bitstream Generator (BitGen) Settings" chapter in UG332: Spartan-3 
Generation Configuration User Guide for more information.

Setting Bitstream Generation Options via Command Line or Script

To see the available options, type the following in a command window:

bitgen -help spartan3 (or spartan3e or spartan3a)

Setting Configuration Logic to Wait for DCM LOCKED Output

The DCM’s STARTUP_WAIT attribute signals the FPGA’s configuration start-up logic to 
wait for the DCM to assert its LOCKED output before the FPGA asserts its DONE output. 
Two actions are required at design time, however. First, set the STARTUP_WAIT attribute 
to TRUE on each of the DCMs that must be locked before configuration completes. Then, 
modify the bitstream generation options so that the events shown in Figure 3-53 happen 
within the six-clock Startup cycle. Sufficient configuration clock cycles must be provided 
after the DCM locks to allow the device to complete the configuration start-up sequence.

a. If using External Feedback, release the FPGA’s internal Global Three-State 
(GTS_cycle) signal, enabling all I/O signals.

Figure 3-52: Setting Bitstream Generator (BitGen) Options within Project 
Navigator
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b. Set the cycle where the start-up logic waits for the DCM(s) to assert LOCKED after 
the GTS_cycle. The DCMs require some form of external input—a clock and 
possibly a feedback signal—before the DCM can lock on the clock signal.

c. After achieving valid DCM lock, assert the FPGA's internal Global Write Enable 
(GWE_cycle) signal.

d. Finally, assert the DONE signal.

Figure 3-54 shows these same option settings from within Project Navigator.

The specific start-up phase timing and the timing of both the GWE_cycle and DONE_cycle 
are flexible. However, if using the STARTUP_WAIT attribute on a DCM, the GTS_cycle 
must always happen before the LCK_cycle. Otherwise, the DCM never locks and 
configuration never completes! Similarly, if using External Feedback, the FPGA’s outputs 
must first be enabled (GTS_cycle) so that the external feedback signal can propagate back 
to the DCM.

Reset DCM During Partial Reconfiguration or During Full Reconfiguration via 
JTAG

Another bitstream option resets all the DCMs in the FPGA application during 
reconfiguration via the SelectMAP interface or during full or partial reconfiguration via 
the JTAG port. If the option is enabled, the DCMs are reset when the AGHIGH 
configuration command is issued during the SHUTDOWN command sequence. It is 
imperative to reset the DCMs when reconfiguring through JTAG. Change the bitstream 
generator options in Project Navigator (see “Setting Bitstream Generation Options in 
Project Navigator”). Click Configuration options, then check the Reset DCM if 
SHUTDOWN & AGHIGH performed option as shown in Figure 3-55.

Figure 3-54: Startup Sequencer Options

Click Startup Options

If using external 
feedback, set Enable 
Outputs (GTS_cycle) 
to any cycle earlier 
than Release DLL , 
DCM wait cycle 
(LCK_cycle).

Set Done cycle to be 
after Release DLL , 
DCM wait cycle 
(LCK_cycle).

Release DLL cycle is 
the DCM wait cycle 
(LCK_cycle) where the 
Startup sequencer 
waits for DCM(s) to 
assert LOCKED 
before continuing .
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Momentarily Stopping CLKIN
To reduce overall system noise while taking precision analog measurements, it is possible 
to momentarily stop the clock inputs to the DCM without adversely affecting the 
remainder of the FPGA application. This is possible, in part, because the DCM is an all-
digital, stable system. The DCM must first lock to the input clock and assert the LOCKED 
output. If the DCM is not reset, it is possible to momentarily stop the CLKIN input clock 
with little impact to the deskew circuit, provided that these guidelines are followed:

• The clock must not be stopped for more than 100 ms to minimize the effect of device 
cooling, which would change the tap delays. 

• The clock should be stopped during a Low phase, and when restored, must generate a 
full High half-period.

Although the above conditions do technically violate the clock input jitter specifications, 
the DCM LOCKED output stays High and remains High when the clock is restored. 
Consequently, the High on LOCKED does not necessarily mean that a valid clock is 
available. The above conditions technically do violate the clock input jitter specifications 
but work within the limits described above.

When CLKIN is stopped, an additional one to eight output clock cycles are still generated 
as the DCM’s digital delay line is flushed. Similarly, once CLKIN is restarted, output clocks 
are not generated for one to four clocks cycles as the delay line is filled. The delay line 
usually fills within two or three clocks.

Likewise, it is also possible to phase shift the input clock. This phase shift propagates to the 
output one to four clocks after the original shift with no disruption to the DCM control.

Figure 3-56 shows an example where the CLKIN input clock is momentarily stopped. The 
figure also illustrates the corresponding effect on the CLK2X clock output.

Figure 3-55: Configuration Option Allows DCM Reset During Reconfiguration Process

Click Configuration 
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Related Materials and References
• DS099: Spartan-3 FPGA Family Data Sheet 

DCM description and specifications.
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf 

• DS312: Spartan-3E FPGA Family Data Sheet 
DCM specifications.
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf 

• DS529: Spartan-3A FPGA Family Data Sheet 
DCM specifications.
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf 

• DS557: Spartan-3AN FPGA Family Data Sheet 
DCM specifications.
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf 

• DS610: Spartan-3A DSP FPGA Family Data Sheet 
DCM specifications.
http://www.xilinx.com/support/documentation/data_sheets/ds610.pdf 

• Spartan-3A/3AN/3A DSP CLKFX Jitter Calculator 
Excel file to calculate DFS output jitter based on input and output clock frequencies.
http://www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip

• Libraries Guide (DCM primitive description) and Development System Reference 
Guide (BitGen bitstream generation program and options) 
http://www.xilinx.com/support/software_manuals.htm 

• XAPP259: System Interface Timing Parameters
http://www.xilinx.com/support/documentation/application_notes/xapp259.pdf 

• XAPP268: Dynamic Phase Alignment
http://www.xilinx.com/support/documentation/application_notes/xapp268.pdf 

• XAPP485: 1:7 Deserialization in Spartan-3E/3A FPGAs at Speeds Up to 666 Mbps
http://www.xilinx.com/support/documentation/application_notes/xapp485.pdf 

• XAPP486: 7:1 Serialization in Spartan-3E FPGAs at Speeds Up to 666 Mbps
http://www.xilinx.com/support/documentation/application_notes/xapp486.pdf 

• XAPP622: SDR LVDS Transmitter/Receiver
http://www.xilinx.com/support/documentation/application_notes/xapp622.pdf 

Figure 3-56: Momentarily Stopping CLKIN Clock Input
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High half-period.
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Chapter 4

Using Configurable Logic Blocks (CLBs)

CLB Overview 
The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing 
synchronous as well as combinatorial circuits. Each CLB contains four slices, and each slice 
contains two Look-Up Tables (LUTs) to implement logic and two dedicated storage 
elements that can be used as flip-flops or latches. The LUTs can be used as a 16x1 memory 
(RAM16) or as a 16-bit shift register (SRL16), and additional multiplexers and carry logic 
simplify wide logic and arithmetic functions. Most general-purpose logic in a design is 
automatically mapped to the slice resources in the CLBs. The details of the CLB resources 
are helpful when estimating the number of resources required for an application or when 
optimizing a design to the architecture.

CLB Array
The CLBs are arranged in a regular array of rows and columns as shown in Figure 4-1. 
Each density varies by the number of rows and columns of CLBs (see Table 4-1).

Figure 4-1: CLB Locations
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CLB Differences between Spartan-3 Generation Families
Each CLB is identical within a family, and the CLBs are identical among all Spartan-3 
generation families. The performance varies slightly between families due to minor 
variations in processing and characterization. The only difference between families is how 
the number of CLBs relates to the number of rows and columns. In the Spartan-3E and 
Extended Spartan-3A family, the number of CLBs is less than the multiple of the number of 
rows and columns. This difference is because in the Extended Spartan-3A family, the 
DCMs are embedded in the array, and in the Spartan-3E family, both the DCMs and the 
block RAM/multiplier blocks are embedded in the array. See Module 1 of the Spartan-3E, 
Spartan-3A, Spartan-3AN, and Spartan-3A DSP data sheets for a figure showing the array 
structure.

Table 4-1: CLB Resources

Device
CLB 

Rows
CLB 

Columns
CLB 
Total

Slices
LUTs / 

Flip-Flops
Equivalent 
Logic Cells

RAM16 / 
SRL16 

Distributed 
RAM Bits

Spartan®-3A DSP CLB Resources

XC3SD1800A 88 48 4,160 16,640 33,280 37,440 16,640 266,240

XC3SD3400A 104 58 5,968 23,872 47,744 53,712 23,872 381,952

Spartan-3A/3AN CLB Resources

XC3S50A/AN 16 12 176 704 1,408 1,584 704 11,264

XC3S200A/AN 32 16 448 1,792 3,584 4,032 1,792 28,672

XC3S400A/AN 40 24 896 3,584 7,168 8,064 3,584 57,344

XC3S700A/AN 48 32 1,472 5,888 11,776 13,248 5,888 94,208

XC3S1400A/AN 72 40 2,816 11,264 22,528 25,344 11,264 180,224

Spartan-3E CLB Resources

XC3S100E 22 16 240 960 1,920 2,160 960 15,360

XC3S250E 34 26 612 2,448 4,896 5,508 2,448 39,168

XC3S500E 46 34 1,164 4,656 9,312 10,476 4,656 74,496

XC3S1200E 60 46 2,168 8,672 17,344 19,512 8,672 138,752

XC3S1600E 76 58 3,688 14,752 29,504 33,192 14,752 236,032

Spartan-3 CLB Resources

XC3S50 16 12 192 768 1,536 1,728 768 12,288

XC3S200 24 20 480 1,920 3,840 4,320 1,920 30,720

XC3S400 32 28 896 3,584 7,168 8,064 3,584 57,344

XC3S1000 48 40 1,920 7,680 15,360 17,280 7,680 122,880

XC3S1500 64 52 3,328 13,312 26,624 29,952 13,312 212,992

XC3S2000 80 64 5,120 20,480 40,960 46,080 20,480 327,680

XC3S4000 96 72 6,912 27,648 55,296 62,208 27,648 442,368

XC3S5000 104 80 8,320 33,280 66,560 74,880 33,280 532,480
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Slices
Each CLB comprises four interconnected slices, as shown in Figure 4-3. These slices are 
grouped in pairs. Each pair is organized as a column with an independent carry chain. The 
left pair supports both logic and memory functions and its slices are called SLICEM. The 
right pair supports logic only and its slices are called SLICEL. Therefore half the LUTs 
support both logic and memory (including both RAM16 and SRL16 shift registers) while 
half support logic only, and the two types alternate throughout the array columns. The 
SLICEL reduces the size of the CLB and lowers the cost of the device, and can also provide 
a performance advantage over the SLICEM.
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Figure 4-2: Simplified Diagram of the Left-Hand SLICEM
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F7MUX. The lower SLICEL and SLICEM both have an F6MUX. 
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Slice Location Designations 
The Xilinx development software designates the location of a slice according to its X and Y 
coordinates, starting in the bottom left corner, as shown in Figure 4-1. The letter ‘X’ 
followed by a number identifies columns of slices, incrementing from the left side of the 
die to the right. The letter ‘Y’ followed by a number identifies the position of each slice in 
a pair as well as indicating the CLB row, incrementing from the bottom of the die. 
Figure 4-3 shows the CLB located in the lower left-hand corner of the die. The SLICEM 
always has an even ‘X’ number, and the SLICEL always has an odd ‘X’ number.

Slice Overview
A slice includes two LUT function generators and two storage elements, along with 
additional logic, as shown in Figure 4-4.

Both SLICEM and SLICEL have the following elements in common to provide logic, 
arithmetic, and ROM functions:

• Two 4-input LUT function generators, F and G

• Two storage elements

• Two wide-function multiplexers, F5MUX and FiMUX

• Carry and arithmetic logic

Figure 4-3: Arrangement of Slices within the CLB
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The SLICEM pair supports two additional functions: 

• Two 16x1 distributed RAM blocks, RAM16

• Two 16-bit shift registers, SRL16

Logic Cells
The combination of a LUT and a storage element is known as a “Logic Cell”. The 
additional features in a slice, such as the wide multiplexers, carry logic, and arithmetic 
gates, add to the capacity of a slice, implementing logic that would otherwise require 
additional LUTs. Benchmarks have shown that the overall slice is equivalent to 2.25 simple 
logic cells. This calculation provides the equivalent logic cell count shown in Table 4-1.

Slice Details
Figure 4-2 is a detailed diagram of the SLICEM. It represents a superset of the elements and 
connections to be found in all slices. The dashed and gray lines (blue when viewed in 
color) indicate the resources found only in the SLICEM and not in the SLICEL.

Each slice has two halves, which are differentiated as top and bottom to keep them distinct 
from the upper and lower slices in a CLB. The control inputs for the clock (CLK), Clock 
Enable (CE), Slice Write Enable (SLICEWE1), and Reset/Set (RS) are shared in common 
between the two halves.

The LUTs located in the top and bottom portions of the slice are referred to as "G" and "F", 
respectively, or the "G-LUT" and the "F-LUT". The storage elements in the top and bottom 
portions of the slice are called FFY and FFX, respectively. 

Each slice has two multiplexers with F5MUX in the bottom portion of the slice and FiMUX 
in the top portion. Depending on the slice, the FiMUX takes on the name F6MUX, F7MUX, 
or F8MUX, according to its position in the multiplexer chain. The lower SLICEL and 
SLICEM both have an F6MUX. The upper SLICEM has an F7MUX, and the upper SLICEL 
has an F8MUX. 

The carry chain enters the bottom of the slice as CIN and exits at the top as COUT. Five 
multiplexers control the chain: CYINIT, CY0F, and CYMUXF in the bottom portion and 

Figure 4-4: Resources in a Slice
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CY0G and CYMUXG in the top portion. The dedicated arithmetic logic includes the 
exclusive-OR gates XORF and XORG (bottom and top portions of the slice, respectively) as 
well as the AND gates FAND and GAND (bottom and top portions, respectively). 

See Table 4-2 for a description of all the slice input and output signals.

Table 4-2: Slice Inputs and Outputs

Name Location Direction Description

F[4:1] SLICEL/M Bottom Input F-LUT and FAND inputs

G[4:1] SLICEL/M Top Input G-LUT and GAND inputs or Write Address (SLICEM)

BX SLICEL/M Bottom Input Bypass to or output (SLICEM) or storage element, or control 
input to F5MUX, input to carry logic, or data input to RAM 
(SLICEM)

BY SLICEL/M Top Input Bypass to or output (SLICEM) or storage element, or control 
input to FiMUX, input to carry logic, or data input to RAM 
(SLICEM)

BXOUT SLICEM Bottom Output BX bypass output

BYOUT SLICEM Top Output BY bypass output

ALTDIG SLICEM Top Input Alternate data input to RAM

DIG SLICEM Top Output ALTDIG or SHIFTIN bypass output

SLICEWE1 SLICEM Common Input RAM Write Enable

F5 SLICEL/M Bottom Output Output from F5MUX; direct feedback to FiMUX

FXINA SLICEL/M Top Input Input to FiMUX; direct feedback from F5MUX or another FiMUX

FXINB SLICEL/M Top Input Input to FiMUX; direct feedback from F5MUX or another FiMUX

Fi SLICEL/M Top Output Output from FiMUX; direct feedback to another FiMUX

CE SLICEL/M Common Input FFX/Y Clock Enable

SR SLICEL/M Common Input FFX/Y Set or Reset or RAM Write Enable (SLICEM)

CLK SLICEL/M Common Input FFX/Y Clock or RAM Clock (SLICEM)

SHIFTIN SLICEM Top Input Data input to G-LUT RAM

SHIFTOUT SLICEM Bottom Output Shift data output from F-LUT RAM

CIN SLICEL/M Bottom Input Carry chain input

COUT SLICEL/M Top Output Carry chain output

X SLICEL/M Bottom Output Combinatorial output

Y SLICEL/M Top Output Combinatorial output

XB SLICEL/M Bottom Output Combinatorial output from carry or F-LUT SRL16 (SLICEM)

YB SLICEL/M Top Output Combinatorial output from carry or G-LUT SRL16 (SLICEM)

XQ SLICEL/M Bottom Output FFX output

YQ SLICEL/M Top Output FFY output
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Main Logic Paths
Central to the operation of each slice are two nearly identical data paths at the top and 
bottom of the slice. The description that follows uses names associated with the bottom 
path. (The top path names appear in parentheses.) The basic path originates at an 
interconnect switch matrix outside the CLB. See Chapter 12, “Using Interconnect,” for 
more information on the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect 
directly to the LUT. Once inside the slice, the lower 4-bit path passes through a LUT ‘F’ (or 
‘G’) that performs logic operations. The LUT Data output, ‘D’, offers five possible paths: 

1. Exit the slice via line "X" (or "Y") and return to interconnect. 

2. Inside the slice, "X" (or "Y") serves as an input to the DXMUX (or DYMUX) which feeds 
the data input, "D", of the FFX (or FFY) storage element. The "Q" output of the storage 
element drives the line XQ (or YQ) which exits the slice. 

3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain. 

4. With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that 
performs arithmetic operations, producing a result on "X" (or "Y"). 

5. Drive the multiplexer F5MUX to implement logic functions wider than four bits. The 
"D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer. 

In addition to the main logic paths described above, there are two bypass paths that enter 
the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the 
top half) can take any of several possible branches: 

1. Bypass both the LUT and the storage element, and then exit the slice as BXOUT (or 
BYOUT) and return to interconnect. 

2. Bypass the LUT, and then pass through a storage element via the D input before 
exiting as XQ (or YQ). 

3. Control the wide function multiplexer F5MUX (or FiMUX). 

4. Via multiplexers, serve as an input to the carry chain. 

5. Drive the DI input of the LUT. 

6. BY can control the REV inputs of both the FFY and FFX storage elements. See “Storage 
Element Functions,” page 324. 

7. Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the 
slice. 

The control inputs CLK, CE, SR, BX, and BY have programmable polarity. The LUT inputs 
do not need programmable polarity because their function can be inverted inside the LUT. 

The sections that follow provide more detail on individual functions of the slice. 

Look-Up Tables 
The Look-Up Table or LUT is a RAM-based function generator and is the main resource for 
implementing logic functions. Furthermore, the LUTs in each SLICEM pair can be 
configured as Distributed RAM or a 16-bit shift register, as described later.

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output 
(D). Any four-variable Boolean logic operation can be implemented in one LUT. Functions 
with more inputs can be implemented by cascading LUTs or by using the wide function 
multiplexers that are described later. 
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The output of the LUT can connect to the wide multiplexer logic, the carry and arithmetic 
logic, or directly to a CLB output or to the CLB storage element. See Figure 4-5.
 

Wide Multiplexers
Wide-function multiplexers effectively combine LUTs in order to permit more complex 
logic operations. Each slice has two of these multiplexers with F5MUX in the bottom 
portion of the slice and FiMUX in the top portion. The F5MUX multiplexes the two LUTs in 
a slice. The FiMUX multiplexes two CLB inputs which connect directly to the F5MUX and 
FiMUX results from the same slice or from other slices. For more information on the wide 
multiplexers, see Chapter 8, “Using Dedicated Multiplexers.”

Carry and Arithmetic Logic
The carry chain, together with various dedicated arithmetic logic gates, support fast and 
efficient implementations of math operations. The carry logic is automatically used for 
most arithmetic functions in a design. The gates and multiplexers of the carry and 
arithmetic logic can also be used for general-purpose logic, including simple wide Boolean 
functions. For more information on the carry and arithmetic logic, see Chapter 9, “Using 
Carry and Arithmetic Logic.”

Storage Elements
The storage element, which is programmable as either a D-type flip-flop or a level-
sensitive transparent latch, provides a means for synchronizing data to a clock signal, 
among other uses. The storage elements in the top and bottom portions of the slice are 
called FFY and FFX, respectively. FFY has a fixed multiplexer on the D input selecting 
either the combinatorial output Y or the bypass signal BY. FFX selects between the 
combinatorial output X or the bypass signal BX.

The functionality of a slice storage element is identical to that described earlier for the I/O 
storage elements. All signals have programmable polarity; the default active-High 
function is described.

Figure 4-5: LUT Resources in a Slice
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The control inputs R, S, CE, and C are all shared between the two flip-flops in a slice.

Table 4-3: Storage Element Signals

Signal Description

D Input. For a flip-flop data on the D input is loaded when R and S (or CLR and PRE) are Low and CE is High 
during the Low-to-High clock transition. For a latch, Q reflects the D input while the gate (G) input and gate 
enable (GE) are High and R and S (or CLR and PRE) are Low. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output of the latch remains unchanged as long as 
G or GE remains Low.

Q Output. Toggles after the Low-to-High clock transition for a flip-flop and immediately for a latch.

C Clock for edge-triggered flip-flops.

G Gate for level-sensitive latches.

CE Clock Enable for flip-flops.

GE Gate Enable for latches.

S Synchronous Set (Q = High). When the S input is High and R is Low, the flip-flop is set, output High, during 
the Low-to-High clock (C) transition. A latch output is immediately set, output High.

R Synchronous Reset (Q = Low); has precedence over Set. 

PRE Asynchronous Preset (Q = High). When the PRE input is High and CLR is Low, the flip-flop is set, output 
High, during the Low-to-High clock (C) transition. A latch output is immediately set, output High.

CLR Asynchronous Clear (Q = Low); has precedence over Preset to reset Q output Low

SR CLB input for R, S, CLR, or PRE

REV CLB input for opposite of SR. Must be asynchronous or synchronous to match SR.

Figure 4-6: FD Flip-Flop Component with Synchronous Reset, Set, and Clock 
Enable

Table 4-4: FD Flip-Flop Functionality with Synchronous Reset, Set, and Clock 
Enable

Inputs Outputs

R S CE D C Q

1 X X X ↑ 0

0 1 X X ↑ 1

0 0 0 X X No Change

0 0 1 1 ↑ 1

0 0 1 0 ↑ 0

FDRSE
D Q

CE
C

R

S

DS312-2_40_021305
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Initialization
The CLB storage elements are initialized at power-up, during configuration, by the global 
GSR signal, and by the individual SR or REV inputs to the CLB. The storage elements can 
also be re-initialized using the GSR input on the STARTUP primitive. See “Global 
Controls,” page 389.

Distributed RAM
The LUTs in the SLICEM can be programmed as distributed RAM. This type of memory 
affords moderate amounts of data buffering anywhere along a data path. One SLICEM 
LUT stores 16 bits (RAM16). For more information on the distributed RAM, see Chapter 6, 
“Using Look-Up Tables as Distributed RAM.”

Shift Registers
It is possible to program each SLICEM LUT as a 16-bit shift register. Used in this way, each 
LUT can delay serial data anywhere from 1 to 16 clock cycles without using any of the 
dedicated flip-flops. The resulting programmable delays can be used to balance the timing 
of data pipelines. For more information on the shift registers, see Chapter 7, “Using Look-
Up Tables as Shift Registers (SRL16).”

Related Materials
The following documents provide supplementary information useful with this chapter:

• WP272: Get Smart About Reset: Think Local, Not Global
Applying a global reset to your FPGA designs is not a very good idea and should be 
avoided. This is a controversial issue, so this white paper looks at the reasons why 
such a design policy should be considered.

• WP273: Performance + Time = Memory (Cost Saving with 3-D Design)
Operating logic at a higher rate than the processing rate allows operations to be 
achieved sequentially. As with a processor, logic is timeshared over multiple clock 
cycles. Memory holds values not being used on a given clock cycle. The FPGA can be 
considered to be a three-dimensional volume to be filled. "Performance + Time = 

Table 4-5: Slice Storage Element Initialization

Signal Description

SR Set/Reset input. Forces the storage element into the state specified by the attribute 
SRHIGH or SRLOW. SRHIGH forces a logic “1” when SR is asserted. SRLOW 
forces a logic “0”. For each slice, set and reset can be set to be synchronous or 
asynchronous.

REV Reverse of Set/Reset input. A second input (BY) forces the storage element into the 
opposite state. The reset condition is predominant over the set condition if both are 
active. Same synchronous/asynchronous setting as for SR.

GSR Global Set/Reset. GSR defaults to active High but can be inverted by adding an 
inverter in front of the GSR input of the STARTUP element. The initial state after 
configuration or GSR is defined by a separate INIT0 and INIT1 attribute. By 
default, setting the SRLOW attribute sets INIT0, and setting the SRHIGH attribute 
sets INIT1.

http://www.xilinx.com/support/documentation/white_papers/wp272.pdf
http://www.xilinx.com/support/documentation/white_papers/wp273.pdf
http://www.xilinx.com
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Memory" is a strange formula, but when understood, it can often result in 
significantly lower cost implementations with Xilinx devices. 

• WP275: Get Your Priorities Right - Make Your Design up to 50% Smaller
This white paper describes a rarely noticed design technique that can make a 
difference in the size and the performance of your FPGA design. Control signals on 
FPGA flip-flops have a built-in priority. If you can learn to write code that is 
sympathetic to the priorities, the results will be rewarding. This white paper provides 
some simple VHDL and Verilog examples to explain key points. 

http://www.xilinx.com/support/documentation/white_papers/wp275.pdf
http://www.xilinx.com
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Chapter 5

Using Block RAM

Summary
For applications requiring large, on-chip memories, Spartan®-3 generation FPGAs 
provide plentiful, efficient SelectRAM memory blocks. Using various configuration 
options, SelectRAM blocks create RAM, ROM, FIFOs, large look-up tables, data width 
converters, circular buffers, and shift registers, each supporting various data widths and 
depths. This chapter describes the features and capabilities of block SelectRAM and 
illustrates how to specify the various options using the Xilinx CORE Generator™ system 
or via VHDL or Verilog instantiation. Various non-obvious block RAM applications are 
discussed with references to additional tools, application notes, and documentation.

Introduction
All Spartan-3 generation FPGAs feature multiple block RAMs, organized in columns. The 
total amount of block RAM depends on the size of the Spartan-3 generation FPGA as 
shown in Table 5-1.

Table 5-1: Block RAM Available in Spartan-3 Generation FPGAs

Family Device
RAM 

Columns
RAM Blocks 
Per Column

Total RAM 
Blocks

Total RAM
Bits

Total RAM 
Kbits

Extended 
Spartan-3A FPGAs

XC3SD1800A 4 20-22 84 1,548,288 1,512K

XC3SD3400A 5 24-26 126 2,322,432 2,268K

XC3S50A/AN 1 3 3 55,296 54K

XC3S200A/AN 2 8 16 294,912 288K

XC3S400A/AN 2 10 20 368,640 360K

XC3S700A/AN 2 10 20 368,640 360K

XC3S1400A/AN 2 16 32 589,824 576K

Spartan-3E FPGAs XC3S100E 1 4 4 73,728 72K

XC3S250E 2 6 12 221,184 216K

XC3S500E 2 10 20 368,640 360K

XC3S1200E 2 14 28 516,096 504K

XC3S1600E 2 18 36 663,552 648K

http://www.xilinx.com
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Each block RAM contains 18,432 bits of fast static RAM, 16K bits of which is allocated to 
data storage and, in some memory configurations, an additional 2K bits allocated to parity 
or additional "plus" data bits. Physically, the block RAM has two completely independent 
access ports, labeled Port A and Port B. The structure is fully symmetrical, and both ports 
are interchangeable and support data read and write operations. Each memory port is 
synchronous with its own clock, clock enable, and write enable. Read operations are also 
synchronous and require a clock edge and clock enable.

Though physically a dual-port memory, block RAM simulates single-port memory in an 
application, as shown in Figure 5-1. Furthermore, each block memory supports multiple 
configurations or aspect ratios. Table 5-2 summarizes the essential SelectRAM features.

Cascade multiple block RAMs to create deeper and wider memory organizations with a 
minimal timing penalty incurred through specialized routing resources.

The block RAMs in the Spartan-3A DSP platform include an optional output register 
similar to the block RAM output register of the Virtex®-4 FPGA. The output register 
enables full-speed operation at over 250 MHz for all data widths. 

Spartan-3 FPGAs XC3S50 1 4 4 73,728 72K

XC3S200 2 6 12 221,184 216K

XC3S400 2 8 16 294,912 288K

XC3S1000 2 12 24 442,368 432K

XC3S1500 2 16 32 589,824 576K

XC3S2000 2 20 40 737,280 720K

XC3S4000 4 24 96 1,769,472 1,728K

XC3S5000 4 26 104 1,916,928 1,872K

Notes: 
1. 1Kbit = 1,024 bits, per memory conventions.

Table 5-1: Block RAM Available in Spartan-3 Generation FPGAs (Continued)

Family Device
RAM 

Columns
RAM Blocks 
Per Column

Total RAM 
Blocks

Total RAM
Bits

Total RAM 
Kbits

http://www.xilinx.com
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Figure 5-1: SelectRAM 18K Blocks Perform as Dual-Port (a) and Single-Port (b) Memory
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RAMB16_Sw

Notes: 
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.

See Table 5-8 and Table 5-9.
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.
3. rA and rB are integers representing the address bus width at ports A and B, respectively.
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Table 5-2: SelectRAM 18K Block Memory Features and Applications

Total RAM bits, including 
parity

18,432 (16K data + 2K parity)

Memory Organizations 16Kx1

8Kx2

4Kx4

2Kx8 (no parity)

2Kx9 (x8 + parity)

1Kx16 (no parity)

1Kx18 (x16 + 2 parity)

512x32 (no parity)

512x36 (x32 + 4 parity)

256x72 (single-port only)

Parity Available and optional only for organizations greater than 
byte-wide. Parity bits optionally available as extra data bits.

Performance 240+ MHz (refer to individual FPGA family data sheet)

Timing Interface Simple synchronous interface. Similar to reading and writing 
from a register with a setup time for write operations and 
clock-to-output delay for read operations.
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Block RAM Differences between Spartan-3 Generation Families
Overall, block RAM is similar in all Spartan-3 generation FPGAs. However, Extended 
Spartan-3A FPGAs have some subtle but significant block RAM enhancements over 
Spartan-3E and Spartan-3 family FPGAs, as summarized in Table 5-3. Extended Spartan-
3A family FPGAs have byte-level write enable controls, supported by the RAMB16BWE 
design primitive. However, Extended Spartan-3A family FPGA designs continue to 
support the RAMB16 design primitive that is used for Spartan-3 or Spartan-3E FPGA 
designs (see Table 5-8 and Table 5-9). Timing parameters are similar in functionality 
between the Spartan-3/3E and Extended Spartan-3A family, but have different names. 
Spartan-3A DSP FPGAs add an output register, supported by the RAMB16BWER 
primitive.

The Xilinx CORE Generator system supports various modules containing block RAM for 
Spartan-3 devices including:

Single-Port Yes

True Dual-Port Yes

ROM, Initial RAM Contents Yes

Mixed Data Port Widths Yes

Power-Up Condition User-defined data, defaults to zero

Potential Applications Local data storage, FIFOs, elastic stores, register files, buffers, 
stacks, circular buffers, shift registers, delay lines, waveform 
storage and generation, direct digital synthesis, CAMs, 
associative memories, function tables, function generators, 
wide logic functions, code converters, encoders, decoders, 
counters, state machines, microsequencers, program storage 
for embedded processor(s) 

Table 5-2: SelectRAM 18K Block Memory Features and Applications (Continued)

Table 5-3: Comparison Between Spartan-3/3E, Spartan-3A/3AN, and Spartan-3A 
DSP Block RAMs

Feature

Spartan-3/
Spartan-3E 
Block RAM

Spartan-3A/
Spartan-3AN
Block RAM

Spartan-3A DSP 
Block RAM

Individual write-enables for each byte lane 
in x9, x18, or x36 configurations

No

(single write-
enable only)

Yes Yes

Special routing resources between block 
RAM and multiplier for x36 configurations

No Yes
General 
Purpose

Output register No No Yes

Supported by RAMB16 primitive Yes Yes Yes

Supported by RAMB16BWE primitive 
(RAMB16 with byte-level write enable)

No Yes Yes

Supported by RAMB16BWER primitive 
(RAMB16BWE with output register)

No No Yes
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• Embedded dual- or single-port RAM modules

• ROM modules

• Synchronous and asynchronous FIFO modules

• Content-Addressable Memory (CAM) modules

Furthermore, block RAM can be instantiated in any synthesis-based design using the 
appropriate RAMB16 module from the Xilinx design library (see Table 5-8 and Table 5-9).

This chapter describes the signals and attributes of the Spartan-3 block RAM feature, 
including details on the various attributes and applications for block RAM.

Block RAM Location and Surrounding Neighborhood
As mentioned previously, block RAM is organized in columns. Figure 5-2 shows the block 
RAM column arrangement for the XC3S200A. The XC3S50A has a single column of block 
RAM, located two CLB columns from the left edge of the device. Spartan-3 generation 
FPGAs larger than the XC3S50 have at least two columns of block RAM, adjacent to the left 
and right edges of the die, located two columns of CLBs from the I/Os at the edge. In 
addition to the block RAM columns at the edge, the XC3S4000, XC3S5000, and 
XC3SD1800A have two additional columns—a total of four columns—nearly equally 
distributed between the two edge columns. The XC3SD3400A adds a fifth block RAM 
column, located two CLB columns to the left of the center DCMs. In some devices, the 
block RAM column is interrupted by DCMs or CLBs. Table 5-1 describes the number of 
columns and the total amount of block RAM on Spartan-3 generation FPGAs. The edge 
columns make block RAM particularly useful in buffering or resynchronizing buses 
entering or leaving the FPGA.

Immediately adjacent to each block RAM is an embedded 18x18 hardware multiplier. 
Co-locating block RAM and the embedded multipliers improves the performance of some 

Figure 5-2: Block RAMs Arranged in Columns with Detailed Floorplan of XC3S200
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digital signal processing functions. In the Spartan-3A DSP platform, the multiplier is 
extended into the DSP48A block.

Special interconnect surrounding the block RAM provides efficient signal distribution for 
address and data. Furthermore, special provisions allow multiple block RAMs to be 
cascaded to create wider or deeper memories.

Block RAM/Multiplier Routing Interaction
Each multiplier is located adjacent to an 18 Kbit block RAM and shares some interconnect 
resources. In the Spartan-3 and Spartan-3E families, configuring an 18 Kbit block RAM for 
32/36-bit wide data (512 x 36 mode) prevents use of the associated dedicated multiplier 
because the lower 16 bits of the A multiplicand input are shared with the upper 16 bits of 
the block RAM’s Port A Data input. Similarly, the lower 16 bits of the B multiplicand input 
are shared with Port B’s Data input.

For more details, see “Multiplier/Block RAM Routing Interaction” in Chapter 11.

Data Flows
Spartan-3 generation block RAM is constructed of true dual-port memory and 
simultaneously supports all the data flows and operations shown in Figure 5-3. Both ports 
access the same set of memory bits but with two potentially different address schemes 
depending on the port’s data width.

1. Port A behaves as an independent single-port RAM supporting simultaneous read and 
write operations using a single set of address lines.

2. Port B behaves as an independent single-port RAM supporting simultaneous read and 
write operations using a single set of address lines.

3. Port A is the write port with a separate write address, and Port B is the read port with 
a separate read address. The data widths for Port A and Port B can be different also.

4. Port B is the write port with a separate write address, and Port A is the read port with 
a separate read address. The data widths for Port B and Port A can be different also.

Signals
The signals connected to a block RAM primitive divide into four categories, as listed 
below. Table 5-4 lists the block RAM interface signals, the signal names for both single-port 
and dual-port memories, and signal direction.

Figure 5-3: Block RAM Support Single- and Dual-Port Data Transfers
X463_03_060606
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1. Data Inputs and Outputs

2. Parity Inputs and Outputs, available when a data port is byte-wide or wider

3. Address inputs to select a specific memory location

4. Various control signals that manage read, write, or set/reset operations

Data Inputs and Outputs
The total width of a port’s data port includes both the data bus and the parity bus, when 
applicable, as shown in Figure 5-4. In the 512x36 organization, for example, the 36-bit data 
port width includes four parity bits as the more significant bits followed by the 32 data bits 
as the less significant bits.

The data and parity input and output signals are always buses; that is, in a 1-bit width 
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Data Input Bus — DI[#:0] (DIA[#:0], DIB[#:0])

The Data Input bus is the source of data to be written into RAM. 

Data at the DI input bus is written to the RAM location specified by the address input bus, 
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and 
write enable WE inputs are High.

Data Output Bus — DO[#:0] (DOA[#:0], DOB[#:0])

The data output bus, DO, presents the contents of memory cells referenced by the address 
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write 
operation, the behavior of the data output latches is controlled by the WRITE_MODE 
attribute (see “Read Behavior During Simultaneous Write — WRITE_MODE,” page 181).

Table 5-4: Block RAM Interface Signals

Signal Description Single Port

Dual Port

DirectionPort A Port B

Data Input Bus DI DIA DIB Input

Parity Data Input Bus (available only 
for byte-wide and wider organizations)

DIP DIPA DIPB Input

Data Output Bus DO DOA DOB Output

Parity Data Output (available only for 
byte-wide and wider organizations)

DOP DOPA DOPB Output

Address Bus ADDR ADDRA ADDRB Input

Write Enable WE WEA WEB Input

Clock Enable EN ENA ENB Input

Synchronous Set/Reset SSR SSRA SSRB Input

Clock CLK CLKA CLKB Input

Synchronous/Asynchronous Set/Reset 
(Spartan-3A DSP only)

N/A RSTA RSTB Input

Output Register (Spartan-3A DSP only) N/A REGCEA REGCEB Input
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Parity Inputs and Outputs
Parity is only supported for data paths byte wide and wider.

Although referred to herein as parity bits, the parity inputs and outputs have no special 
functionality and can be used as additional data bits. For example, the parity bits could be 
used to hold additional information about a data word, tagging the data as code or data, 
positive or negative values, old or new data, etc.

Block RAM does not contain any special circuitry for generating or checking parity. These 
functions, if required by the application, are created using CLB logic resources.

Data Input Parity Bus — DIP[#:0] (DIPA[#:0], DIPB[#:0])

Data at the DIP input bus is written to the RAM location specified by the address input 
bus, ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN 
and write enable WE inputs are High.

Data Output Parity Bus — DOP[#:0] (DOPA[#:0], DOPB[#:0])

The data output bus, DOP, presents the contents of memory cells referenced by the address 
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write 
operation, the behavior of the data output latches is controlled by the WRITE_MODE 
attribute (see “Read Behavior During Simultaneous Write — WRITE_MODE,” page 181).

http://www.xilinx.com
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Figure 5-4: Data Organization and Mapping Between Modes
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Address Input
As dual-port RAM, both ports operate independently while accessing the same set of 
18 Kbit memory cells.

Caution! Whenever a block RAM port is enabled (ENA or ENB = High), all address transitions 
must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB). 
This requirement must be met even if the RAM read output is of no interest, or WE is deasserted. 
There are some instances in which you might not be able to meet these requirements; for 
instance, if there is a multi-cycle path on the address input signals. Work around this by disabling 
the port via ENA/ENB during the time that the address inputs do not meet set up and hold 
requirements. De-asserting ENA/ENB will disable the port so that violating the address input 
setup and hold requirements will not affect block RAM contents. Assert ENA/ENB again when 
resuming normal read/write functionality.

Address Bus — ADDR[#:0] (ADDRA[#:0], ADDRB[#:0])

The address bus selects the memory cells for read or write operations. The width of the 
address bus input determines the required address bus width, as shown in Table 5-8.

Control Inputs

Clock — CLK (CLKA, CLKB)

Each port is fully synchronous with independent clock pins. All port input pins have setup 
time referenced to the port CLK pin. The data bus has a clock-to-out time referenced to the 
CLK pin. Clock polarity is configurable and is rising edge triggered by default.

With default polarity, a Low-to-High transition on the clock (CLK) input controls read, 
write, and reset operations.

Enable — EN (ENA, ENB)

The enable input, EN, controls read, write, and set/reset operations. When EN is Low, no 
data is written and the outputs DO and DOP retain the last state. The polarity of EN is 
configurable and is active High by default.

When EN is asserted, minus an active synchronous set/reset input or write-enable input, 
block RAM always reads the memory location specified by the address bus, ADDR, at the 
rising clock edge.

Write Enable — WE (WEA, WEB)

The write enable input, WE, controls when data is written to RAM. When both EN and WE 
are asserted at the rising clock edge, the value on the data and parity input buses is written 
to memory location selected by the address bus. 

The data output latches are loaded or not loaded according to the WRITE_MODE attribute.

The polarity of WE is configurable and is active High by default.

All Spartan-3 generation FPGAs support the RAMB16 block RAM primitive that has a 
single write-enable input that controls write operations regardless of the data width for the 
configured data organization. See Figure 5-4, page 171 for a diagram of all supported data 
organizations. Table 5-5, page 173 shows the write-enable behavior for the RAMB16 
primitive.
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Spartan-3A/3AN FPGAs introduce a new block RAM primitive called RAMB16BWE, 
essentially a RAMB16 primitive with four independent byte-level write enable inputs. The 
Spartan-3A DSP FPGA primitive RAMB16BWER has the same byte-level write enable 
function. As shown in Table 5-6, page 173, the independent write-enable inputs allow an 
application to write an individual byte or select bytes from a multi-byte data word without 
affecting the unselected RAM locations. This feature is useful for a variety of applications, 
especially MicroBlaze processor designs. For 1Kx18 data organizations, connect WE0 with 
WE2 to select the lower 9 bits and connect WE1 with WE3 to select the upper 9 bits.

Table 5-5: RAMB16 Write Operations (All Spartan-3 Generation FPGAs)

Data 
Organization

EN WE CLK
Function

All

(See Figure 5-4)

0 X X Block RAM disabled. No operation.

1 0 Ç Block RAM enabled but no write operation.

1 1 Ç

As appropriate for the block RAM data 
organization, write data from the DI and DIP 
input ports to the currently addressed RAM 
location.

Table 5-6: RAMB16BWE/R Write Operations (Spartan-3A/3AN/3A DSP FPGAs Only)

Data 
Organization

EN
Byte-level Write Enables

CLK
FunctionWE3 WE2 WE1 WE0

All 0 X X X X X Block RAM disabled. No operation.

16Kx1
8Kx2
4Kx4
2Kx9

1

0 Ç Block RAM enabled but no write operation.

1 Ç
Write data from the DI and DIP input ports to the 
currently addressed RAM location.

1Kx18 1
Same 

as 
WE1

Same 
as 

WE0

1 1 Ç
Write 18 bits: Write data from the DI[15:0] and DIP[1:0] 
input ports to the currently addressed RAM location.

0 1
Write lower 9 bits: Write data only from the DI[7:0] 
and DIP[0] input ports to the currently addressed 
RAM location. Other bits in RAM location unaffected.

1 0
Write upper 9 bits: Write data only from the DI[15:8] 
and DIP[1] input ports to the currently addressed 
RAM location. Other bits in RAM location unaffected.
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Output Register Enable - REGCE (REGCEA, REGCEB) Spartan-3A DSP 
Only

The Output Register Write enable input, REGCE, controls when data is written to the RAM 
Output registers. When both EN and REGCE are asserted at the rising clock edge, the value 
on the output of the block RAM is written to the block RAM output register.

The polarity of REGCE is configurable and is active High by default.

Output Latch Synchronous Set/Reset — SSR (SSRA, SSRB)

The synchronous set/reset input, SSR, forces the data output latches to the value specified 
by the SRVAL attribute. When SSR and the enable signal, EN, are High, the data output 
latches for the DO and DOP outputs are synchronously set to a ‘0’ or ‘1’ according to the 
SRVAL parameter.

A Synchronous Set/Reset operation does not affect RAM cells and does not disturb write 
operations on the other port.

The polarity of SSR is configurable and is active High by default.

The SSR input is available on the RAMB16 and RAMB16BWE components. The 
RAMB16BWER component for the Spartan-3A DSP platform provides the RST input 
instead.

Output Latch/Register Synchronous/Asynchronous Set/Reset - RST (RSTA, 
RSTB) - Spartan-3A DSP Only

The Spartan-3A DSP platform block RAM set/reset input is optionally synchronous or 
asynchronous and controls both the output latches and the optional output registers. The 
control pin for this operation is named RST and is available on the RAMB16BWER 
component. 

512x36 1

1 1 1 1 Ç
Write 36 bits: Write data from the DI[31:0] and DIP[3:0] 
input ports to the currently addressed RAM location.

0 0 0 1 Ç
Write lowest 9 bits: Write data only from the DI[7:0] 
and DIP[0] input ports to the currently addressed 
RAM location. Other bits in RAM location unaffected.

0 0 1 0 Ç
Write next 9 bits: Write data only from the DI[15:8] and 
DIP[1] input ports to the currently addressed RAM 
location. Other bits in RAM location unaffected.

0 0 1 1 Ç
Write lower 18 bits: Write data from the DI[15:0] and 
DIP[1:0] input ports to the currently addressed RAM 
location. Other bits in RAM location unaffected.

1 1 0 0 Ç
Write upper 18 bits: Write data from the DI[31:16] and 
DIP[3:2] input ports to the currently addressed RAM 
location. Other bits in RAM location unaffected.

Table 5-6: RAMB16BWE/R Write Operations (Spartan-3A/3AN/3A DSP FPGAs Only) (Continued)

Data 
Organization

EN
Byte-level Write Enables

CLK
FunctionWE3 WE2 WE1 WE0
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In synchronous mode, if RST and the enable signal EN are High, the data output latches 
and optional output registers for the DO and DOP outputs are synchronously set to a ‘0’ or 
‘1’ according to the SRVAL parameter.

In asynchronous mode, if RST and the enable signal EN are High, the data output latches 
and optional output registers for the DO and DOP outputs are asynchronously set to a ‘0’ 
or ‘1’ according to the SRVAL parameter.

The mode is set by setting the RSTTYPE attribute to “SYNC” for synchronous operation or 
“ASYNC” for asynchronous operation. The default for RSTTYPE is synchronous. Due to 
improved timing and circuit stability, it is recommended to always have this set to "SYNC" 
unless an asynchronous reset is absolutely necessary.

A RST operation does not affect block RAM cells and does not disturb write operations on 
the other port. 

The polarity of RST is configurable and is active High by default.

The RST input is available on the RAMB16BWER component for the Spartan-3A DSP 
platform. The RAMB16 and RAMB16BWE components provide the SSR input instead.

Global Set/Reset — GSR

The global set/reset signal, GSR, is asserted automatically and momentarily at the end of 
device configuration. By instantiating the STARTUP primitive, the logic application can 
also assert GSR to restore the initial FPGA state at any time. The GSR signal initializes the 
output latches to the INIT value. A GSR signal has no impact on internal memory contents.

Because GSR is a global signal and automatically connected throughout the device, the 
block RAM primitive does not have a GSR input pin.

Inverting Control Pins

For each port, the four control pins—CLK, EN, WE, and SSR/RST—each have an 
individual inversion option. Any control signal can be configured as active High or Low, 
and the clock can be active on a rising or falling edge without consuming additional logic 
resources.

Unused Inputs

Tie any unused data or address inputs to logic ‘1’. Connecting the unused inputs High 
saves logic and routing resources compared to connecting the inputs Low.

Attributes
A block RAM has a number of attributes that control its behavior as shown in Table 5-7 for 
VHDL and Verilog. The CORE Generator system uses slightly different values, as 
described below.

Table 5-7: Block RAM Attributes and VHDL/Verilog Attribute Names

Function VHDL or Verilog Attribute Default Value

Number of Ports Defined by instantiating the 
appropriate RAMB16 primitive

N/A

Memory Organization Defined by instantiating the 
appropriate RAMB16 primitive

N/A
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Number of Ports
Although physically dual-port memory, each block RAM performs as either single-port or 
dual-port memory. The method to specify the number of ports depends on the design 
entry tool.

CORE Generator System

As shown in Figure 5-5, the Xilinx CORE Generator system provides module generators 
for various types of memory blocks. Choose single- or dual-port block memories or use the 
higher-level functions to create FIFOs, content-addressable memories (CAMs), and so 
forth.

Initial Content for Data Memory, 
Loaded during Configuration

INIT_xx Initialized to zero

Initial Content for Parity Memory, 
Loaded during Configuration

INITP_xx Initialized to zero

Data Output Latch Initialization INIT (single-port)
INIT_A, INIT_B (dual-port)

Initialized to zero

Data Output Latch Synchronous 
Set/Reset Value

SRVAL (single-port)
SRVAL_A, SRVAL_B (dual-port)

Reset to zero

Data Output Latch Behavior during 
Write

WRITE_MODE WRITE_FIRST

Block RAM Location LOC N/A

Reset Type (Spartan-3A DSP only) RSTTYPE SYNC

Table 5-7: Block RAM Attributes and VHDL/Verilog Attribute Names (Continued)

Function VHDL or Verilog Attribute Default Value

Figure 5-5: Selecting a Block RAM Function in CORE Generator System

X463_05_060606
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VHDL or Verilog Instantiation

The Xilinx design libraries contain single- and dual-port memory primitives similar to 
those shown in Figure 5-1. Select among the various primitives to choose single- or dual-
port memory, as well as the memory organization or aspect ratio of the memory. See 
Table 5-8 and Table 5-9 for single-port and dual-port block RAM primitives, respectively.

Memory Organization/Aspect Ratio
The data organization or aspect ratio of a RAM block is configurable, as shown in 
Table 5-8. If the data path is byte-wide or wider, then the block RAM also provides 
additional bits to support parity for each byte. Consequently, a 1Kx18 memory 
organization is 18 bits wide with 16 bits (two bytes) allocated to data plus two parity bits, 
one for each byte. Also, the physical amount of memory accessible from a port depends on 
the memory organization. For memories byte-wide and wider, there are 18K memory bits 
accessible. For narrower memories, only 16K bits are accessible due to the lack of parity 
bits in these organizations. Essentially, 16K bits are allocated to data, 2K bits to parity on 
the 18 Kbit block RAM. See Figure 5-4 for details on data mapping for and between each 
memory organization.

CORE Generator System — Memory Size

The CORE Generator system creates a wide variety of memories with very flexible aspect 
ratios. Unlike the actual block RAM primitive, the CORE generator system does not 
differentiate between data and parity bits and considers all bits data bits. For dual-port 
memories, each port can have different organizations or aspect ratios.

Within the CORE Generator system, locate the Memory Size group and enter the desired 
memory organization, as shown in Figure 5-6.

Table 5-8: Block RAM Data Organizations/Aspect Ratios

Organization
Memory 
Depth

Data 
Width

Parity
Width DI/DO DIP/DOP ADDR

Single-Port 
Primitive

Total RAM 
Kbits

512x36 512 32 4 (31:0) (3:0)  (8:0) RAMB16_S36 18K

1Kx18 1024 16 2 (15:0) (1:0)  (9:0) RAMB16_S18 18K

2Kx9 2048 8 1  (7:0) (0:0) (10:0) RAMB16_S9 18K

4Kx4 4096 4 -  (3:0) - (11:0) RAMB16_S4 16K

8Kx2 8192 2 -  (1:0) - (12:0) RAMB16_S2 16K

16Kx1 16384 1 -  (0:0) - (13:0) RAMB16_S1 16K

Figure 5-6: Selecting Memory Width and Depth in CORE Generator System

Memory Size

Width 16

Depth 256

Valid Range 1..256

Valid Range 2..16384
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VHDL or Verilog Instantiation

The aspect ratio is defined at design time by specifying or instantiating the appropriate 
SelectRAM component. Table 5-8 indicates the SelectRAM component for single-port 
RAM. For single-port RAM, the proper component name is RAMB16_Sn, where n is the 
data path width including both the data bits plus parity bits. For example, a 1Kx18 single-
port RAM uses component RAMB16_S18. In this example, n=18 because there are 16 data 
bits plus 2 parity bits.

Selecting a dual-port memory is slightly more complex because the two memory ports can 
have different aspect ratios. For dual-port RAM, the proper component name is 
RAMB16_Sm_Sn, where m is the data path width for Port A and n is the width for Port B. 
For example, using the suffix shown in Table 5-9, if Port A is organized a 2Kx9 and Port B 
is organized as 1Kx18, then the proper dual-port RAM component is RAMB16_S9_S18. In 
this example, m=9 and n=18.

Address and Data Mapping Between Two Ports

In dual-port mode, both ports access the same set of memory cells. However, both ports 
can have the same or different memory organization or aspect ratio. Figure 5-4 shows how 
the same data set might appear with different aspect ratios.

There are extra bits available to store parity for memory organizations that are byte-wide 
or wider. The extra parity bits are designed to be associated with a particular byte and 
these parity bits appear as the more-significant bits on the data port. For example, if a x36 
data word (32 data, 4 parity) is addressed as two x18 halfwords (16 data, 2 parity), the 
parity bits associated with each data byte are mapped within the block RAM to 
appropriate parity bits. The same effect happens when the x36 data word is mapped as 
four x9 words. The extra parity bits are not available if the data port is configured as x4, x2, 
or x1.

The following formulas provide the starting and ending address for data when the two 
ports have different memory organizations. Find the starting and ending addresses for 
Port X given the address and port width of Port Y and the port width of Port X.

Table 5-9: Dual-Port RAM Component Suffix Appended to “RAMB16”
Port A

16Kx1 8Kx2 4Kx4 2Kx9 1Kx18 512x36

P
o

rt
 B

16Kx1 _S1_S1

8Kx2 _S1_S2 _S2_S2

4Kx4 _S1_S4 _S2_S4 _S4_S4

2Kx9 _S1_S9 _S2_S9 _S4_S9 _S9_S9

1Kx18 _S1_S18 _S2_S18 _S4_S18 _S9_S18 _S18_S18

512x36 _S1_S36 _S2_S36 _S4_S36 _S9_S36 _S18_S36 _S36_S36

START_ADDRESSX INTEGER
ADDRESSY WIDTHY•

WIDTHX
------------------------------------------------------------⎝ ⎠

⎛ ⎞=

END_ADDRESSX INTEGER
ADDRESSY 1+( ) WIDTHY•( ) 1–

WIDTHX
----------------------------------------------------------------------------------------⎝ ⎠

⎛ ⎞=
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If, due the memory organization, one port includes parity bits and the other does not, then 
the above equations are invalid and the values for width should only include the data bits. 
The parity bits are not available on any port that is less than 8 bits wide.

Content Initialization
By default, block RAM is initialized with all zeros during the device configuration 
sequence. However, the contents can also be initialized with user-defined data. 
Furthermore, the RAM contents are protected against spurious writes during 
configuration.

CORE Generator System — Load Init File

To specify the initial RAM contents for a CORE Generator block RAM function, create a 
coefficients (.coe) file. A simple example of a coefficients file appears in Figure 5-7. At a 
minimum, define the radix for the initialization data—i.e., base 2, 10, or 16—and then 
specify the RAM contents starting with the data at location 0, followed by data at 
subsequent locations.

To include the coefficients file, locate the appropriate section in the CORE Generator 
wizard and check Load Init File, as shown in Figure 5-8. Then, click Load File and select 
the coefficients file.

VHDL or Verilog Instantiation — INIT_xx, INITP_xx

For VHDL and Verilog instantiation, there are two different types of initialization 
attributes. The INIT_xx attributes define the initial contents of the data memory locations. 
The INITP_xx attributes define the initial contents of the parity memory locations.

The INIT_xx attributes on the instantiated primitive define the initial memory contents. 
There are 64 initialization attributes, named INIT_00 through INIT_3F. Each INIT_xx 
attribute is a 64-digit (256-bit) hex-encoded bit vector. The memory contents can be 
partially initialized and any unspecified locations are automatically completed with zeros.

The following formula defines the bit positions for each INIT_xx attribute.

Given yy = convert_hex_to_decimal(xx), INIT_xx corresponds to the following memory 
cells.

• Starting Location: [(yy + 1) * 256] –1

Figure 5-7: A Simple Coefficients File (.coe) Example

Figure 5-8: Specifying Initial RAM Contents in CORE Generator System

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81;

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)

http://www.xilinx.com


180 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 5: Using Block RAM
R

• End Location: (yy) * 256

For example, for the attribute INIT_1F, the conversion is as follows:

• yy = convert_hex_to_decimal(0x1F) = 31

• Starting Location: [(31+1) * 256] –1 = 8191

• End Location: 31 * 256 = 7936

The INITP_xx attributes define the initial contents of the memory cells corresponding to 
parity bits, i.e., those bits that connect to the DIP/DOP buses. By default these memory 
cells are also initialized to all zeros.

The eight initialization attributes from INITP_00 through INITP_07 represent the 
memory contents of parity bits. Each INITP_xx is a 64-digit (256-bit) hex-encoded bit 
vector and behaves like an INIT_xx attribute. The same formula calculates the bit 
positions initialized by a particular INITP_xx attribute.

Data Output Latch Initialization
The block RAM output latches can be initialized to a user-specified value immediately 
after configuration or whenever the global set/reset signal, GSR, is asserted. For dual-port 
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is initialized to zero.

CORE Generator System — Global Init Value

Figure 5-9 describes how to specify the initial value for data output latches in the CORE 
Generator system. The value, specified in hexadecimal, should include one bit per the 
specified data width. For dual-port memories, there is a separate initialization value for 
each port.

Table 5-10: VHDL/Verilog RAM Initialization Attributes for Block RAM

Attribute From To

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

… … …

INIT_3F 16383 16128

Figure 5-9: Specifying Initial Value for Block RAM Data Output Latches

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)
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VHDL or Verilog Instantiation — INIT (INIT_A and INIT_B)

For VHDL or Verilog, the INIT attribute (or INIT_A and INIT_B for dual-port memories) 
defines the output latch value after configuration. The INIT (or INIT_A and INIT_B) 
attribute specifies the initial value for the data and, if applicable, the parity bits. Figure 5-4 
shows the expected bit format for each memory organization with parity bits—if 
applicable—as the more significant bits followed by the data bits. For example, the 
initialization value for a 2Kx9 memory would be nine bits wide and would include one 
parity bit followed by eight data bits. These attributes are hex-encoded bit vectors and the 
default value is 0.

Data Output Latch Synchronous Set/Reset Value
When the synchronous set/reset input, SSR (RST for the RAMB16BWER), is asserted, the 
data output latches are set or reset according to the set/reset value attribute. For dual-port 
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is reset to zero during a valid Synchronous 
Set/Reset operation.

For the RAMB16BWER, the optional output register is also set or reset with the output 
latch.

CORE Generator System — Init Value (SINIT)

Figure 5-10 describes how to specify the synchronous set/reset value for data output 
latches in the CORE Generator system. Check the SINIT pin and then specify the 
synchronous set/reset value in hexadecimal, with one bit per the specified data width. For 
dual-port memories, there is a separate value for each port.

VHDL or Verilog Instantiation — SRVAL (SRVAL_A and SRVAL_B)

For VHDL or Verilog, the SRVAL attribute (or SRVAL_A and SRVAL_B for dual-port 
memories) defines the output latch value after configuration. The SRVAL (or SRVAL_A 
and SRVAL_B) attribute specifies the initial value for the data and, if applicable, the parity 
bits. Figure 5-4 shows the expected bit format for each memory organization with parity 
bits—if applicable—as the more significant bits followed by the data bits. These attributes 
are hex-encoded bit vectors, and the default value is 0.

Read Behavior During Simultaneous Write — WRITE_MODE
To maximize data throughput and utilization of the dual-port memory at each clock edge, 
block RAM supports one of three write modes for each memory port. These different 
modes determine which data is available on the output latches after a valid write clock 
edge to the same port. The default mode, WRITE_FIRST, provides backwards 
compatibility with the older Virtex, Virtex-E, and Spartan-IIE FPGA architectures and is 

Figure 5-10: Specifying the Output Data Latch Set/Reset Value

Output Register Options

0Additional Output Pipe Stages

SINIT pin (sync. reset of output registers)

a5a50fInit Value (Hex)
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also the default behavior for Virtex-II and Virtex-II Pro devices. However, READ_FIRST 
mode is the most useful as it increases the efficiency of block RAM at each clock cycle, 
allowing designs to use maximum bandwidth. In READ_FIRST mode, a memory port 
supports simultaneous read and write operations to the same address on the same clock 
edge, free of any timing complications.

Table 5-11 outlines how the WRITE_MODE setting affects the output data latches on the 
same port, and how it affects the output latches on the opposite port during a 
simultaneous access to the same address.

Mode selection is set by configuration. One of these three modes is set individually for 
each port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

The WRITE_FIRST mode is the default operating mode for backward compatibility 
reasons. For new designs, READ_FIRST mode is recommended.

In this mode, the input data is written into the addressed RAM location memory and 
simultaneously stored in the data output latches, resulting in a transparent write 
operation, as shown in Figure 5-11. The WRITE_FIRST mode provides backwards 
compatibility with the 4 Kbit block RAMs on Virtex/Virtex-E and Spartan-II/Spartan-IIE 
FPGAs and is also the default mode for Virtex-II/Virtex-II Pro block RAMs.

Table 5-11: WRITE_MODE Affects Data Output Latches During Write Operations

Write Mode Effect on Same Port
Effect on Opposite Port 

(Dual-Port Mode Only, Same Address)

WRITE_FIRST

Read After Write 
(Default)

Data on DI, DIP inputs written into specified RAM 
location and simultaneously appears on DO, DOP 
outputs.

Invalidates data on DO, DOP outputs.

READ_FIRST

Read Before Write 
(Recommended)

Data from specified RAM location appears on DO, 
DOP outputs.

Data on DI, DIP inputs written into specified 
location.

Data from specified RAM location appears 
on DO, DOP outputs.

NO_CHANGE

No Read on Write

Data on DO, DOP outputs remains unchanged.

Data on DI, DIP inputs written into specified 
location.

Invalidates data on DO, DOP outputs.

Figure 5-11: Data Flow during a WRITE_FIRST Write Operation

RAM Location

Data_in Data_out

WRITE_MODE = WRITE_FIRST

Address

WE

EN

CLK

X463_11_062503
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Figure 5-12 demonstrates that a valid write operation during a valid read operation results 
in the write data appearing on the data output.

READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the output 
latches, while the new input data is stored in memory, resulting in a read-before-write 
operation shown in Figure 5-13. The older RAM data appears on the data output while the 
new RAM data is stored in the specified RAM location. READ_FIRST mode is the 
recommended operating mode.

Figure 5-14 demonstrates that the older RAM data always appears on the data output, 
regardless of a simultaneous write operation.

Figure 5-12: WRITE_FIRST Mode Waveforms

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) 1111 2222 MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_12_020503

Figure 5-13: Data Flow during a READ_FIRST Write Operation

Data_in Data_out

WRITE_MODE = READ_FIRST

Address

WE

EN

CLK

RAM Location

X463_13_062503
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This mode is particularly useful for building circular buffers and large, block-RAM-based 
shift registers. Similarly, this mode is useful when storing FIR filter taps in digital signal 
processing applications. Old data is copied out from RAM while new data is written into 
RAM.

NO_CHANGE Mode

In NO_CHANGE mode, the output latches are disabled and remain unchanged during a 
simultaneous write operation, as shown in Figure 5-15. This behavior mimics that of 
simple synchronous memory where a memory location is either read or written during a 
clock cycle, but not both.

The NO_CHANGE mode is useful in a variety of applications, including those where the 
block RAM contains waveforms, function tables, coefficients, and so forth. The memory 
can be updated without affecting the memory output.

Figure 5-16 shows that the data output retains the last read data if there is a simultaneous 
write operation on the same port.

Figure 5-14: READ_FIRST Mode Waveforms

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) old MEM(bb) old MEM(cc) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_14_020503

Figure 5-15: Data Flow during a NO_CHANGE Write Operation

RAM Location

Data_in Data_out

WRITE_MODE = NO_CHANGE

Address

WE

EN

CLK

X463_15_062503
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CORE Generator System — Write Mode

To specify the WRITE_MODE in the CORE Generator system, locate the settings for Write 
Mode as shown in Figure 5-17. Select between Read After Write (WRITE_FIRST), Read 
Before Write (READ_FIRST) or No Read On Write (NO_CHANGE).

VHDL or Verilog Instantiation — WRITE_MODE

When instantiating block RAM, specify the write mode via the WRITE_MODE attribute. 
Acceptable values include WRITE_FIRST, READ_FIRST, and NO_CHANGE, as 
demonstrated in the examples in the appendices.

Location Constraints (LOC)
In general, it is best to allow the Xilinx ISE® software to assign a block RAM location. 
However, block RAMs can be constrained to specific locations on a Spartan-3 device using 
an attached LOC property. Block RAM placement locations are device-specific and differ 
from the convention used for naming CLB locations, allowing LOC properties to transfer 
easily from array to array.

The LOC properties use the following form:

LOC = RAMB16_X#Y#

The RAMB16_X0Y0 is the lower-left block RAM location on the device, as shown in 
Figure 5-18. The upper-right block RAM location depends on n, the number of block RAM 
columns, and m, the number of block RAM rows, as provided in Table 5-1, page 163. The 
Spartan-3A DSP platform has four or five columns of block RAM, similar to the XC3S4000 
and XC3S5000 devices.

Figure 5-16: NO_CHANGE Mode Waveforms

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_16_020503

Figure 5-17: Selecting the Write Mode in CORE Generator System

Write Mode

Read After Write Read Before Write No Read On Write
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Location attributes cannot be specified directly in the CORE Generator system. However, 
location constraints can be added to VHDL or Verilog instantiations.

Block RAM Operation
Table 5-12 describes the behavior of block RAM and assumes that all control signals use 
their default, active-High behavior. However, the control signals can be inverted in the 
design if necessary. The table and following text describe the behavior for a single memory 
port. In dual-port mode, both ports perform as independent single-port memories.

All read and write operations to block RAM are synchronous. All inputs have a set-up time 
relative to clock and all outputs have a clock-to-output time.

Figure 5-18: Block RAM LOC Coordinates

Lower
Left

Lower
Right

Upper
Right

Upper
Left

RAMB16_X0Y0

RAMB16_X0Y(m-1) RAMB16_X(n-1)Y(m-1)

XC3S200/A/AN
XC3S400/A/AN

XC3S1000
XC3S1500

XC3S250E
XC3S500E
XC3S1200E
XC3S1600E

XC3S4000
XC3S5000
XC3SD1800A
XC3SD3400A

RAMB16_X(n-1)Y0

n = total columns
m = total rows

XC3S50/A/AN
XC3S100E

UG331_c4_13_033007

XC3S2000

XC3S700A/AN
XC3S1400A/AN

Table 5-12: Block RAM Function Table

Input Signals Output Signals RAM Contents

GSR EN SSR/RST WE CLK ADDR DIP DI DOP DO Parity Data

Immediately After Configuration

Loaded During Configuration X X INITP_xx2 INIT_xx2

Global Set/Reset Immediately after Configuration

1 X X X X X X X INIT3 INIT No Chg No Chg

RAM Disabled

0 0 X X X X X X No Chg No Chg No Chg No Chg

Synchronous Set/Reset

0 1 1 0 Ç X X X SRVAL4 SRVAL No Chg No Chg
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RAM Contents Initialized During Configuration
The initial RAM contents, if specified, are loaded during the Spartan-3 configuration 
process. If no contents are specified, the RAM cells are loaded with zero. The RAM 
contents are protected against spurious writes during configuration.

Global Set/Reset Initializes Data Output Latches Immediately After 
Configuration or Global Reset

Immediately following configuration, the Spartan-3 device begins its start-up procedure 
and asserts the global set/reset signal, GSR, to initialize the state of all flip-flops and 
registers. The initial contents of the block RAM output latches, INIT, are asynchronously 
loaded at this time. The GSR signal does not change or re-initialize the RAM contents.

Enable Input Activates or Disables RAM
If the block RAM is disabled—i.e., EN is Low—then the block RAM retains its present 
state. The enable input must be High for any other operations to proceed.

Synchronous Set/Reset during Write RAM

0 1 1 1 Ç addr pdata Data SRVAL SRVAL RAM(addr) 
pdata

RAM(addr) 
 data

Read RAM, no Write Operation

0 1 0 0 Ç addr X X RAM(pdata) RAM(data) No Chg No Chg

Write RAM, Simultaneous Read Operation

0 1 0 1 Ç addr pdata Data WRITE_MODE = WRITE_FIRST5 (default)

pdata data RAM(addr) 
pdata

RAM(addr) 
 data

WRITE_MODE = READ_FIRST6 (recommended)

RAM(data) RAM(data) RAM(addr) 
pdata

RAM(addr) 
pdata

WRITE_MODE = NO_CHANGE7

No Chg No Chg RAM(addr) 
pdata

RAM(addr) 
pdata

Notes: 
1. No Chg = No Change, addr = address to RAM, data = RAM data, pdata = RAM parity data.
2. Refer to “Content Initialization,” page 179.
3. Refer to “Data Output Latch Initialization,” page 180.
4. Refer to “Data Output Latch Synchronous Set/Reset Value,” page 181.
5. Refer to “WRITE_FIRST or Transparent Mode (Default),” page 182.
6. Refer to “READ_FIRST or Read-Before-Write Mode,” page 183.
7. Refer to “NO_CHANGE Mode,” page 184.

Table 5-12: Block RAM Function Table (Continued)

Input Signals Output Signals RAM Contents

GSR EN SSR/RST WE CLK ADDR DIP DI DOP DO Parity Data
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Synchronous Set/Reset Initializes Data Output Latches
If the block RAM is enabled (EN is High) and the Synchronous Set/Reset signal is asserted 
High, then the data output latches are initialized at the next rising clock edge. The SRVAL 
attribute defines the synchronous set/reset state for the data output latches. This operation 
is different the operation caused by the global set/reset signal, GSR, immediately after 
configuration. The synchronous set/reset input affects the specific RAM block whereas the 
GSR signal affects the entire device.

Simultaneous Write and Synchronous Set/Reset Operations
If a simultaneous write operation occurs during the synchronous set/reset operation, then 
the data on the DI and DIP inputs is stored at the RAM location specified by the ADDR 
input. However, the data output latches are initialized to the SRVAL attribute value as 
described immediately above.

Read Operations Occur on Every Clock Edge When Enable is Asserted
Read operations are synchronous and require a clock edge and an asserted clock enable. 
The data output behavior depends on whether or not a simultaneous write operation 
occurs during the read cycle.

If no simultaneous write cycle occurs during a valid read cycle, then the read address is 
registered on the read port and the data stored in RAM at that address is simply loaded 
into the output latches after the RAM access interval passes.

However, if there is a simultaneous write cycle during the read cycle, then the output 
behavior depends on which of the three write modes is selected, as described immediately 
below.

Write Operations Always Have Simultaneous Read Operation, Data 
Output Latches Affected

During a Write operation, a simultaneous Read operation occurs. The WRITE_MODE 
attribute determines the behavior of the data output latches during the Write operation 
(refer to “Read Behavior During Simultaneous Write — WRITE_MODE,” page 181). By 
default, WRITE_MODE is WRITE_FIRST and the data output latches and the addressed 
RAM locations are updated with the input data during a simultaneous Write operation. 
When WRITE_MODE is READ_FIRST, the output latches are updated with the data 
previously stored in the addressed RAM location and the new data on the DI and DIP 
inputs is stored at the address RAM location. When WRITE_MODE is NO_CHANGE, the 
data output latches are unaffected by a simultaneous Write operation and retain their 
present state.

General Characteristics
• A write operation requires only one clock edge.

• A read operation requires only one clock edge.

• All inputs are registered with the port clock and have a setup-to-clock timing 
specification.

• All outputs have a read-through function or one of three read-during-write functions, 
depending on the state of the WE pin. The outputs relative to the port clock are 
available after the clock-to-out timing interval.

http://www.xilinx.com
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• Block RAM cells are true synchronous RAMs and do not have a combinatorial path 
from the address to the output.

• The ports are completely independent of each other without arbitration. Each port has 
its own clocking, control, address, read/write functions, initialization, and data 
width.

• Output ports are latched with a self-timed circuit, guaranteeing glitch-free read 
operations. The state of the output port does not change until the port executes 
another read or write operation.

Functional Compatibility with Other Xilinx FPGA Families
The block RAM on Spartan-3 generation FPGAs is functionally identical to block RAM on 
the Xilinx Virtex-II/Virtex-II Pro FPGA families. Consequently, design tools that support 
Virtex-II and Virtex-II Pro block RAM also support with Spartan-3 generation FPGAs.

Spartan-3A/3AN/3A DSP FPGAs, while remaining fully backwards compatible with 
Spartan-3/3E FPGAs, also add byte-level write enable controls, similar to those found on 
Virtex-4 FPGAs. The Spartan-3A DSP FPGAs also include a block RAM output register 
similar to those found in the Virtex-4 FPGAs.

Dual-Port RAM Conflicts and Resolution
As a dual-port RAM, the block RAM allows both ports to simultaneously access the same 
memory cell. Potentially, conflicts arise under the following conditions:

1. If the clock inputs to the two ports are asynchronous, then conflicts occur if clock-to-
clock setup time requirements are violated.

2. Both memory ports write different data to the same RAM location during a valid write 
cycle.

3. If a port uses WRITE_MODE=NO_CHANGE or WRITE_FIRST, a write to the port 
invalidates the read data output latches on the opposite port.

If Port A and Port B different memory organizations and consequently different widths, 
only the overlapping bits are invalid when conflicts occur.

Timing Violation Conflicts
When one port writes to a given memory cell, the other port must not address that memory 
cell—either for a write or a read operation—within the clock-to-clock setup window, 
which is equivalent to the block RAM minimum clock period (TBPWH + TBPWL), specified 
in the Spartan-3 generation FPGA family data sheets. Figure 5-19 describes this situation 
where both ports operate from asynchronous clock inputs.

http://www.xilinx.com
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The first rising edge on CLK_A violates the clock-to-clock setup parameter, because it 
occurs too soon after the last CLK_B clock edge. The write operation on port B is valid 
because Data_in_B, Address_B, and WE_B all had sufficient setup time before the rising 
edge on CLK_B. Unfortunately, the read operation on port A is invalid because it depends 
on the RAM contents being written to Address_B and the read clock, CLK_A, happened 
too soon after the write clock, CLK_B.

On the second rising edge of CLK_B, there is another valid write operation to port B. The 
memory location at address (bb) contains 4444. Data on the Data_out_A port is still invalid 
because there has not been another rising clock edge on CLK_A. The second rising edge of 
CLK_A reads the new data at location (bb), which now contains 4444. This time, the read 
operation is valid because there has been sufficient setup time between CLK_B and 
CLK_A.

Simultaneous Writes to Both Ports with Different Data Conflicts
If both ports write simultaneously into the same memory cell with different data, then the 
data stored in that cell becomes invalid, as outlined in Table 5-13.

Figure 5-19: Clock-to-Clock Timing Conflicts

CLK_B

Data_in_B

Address_B

WE_B

aa bb

44443333

UNKNOWN 4444

aa bb

CLK_A

Data_out_A

Address_A

WE_A

MEM(aa)=
3333

Clock-to-clock
setup violation

MEM(bb)=
4444

MEM(cc)=
2222

X463_19_020503

B A B A

cc

2222

READ Port

WRITE Port

Table 5-13: RAM Conflicts During Simultaneous Writes to Same Address

Input Signals

RAM ContentsPort A Port B

WEA CLKB DIPA DIA WEB CLKA DIPB DIB Parity Data

1 Ç DIPA DIA 1 · DIPB DIB ? ?

Notes: 
1. ADDRA=ADDRB, ENA=1, ENB=1, DIPA ≠ DIPB, DIA ≠ DIB, ?=Unknown or invalid data.
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Write Mode Conflicts on Output Latches
Potential conflicts occur when one port writes to memory and the opposite port reads from 
memory. Write operations always succeed, and the write port’s output data latches behave 
as described by the port’s WRITE_MODE attribute. If the write port is configured with 
WRITE_MODE set to NO_CHANGE or WRITE_FIRST, then a write operation to the port 
invalidates the data output latches on the opposite port, as shown in Table 5-14.

Using the READ_FIRST mode does not cause conflicts on the opposite port.

Conflict Resolution
There is no dedicated monitor to arbitrate the result of identical addresses on both ports. 
The application must time the two clocks appropriately. However, conflicting 
simultaneous writes to the same location never cause any physical damage.

Block RAM Design Entry
Various tools help create Spartan-3 block RAM designs, two of which are the Xilinx CORE 
Generator system and VHDL or Verilog instantiation of the appropriate Xilinx library 
primitives.

Xilinx CORE Generator System
The Xilinx CORE Generator system provides both a Single Port Block Memory and a Dual 
Port Block Memory module generator, as shown in Figure 5-5. Both module generators 
support RAM, ROM, and Write Only functions, according to the control signals that are 
selected. Any size memory that can be created in the architecture is supported.

Table 5-14: Conflicts to Output Latches Based on WRITE_MODE

Input Signals Output Signals

Port A Port B Port A Port B

WEA CLKA DIPA DIA WEB CLKB DIPB DIB DOPA DOA DOPB DOB

WRITE_MODE_A=NO_CHANGE

1 Ç DIPA DIA 0 Ç DIPB DIB No Chg No Chg ? ?

WRITE_MODE_B=NO_CHANGE

0 Ç DIPA DIA 1 Ç DIPB DIB ? ? No Chg No Chg

WRITE_MODE_A=WRITE_FIRST

1 Ç DIPA DIA 0 Ç DIPB DIB DIPA DIA ? ?

WRITE_MODE_B=WRITE_FIRST

0 Ç DIPA DIA 1 Ç DIPB DIB ? ? DIPB DIB

WRITE_MODE_A=WRITE_FIRST, WRITE_MODE_B=WRITE_FIRST

1 Ç DIPA DIA 1 Ç DIPB DIB ? ? ? ?

Notes: 
1. ADDRA=ADDRB, ENA=1, ENB=1, ?=Unknown or invalid data
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Both modules are parameterizable as with most CORE Generator modules. To create a 
module, specify the component name and choose to include or exclude control inputs, and 
choose the active polarity for the control inputs. For the Dual-Port Block Memory, once the 
organization or aspect ratio for Port A is selected, only the valid options for Port B are 
displayed.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory 
location initializes to zero. Enter user-specified initial values via a Memory Initialization 
File, consisting of one line of binary data for every memory location. A default file is 
generated by the CORE Generator system. Alternatively, create a coefficients file (.coe), 
which not only defines the initial contents in a radix of 2, 10, or 16, but also defines all the 
other control parameters for the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and 
the device resources required. If a very deep memory is generated, some external 
multiplexing might be required, and these resources are reported as the number of logic 
slices required. In addition, the software reports the number of bits available in block RAM 
that are less than 100% utilized. For simulation purposes, the CORE Generator system 
creates VHDL or Verilog behavioral models. 

• CORE Generator: Single-Port Block Memory module (RAM or ROM)

• CORE Generator: Dual-Port Block Memory module (RAM or ROM)

VHDL and Verilog Instantiation
VHDL and Verilog synthesis-based designs can either infer or directly instantiate block 
RAM, depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and 
Synplicity Synplify both infer block RAM based on the hardware described. The Xilinx ISE 
Project Navigator includes templates for inferring block RAM in your design. To use the 
templates within Project Navigator, select Edit Æ Language Templates from the menu, 
and then select VHDL or Verilog, followed by Synthesis Templates Æ RAM from the 
selection tree. Finally, select the preferred block RAM template.

It is still possible to directly instantiate block RAM, even if portions of the design infer 
block RAM. 

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to 
speed development. Within the Xilinx ISE Project Navigator, select Edit Æ Language 
Templates from the menu, and then select VHDL or Verilog, followed by Component 
Instantiation Æ Block RAM from the selection tree.

The appendices include example code showing how to instantiate block RAM in both 
VHDL and Verilog.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template must be inserted within the VHDL design file. The port map of 
the architecture section must include the signal names used in the application.

The SelectRAM_Ax templates (with x = 1, 2, 4, 9, 18, or 36) are single-port modules and 
instantiate the corresponding RAMB16_Sx module.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/sp_block_mem.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dp_block_mem.pdf
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SelectRAM_Ax_By templates (with x = 1, 2, 4, 9, 18, or 36 and y = 1, 2, 4, 9, 18, or 36) are 
dual-port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Initialization in VHDL or Verilog Codes

Block RAM structures can be initialized in VHDL or Verilog code for both synthesis and 
simulation. For synthesis, the attributes are attached to the block RAM instantiation and 
are copied within the EDIF output file compiled by Xilinx tools. The VHDL code 
simulation uses a generic parameter to pass the attributes. The Verilog code simulation 
uses a defparam parameter to pass the attributes.

The VHDL and Verilog examples in the appendices illustrate these techniques.

Block RAM Applications
Typically, block RAM is used for a variety of local storage applications. However, the 
following section describes additional, perhaps less obvious block RAM capabilities, 
illustrating some powerful capabilities to spur the imagination. 

Creating Larger RAM Structures
Block SelectRAM columns have specialized routing to allow cascading blocks with 
minimal routing delays. Wider or deeper RAM structures incur a small delay penalty. For 
examples of how to create wider block memories, see application note 
XAPP229: Wider Block Memories, which includes a reference design.

Block RAM as Read-Only Memory (ROM)
By tying the write enable input Low, block RAM optionally functions as registered block 
ROM. The ROM outputs are synchronous and require a clock input and perform exactly 
like a block RAM read operation. The ROM contents are defined by the initial contents at 
design time.

After design compilation, the ROM contents can also be updated using the Data2BRAM 
utility described below.

FIFOs
First-In, First-Out (FIFO) memories, also known as elastic stores, are perhaps the most 
common application of block RAM, other than for random data storage. FIFOs typically 
resynchronize data, either between two different clock domains, or between two parts of a 
system that have different data rates, even though they operate from a single clock. The 
Xilinx CORE Generator system provides two parameterizable FIFO modules, one a 
synchronous FIFO where both the read and write clocks are synchronous to one another 
and the other an asynchronous FIFO where the read and write clocks are different.

Application note XAPP261 demonstrates that the FIFO read and write ports can be 
different data widths, integrating the data width converter into the FIFO.

Application note XAPP291 describes a self-addressing FIFO that is useful for throttling 
data in a continuous data stream. 

• CORE Generator: Synchronous FIFO module

• CORE Generator: Asynchronous FIFO module

• XAPP258: FIFOs Using Block RAM, includes reference design

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/sync_fifo.pdf
http://www.xilinx.com/support/documentation/ip_documentation/async_fifo.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp258.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp229.pdf
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• XAPP261: Data-Width Conversion FIFOs Using Block RAM Memory, includes reference 
design

• XAPP291: Self-Addressing FIFO 

Storage for Embedded Processors
Block RAM also enables efficient embedded processor applications. RAM performs a 
variety functions in an embedded processor such as those listed below.

• Register file for processor register set, although for some processors, distributed RAM 
might be a preferred solution.

• Stack or LIFO for stack-based architectures and for call stacks.

• Fast, local code storage. The fast access time to internal block RAM significantly 
boosts the performance of embedded processors. However, on-chip storage is limited 
by the number of available block RAMs.

• Large dual-ported mailbox memory shared with external processor or DSP device.

• Temporary trace buffers (see “Circular Buffers, Shift Registers, and Delay Lines”) to 
ease and enhance application debugging.

Updating Block RAM/ROM Content by Directly Modifying Device 
Bitstream

In a typical design flow, the initial contents of block RAM/ROM is defined at design time 
and compiled into the device bitstream that is downloaded to and configures a Spartan-3 
FPGA.

However, for some applications, the actual memory contents might not be known when 
the bitstream is created or might change later. One example is if a processor embedded 
with the Spartan-3 FPGA uses block RAM to store program code. To avoid recompiling the 
FPGA design just to incorporate a code change, Xilinx provides a utility called Data2MEM 
that updates an existing FPGA bitstream with new block RAM/ROM contents.

As shown in Figure 5-20, the inputs to Data2MEM include the new RAM contents—
typically the output from the embedded processor compiler/linker, the present FPGA 
bitstream, and a file that describes the mapping between the system address space and the 
addressing used on the individual block RAMs and the physical location of each block 
RAM.

Figure 5-20: The Data2BRAM Utility Updates Block RAM Contents in a Bitstream
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or .mem file)
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Mapping Between System
Address Space and Block
RAM, Block RAM Location

(.bmm file)

(.bit file)

(.bit file)

New FPGA Bitstream with
Updated Block RAM Contents

UG331_c4_14_111006

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/d2m/d2m.pdf
http://www.xilinx.com
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Two Independent Single-Port RAMs Using One Block RAM
Some applications might require more single-port RAMs than there are RAM blocks on the 
device. However, a simple trick allows a single block RAM to behave as if it were two, 
completely independent single-port memories, effectively doubling the number of RAM 
blocks on the device. The penalty is that each RAM block is only half the size of the original 
block, up to 9K bits total.

Figure 5-21 shows how to create two independent single-port RAMs from one block RAM. 
Tie the most-significant address bit of one port High and the most-significant address bit of 
the other port Low. Both ports evenly split the available RAM between them.

Both ports are independent, each with its own memory organization, data inputs and 
outputs, clock input, and control signals. For example, Port A could be 256x36 while Port 
B is 2Kx4.

Figure 5-21 splits the available memory evenly between the two ports. With additional 
logic on the upper address lines, the memory can be split into other ratios.

Figure 5-21: One Block RAM Becomes Two Independent Single-Port RAMs
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A 256x72 Single-Port RAM Using One Block RAM
Figure 5-22 illustrates how to create a 256-deep by 72-bit wide single-port RAM using a 
single block RAM. As in the previous example, the memory array is split into halves. One 
half contains the lower 36 bits, and the upper half stores the upper 36 bits, effectively 
creating a 72-bit wide memory.

The most-significant address line, ADDR[8] is tied High on one port and Low on the other. 
Both ports share the same the address inputs, control inputs, and clock input.

Figure 5-22: A 256x72 Single-Port RAM Using a Single Block RAM
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Circular Buffers, Shift Registers, and Delay Lines
Circular buffers are used in a variety of digital signal processing applications, such as finite 
impulse response (FIR) filters, multi-channel filtering, plus correlation and cross-
correlation functions. Circular buffers are also useful simply for delaying data to 
resynchronize it with other parts of a data path.

Figure 5-23 conceptually describes how a circular buffer operates. Data is written into the 
buffer. After n clock cycles, that same data is clocked out of the buffer while new data is 
written to the same location. 

Figure 5-24 describes the hardware implementation to create a circular buffer using block 
RAM. A modulo-n counter drives the address inputs to a single-port block RAM. For 
simple data delay lines, the block RAM writes new data on every clock cycle.

The circular buffer also reads the delayed data value on every clock edge. Using block 
RAM’s READ_FIRST write mode, both the incoming write data and the outgoing read 
data use the same clock input and the same clock edge, both simplifying the design and 
improving overall performance. The actual write and read behavior is described in 
Figure 5-17.

In Figure 5-24, the width of the IN and OUT data ports is identical, although they do not 
need be. Using dual-port mode, the ports can be different widths. Figure 5-25 shows an 
example where byte-wide data enters the block RAM and a 32-bit word exits the block 
RAM. Furthermore, the data can be delayed up to 2,048 byte-clock cycles.

Figure 5-23: Circular Buffer

Figure 5-24: Circular Buffer Implementation Using Block RAM and Counter
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A single block RAM is configured as dual-port memory. The incoming byte-wide data 
feeds Port B, which is configured as a 2Kx9 memory. The outgoing 32-bit data appears on 
Port A and consequently, Port A is configured as a 512x36 memory.

Manipulating the addresses that feeds both ports creates the 4n-byte clock delay. Every 
32-bit output word requires four incoming bytes. Consequently, a divide-by-4 counter 
feeds the two lower address bits, ADDRB[1:0]. After four bytes are stored, a terminal 
count, TC, from the lower counter enables Port A plus a separate divide-by-n counter. The 
enable signal latches the 32-bit output data on Port B and increments the upper counter. 
The combination of the divide-by-4 counter and the divide-by-n counter effectively create 
a divide-by-4n counter. The output from the divide-by-n counter forms the more-
significant address bits to Port B, ADDRB[11:2] and the entire address to Port A, 
ADDRA[9:0]. 

Figure 5-25: Merge Circular Buffer and Port-Width Converter into a Single Block 
RAM

Figure 5-26: Incoming Byte-Wide Data is Delayed 4n Clock Cycles, Converted to 
32-Bit Data
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Fast Complex State Machines and Microsequencers
Because block RAMs can be configured with any set of initial values, they also make 
excellent dual-ported registered ROMs that can be used as state machines. For example, a 
128-state, 8-way branch finite state machine with 38 total state outputs, fits in a single block 
RAM, as shown in Figure 5-27. 

A dual-port block RAM is divided into two completely independent half-size, single-port 
memories by tying the most-significant address bit of one port High and the other one 
Low, similar to Figure 5-21. Port A is configured as 2Kx9 but used as a 1Kx9 single-port 
ROM. Seven outputs feed back as address inputs, stepping through the 128 states. The 
1Kx9 ROM has ten total address lines, seven of which are the current-state inputs and the 
remaining three address inputs determine the eight-way branch. Any of the 128 states can 
conditionally branch to any set of eight new states, under the control of these three address 
inputs. 

Port B is configured as 512 x 36 and used as a 256 x 36 single-port ROM. It receives the same 
7-bit current-state value from Port A, and drives 36 outputs that can be arbitrarily defined 
for each state. However, due to the synchronous nature of block ROM, the 36 outputs from 
the 256x36 ROM are delayed by one clock cycle. The eighth address input can invoke an 
alternate definition of the 36 outputs. Two additional state bits are available from the 1Kx9 
block, but are not delayed by one clock.

This same basic architecture can be modified to form a 256-state finite state machine with 
four-way branch, or a 64-state state machine with 16-way branch. 

If additional branch-control inputs are needed, they can be combined using an input 
multiplexer. The advantages of this design are its low cost (a single block RAM), its high 
performance (125+ MHz), the absence of layout or routing issues, and complete design 
freedom. 

Figure 5-27: 128-State Finite State Machine with 38 Outputs in a Single Block RAM
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Fast, Long Counters Using RAM
A counter is an example of a simple state machine, where the next state depends only on 
the current state. A binary up counter, for example, simply increments the current state to 
create the next state. Figure 5-28 shows a 20-bit binary up counter, with clock enable and 
synchronous reset, implemented in a single block RAM.

A 20-bit binary counter can be constructed from two identical 10-bit binary counters, with 
the lower 10-bit counter enabling the upper 10-bit counter every 1024 clock cycles. In this 
example, Port B is a 1Kx18 ROM (WEB is Low) that forms the lower 10-bit counter. The 10 
less-significant data outputs, representing the current state, connect directly to the 10 
address inputs, ADDRB[9:0]. The next state is looked up in the ROM using the current state 
applied to the address pins. The 11th data bit, D[10], forms the terminal-count output from 
the counter. In this example, the upper seven data bits, DOB[17:11] are unused.

The next-state logic for a binary counter appears in Table 5-15. The counter starts at state 
0—or the value specified by the INIT or SRVAL attributes—and counts through to 0x3FF 
(1023 decimal) at which time the terminal count, D[10], is active and the counter rolls over 
back to 0.

Figure 5-28: Two 10-Bit Counters Create a 20-Bit Binary Counter Using a Single Block RAM
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Port A is configured nearly identically to Port B, except that Port A is enabled by the 
terminal count output from Port B. The 10-bit counter in Port A has the identical counting 
pattern as Port B, except that it increments at 1/1024th the rate of Port B.

With a simple modification, the 20-bit up counter becomes an 18-bit up/down counter. 
Using the most-significant address input as a direction control, the same basic counter 
architecture either increments or decrements its count, as shown in Table 5-16. In this 
example, the counter increments when the Up/Down control is Low and decrements 
when High. The ROM is split between the incrementing and decrementing next-state logic.

Various other counter implementations are possible including the following:

• Binary up and up/down counters of various modulos determined by the 
combinations of the modulos of the counters implemented in Port A and Port B.

Table 5-15: Next-State Logic for Binary Up Counter

Current State State Outputs Next State

TC COUNT

ADDR[9:0]
(Hex) D[10]

D[9:0]
(Hex)

0 0 1

1 0 2

2 0 3

… … …

3FFF 1 0

Table 5-16: Next-State Logic for Binary Up/Down Counter

Up/Down Control Present State State Outputs Next State

TC COUNT

ADDR[9]
ADDR[8:0]

(Hex) D[10]
D[9:0]
(Hex)

0
(Up)

0 0 1

1 0 2

2 0 3

… … …

1FFF 1 0

1
(Down)

1FFF 0 1FFE

1FFE 0 1FFD

1FFD 0 1FFC

… … …

0 1 1FFF
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• Counters with other incrementing and decrementing patterns including fast gray-
code counters.

• A six-digit BCD counter in one block ROM, configured as 512x36, plus one CLB.

Four-Port Memory
Each block RAM is physically a dual-port memory. However, due to the block RAM’s fast 
access performance, it is possible to create multi-port memories by time-division 
multiplexing the signals in and out of the memory. A block RAM with some additional 
logic easily supports up to four ports but at the cost of additional access latency for each 
port. The following application note provides additional details and a reference design.

• XAPP228: Quad-Port Memories in Virtex Devices, includes reference design

Content-Addressable Memory (CAM)
Content-Addressable Memory (CAM), sometimes known as associative memory, is used 
in a variety of networking and data processing applications. In most memory applications, 
content is referenced by an address. In CAM applications, the content is the driving input 
and the output indicates whether or not the content exists in memory and, if so, provides 
a reference to its location.

An easy way to envision how a CAM operates is to think of an index to a book. Looking up 
an item, i.e., the content, first determines whether the item exists in the index, and if it does, 
provides a reference to its location, i.e., the page number of where the item can be found.

• CORE Generator: Content-Addressable Memory module 

• XAPP260: Using Block RAM for High-Performance Read/Write CAMs

• XAPP201: An Overview of Multiple CAM Designs, written for Virtex/Virtex-E and 
Spartan-II/Spartan-IIE architectures but provides a useful overview to the techniques 
involved

Implementing Logic Functions Using Block RAM
Inside every Spartan-3 logic cell, there is a four-input RAM/ROM called a look-up table or 
LUT. The LUT performs any possible logic function of its four inputs and forms the basis of 
the Spartan-3 logic architecture.

Another possible application for block RAM is as a much larger look-up table. In one of its 
organizations, a block RAM—used as ROM in this case—has 14 inputs and a single output. 
Consequently, block RAM is capable of implementing any possible arbitrary logic function 
of up to 14 inputs, regardless of the complexity and regardless of inversions. There are a 
few restrictions, however.

• There cannot be any asynchronous feedback paths in the logic, such as those that 
create latches.

• The logic output must be synchronized to a clock input. Block RAM does not support 
asynchronous read outputs.

If the logic function meets these requirements, then a single block RAM implements the 
following functions.

• Any possible Boolean logic function of up to 14 inputs.

• Nine separate arbitrary Boolean logic functions of 11 inputs, as long as the inputs are 
shared.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp228.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cam.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp260.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp201.pdf
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• Various other combinations are possible, but might have restrictions to the number of 
inputs, the number of shared inputs, or the complexity of the logic function.

Due to the flexibility and speed of CLB logic, block RAM might not be faster or more 
efficient for simple wide functions like an address decoder, where multiple inputs are 
ANDed together. Block RAM is faster and more efficient for complex logic functions, such 
as majority decoders, pattern matching, and correlators.

Fuzzy Pattern Matching Circuit Example

For example, Figure 5-29 illustrates a fuzzy pattern matching circuit that detects both exact 
matches and those patterns that are close enough. Each incoming bit is matched against the 
required MATCH pattern. Then, any “don’t care” bits are masked off, indicating that the 
specific bit should always match. Then, the number of matching bits is counted and 
compared against an activation threshold. If the number of matching bits is greater than 
the activation threshold, then the input data mostly matches the required pattern and the 
MATCH output goes High.

If the application requires a new matching pattern or different logic function, it could be 
loaded via the second memory port.

Implemented in CLB logic, this function would require numerous logic cells and multiple 
layers of logic. However, because the MATCH, MASK, and Threshold values are known in 
advance, the function can be pre-computed and then stored in block RAM. For each input 
condition, i.e., starting at address 0 and incremented through the entire memory, the 
output condition can be precomputed. A 14-input fuzzy pattern matching circuit requires 
a single block RAM and performs the operation in a single clock cycle.

Mapping Logic into Block RAM Using MAP –bp Option

The Xilinx ISE software does not automatically attempt to map logic functions into block 
RAM. However, there is a mapping option to aid the process.

The block RAM mapping option is enabled when using the MAP –bp option. If so enabled, 
the Xilinx ISE logic mapping software attempts to place LUTs and attached flip-flops into 
an unused single-output, single-port block RAM. The final flip-flop output is required as 
block RAMs have a synchronous, registered output. The mapping software packs the flip-

Figure 5-29: A 14-Input Fuzzy Pattern Matching Circuit Implemented in a Single 
Block RAM
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flop with whatever LUT logic is driving it. No register is packed into block RAM without 
LUT logic, and vice versa.

To specify which register outputs are converted to block RAM outputs, create a file 
containing a list of the net names connected to the register output(s). Set the environment 
variable XIL_MAP_BRAM_FILE to the file name, which instructs the mapping software to 
use this file. The MAP program looks for this environment variable whenever the –bp 
option is specified. Only those output nets listed in the file are converted into block RAM 
outputs. 

• PCs: 

set XIL_MAP_BRAM_FILE=file_name 

• Workstations:

setenv XIL_MAP_BRAM_FILE file_name 

Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using 
Block RAM

Another powerful block RAM application is waveform storage, including function tables 
such as trigonometric functions like sine and cosine. Sine and cosine form the backbone of 
other functions such as direct digital synthesis (DDS) to generate output waveforms. The 
Xilinx CORE Generator system provides parameterizable modules for both:

• CORE Generator: Sine/Cosine Look-Up Table module

• CORE Generator: Direct Digital Synthesizer (DDS) module 

Another potential application of waveform storage is in various signal companders 
(compressors/expanders) and normalization circuits used to boost important parts of a 
signal within the available bandwidth. Examples include converters between linear data, 
u-Law encoded data, and A-Law encoded data commonly used in telecommunications.

The dual-port nature of block RAM not only facilitates waveform storage, it also enables an 
application to update the waveform, either with a completely new waveform or with 
corrected or normalized waveform data. In the example shown in Figure 5-30, Port A 
initially contains the currently active waveform. The application can load a new waveform 
on Port B.

Figure 5-30: Dual-Port Block RAM Facilitates Waveform Storage and Updates
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As in real-world engineering, sometimes it is faster to look up an answer than deriving it. 
The same is true in digital designs. Block RAM is also useful for storing pre-computed 
function tables where the output, y, is a function of the input, x, or y=f(x).

For example, instead of creating the CLB logic that implements the following polynomial 
equation, the function can be precomputed and stored in a block RAM.

Y = Ax3 – Bx2 + Cx + D

The values A, B, C, and D are all constants. The output, y, depends only on the input, x. The 
output value can be precomputed for each input value of x and stored in memory. There 
are obvious limitations as the function might not fit in a single logic block either because of 
the range of values for x, or the magnitude of the output, y. For example, a 512x36 block 
ROM implements the above equation for input values between 0 and 511. The range of x is 
limited by its exponential effect on y. With x at its maximum value for this specific 
example, y requires at least 28 output bits.

Some other look-up functions possible in a single block RAM/ROM include the following:

• Various complex arithmetic functions of a single input, including mixtures of 
functions such as log(x), square-root(x). Multipliers of two values are possible but are 
typically limited by the number of block RAM inputs. The Spartan-3 embedded 18x18 
multipliers are a better solution for pure multiplication functions.

• Two independent 11-bit binary to 4-digit BCD converters with the block ROM 
configured as 1Kx18. The least-significant bit (LSB) of each converter bypasses the 
ROM as the converted result is the same as the original value, i.e., the LSB indicates 
whether the value is odd or even. 

• Two independent 3-digit BCD to 10-bit binary converters with the block ROM 
configured as 2Kx9 and the LSBs bypass the converters. 

• Sine-cosine look-up tables using one port for sine and the other one for cosine with 90 
degree-shifted addresses, 18-bit amplitude, and 10-bit angular resolution. 

• Two independent 10-bit binary to three-digit, seven-segment LED output converter 
with the block ROM configured as 1Kx18. Leading zeros are displayed as blanks. 
Because input values are limited to 1023, the LED digits display from “0” to “3FF”. 
Consequently, the logic for the most-significant digit requires only four inputs 
(segment a=d=g, segment f is always High). 

Related Materials and References
• Creative Uses of Block RAM by Peter Alfke, Xilinx, Inc.

• The Myriad Uses of Block RAM by Jan Gray, Gray Research, LLC.
http://www.fpgacpu.org/usenet/bb.html

• Spartan-3A and Spartan-3A DSP FPGA Libraries Guide for HDL Designs, for ISE 10 software, 
by Xilinx, Inc. 
http://www.xilinx.com/itp/xilinx10/books/docs/spartan3a_hdl/spartan3a_hdl.pdf
This document is also located within Project Navigator by selecting HelpÆSoftware 
Manuals. When the Acrobat document appears, click on a Libraries Guide from the table 
of contents on the left.

Conclusion
The Spartan-3 generation FPGA’s abundant, fast, and flexible block RAMs provide 
invaluable on-chip local storage for scratchpad memories, FIFOs, buffers, look-up tables, 

http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp335.pdf
http://www.fpgacpu.org/usenet/bb.html
http://www.xilinx.com/itp/xilinx10/books/docs/spartan3a_hdl/spartan3a_hdl.pdf
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and much more. Using unique capabilities, block RAM implements such functions as shift 
registers, delay lines, counters, and wide, complex logic functions.

Block RAM is supported in applications using the broad spectrum of Xilinx ISE 
development software, including the CORE Generator system and can be inferred or 
directly instantiated in VHDL or Verilog synthesis designs.

Appendix A: VHDL Instantiation Example
The following VHDL instantiation example XC3S_RAMB_1_PORT uses the 
SelectRAM_A36.vhd VHDL template. This and other templates are available for 
download from the following Web link. The following example is a VHDL code snippet 
and will not compile as is.

• xapp463_vhdl.zip 
-- Module: XC3S_RAMB_1_PORT
-- Description: 18Kb Block SelectRAM example
-- Single Port 512 x 36 bits
-- Use template “SelectRAM_A36.vhd"
--
-- Device: Spartan-3 Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity XC3S_RAMB_1_PORT is
port (

DATA_IN : in std_logic_vector (35 downto 0);
ADDRESS : in std_logic_vector (8 downto 0);
ENABLE : in std_logic;
WRITE_EN : in std_logic;
SET_RESET : in std_logic;
CLK : in std_logic;
DATA_OUT : out std_logic_vector (35 downto 0)

);
end XC3S_RAMB_1_PORT;
--
architecture XC3S_RAMB_1_PORT_arch of XC3S_RAMB_1_PORT is
--
-- Components Declarations:
--
component BUFG
port (

I : in std_logic;
O : out std_logic

);
end component;
--
component RAMB16_S36
-- pragma translate_off
generic (
-- "Read during Write" attribute for functional simulation
WRITE_MODE : string := "READ_FIRST" ; -- WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
-- Output value after configuration
INIT : bit_vector(35 downto 0) := X"000000000";
-- Output value if SSR active

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=102524


Spartan-3 Generation FPGA User Guide www.xilinx.com 207
UG331 (v1.5) January 21, 2009

Appendix A: VHDL Instantiation Example
R

SRVAL : bit_vector(35 downto 0) := X"012345678";
-- Initialize parity memory content
INITP_00 : bit_vector(255 downto 0) :=
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
INITP_01 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
INITP_07 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
-- Initialize data memory content
INIT_00 : bit_vector(255 downto 0) :=
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
INIT_01 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
INIT_3F : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000"
);
-- pragma translate_on
port (

DI : in std_logic_vector (31 downto 0);
DIP : in std_logic_vector (3 downto 0);
ADDR : in std_logic_vector (8 downto 0);
EN : in STD_LOGIC;
WE : in STD_LOGIC;
SSR : in STD_LOGIC;
CLK : in STD_LOGIC;
DO : out std_logic_vector (31 downto 0);
DOP : out std_logic_vector (3 downto 0)

);
end component;
--
-- Attribute Declarations:
attribute WRITE_MODE : string;
attribute INIT: string;
attribute SRVAL: string;
-- Parity memory initialization attributes
attribute INITP_00: string;
attribute INITP_01: string;
... (snip)
attribute INITP_07: string;
-- Data memory initialization attributes
attribute INIT_00: string;
attribute INIT_01: string;
... (snip)
attribute INIT_3F: string;
--
-- Attribute "Read during Write mode" = WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
attribute WRITE_MODE of U_RAMB16_S36: label is "READ_FIRST";
attribute INIT of U_RAMB16_S36: label is "000000000";
attribute SRVAL of U_RAMB16_S36: label is "012345678";
--
-- RAMB16 memory initialization for Alliance
-- Default value is "0" / Partial initialization strings are padded
-- with zeros to the left
attribute INITP_00 of U_RAMB16_S36: label is
"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INITP_01 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
attribute INITP_07 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
--
attribute INIT_00 of U_RAMB16_S36: label is

http://www.xilinx.com
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"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INIT_01 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
attribute INIT_3F of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
--
-- Signal Declarations:
--
-- signal VCC : std_logic;
-- signal GND : std_logic;
signal CLK_BUFG: std_logic;
signal INV_SET_RESET : std_logic;
--
begin
-- VCC <= ’1’;
-- GND <=’0’;
--
-- Instantiate the clock buffer
U_BUFG: BUFG
port map (

I => CLK,
O => CLK_BUFG

);
--
-- Use of the free inverter on SSR pin
INV_SET_RESET <= NOT SET_RESET;
-- Block SelectRAM Instantiation
U_RAMB16_S36: RAMB16_S36
port map (

DI => DATA_IN (31 downto 0), -- insert 32 bits data-in bus (<31 downto 0>)
DIP => DATA_IN (35 downto 32), -- insert 4 bits parity data-in bus (or <35

-- downto 32>)
ADDR => ADDRESS (8 downto 0), -- insert 9 bits address bus
EN => ENABLE, -- insert enable signal
WE => WRITE_EN, -- insert write enable signal
SSR => INV_SET_RESET, -- insert set/reset signal
CLK => CLK_BUFG, -- insert clock signal
DO => DATA_OUT (31 downto 0), -- insert 32 bits data-out bus (<31 downto 0>)
DOP => DATA_OUT (35 downto 32) -- insert 4 bits parity data-out bus (or <35 

-- downto 32>)
);
--
end XC3S_RAMB_1_PORT_arch;

http://www.xilinx.com
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Appendix B: Verilog Instantiation Example
The following Verilog instantiation example XC3S_RAMB_1_PORT uses the 
SelectRAM_A36.v Verilog template. This and other templates are available for 
download from the following Web link. The following example is a Verilog code snippet 
and will not compile as is.

• xapp463_verilog.zip 
// Module: XC3S_RAMB_1_PORT
// Description: 18Kb Block SelectRAM-II example
// Single Port 512 x 36 bits
// Use template "SelectRAM_A36.v"
//
// Device: Spartan-3 Family
//-------------------------------------------------------------------
module XC3S_RAMB_1_PORT (CLK, SET_RESET, ENABLE, WRITE_EN, ADDRESS, DATA_IN, 
DATA_OUT);

input CLK, SET_RESET, ENABLE, WRITE_EN;
input [35:0] DATA_IN;
input [8:0] ADDRESS;
output [35:0] DATA_OUT;
wire CLK_BUFG, INV_SET_RESET;

//Use of the free inverter on SSR pin
assign INV_SET_RESET = ~SET_RESET;
// initialize block ram for simulation
defparam
//”Read during Write” attribute for functional simulation
U_RAMB16_S36.WRITE_MODE = “READ_FIRST”, //WRITE_FIRST(default)/ READ_FIRST/ 
NO_CHANGE
//Output value after configuration
U_RAMB16_S36.INIT = 36'h000000000,
//Output value if SSR active
U_RAMB16_S36.SRVAL = 36'h012345678,
//Initialize parity memory content
U_RAMB16_S36.INITP_00 =
256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_01 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
... (snip)
U_RAMB16_S36.INITP_07 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
//Initialize data memory content
U_RAMB16_S36.INIT_00 =
256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INIT_01 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
... (snip)
U_RAMB16_S36.INIT_3F =
256'h0000000000000000000000000000000000000000000000000000000000000000;
//Instantiate the clock Buffer
BUFG U_BUFG ( .I(CLK), .O(CLK_BUFG));
//Block SelectRAM Instantiation
RAMB16_S36 U_RAMB16_S36 (

.DI(DATA_IN[31:0]),

.DIP(DATA_IN-PARITY[35:32]),

.ADDR(ADDRESS),

.EN(ENABLE),

.WE(WRITE_EN),

.SSR(INV_SET_RESET),

.CLK(CLK_BUFG),

.DO(DATA_OUT[31:0]),

.DOP(DATA_OUT-PARITY[35:32]));
// synthesis attribute declarations

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=102525
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/* attribute
WRITE_MODE "READ_FIRST"
INIT "000000000"
SRVAL "012345678"
INITP_00
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INITP_01
"0000000000000000000000000000000000000000000000000000000000000000"
... (snip)
INITP_07
"0000000000000000000000000000000000000000000000000000000000000000"
INIT_00
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INIT_01
"0000000000000000000000000000000000000000000000000000000000000000"
... (snip)
INIT_3F
"0000000000000000000000000000000000000000000000000000000000000000"
*/
endmodule

http://www.xilinx.com
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Chapter 6

Using Look-Up Tables as Distributed 
RAM

Summary
Each Spartan®-3 generation Configurable Logic Block (CLB) contains up to 64 bits of 
single-port RAM or 32 bits of dual-port RAM. This RAM is distributed throughout the 
FPGA and is commonly called “distributed RAM” to distinguish it from the 18-Kbit block 
RAM. Distributed RAM is also referred to as LUT RAM. Distributed RAM is fast, localized, 
and ideal for small data buffers, FIFOs, or register files. This chapter describes the features 
and capabilities of distributed RAM and illustrates how to specify the various options 
using the Xilinx CORE Generator system or via VHDL or Verilog instantiation.

Introduction
In addition to the embedded 18-Kbit block RAMs, Spartan-3 generation FPGAs feature 
distributed RAM within each Configurable Logic Block (CLB). Each SLICEM function 
generator or LUT within a CLB resource optionally implements a 16-deep x 1-bit 
synchronous RAM. The LUTs within a SLICEL slice do not have distributed RAM.

Distributed RAM writes synchronously and reads asynchronously. However, if required 
by the application, use the register associated with each LUT to implement a synchronous 
read function. Each 16 x 1-bit RAM is cascadable for deeper and/or wider memory 
applications, with a minimal timing penalty incurred through specialized logic resources.

Spartan-3 generation CLBs support various RAM primitives up to 64-deep by 1-bit-wide. 
Two LUTs within a SLICEM slice combine to create a dual-port 16x1 RAM—one LUT with 
a read/write port, and a second LUT with a read-only port. One port writes into both 16x1 
LUT RAMs simultaneously, but the second port reads independently.

Distributed RAM is crucial to many high-performance applications that require relatively 
small embedded RAM blocks, such as FIFOs or small register files. The Xilinx 
CORE Generator software automatically generates optimized distributed RAMs for the 
Spartan-3 generation architecture. Similarly, the CORE Generator system creates 
Asynchronous and Synchronous FIFOs using distributed RAMs.

Single-Port and Dual-Port RAMs

Data Flow

Distributed RAM supports the following memory types:
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• Single-port RAM with synchronous write and asynchronous read. Synchronous reads 
are possible using the flip-flop associated with distributed RAM.

• Dual-port RAM with one synchronous write and two asynchronous read ports. As 
above, synchronous reads are possible.

As illustrated in Figure 6-1, dual-port distributed RAM has one read/write port and an 
independent read port.

Any write operation on the D input and any read operation on the SPO output can occur 
simultaneously with and independently from a read operation on the second read-only 
port, DPO.

Write Operations
The write operation is a single clock-edge operation, controlled by the write-enable input, 
WE. By default, WE is active High, although it can be inverted within the distributed RAM. 
When the write enable is High, the clock edge latches the write address and writes the data 
on the D input into the selected RAM location.

When the write enable is Low, no data is written into the RAM. 

Read Operation
A read operation is purely combinatorial. The address port—either for single- or dual-port 
modes—is asynchronous with an access time equivalent to a LUT logic delay.

Read During Write
When synchronously writing new data, the output reflects the data as it is written to the 
addressed memory cell, which is similar to the WRITE_MODE=WRITE_FIRST 
(transparent) mode on the Spartan-3 generation block RAMs. The timing diagram in 
Figure 6-2 illustrates a write operation with the previous data read on the output port, 
before the clock edge, followed by the new data.

Figure 6-1: Single-Port and Dual-Port Distributed RAM
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Characteristics
• A write operation requires only one clock edge.

• A read operation requires only the logic access time.

• Outputs are asynchronous and dependent only on the LUT logic delay.

• Data and address inputs are latched with the write clock and have a setup-to-clock 
timing specification. There is no hold time requirement.

• For dual-port RAM, the A[#:0] port is the write and read address, and the DPRA[#:0] 
port is an independent read-only address.

Distributed RAM in the CLB
The distributed RAM takes advantage of the resources described in Chapter 4, “Using 
Configurable Logic Blocks (CLBs).” One SLICEM LUT stores 16 bits (RAM16). The four 
LUT inputs F[4:1] or G[4:1] become the address lines labeled A[4:1] in the device model 
and A[3:0] in the design components, providing a 16x1 configuration in one LUT. Multiple 
SLICEM LUTs can be combined in various ways to store larger amounts of data, including 
16x4, 32x2, or 64x1 configurations in one CLB. The fifth and sixth address lines required for 
the 32-deep and 64-deep configurations, respectively, are implemented using the BX and 
BY inputs, which connect to the write enable logic for writing and the F5MUX and F6MUX 
for reading.

Writing to distributed RAM is always synchronous to the SLICEM clock (WCLK for 
distributed RAM) and enabled by the SLICEM SR input which functions as the active-
High write enable (WE). The read operation is asynchronous, and, therefore, during a 
write, the output initially reflects the old data at the address being written.

The distributed RAM outputs can be captured using the flip-flops within the SLICEM 
element. The WE control for the RAM and the clock-enable (CE) control for the flip-flop are 
independent, but the WCLK and CLK clock inputs are shared. Because the RAM read 
operation is asynchronous, the output data always reflects the currently addressed RAM 
location.

A dual-port option combines two LUTs so that memory access is possible from two 
independent data lines. The same data is written to both 16x1 memories but they have 
independent read address lines and outputs. The dual-port function is implemented by 

Figure 6-2: Write Timing Diagram

tread
twrite

Previous
Data

d

d

aa

MEM(aa)

New
Data

tread

WCLK

DATA_IN

ADDRESS

WRITE_EN

DATA_OUT

x464_02_070303

http://www.xilinx.com


214 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 6: Using Look-Up Tables as Distributed RAM
R

cascading the G-LUT address lines, which are used for both read and write operations, to 
the F-LUT write address lines (WF[4:1] in Figure 4-2, page 154), and by cascading the 
G-LUT data input DI through the DIF_MUX in Figure 4-2 and to the DI input on the 
F-LUT. One CLB provides a 16x1 dual-port memory as shown in Figure 6-5, page 220.

The INIT attribute can be used to preload the memory with data during FPGA 
configuration. The default initial contents for RAM is all zeros. If WE is held Low, the 
element can be considered a ROM. The ROM function can be implemented in the SLICEL.

Distributed RAM Differences between Spartan-3 Generation 
Families

The distributed RAM is identical among all Spartan-3 generation families. There are 
different amounts of distributed RAM per device (see Table 6-1). The performance varies 
slightly between families due to minor variations in processing and characterization. 

Table 6-1: Distributed RAM Resources by FPGA Family and Device

Feature Distributed RAM Blocks Distributed RAM Bits

Extended Spartan-3A Family

XC3SD1800A 16,640 266,240

XC3SD3400A 23,872 381,952

XC3S50A/AN 704 11,264

XC3S200A/AN 1,792 28,672

XC3S400A/AN 3,584 57,344

XC3S700A/AN 5,888 94,208

XC3S1400A/AN 11,264 180,224

Spartan-3E Family

XC3S100E 960 15,360

XC3S250E 2,448 39,168

XC3S500E 4,656 74,496

XC3S1200E 8,672 138,752

XC3S1600E 14,752 236,032

Spartan-3 Family

XC3S50 768 12,288

XC3S200 1,920 30,720

XC3S400 3,584 57,344

XC3S1000 7,680 122,880

XC3S1500 13,312 212,992

XC3S2000 20,480 327,680
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Compatibility with Other Xilinx FPGA Families
Each Spartan-3 generation distributed RAM operates identically to the distributed RAM 
found in Virtex®, Virtex-E, Spartan-II, Spartan-IIE, Virtex-II, and Virtex-II Pro FPGAs.

Table 6-2 shows the basic memory capabilities embedded within the CLBs on various 
Xilinx FPGA families. Like Virtex-II/Virtex-II Pro FPGAs, Spartan-3 generation CLBs have 
eight LUTs and implement 128 bits of ROM memory. Like the Virtex/Virtex-E and 
Spartan-II/Spartan-IIE FPGAs, Spartan-3 generation CLBs have 64 bits of distributed 
RAM. Although the Spartan-3 and Virtex-II/Virtex-II Pro CLBs are identical for logic 
functions, the Spartan-3 generation CLBs have half the amount of distributed RAM within 
each CLB.

Table 6-3 lists the various single- and dual-port distributed RAM primitives supported by 
the different Xilinx FPGA families. For each type of RAM, the table indicates how many 
instances of a particular primitive fit within a single CLB. For example, two 32x1 single-
port RAM primitives fit in a single Spartan-3 generation CLB. Similarly, two 16x1 dual-port 
RAM primitives fit in a Spartan-3 generation CLB but a single 32x1 dual-port RAM 
primitive does not.

XC3S4000 27,648 442,368

XC3S5000 33,280 532,480

Table 6-1: Distributed RAM Resources by FPGA Family and Device (Continued)

Feature Distributed RAM Blocks Distributed RAM Bits

Table 6-2: Distributed Memory Features by FPGA Family

Feature
Spartan-3 

Generation

Virtex/Virtex-E, 
Spartan-II/Spartan-IIE 

Families

Virtex-II, 
Virtex-II Pro 

Families

Virtex-4 
Family

Virtex-5 
Family

LUTs per CLB 8 4 8 8 8

ROM bits per CLB 128 64 128 128 256

Single-port RAM bits per CLB 64 64 128 64 256

Dual-port RAM bits per CLB 32 32 64 32 128

Table 6-3: Single- and Dual-port RAM Primitives Supported in a CLB by Family

Family
Single-Port RAM Dual-Port RAM

16x1 32x1 64x1 128x1 16x1 32x1 64x1

Spartan-3 Generation FPGAs 4 2 1 - 2 - -

Spartan-II/Spartan-IIE FPGAs

Virtex/Virtex-E FPGAs

4 2 1 - 2 - -

Virtex-II/Virtex-II Pro FPGAs 8 4 2 1 4 2 1

Virtex-4 FPGAs 4 2 1 - 2 - -

Virtex-5 FPGAs 8 6 4 2 4 4 2
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Library Primitives
There are four library primitives that support Spartan-3 generation distributed RAM, 
ranging from 16 bits deep to 64 bits deep. All the primitives are one bit wide. Three 
primitives are single-port RAMs and one primitive is dual-port RAM, as shown in 
Table 6-4.

The input and output data are one bit wide. However, several distributed RAMs, 
connected in parallel, easily implement wider memory functions.

Figure 6-3 shows generic single-port and dual-port distributed RAM primitives. The 
A[#:0] and DPRA[#:0] signals are address buses.

Table 6-4: Single-Port and Dual-Port Distributed RAMs

Primitive
RAM Size

(Depth x Width)
Type Address Inputs

RAM16X1S 16 x 1 Single-port A3, A2, A1, A0

RAM32X1S 32 x 1 Single-port A4, A3, A2, A1, A0

RAM64X1S 64 x 1 Single-port A5, A4, A3, A2, A1, A0

RAM16X1D 16 x 1 Dual-port A3, A2, A1, A0

Figure 6-3: Single-Port and Dual-Port Distributed RAM Primitives

Table 6-5: Dual-Port RAM Function

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D D data_d

1 (read) ↓ X data_a data_d

Notes: 
1. data_a = word addressed by bits A#-A0.
2. data_d = word addressed by bits DPRA#-DPRA0.
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As shown in Table 6-6, wider library primitives are available for 2-bit and 4-bit RAMs.

Signal Ports
Each distributed RAM port operates independently of the other while reading the same set 
of memory cells.

Clock — WCLK
The clock is used for synchronous writes. The data and the address input pins have setup 
times referenced to the WCLK pin. Active on the positive edge by default with built-in 
programmable polarity.

Enable — WE
The enable pin affects the write functionality of the port. An inactive Write Enable prevents 
any writing to memory cells. An active Write Enable causes the clock edge to write the data 
input signal to the memory location pointed to by the address inputs. Active High by 
default with built-in programmable polarity.

Address — A0, A1, A2, A3 (A4, A5, A6, A7)
The address inputs select the memory cells for read or write. The width of the port 
determines the required address inputs. 

Note: The address inputs are not a bus in VHDL or Verilog instantiations.

Dual-Port Read Address — DPRA0, DPRA1, DPRA2, DPRA3
On the RAM16X1D, the dual-port address inputs select the memory cells for reading on 
the DPO output. Does not affect the write process.

Data In — D
The data input provides the new data value to be written into the RAM.

Data Out — O, SPO, and DPO
The data output O on single-port RAM or the SPO and DPO outputs on dual-port RAM 
reflects the contents of the memory cells referenced by the address inputs. Following an 
active write clock edge, the data out (O or SPO) reflects the newly written data. Registered 
outputs use the available flip-flop within the SLICEM element.

Table 6-6: Wider Library Primitives

Primitive
RAM Size

(Depth x Width)
Data Inputs Address Inputs Data Outputs

RAM16X2S 16 x 2 D1, D0 A3, A2, A1, A0 O1, O0

RAM32X2S 32 x 2 D1, D0 A4, A3, A2, A1, A0 O1, O0

RAM16X4S 16 x 4 D3, D2, D1, D0 A3, A2, A1, A0 O3, O2, O1, O0
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Inverting Control Pins
The two control pins, WCLK and WE, each have an individual inversion option. Any 
control signal, including the clock, can be active at logic level 0 (negative edge for the clock) 
or at logic level 1 (positive edge for the clock) without requiring other logic resources.

Global Set/Reset — GSR
The global set/reset (GSR) signal does not affect distributed RAM modules.

Global Write Enable — GWE
The global write enable signal, GWE, is asserted automatically at the end of device 
configuration to enable all writable elements. The GWE signal guarantees that the 
initialized distributed-RAM contents are not disturbed during the configuration process. 
GWE is also used to ensure that Distributed RAM maintains its value during the 
Spartan-3A/3AN/3A DSP Suspend mode.

Because GWE is a global signal and automatically connected throughout the device, the 
distributed RAM primitive does not have a GWE input pin.

Attributes

Content Initialization — INIT
By default, distributed RAM is initialized with all zeros during the device configuration 
sequence. To specify [non-zero] initial memory contents after configuration, use the INIT 
attributes. Each INIT is a hexadecimal-encoded bit vector, arranged from most-significant 
to least-significant bit. In other words, the right-most hexadecimal character represents 
RAM locations 3, 2, 1, and 0. Table 6-7 shows the length of the INIT attribute for selected 
primitives.

The INIT attribute is required for any ROM instantiation. The ROM is initialized to the 
INIT value at configuration and does not change during operation. For example, on a 
ROM16X1, the parameter INIT = 10A7 produces the following datastream:

0001 0000 1010 0111

Table 6-7: INIT Attributes Length

Primitive Template INIT Attribute Length

RAM16X1S RAM_16S 4 digits

RAM32X1S RAM_32S 8 digits

RAM64X1S RAM_64S 16 digits

RAM16X1D RAM_16D 4 digits
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Placement Location — LOC
Each Spartan-3 generation CLB contains four slices, each with its own location coordinate, 
as shown in Figure 6-4. Distributed RAM fits only in SLICEM slices. The ‘M’ in SLICEM 
indicates that the slice supports memory-related functions and distinguishes SLICEMs 
from SLICELs. The ‘L’ indicates that the slice supports logic only although the SLICEL can 
also support ROM.

When a LOC property is assigned to a distributed RAM instance, the Xilinx ISE® software 
places the instance in the specified location. Figure 6-4 shows the X,Y coordinates for the 
slices in a Spartan-3 generation CLB. Again, only SLICEM slices support memory.

Distributed RAM placement locations use the slice location naming convention, allowing 
LOC properties to transfer easily from array to array.

For example, the single-port RAM16X1S primitive fits in any LUT within any SLICEM. To 
place the instance U_RAM16 in slice X0Y0, use the following LOC assignment:

INST "U_RAM16" LOC = "SLICE_X0Y0";

The 16x1 dual-port RAM16X1D primitive requires both 16x1 LUT RAMs within a single 
SLICEM slice, as shown in Figure 6-5. The first 16x1 LUT RAM, with output SPO, 
implements the read/write port controlled by address A[3:0] for read and write. The 
second LUT RAM implements the independent read-only port controlled by address 
DPRA[3:0]. Data is presented simultaneously to both LUT RAMs, again controlled by 
address A[3:0], WE, and WCLK.

Figure 6-4: SLICEM Slices within a Spartan-3 Generation CLB
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A 32x1 single-port RAM32X1S primitive fits in one slice, as shown in Figure 6-6. The 32 bits 
of RAM are split between two 16x1 LUT RAMs within the SLICEM slice. The A4 address 
line selects the active LUT RAM via the F5MUX multiplexer within the slice.

Figure 6-5: RAM16X1D Placement

Figure 6-6: RAM32X1S Placement
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The 64x1 single-port RAM64X1S primitive occupies both SLICEM slices in the CLB. The 
read path uses both F5MUX and F6MUX multiplexers within the CLB.

Table 6-8 shows all Distributed RAM design elements and the number of slices required in 
the Spartan-3 generation FPGA families.

Distributed RAM Design Entry
To specify distributed RAM in an application, use one of the various design entry tools, 
including the Xilinx CORE Generator software or VHDL or Verilog.

Xilinx CORE Generator System
The Xilinx CORE Generator system creates distributed memory designs for both single-
port and dual-port RAMs, ROMs, and even SRL16 shift-register functions. 

The Distributed Memory module is parameterizable; the depth can range from 16 to 65536 
words in multiples of 16, and the width of each word can be anywhere in the range of 1 bit 
to 1024 bits. To create a module, specify the component name and choose to include or 
exclude control inputs, then choose the active polarity for the control inputs. Options are 
available for simple registering of inputs and outputs. Optional asynchronous and 
synchronous resets are available for the output registers.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory 
location initializes to zero. Enter user-specified initial values via a Memory Initialization 
File, consisting of one line of binary data for every memory location. A default file is 
generated by the CORE Generator system. Alternatively, create a coefficients file (.coe) as 
shown in Figure 6-7, which not only defines the initial contents in a radix of 2, 10, or 16, but 
also defines all the other control parameters for the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and 
the device resources required. If a very deep memory is generated, then some external 
multiplexing might be required; these resources are reported as the number of logic slices 

Table 6-8: Distributed RAM Design Element and Required Slices

Element Slices Element Slices Element Slices

RAM16X1D 1 RAM32X1S_1 1 RAM128X1S_1 4

RAM16X1D_1 1 RAM32X2S 2 ROM16X1 0.5

RAM16X1S 0.5 RAM32X4S 4 ROM32X1 1

RAM16X1S_1 0.5 RAM32X8S 8 ROM64X1 2

RAM16X2S 1 RAM64X1S 2 ROM128X1 4

RAM16X4S 2 RAM64X1S_1 2 ROM256X1 8

RAM16X8S 4 RAM64X2S 4

RAM32X1S 1 RAM128X1S 4

Figure 6-7: A Simple Coefficients File (.coe) Example for a Byte-Wide Memory

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81; 
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required. For simulation purposes, the CORE Generator system creates VHDL or Verilog 
behavioral models.

The CORE Generator FIFO Generator supports both distributed and block RAMs.

• CORE Generator: Distributed Memory Module
http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen_ds322.pdf

• CORE Generator: FIFO Generator
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ds317.pdf

VHDL and Verilog
VHDL and Verilog synthesis-based designs can either infer or directly instantiate 
distributed RAM, depending on the specific logic synthesis tool used to create the design.

Inferring Distributed RAM

Most VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and 
Synplicity Synplify, infer distributed RAM based on the hardware described. The Xilinx 
ISE Project Navigator includes templates for inferring distributed RAM in your design. To 
use the templates within Project Navigator, select Edit Æ Language Templates from the 
menu, and then select VHDL or Verilog, followed by Synthesis Constructs Æ Coding 
Examples Æ RAM from the selection tree. Finally, select the preferred distributed RAM 
template. Cut and paste the template into the source code for the application and modify it 
as appropriate.

VHDL Inference Template Example

process (<clock>)
begin
   if (<clock>'event and <clock> = '1') then
      if (<write_enable> = '1') then
         <ram_name>(conv_integer(<address>)) <= <input_data>;
      end if;
   end if;
end process;

<ram_output> <= <ram_name>(conv_integer(<address>));

Verilog Inference Template Example

parameter RAM_WIDTH = <ram_width>;
   parameter RAM_ADDR_BITS = <ram_addr_bits>;

   reg [RAM_WIDTH-1:0] <ram_name> [(2**RAM_ADDR_BITS)-1:0];

   wire [RAM_WIDTH-1:0] <output_data>;

   <reg_or_wire> [RAM_ADDR_BITS-1:0] <address>;
   <reg_or_wire> [RAM_WIDTH-1:0] <input_data>;

   always @(posedge <clock>)
      if (<write_enable>)
         <ram_name>[<address>] <= <input_data>;

   assign <output_data> = <ram_name>[<address>];   

http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen_ds322.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ds317.pdf
http://www.xilinx.com
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It is still possible to directly instantiate distributed RAM, even if portions of the design 
infer distributed RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to 
speed development. Within the Xilinx ISE Project Navigator, select Edit Æ Language 
Templates from the menu, and then select VHDL or Verilog, followed by Device 
Primitive Instantiation Æ FPGA Æ RAM/ROM Æ Distributed RAM from the selection 
tree. Cut and paste the template into the source code for the application and modify it as 
appropriate.

There are also downloadable VHDL and Verilog templates available for all single-port and 
dual-port primitives. The RAM_xS templates (where x = 16, 32, or 64) are single-port 
modules and instantiate the corresponding RAMxX1S primitive. The ‘S’ indicates single-
port RAM. The RAM_16D template is a dual-port module and instantiates the 
corresponding RAM16X1D primitive. The ‘D’ indicates dual-port RAM.

• VHDL Distributed RAM Templates
xapp464_vhdl.zip 

• Verilog Distributed RAM Templates
xapp464_verilog.zip 

The following are single-port templates:

• RAM_16S

• RAM_32S

• RAM_64S

The following is a dual-port template:

• RAM_16D

In VHDL, each template has a component declaration section and an architecture section. 
Insert both sections of the template within the VHDL design file. The port map of the 
architecture section must include the design signal names.

Templates for the RAM_16S module are provided below as examples in both VHDL and 
Verilog code.

VHDL Instantiation Template Example

--- RAM16X1S : In order to incorporate this function into the design,
-- VHDL    : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM16X1S_inst) and/or the port 
-- code    : declarations after the "=>" assignment maybe changed
--            : to properly reference and connect this function to the 
--            : design. All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to
-- for : be added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
--            : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

http://www.xilinx.com
http://www.xilinx.com/webreg/clickthrough.do?cid=102524
https://secure.xilinx.com/webreg/clickthrough.do?cid=55804
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Library UNISIM;
use UNISIM.vcomponents.all;

-- <-----Cut code below this line and paste into architecture body---->

   -- RAM16X1S: 16 x 1 posedge write distributed => Distributed RAM
-- Xilinx HDL Language Template

   RAM16X1S_inst : RAM16X1S
   generic map (
      INIT => X"0000")
   port map (
      O => O,       -- RAM output
      A0 => A0,     -- RAM address[0] input
      A1 => A1,     -- RAM address[1] input
      A2 => A2,     -- RAM address[2] input
      A3 => A3,     -- RAM address[3] input
      D => D,       -- RAM data input
      WCLK => WCLK, -- Write clock input
      WE => WE      -- Write enable input

);

   -- End of RAM16X1S_inst instantiation

Verilog Instantiation Template Example

// RAM16X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAM16X1S_inst) and/or the port declarations within
// code : the parenthesis may be changed to properly reference and
//            : connect this function to the design. All inputs
//            : and outputs must be connected.

// <-----Cut code below this line---->

   // RAM16X1S: 16 x 1 posedge write distributed (LUT) RAM
// Xilinx HDL Language Template

   RAM16X1S #(
.INIT(16'h0000) // Initial contents of RAM

) RAM16X1S_inst (
      .O(O),       // RAM output
      .A0(A0),     // RAM address[0] input
      .A1(A1),     // RAM address[1] input
      .A2(A2),     // RAM address[2] input
      .A3(A3),     // RAM address[3] input
      .D(D),       // RAM data input
      .WCLK(WCLK), // Write clock input
      .WE(WE)      // Write enable input
   );

   // End of RAM16X1S_inst instantiation
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Wider Distributed RAM Modules

Table 6-9 shows the VHDL and Verilog distributed RAM examples that implement n-bit-
wide memories.

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis 
and simulation. For synthesis, the attributes are attached to the distributed RAM 
instantiation and are copied in the EDIF output file to be compiled by Xilinx ISE Series 
tools. The VHDL code simulation uses a generic parameter to pass the attributes. The 
Verilog code simulation uses a defparam parameter to pass the attributes.

Conclusion
Frequently FPGA designs require multiple small, fast, and flexible memories for system 
configuration, control, and status functions. These memories are usually distributed 
throughout the design. The distributed RAM in the Spartan-3 generation FPGAs is ideal 
for such applications, and allows the CLBs to be changed from logic to memory "on 
demand". These memories can then be linked together for various data width or depth 
requirements. The Xilinx tools automatically use distributed RAM for small arrays or they 
can be instantiated in a design.

Related Materials and References
The following list provides additional information:

• Chapter 5, “Using Block RAM”

• Chapter 4, “Using Configurable Logic Blocks (CLBs)”

• Chapter 7, “Using Look-Up Tables as Shift Registers (SRL16)”

• RAM and ROM Application Notes

http://www.xilinx.com/support/documentation/ram_and_rom.htm 

• Distributed Memory Generator Xilinx IP Core

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DIST_MEM_GEN 

• Xilinx ISE Software Manuals

http://www.xilinx.com/support/software_manuals.htm

Table 6-9: VHDL and Verilog Submodules

Submodules Primitive Size Type

XC3S_RAM16XN_S_SUBM RAM16X1S 16 words x n-bit Single-port

XC3S_RAM32XN_S_SUBM RAM32X1S 32 words x n-bit Single-port

XC3S_RAM64XN_S_SUBM RAM64X1S 64 words x n-bit Single-port

XC3S_RAM16XN_D_SUBM RAM16X1D 16 words x n-bit Dual-port

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ram_and_rom.htm 
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DIST_MEM_GEN
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Chapter 7

Using Look-Up Tables as Shift Registers 
(SRL16)

Summary
The SRL16 is an alternative mode for the look-up tables where they are used as 16-bit shift 
registers. Using this Shift Register LUT (SRL) mode can improve performance and rapidly 
lead to cost savings of an order of magnitude. Although the SRL16 can be automatically 
inferred by the software tools, considering their effective use can lead to more cost-
effective designs.

Shift Register Differences between Spartan-3 Generation Families
This chapter applies to all Spartan®-3 generation FPGA families. Each SRL16 shift register 
is identical within a family, and the SRL16 function is identical among all Spartan-3 
generation families. The performance varies slightly between families due to minor 
variations in processing and characterization. The number of SRL16 shift registers is the 
same as the number of distributed RAM blocks, as shown in Table 6-1, page 214.

Introduction
Spartan-3 generation FPGAs can configure the look-up table (LUT) in a SLICEM slice as a 
16-bit shift register without using the flip-flops available in each slice. Shift-in operations 
are synchronous with the clock, and output length is dynamically selectable. A separate 
dedicated output allows the cascading of any number of 16-bit shift registers to create 
whatever size shift register is needed. Each CLB resource can be configured using four of 
the eight LUTs as a 64-bit shift register.

This document provides generic VHDL and Verilog submodules and reference code 
examples for implementing from 16-bit up to 64-bit shift registers. These submodules are 
built from 16-bit shift-register primitives and from dedicated MUXF5, MUXF6, and 
MUXF7 multiplexers.

These shift registers enable the development of efficient designs for applications that 
require delay or latency compensation. Shift registers are also useful in synchronous FIFO 
and Content-Addressable Memory (CAM) designs. To quickly generate a Spartan-3 shift 
register without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator 
RAM-based Shift Register module. 
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Shift Register Architecture
The structure of the SRL16 is described from the bottom up, starting with the shift register 
and then building up to the surrounding FPGA structure.

LUT Structure
The LUT can be described as a 16:1 multiplexer with the four inputs serving as binary 
select lines, and the values programmed into the LUT serving as the data being selected 
(see Figure 7-1).

With the SRL16 configuration, the fixed LUT values are configured instead as an 
addressable shift register (see Figure 7-2). The shift register inputs are the same as those for 
the synchronous RAM configuration of the LUT: a data input, clock, and clock enable (not 
shown). A special output for the shift register is provided from the last flip-flop, called Q15 
on the library primitives or MC15 in the FPGA Editor. The LUT inputs asynchronously (or 
dynamically) select one of the 16 storage elements in the shift register.

Dynamic Length Adjustment

The address can be thought of as dynamically changing the length of the shift register. If D 
is used as the shift register output instead of Q15, setting the address to 7 (0111) selects Q7 
as the output, emulating an 8-bit shift register. Note that since the address lines control the 
mux, they provide an asynchronous path to the output.

Logic Cell Structure
The F-LUT and the G-LUT in the SLICEM are used as the basis of the SRL16 (see the details 
of the CLB structure in Figure 4-2, page 154). The SLICEM LUTs cascade from the G-LUT 
MC15 output to the F-LUT DI input through the DIFMUX. The SHIFTIN and SHIFTOUT 
lines cascade a SLICEM to the SLICEM below through the DIGMUX to form larger shift 
registers. 

Figure 7-1: LUT Modeled as a 16:1 Multiplexer

x465_01_070603

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 0 1 1 1 0 0 0

D

A[3:0]

1 1 1 0 1 0 0 1

Figure 7-2: LUT Configured as an Addressable Shift Register
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Each shift register provides a shift output MC15 for the last bit in each LUT, in addition to 
providing addressable access to any bit in the shift register through the normal D output 
(Figure 7-3). The address inputs A[3:0] are the same as the distributed RAM address lines, 
which come from the LUT inputs F[4:1] or G[4:1].

Registered Output

Each SRL16 LUT has an associated flip-flop that makes up the overall logic cell. The 
addressable bit of the shift register can be stored in the flip-flop for a synchronous output 
or can be fed directly to a combinatorial output of the CLB. When using the register, it is 
best to have fixed address lines selecting a static shift register length to avoid timing 
hazards. The CLB flip-flop can be used to provide one more shift delay for the addressable 
bit. Since the clock-to-output delay of the flip-flop is faster than the shift register, 
performance can be improved by addressing the second-to-last bit and then using the flip-
flop as the last stage of the shift register. Using the flip-flop also allows for asynchronous or 
synchronous set or reset of the output.

The shift register input can come from a dedicated SHIFTIN signal, and the Q15/MC15 
signal from the last stage of the shift register can drive a SHIFTOUT output. The 
addressable D output is available in all SRL primitives, while the Q15/MC15 signal that 
can drive SHIFTOUT is only available in the cascadable SRLC16 primitive.

The SRL16 can shift from either LSB to MSB or MSB to LSB according to the application. 
Although the device arbitrarily names the output MC15, it can be the LSB of the user 
function.

Slice Structure
The two logic cells within a slice are connected for cascading a shift register up to 32 bits 
(see Figure 7-4). These connect the Q15/MC15 of the first shift register to the DI (or Q0 flip-
flop) of the second shift register.

Figure 7-3: Logic Cell SRL Structure
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If dynamic addressing (or "dynamic length adjustment") is desired, the two separate data 
outputs from each SRL16 must be multiplexed together. One of the two SRL16 bits can be 
selected by using the F5MUX to make the selection (see Figure 7-5).

CLB Structure
The Spartan-3 generation CLB contains four slices, each with two LUTs, but only two allow 
LUTs to be used as SRL16 components or distributed RAM. The two left-hand SLICEM 
components allow their two LUTs to be configured as a 16-bit shift register. SHIFTOUT to 
SHIFTIN connections are available to cascade the two SLICEM components. The four left-
hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles (see 
Figure 7-6). It is also possible to combine shift registers across more than one CLB.

Figure 7-4: Shift Register Connections Between Logic Cells in a Slice

Figure 7-5: Using F5MUX for Addressing Multiple SRL16 Components
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The multiplexers can be used to address multiple SLICEMs similar to the description for 
combining the two LUTs within a SLICEM. The F6MUX can be used to select from three or 
four SRL16 components in a CLB, providing up to 64 bits of addressable shift register (see 
Figure 7-7).

Figure 7-6: Cascading Shift Register LUTs in a CLB
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Library Primitives
The shift register element is known as the SRL16 (Shift Register LUT 16-bit), with a C 
added to signify a cascade ability (Q15 output) and E to indicate a clock enable. See 
Figure 7-8 for an example of the SRLC16E component.

Eight library primitives are available that offer optional clock enable (CE), inverted clock 
(CLK), and cascadable output (Q15) combinations.

Figure 7-7: Using F6MUX to Address a 64-Bit Shift Register
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Table 7-1 lists all of the available primitives for synthesis and simulation.

Initialization in VHDL and Verilog Code
A shift register can be initialized in VHDL or Verilog code for both synthesis and 
simulation. For synthesis, the INIT attribute is attached to the 16-bit shift register 
instantiation and is copied in the EDIF output file to be compiled by Xilinx tools. The 
VHDL code simulation uses a generic parameter to pass the attributes. The Verilog code 
simulation uses a defparam parameter to pass the attributes. 

The S3_SRL16E shift register instantiation code examples (in VHDL and Verilog) illustrate 
these techniques (see “VHDL and Verilog Templates,” page 241). S3_SRL16E.vhd and 
S3_SRL16E.v files are not a part of the documentation.

Port Signals

Clock — CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift-in. 
The data and clock enable input pins have set-up times referenced to the chosen edge of 
CLK.

Data In — D

The data input provides new data (one bit) to be shifted into the shift register.

Clock Enable — CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift 
data into the shift register and does not write new data. Activating the clock enable allows 
the data in (D) to be written to the first location and all data to be shifted by one location. 
When available, new data appears on output pins (Q) and the cascadable output pin (Q15).

Address — A3, A2, A1, A0

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output 
pin (Q). Address inputs have no effect on the cascadable output pin (Q15), which is always 
the last bit of the shift register (bit 15).

Table 7-1: Shift Register Primitives

Primitive Length Control Address Inputs Output

SRL16 16 bits CLK A3, A2, A1, A0 Q

SRL16E 16 bits CLK, CE A3, A2, A1, A0 Q

SRL16_1 16 bits CLK A3, A2, A1, A0 Q

SRL16E_1 16 bits CLK, CE A3, A2, A1, A0 Q

SRLC16 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

SRLC16_1 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E_1 16 bits CLK, CE A3, A2, A1, A0 Q, Q15
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Data Out — Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out — Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data 
becomes available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the 
rising clock edge and active High clock enable.

GSR

The global set/reset (GSR) signal has no impact on shift registers. 

Attributes

Content Initialization — INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-
encoded bit vector with four digits (0000). The left-most hexadecimal digit is the most 
significant bit. By default the shift register is initialized with all zeros during the device 
configuration sequence, but any other configuration value can be specified.

Location Constraints
Figure 7-9 shows how the slices are arranged within a CLB. Each CLB has four slices, but 
only the two at the bottom-left of the CLB can be used as shift registers. These are both 
designated SLICEM in CLB positions S0 and S1. The relative position coordinates are X0Y0 
and X0Y1. To constrain placement, these coordinates can be used in a LOC property 
attached to the SRL primitive. Note that the dedicated CLB shift chain runs from the top to 
the bottom, but the start and end of the shift register can be in any of the four SLICEM 
LUTs.
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Shift Register Operations
The functionality of the shift register is shown in Table 7-2. The SRL16 shifts on the rising 
edge of the clock input when the Clock Enable control is High. This shift register cannot be 
initialized either during configuration or during operation except by shifting data into it. 
The clock enable and clock inputs are shared between the two LUTs in a SLICEM. The 
clock enable input is automatically kept active if unused.

Data Flow

Each shift register (SRL16 primitive) supports:

• Synchronous shift-in

• Asynchronous 1-bit output when the address is changed dynamically 

• Synchronous shift-out when the address is fixed

Figure 7-9: Arrangement of Slices within the CLB
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Table 7-2: SRL16 Shift Register Function

Inputs Outputs

Am CLK CE D Q Q15

Am X 0 X Q[Am] Q[15]

Am ↑ 1 D Q[Am-1] Q[15]

Notes: 
1. m = 0, 1, 2, 3.
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In addition, cascadable shift registers (SRLC16) support synchronous shift-out output of 
the last (16th) bit. This output has a dedicated connection to the input of the next SRLC16 
inside the CLB resource. Two primitives are illustrated in Figure 7-10.

Shift Operation

The shift operation is a single clock-edge operation with an active-High clock enable 
feature. When enable is High, the input (D) is loaded into the first bit of the shift register, 
and each bit is shifted to the next highest bit position. In a cascadable shift register 
configuration (such as SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the 
4-input address pins, the new bit position value is available on the Q output after the time 
delay to access the LUT. This operation is asynchronous and independent of the clock and 
clock enable signals.

Figure 7-10: Shift Register and Cascadable Shift Register
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Figure 7-11 illustrates the shift and dynamic read operations. 

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode 
implements any shift register length up 1 to 16 bits in one LUT. Shift register length is 
(N+1) where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted 
to the next position and appears on the Q output.

Characteristics
• A shift operation requires one clock edge.

• Dynamic-length read operations are asynchronous (Q output).

• Static-length read operations are synchronous (Q output).

• The data input has a setup-to-clock timing specification.

• In a cascadable configuration, the Q15 output always contains the last bit value.

• The Q15 output changes synchronously after each shift operation.

Shift Register Inference
When a shift register is described in generic HDL code, synthesis tools infer the use of the 
SRL16 component. Since the SRL16 does not have either synchronous or asynchronous set 

Figure 7-11: Shift- and Dynamic-Length Timing Diagrams
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or reset inputs, and does not have access to all bits at the same time, using such capabilities 
precludes the use of the SRL16, and the function is implemented in flip-flops. The 
cascadable shift register (SRLC16) might be inferred if the shift register is larger than 16 bits 
or if only the Q15 is used.

In fact, adding a reset is one way to force a synthesis tool to use flip-flops instead of the 
SRL16 when flip-flops are preferred for performance or other reasons. If a reset is not 
needed, simply connect a dummy signal and use an appropriate KEEP attribute to prevent 
the synthesis tool from optimizing it out of the design.

Although the SRL16 shift register does not have a parallel load capability, an equivalent 
function can be implemented simply by anticipating the load requirement and shifting in 
the proper data. This requires predictable timing for the load command.

VHDL Inference Code
The following code infers an SRL16 in VHDL.

architecture Behavioral of srl16 is

signal Q_INT: std_logic_vector(15 downto 0);

begin

process(C)
begin
if (C’event and C=’1’) then
Q_INT <= Q_INT(14 downto 0) & D;

end if;
end process;

Q <= Q_INT(15);

end Behavioral;

An inverted clock (SRL16_1) is inferred by replacing C='1' with C='0'. A clock enable 
(SRL16E) is inferred by inserting if (CE='1') then after the first if-then statement.

Verilog Inference Code
The following code infers an SRL16 in Verilog.

always @ (posedge C)
begin
Q_INT <= {Q_INT[14:0],D};

end

always @(Q_INT)
begin
Q <= Q_INT[15];

end

An inverted clock (SRL16_1) is inferred by replacing (posedge C) with (negedge C). A 
clock enable (SRL16E) is inferred by inserting if(CE) after the begin statement.
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Shift Register Submodules
In addition to the 16-bit primitives, two submodules that implement 32-bit and 64-bit 
cascadable shift registers are provided in VHDL and Verilog code. Table 7-3 lists available 
submodules.

The submodules are based on SRLC16E primitives, which are associated with dedicated 
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and 
dynamic-length mode, even for very large shift registers. 

Figure 7-12 represents the cascadable shift registers (32-bit and 64-bit) implemented by the 
submodules in Table 7-3.

Table 7-3: Shift Register Submodules

Submodule Length Control Address Inputs Output

SRLC32E_SUBM 32 bits CLK, CE A4, A3, A2, A1, A0 Q, Q31

SRLC64E_SUBM 64 bits CLK, CE A5, A4, A3, A2, A1, A0 Q, Q63

Figure 7-12: Shift-Register Submodules (32-bit, 64-bit)
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All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and 
one clock signal per submodule. If a global static- or dynamic-length mode is not required, 
the SRLC16E primitive can be cascaded without multiplexers.

Fully Synchronous Shift Registers
All shift-register primitives and submodules do not use the register(s) available in the 
same slice(s). To implement a fully synchronous read and write shift register, output pin Q 
must be connected to a flip-flop. Both the shift register and the flip-flop share the same 
clock, as shown in Figure 7-13. 

This configuration provides a better timing solution and simplifies the design. Because the 
flip-flop must be considered to be the last register in the shift-register chain, the static or 
dynamic address should point to the desired length minus one. If needed, the cascadable 
output can also be registered in a flip-flop. The delay from the SRL16 to the flip-flop is a 
fixed CLB setup time delay and is not controlled by a PERIOD constraint.

Static-Length Shift Registers
The cascadable 16-bit shift register implements any static length mode shift register 
without the dedicated multiplexers (MUXF5, MUXF6, and so on). Figure 7-14 illustrates a 
40-bit shift register. Only the last SRLC16E primitive needs to have its address inputs tied 
to “0111”. Alternatively, shift register length can be limited to 39 bits (address tied to 
“0110”) and a flip-flop can be used as the last register. (In an SRLC16E primitive, the shift 
register length is the address input + 1.)

Figure 7-13: Fully Synchronous Shift Register
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VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available for all primitives and submodules:

• xapp465_vhdl.zip

• xapp465_verilog.zip

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and 
instantiate the corresponding SRLCxE primitive (16) or submodule (32 or 64). 

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive. 

VHDL and Verilog Templates

In template names, the number indicates the number of bits (for example, 
SHIFT_SELECT_16 is the template for the 16-bit shift register) and the “C” extension 
means the template is cascadable.

The following are templates for primitives:

• SHIFT_REGISTER_16

• SHIFT_REGISTER_16_C

The following are templates for submodules:

• SHIFT_REGISTER_32_C (submodule: SRLC32E_SUBM)

• SHIFT_REGISTER_64_C (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog 
code as an example.

Figure 7-14: 40-bit Static-Length Shift Register
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VHDL Template:

-- Module: SHIFT_REGISTER_C_16
-- Description: VHDL instantiation template
-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Spartan-3 Generation Family 
---------------------------------------------------------------------
-- Components Declarations:
--
component SRLC16E 
-- pragma translate_off
  generic (
-- Shift Register initialization ("0" by default) for functional 
simulation:
        INIT : bit_vector := X"0000"
);

-- pragma translate_on
  port (
  D : in std_logic;
        CE  : in std_logic;
        CLK : in std_logic;
        A0  : in std_logic;
        A1  : in std_logic;
        A2  : in std_logic;
        A3  : in std_logic;
        Q   : out std_logic;
        Q15 : out std_logic
); 

end component;
-- Architecture  Section:
--
-- Attributes for Shift Register initialization (“0” by default):
attribute INIT: string;
--
attribute INIT of U_SRLC16E: label is “0000”;
--
-- ShiftRegister Instantiation
U_SRLC16E: SRLC16E
  port map (
D      => , -- insert input signal 
CE     => , -- insert Clock Enable signal (optional)
CLK    => , -- insert Clock signal
A0     => , -- insert Address 0 signal
A1     => , -- insert Address 1 signal
A2     => , -- insert Address 2 signal
A3     => , -- insert Address 3 signal
Q      => , -- insert output signal
Q15    =>   -- insert cascadable output signal
);

Verilog Template:

// Module: SHIFT_REGISTER_16
// Description: Verilog instantiation template
// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Spartan-3 Generation Family
//-------------------------------------------------------------------

  defparam  
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//Shift Register initialization ("0" by default) for functional 
simulation:
U_SRLC16E.INIT = 16'h0000;

//SelectShiftRegister-II Instantiation
   SRLC16E U_SRLC16E   ( .D(),

.A0(),

.A1(),

.A2(),

.A3(),

.CLK(),

.CE(),

.Q(),

.Q15()
       );

// synthesis attribute declarations
  /* attribute 
INIT "0000"

  */

CORE Generator System
The Xilinx CORE Generator system generates fast, compact, FIFO-style shift registers, 
delay lines, or time-skew buffers using the SRL16. The RAM-based Shift Register module 
shown in Figure 7-15 provides a very efficient multibit wide shift for widths up to 256 and 
depths to 1024. Fixed-length shift registers and variable-length shift registers can be 
created. An option is also provided to register the outputs of the module. If output 
registering is selected, there are additional options for Clock Enable, Asynchronous Set, 
Clear, and Init, and Synchronous Set, Clear, and Init of the output register. The module can 
optionally be generated as a relationally placed macro (RPM) or as unplaced logic.

Figure 7-15: CORE Generator RAM-Based Shift Register Module
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Applications

Delay Lines
The register-rich nature of the Xilinx FPGA architecture allows for the addition of pipeline 
stages to increase throughput. Data paths must be balanced to keep the desired 
functionality. The SRL16 can be used when additional clock cycles of delay are needed 
anywhere in the design (see Figure 7-16).

Linear Feedback Shift Registers
Linear Feedback Shift Registers (LFSRs) sequence through 2n-1 states, where n is the 
number of flip-flops. The sequence is created by feeding specific bits back through an XOR 
or XNOR gate. LFSRs can replace conventional binary counters in performance critical 
applications where the count sequence is not important (e.g., FIFOs). LFSRs are also used 
as pseudo-random number generators. They are important building blocks in encryption 
and decryption algorithms.

Maximal-length LFSRs need taps taken from specific positions within the shift register. 
There are multiple ways these taps can be made available in the SRL16 configuration. One 
is by addressing the necessary bit in a given SRL16 while allowing the Q15 to cascade to 
the next SRL16. Another is to use flip-flops to "extend" the SRL16 where necessary to access 
the tap points. For example, Figure 7-17 shows how a 52-bit LFSR can be implemented 

Figure 7-16: Using SRL16 as a Delay Line
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with the feedback coming from bits 49 and 52. A third method is to duplicate the LFSR in 
multiple SRLs and address different bits from each one. Yet another method is to generate 
multiple addresses in one SRL clock cycle to capture multiple bit positions. The XNOR gate 
required for any LFSR can be conveniently located in the SLICEL part of the CLB. More 
detail is available in XAPP210.

Gold Code Generator
Gold code generators are used in CDMA systems to generate code sequences with good 
correlation properties (see Figure 7-18). R. Gold suggested that sets of small correlation 
codes could be generated by modulo 2 addition of the results of two LFSRs, primed with 
factor codes. The result is a set of codes ideally suited to distinguish one code from another 
in a spectrum full of coded signals. Figure 7-18 shows an implementation of a Gold code 
generator. The logic required to initially fill the LFSR and provide the feedback can be 
located in the SLICEL parts of the CLB. See XAPP217 for more details.

Figure 7-17: 52-bit LFSR
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FIFOs
Synchronous FIFOs can be built out of the SRL16 components. These are useful when other 
resources become scarce, providing up to 64 bits per CLB. For larger FIFOs, the block RAM 
is the most efficient resource to use. See XAPP256 for more detail.

Counters
Any desired repeated sequence of 16 states can be achieved by feeding each output with an 
SRL16. Cascading the SRL16 allows even longer arbitrary count sequences. A terminal 
count can be generated by using the standard carry chain (see Figure 7-20).

Figure 7-19: Synchronous FIFO Using SRLC16 Shift Registers
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Related Materials and References
The following documents provide supplementary information useful with this chapter:

• XAPP210: Linear Feedback Shift Registers in Virtex® Devices
Linear Feedback Shift Registers are very efficient counters in the FPGA architecture. 
Using the SRL16 as the basis of the shift register, a 15-bit counter can fit in one slice 
and a 52-bit counter in two slices. 

• XAPP211: PN Generators Using the SRL Macro
Pseudo-random Noise sequences are used to code and spread signals across a wide 
band of transmission frequencies for spread spectrum modulation. PN generators are 
based upon LFSRs, which can be effectively built from the SRL16 components.

• XAPP217: Gold Code Generators in Virtex Devices
A special type of PN sequence is a Gold code generator, which can be created from 
SRL16-based LFSRs.

• XAPP256: FIFOs Using Virtex-II Shift Registers
The SRL16 is ideal for building smaller synchronous FIFOs. FIFOs can be built in any 
width while producing a 1-bit resolution. With cascaded SRL16 shift registers, a 
flexible depth in multiples of 16 is available. These techniques are useful for even 
larger FIFOs when block RAM resources are not available.

• WP271: “Saving Costs with the SRL16E"
Describes the SRL16 function and its application in pipeline compensation, pseudo 
random noise generators, serial frame synchronizers, running averages, pulse 
generation and clock division, pattern generation, state machines, dynamically 
addressable shift registers, FIFOs, and an RS232 receiver.

• DS228: RAM-Based Shift Register LogiCORE Module
Generates fast, compact, FIFO-style shift registers, delay lines or time-skew buffers 
using the SRL16.

• SRL16 Primitives in Libraries Guide
Describes the usage and functionality of the SRL16 primitive and its variations.

Conclusion
The SRL16 configuration of the Spartan-3 generation LUT provides a space-efficient shift 
register that otherwise require 16 flip-flops. This feature is automatically used when a 
small shift register is described in HDL code. However, creative consideration of the uses 
of the SRL16 as described here can provide even more significant advantages in many 
applications.
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Chapter 8

Using Dedicated Multiplexers

Summary
The Spartan®-3 generation architecture includes dedicated multiplexers within the 
Configurable Logic Blocks (CLBs). These specialized multiplexers improve the 
performance and density of not just wide multiplexers but almost any wide-input 
function. Using these resources, a 32:1 multiplexer fits in just one level of logic, as do some 
Boolean logic functions of up to 79 inputs. The dedicated multiplexers are identical in all 
Spartan-3 generation FPGAs: Spartan-3, Spartan-3E, and Extended Spartan-3A families.

Introduction
A multiplexer, or mux, is a common building block of almost every logic design, selecting 
one of several possible input signals. Spartan-3 generation FPGAs are very efficient at 
implementing multiplexers: small ones in the look-up tables and larger ones using 
dedicated multiplexer resources. Any Spartan-3 generation device easily implements:

• a 4:1 mux in one slice

• a 16:1 mux in one CLB

• a 32:1 mux in two CLBs

The same logic resources also can be used for wide, general-purpose logic functions. For 
applications like comparators, encoder-decoders, or case statements, these resources 
provide an optimal solution. These resources are used automatically by the Xilinx 
development system, especially when a CASE statement is used, and then optimized for 
the timing requirements of a given design. This chapter explains how to further optimize 
the use of dedicated multiplexers and how to analyze their use in a design.

This chapter describes the dedicated multiplexer resources in the Spartan-3 generation 
architecture. The signals and parameters associated with the multiplexers are defined. The 
many methods to include multiplexers in a design are described along with 
recommendations and guidelines for their use.

Dedicated Multiplexer Differences between Spartan-3 Generation 
Families

Each CLB multiplexer structure is identical within a family, and the CLBs are identical 
among all Spartan-3 generation families. The performance varies slightly between families 
due to minor variations in processing and characterization.
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Advantages of Dedicated Multiplexers
Spartan-3 generation FPGAs are based on four-input look-up tables (LUTs) that can 
provide any possible function of the four inputs. The largest mux that a single LUT 
supports is a 2:1 mux, with the fourth input available as a possible enable. One method to 
construct larger muxes would be to cascade multiple LUTs. For example, a 4:1 mux could 
be built by combining the outputs of two LUTs into a third LUT. However, this method 
adds two full levels of logic delays plus an additional routing delay between the LUTs. 
Without special resources, an 8:1 mux would consume s LUTs as well as add three levels of 
logic delays plus two levels of routing delays, as shown in Figure 8-1.

To increase multiplexer speed and density, Spartan-3 generation FPGAs provide a 
dedicated 2:1 mux following every LUT, which replaces additional levels of LUT-based 
logic. One of these, called the F5MUX, combines adjacent LUTs to create a 4:1 mux. The 
other mux, following every pair of LUTs, combines muxes into wider functions with 
different capabilities depending on its location in the CLB. This mux is called the FiMUX, 
where the index "i" equals 6, 7, or 8. For example, the F6MUX combines the results of two 
F5MUX elements to create an 8:1 mux as shown in Figure 8-2. The connections from the 
LUTs to the muxes and between the muxes are dedicated and have zero connection delay. 
The combination of LUTs and dedicated multiplexers allows very efficient implementation 
of large multiplexers.

Figure 8-1: 8:1 Mux, 7 LUTs, 3 Levels of Logic
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CLB Multiplexer Resources
The Spartan-3 generation architecture consists of an array of identical Configurable Logic 
Blocks, or CLBs. Each CLB is made up of four slices: two SLICEMs with memory capability 
and two SLICELs with logic-only capability. Each slice is identical with respect to logic and 
mux resources. Each slice has two LUTs, an F5MUX, and a second expansion mux (see 
Figure 8-3). 

F5MUX
The F5MUX always combines the two LUTs in a slice. If those two LUTs contain 2:1 muxes 
with the same control input, then the overall result is a 4:1 mux (see Figure 8-4).

Figure 8-2: 8:1 Mux, 4 LUTs, 1 Level of Logic
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The F5MUX is so named because it generates any possible Boolean logic function of five 
inputs (see Figure 8-5). If the two LUTs contain independent functions of the same four 
inputs, the mux select line becomes the fifth input. The F5MUX becomes a function 
expander that is just as efficient as another 3-input LUT for implementing any 5-input 
function. This is a significant advantage over other FPGA architectures.

As shown in Figure 8-6, the F5MUX also produces some functions of up to nine inputs, if 
they can be partitioned into two 4-input LUTs and a mux. 

Consequently, the F5MUX generates any 5-input function, the 4:1 mux 6-input function, or 
some 9-input functions. 

Figure 8-4: 4:1 Mux Implemented Using F5MUX

Figure 8-5: Any 5-input Function Can Be Implemented Using F5MUX

Figure 8-6: Some 9-Input Functions Can Be Implemented Using a F5MUX
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FiMUX
The second mux, called the FiMUX, functions as either an F6MUX, F7MUX, or F8MUX, 
depending on its location and connections to the other muxes.

Each FiMUX receives inputs from muxes of the next lower number; for example, the two 
F6MUX results drive the F7MUX. Like the F5MUX, the FiMUX has the flexibility to 
implement other types of functions besides just multiplexers. The F6MUX is so named 
because it creates any function of six inputs. Similarly, the F7MUX generates any function 
of seven inputs, and the F8MUX generates any function of eight inputs. 

Naming Conventions

In this document and in the Spartan-3 generation data sheets, the mux that serves as either 
F6MUX, F7MUX, or F8MUX generically is called an FiMUX (i = 6, 7, or 8). This name 
avoids confusion with the static CLB mux that generates the X output, which the FPGA 
Editor refers to as the "FXMUX". The FiMUX is always referred to as the "F6MUX" in the 
FPGA Editor. The timing analyzer also refers to the path through the FiMUX to the CLB 
pin as "TIF6Y", although it can be used as an F7MUX or F8MUX.

The library components are called MUXF5, MUXF6, MUXF7, and MUXF8. MUXF6, 
MUXF7, and MUXF8 use the FiMUX and restrict the placement to a specific relative 
location in the CLB.

Figure 8-7: FiMUX Positions in a CLB
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Dedicated Local Routing
A significant benefit of the dedicated multiplexers is the dedicated routing that connects 
between levels. Although each mux is implemented as one pass through the CLB, the 
outputs connect back to the CLB inputs through local interconnect with zero routing delay. 
The result is the same as if the muxes were in series within the CLB.

The F5MUX feeds the F5 CLB output pin, which only connects back to an FiMUX input on 
the same CLB (called FXINA and FXINB). The FiMUX feeds the FX CLB output pin, which 
also feeds back to an FiMUX input on the same CLB, or in the case of the F7MUX, also to 
the CLB below. If the mux result is needed elsewhere, it connects to a general-purpose CLB 
output (X for the F5MUX, Y for the FiMUX).

Figure 8-8: Muxes and Dedicated Feedback in a Spartan-3 Generation CLB
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Mux Select Inputs
The select inputs for the multiplexers come from general-purpose routing. The select input 
for the F5MUX is the BX input on the CLB, and the select input for the FiMUX is the BY 
input on the CLB.

Implementation Examples

Wide-Input Multiplexers
Each LUT optionally implements a 2:1 multiplexer. In each slice, the F5MUX and two LUTs 
can implement a 4:1 multiplexer. As shown in Figure 8-10, the F6MUX and two slices 
implement an 8:1 multiplexer. The F7MUX and the four slices of any CLB implement a 16:1 
multiplexer, and the F8MUX and two CLBs implement a 32:1 multiplexer.

Figure 8-9: Dedicated Multiplexers in a Spartan-3 Generation CLB
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Figure 8-10: 8:1 and 16:1 Multiplexers

LUT

DATA[0]

DATA[1]

DATA[7:0]

DATA[15:8]

16:1 output

SELECT[2:0]

SELECT[3]

LUT

DATA[2]

DATA[3]

LUT

8:1
(S2 & S3)

8:1
(S0 & S1)

DATA[4] 8:1 Output

DATA[5]

LUT

F5

F6

F7

DATA[6]

DATA[7]

SELECT[0]

SELECT[1]

SELECT[2]

F5

8:1 MUX 16:1 MUX

S0 CLB

S1

X466_09_030603

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 257
UG331 (v1.5) January 21, 2009

Implementation Examples
R

Wide-Input Functions
Slices S0 and S2 have an F6MUX, designed to combine the outputs of two F5MUX 
resources. Figure 8-11 illustrates a combinatorial function up to 19 inputs in the slices S0 
and S1, or in the slices S2 and S3.

Figure 8-11: 19-input Function Using F6MUX in Two Slices
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The slice S1 has an F7MUX, designed to combine the outputs of two F6MUXs. Figure 8-12 
illustrates a combinatorial function up to 39 inputs in a Spartan-3 generation CLB. 

Figure 8-12: 39-input Function Using F7MUX in One CLB
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The slice S3 of each CLB has an F8MUX. Combinatorial functions of up to 79 inputs fit in 
two CLBs as shown in Figure 8-13. The outputs of two F7MUXs are combined through 
dedicated routing resources between two adjacent CLBs in a column.

Figure 8-13: 79-input Function Using F8MUX in Two Adjacent CLBs
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Timing Parameters
There are several possible paths through the CLB multiplexers. The two types of 
multiplexers are considered separately (F5MUX and FiMUX). Each multiplexer type has 
two types of inputs: data inputs and select lines. The output of the mux drives the local 
interconnect through the F5 and FX CLB pins, the general interconnect through the X and 
Y CLB pins, or the D input on the flip-flop. See Figure 8-9, page 255 for a block diagram 
showing dedicated multiplexers in a Spartan-3 generation CLB. Note that although the 
mux functionality is identical between the slices with memory and those without, the 
timing values are independent and can vary slightly. 

Although the multiplexers are connected in series inside the CLB, each mux actually feeds 
a CLB output pin, which feeds back to an input pin through zero-delay local interconnect. 
Thus each reported block delay element will have only one mux from input to output. The 
Spartan-3 generation architecture improves on the Virtex®-II architecture by providing a 
direct path from the F5MUX or FiMUX to the flip-flop in the CLB.

Programmable Polarity
As with most resources in the Spartan-3 generation FPGA, inverters are free in large 
multiplexers. The functions in the LUT can have inverters added to inputs or outputs with 
no effect on performance or utilization. The control inputs to the F5MUX (BX) and FiMUX 
(BY) have programmable polarity inside the CLB.

Floorplanning Multiplexers
The wide multiplexers force a particular placement on the LUTs being combined. The 
LUTs must always be in the same slice for the F5MUX and in adjacent vertical slices for the 
wider muxes. This vertical orientation aligns nicely with the arithmetic logic.

The wide multiplexers cannot be used in conjunction with the arithmetic logic because the 
arithmetic XOR gate is multiplexed with the F5MUX result. Also, the 32x1 configuration of 
the distributed RAM uses the F5MUX for the fifth address input.

Table 8-2: Multiplexer Timing Paths

Symbol CLB Input Through CLB Output

tIF5 F/G LUT Inputs LUT and F5MUX Inputs F5 

tIF5X F/G LUT Inputs LUT and F5MUX Inputs X

tIF5CK F/G LUT Inputs LUT and F5MUX Inputs D input on flip-flop

tBXF5 BX F5MUX Select F5 

tBXX BX F5MUX Select X

tINAFX FXINA FiMUX Inputs FX 

tINBFX FXINB FiMUX Inputs FX 

tIF6Y FXINA or FXINB FiMUX Inputs Y

tBYFX BY FiMUX Select FX 

tBYY BY FiMUX Select Y
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Related Uses of Multiplexers

Multiplexers and Three-State Buffers
The LUT and mux resources multiplex one of several input signals onto an internal routing 
resource, using the routing like an internal bus. This is equivalent to the BUFT-based 
multiplexers found in other FPGA architectures. In most modern FPGA families, these 
three-state buffers actually are implemented as dedicated logic gates to avoid possible 
contention when more than one is enabled at a time. The Spartan-3 generation families 
reduce die size and cost by eliminating the overhead of these internal three-state buffer 
gates. Instead, internal functions defined as a three-state buffer in the Spartan-3 generation 
families must be implemented in the LUTs and dedicated muxes.

The CLB multiplexers provide binary encoding of the select lines, requiring fewer signals 
than the one-hot encoding of the BUFT-based multiplexers. CLB-based multiplexers have 
no limit on width as BUFT-based multiplexers did, nor any special placement 
considerations.

The BUFT component, representing a three-state buffer, is not available in the Spartan-3 
generation libraries, except for the output function in the IOBs. The CORE Generator 
functions of the BUFT-based Multiplexer (and the equivalent BUFE-based Multiplexer) 
will be implemented as multiplexers in the CLBs.

Using Memory in Place of Multiplexers 
To optimize designs, consider replacing multiplexers with memories. A 4:1 mux requires 
two LUTs and an F5MUX. If the inputs are static, the same function can be thought of as a 
4-bit memory and can fit in less than one LUT. In fact, the LUT can be considered to be a 
16:1 mux with the LUT inputs serving as the select lines. In any situation where the mux 
inputs are static, a memory-based implementation saves resources by using the built-in 
address decode as the mux logic. The 32x1 distributed RAM uses the F5MUX for the fifth 
address input. For more information, see Chapter 6, “Using Look-Up Tables as Distributed 
RAM.”

A 4:1 mux with changeable inputs still can be built in one level of logic using the LUT RAM 
by reprogramming the RAM as the method of selecting one of the four inputs. An easy 
way of doing this is to use the SRL16 mode to write data into the RAM in 16 clock cycles. 
For more information, see Chapter 7, “Using Look-Up Tables as Shift Registers (SRL16).”

Creative design concepts such as these can save significant resources. More information is 
found in the WP273 “Performance + Time = Memory (Cost-saving with 3-D Design)”.

Other Multiplexers
The CLB also contains other multiplexers for routing signals through the logic resources. 
The CYMUX for propagating carry signals is the only other dynamic mux. Several other 
muxes are used for selecting one of multiple paths. One is called the FXMUX in the FPGA 
Editor, since it routes the F LUT signal to the X CLB output. Do not confuse this static mux 
with the FXMUX name that is sometimes used for the FiMUX described here.

When multiplexing clock signals, remember to use the BUFGMUX, which helps eliminate 
glitches on the resulting clock. Another special multiplexer is found in the I/O to support 
DDR interfaces. The DDR mux combines two signals onto one output by automatically 
muxing back and forth between them as they are clocked into the IOB. See the Spartan-3 
generation data sheets for more information on these other multiplexing features.

http://www.xilinx.com/support/documentation/white_papers/wp273.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
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Designing with Multiplexers
There are several ways multiplexers can be used in a design. The most common is to 
simply have them inferred by synthesis tools when appropriate for a design. Library 
primitives can be used to instantiate specific multiplexers. This document provides HDL 
submodules that combine the library primitives into larger muxes. The CORE Generator 
system includes the Bus Multiplexer and Bit Multiplexer functions, and many other CORE 
solutions take advantage of the dedicated multiplexers.

Inference
Multiplexers are typically inferred by a conditional statement, most commonly the CASE 
or IF-THEN-ELSE statement. The IF statement generally produces priority-encoded logic. 
The CASE statement is more likely to generate an optimized multiplexer.

Synthesis options can determine whether multiplexers are inferred and how they are 
implemented. For XST, the MUX_EXTRACT constraint specifies whether multiplexers are 
inferred, and the MUX_STYLE constraint specifies whether they are implemented in the 
dedicated logic multiplexers or the carry multiplexers (CY_MUX). The default is to infer 
automatically the best resource.

CASE statements should be full (all branches defined) to avoid creating a latch. Undefined 
branches assume the current value needs to be maintained, implying memory. They also 
should be parallel (branch conditions all mutually exclusive) to avoid a priority encoder. 
Some synthesis tools, such as XST, have options to assume full and parallel CASE 
statements even if not written that way. It is good practice to include a “When Others” 
(VHDL) or “Default” (Verilog) branch to make sure even undefined inputs do not generate 
a latch.

An IF statement can contain a set of different expressions while a CASE statement is 
evaluated against a common controlling expression. In general, use the CASE statement 
for complex decoding and use the IF statement for speed critical paths.

Most current synthesis tools can determine if the IF-ELSIF conditions are mutually 
exclusive, and will not create extra logic to build the priority tree. The following are points 
to consider when writing IF statements:

• Make sure that all outputs are defined in all branches of an IF statement. If not, they 
can create latches or long equations on the CE signal. A good way to prevent this is to 
have default values for all outputs before the IF statements.

• Limit the number of input signals into an IF statement to reduce the number of logic 
levels. If there are a large number of input signals, see if some of them can be 
predecoded and registered before the IF statement.

• Avoid bringing the dataflow into a complex IF statement. Only control signals should 
be generated in complex IF-ELSE statements.

Make sure you do not write the code such that your synthesis tool will infer BUFT-based 
multiplexers. A BUFT-based multiplexer usually requires a statement with a "Z" value. 
Some synthesis tools might automatically or optionally convert BUFT logic to 
multiplexers.

A decoder is a special case of a multiplexer where the inputs are fixed as one-hot values. 
Decoders of up to 4:16 in size are easily implemented in individual LUTs for each output 
and do not need to use the dedicated multiplexers, or they can even use the Carry muxes 
for high performance.

http://www.xilinx.com
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The following subsections provide examples of 2:1 muxes described using the CASE 
statement in Verilog and VHDL code.

Verilog Inference

module MUX_2_1 (DATA_I, SELECT_I, DATA_O);

input [1:0]DATA_I;
input SELECT_I;

output DATA_O;
reg DATA_O;

always @ (DATA_I or SELECT_I)

case (SELECT_I)
1'b0 : DATA_O <= DATA_I[0];
1'b1 : DATA_O <= DATA_I[1];
default : DATA_O <= 1'bx;

endcase

endmodule

VHDL Inference

entity MUX_2_1 is
    port (
        DATA_I: in std_logic_vector (1 downto 0); 
        SELECT_I: in std_logic;
        DATA_O: out std_logic
);

end MUX_2_1;

architecture MUX_2_1_arch of MUX_2_1 is
--
begin
--
SELECT_PROCESS: process (SELECT_I, DATA_I)
begin
case SELECT_I is
when '0' => DATA_O <= DATA_I (0);
when '1' => DATA_O <= DATA_I (1);
when others => DATA_O <= 'X';

end case;
end process SELECT_PROCESS;
--
end MUX_2_1_arch;

Library Primitives
Four library primitives are available that offer access to the dedicated multiplexers in each 
slice: MUXF5, MUXF6, MUXF7, and MUXF8. These use the F5MUX and FiMUX CLB 
resources (see “Naming Conventions,” page 253). Each of the multiplexer primitives looks 
identical (see Figure 8-14). The actual selection simply determines where in the CLB the 
multiplexer can be located, as shown in Table 8-5.

http://www.xilinx.com


264 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 8: Using Dedicated Multiplexers
R

The generic multiplexer components also can take advantage of the dedicated 
multiplexers. The M2_1 schematic library component is implemented in a LUT, while the 
larger multiplexers in the library use the F5MUX and FiMUX components. 

Enable Signals in Multiplexers

An enable signal on a multiplexer can be used to keep the multiplexer output Low when 
disabled. Although the dedicated multiplexers do not have enable signals, the enable can 
be implemented on the preceding 2:1 mux that will be implemented in a LUT. The M4_1E 
and M8_1E schematic library components are built this way, using the F5MUX and F6MUX 

Figure 8-14: MUXF5 Primitive

Table 8-3: MUX Inputs and Outputs

Signal Function

I0 Input selected when S is Low

I1 Input selected when S is High

S Select input

LO Local Output that connects to the F5 or FX CLB pins, which use local feedback to 
the FXIN inputs to the FiMUX for cascading (see “Modeling Local Output 
Timing,” page 265)

O General Output that connects to the general-purpose combinatorial or registered 
outputs of the CLB

Table 8-4: MUX Function

Inputs Outputs

S I0 I1 O LO

0 1 X 1 1

0 0 X 0 0

1 X 1 1 1

1 X 0 0 0

Table 8-5: Multiplexer Resources

Primitive Slice
Physical 
Location

Control  Input Output

MUXF5 S0, S1, S2, S3 F5MUX S I0, I1 O

MUXF6 S0, S2 FiMUX S I0, I1 O

MUXF7 S1 FiMUX S I0, I1 O

MUXF8 S3 FiMUX S I0, I1 O

O
I0

I1

S
x466_14_040303
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for the final result, respectively, while the M16_1E schematic library component keeps the 
enable on the final mux, forcing it into a LUT instead of the F7MUX. Figure 8-15 shows the 
M4_1E schematic library component logic.

Modeling Local Output Timing

There are also two alternative versions of each library component that are functionally 
identical but can be used for more accurate timing estimation before implementation. As 
mentioned previously, the multiplexers can drive one or both CLB outputs. The first 
output is the special CLB output that feeds directly back through local interconnect to the 
next multiplexer in series, known as the local output. The second output is the general-
purpose CLB output, which can be routed to any other logic. For better pre-
implementation timing estimation, the user can substitute special primitives that specify 
whether to use the local output timing or the general-purpose output timing. The 
MUXF5_L primitive models the local output, while the MUXF5_D primitive models both 
output paths (see Figure 8-16). The functionality is identical to that for the MUXF5 
primitive.

Submodules
In addition to the primitives, five submodules that implement multiplexers from 2:1 to 32:1 
are provided in VHDL and Verilog code. Synthesis tools can automatically infer the above 
primitives (MUXF5, MUXF6, MUXF7, and MUXF8); however, the submodules described 
in this section use instantiation of the multiplexers to guarantee an optimized result. 
Table 8-6 lists available submodules.

• xapp466_vhdl.zip 

• xapp466_vhdl.zip 

Figure 8-15: M4_1E Library Component Logic
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Port Signals

Data In — DATA_I

The data input provides the data to be selected by the SELECT_I signal(s).

Control In — SELECT_I

The select input signal or bus determines the DATA_I signal to be connected to the output 
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a 
4-bit DATA_I bus. Table 8-7 shows the DATA_I selected for each SELECT_I value.

Data Out — DATA_O

The data output O provides the data value (1 bit) selected by the control inputs.

Applications
Multiplexers are used in various applications. These are often inferred by synthesis tools 
when a “case” statement is used (see the example below). Comparators, encoder-decoders, 
and wide-input combinatorial functions are optimized when they are based on one level of 
LUTs and dedicated multiplexer resources of the Spartan-3 generation CLBs.

VHDL and Verilog Instantiation
The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog 
code, to design wide-input functions.

The submodules (MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in 
VHDL or Verilog code to implement multiplexers. However, the corresponding 
submodule must be added to the design directory as a hierarchical submodule. For 
example, if a module is using the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file 
(VHDL code) or MUX_16_1_SUBM.v file (Verilog code) must be compiled with the design 

Table 8-6: Available Submodules

Submodule Multiplexer Control Input Output

MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O

MUX_4_1_SUBM 4:1 SELECT_I[1:0] DATA_I[3:0] DATA_O

MUX_8_1_SUBM 8:1 SELECT_I[2:0] DATA_I[7:0] DATA_O

MUX_16_1_SUBM 16:1 SELECT_I[3:0] DATA_I[15:0] DATA_O

MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O

Table 8-7: Selected Inputs

SELECT_I[1:0] DATA_O

0 0 DATA_I[0]

0 1 DATA_I[1]

1 0 DATA_I[2]

1 1 DATA_I[3]
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source code. The submodule code can also be “cut and pasted” into the designer source 
code.

VHDL and Verilog Submodules

VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They 
illustrate how to design with the MUX resources. When synthesis infers the corresponding 
MUX resource(s), the VHDL or Verilog code is behavioral code (“case” statement). 
Otherwise, the equivalent “case” statement is provided in comments and the correct MUX 
resources are instantiated. However, most synthesis tools support the inference of all of the 
MUXs. The following examples can be used as guidelines for designing other wide-input 
functions.

The following submodules are available:

• MUX_2_1_SUBM (behavioral code)

• MUX_4_1_SUBM

• MUX_8_1_SUBM

• MUX_16_1_SUBM

• MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design.

The submodule MUX_16_1_SUBM is provided in VHDL and Verilog as an example:

VHDL Template

-- Module: MUX_16_1_SUBM 
-- Description: Multiplexer 16:1
--
-- Device: Spartan-3 Family 
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;

library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

entity MUX_16_1_SUBM is
    port (
        DATA_I: in std_logic_vector (15 downto 0); 
        SELECT_I: in std_logic_vector (3 downto 0);
        DATA_O: out std_logic
);

end MUX_16_1_SUBM;

architecture MUX_16_1_SUBM_arch of MUX_16_1_SUBM is
-- Component Declarations:
component MUXF7
    port (
    I0: in std_logic;
    I1: in std_logic;
    S: in std_logic;
    O: out std_logic
    );
end component;   
--
-- Signal Declarations:
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signal DATA_MSB : std_logic;
signal DATA_LSB : std_logic;
--
begin
--
-- If synthesis tools support MUXF7 :
--SELECT_PROCESS: process (SELECT_I, DATA_I)
--begin
--case SELECT_I is
-- when "0000" => DATA_O <= DATA_I (0);
-- when "0001" => DATA_O <= DATA_I (1);
-- when "0010" => DATA_O <= DATA_I (2);
-- when "0011" => DATA_O <= DATA_I (3);
-- when "0100" => DATA_O <= DATA_I (4);
-- when "0101" => DATA_O <= DATA_I (5);
-- when "0110" => DATA_O <= DATA_I (6);
-- when "0111" => DATA_O <= DATA_I (7);
-- when "1000" => DATA_O <= DATA_I (8);
-- when "1001" => DATA_O <= DATA_I (9);
-- when "1010" => DATA_O <= DATA_I (10);
-- when "1011" => DATA_O <= DATA_I (11);
-- when "1100" => DATA_O <= DATA_I (12);
-- when "1101" => DATA_O <= DATA_I (13);
-- when "1110" => DATA_O <= DATA_I (14);
-- when "1111" => DATA_O <= DATA_I (15);
-- when others => DATA_O <= 'X';
--end case;
--end process SELECT_PROCESS;
--
-- If synthesis tools DO NOT support MUXF7 :
SELECT_PROCESS_LSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_LSB <= DATA_I (0);
when "001" => DATA_LSB <= DATA_I (1);
when "010" => DATA_LSB <= DATA_I (2);
when "011" => DATA_LSB <= DATA_I (3);
when "100" => DATA_LSB <= DATA_I (4);
when "101" => DATA_LSB <= DATA_I (5);
when "110" => DATA_LSB <= DATA_I (6);
when "111" => DATA_LSB <= DATA_I (7);
when others => DATA_LSB <= 'X';

end case;
end process SELECT_PROCESS_LSB;
--
SELECT_PROCESS_MSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_MSB <= DATA_I (8);
when "001" => DATA_MSB <= DATA_I (9);
when "010" => DATA_MSB <= DATA_I (10);
when "011" => DATA_MSB <= DATA_I (11);
when "100" => DATA_MSB <= DATA_I (12);
when "101" => DATA_MSB <= DATA_I (13);
when "110" => DATA_MSB <= DATA_I (14);
when "111" => DATA_MSB <= DATA_I (15);
when others => DATA_MSB <= 'X';

end case;
end process SELECT_PROCESS_MSB;
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--
-- MUXF7 instantiation
U_MUXF7: MUXF7
    port map (
    I0 => DATA_LSB,
    I1 => DATA_MSB,
    S  => SELECT_I (3),
    O  => DATA_O 
    );  
--
end MUX_16_1_SUBM_arch;
--

Verilog Template

// Module: MUX_16_1_SUBM
//
// Description: Multiplexer 16:1
// Device: Spartan-3 Family 
//-------------------------------------------------------------------
//
module MUX_16_1_SUBM (DATA_I, SELECT_I, DATA_O);

input [15:0]DATA_I;
input [3:0]SELECT_I;

output DATA_O;

wire [2:0]SELECT;

reg DATA_LSB;
reg DATA_MSB;

assign SELECT[2:0] = SELECT_I[2:0];

/*
//If synthesis tools support MUXF7 :
always @ (DATA_I or SELECT_I)

    case (SELECT_I)
4'b0000 : DATA_O <= DATA_I[0];
4'b0001 : DATA_O <= DATA_I[1];
4'b0010 : DATA_O <= DATA_I[2];
4'b0011 : DATA_O <= DATA_I[3];
4'b0100 : DATA_O <= DATA_I[4];
4'b0101 : DATA_O <= DATA_I[5];
4'b0110 : DATA_O <= DATA_I[6];
4'b0111 : DATA_O <= DATA_I[7];
4'b1000 : DATA_O <= DATA_I[8];
4'b1001 : DATA_O <= DATA_I[9];
4'b1010 : DATA_O <= DATA_I[10];
4'b1011 : DATA_O <= DATA_I[11];
4'b1100 : DATA_O <= DATA_I[12];
4'b1101 : DATA_O <= DATA_I[13];
4'b1110 : DATA_O <= DATA_I[14];
4'b1111 : DATA_O <= DATA_I[15];
default : DATA_O <= 1'bx;

    endcase
*/
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//If synthesis tools do not support MUXF7 :
always @ (SELECT or DATA_I)

    case (SELECT)
3'b000 : DATA_LSB <= DATA_I[0];
3'b001 : DATA_LSB <= DATA_I[1];
3'b010 : DATA_LSB <= DATA_I[2];
3'b011 : DATA_LSB <= DATA_I[3];
3'b100 : DATA_LSB <= DATA_I[4];
3'b101 : DATA_LSB <= DATA_I[5];
3'b110 : DATA_LSB <= DATA_I[6];
3'b111 : DATA_LSB <= DATA_I[7];
default : DATA_LSB <= 1'bx;

    endcase

always @ (SELECT or DATA_I)

    case (SELECT)
 3'b000 : DATA_MSB <= DATA_I[8];
3'b001 : DATA_MSB <= DATA_I[9];
3'b010 : DATA_MSB <= DATA_I[10];
3'b011 : DATA_MSB <= DATA_I[11];
3'b100 : DATA_MSB <= DATA_I[12];
3'b101 : DATA_MSB <= DATA_I[13];
3'b110 : DATA_MSB <= DATA_I[14];
3'b111 : DATA_MSB <= DATA_I[15];
default : DATA_MSB <= 1'bx;

    endcase

// MUXF7 instantiation

MUXF7 U_MUXF7   (.I0(DATA_LSB),
.I1(DATA_MSB),
.S(SELECT_I[3]),

 .O(DATA_O)
);

endmodule

CORE Generator System
The CORE Generator system offers the basic logic functions of the Bit Multiplexer and the 
Bus Multiplexer. The Bit Multiplexer, shown in Figure 8-17, supports sizes up to 256 
inputs. The Bus Multiplexer, shown in Figure 8-18, supports muxes of up to 32 inputs for 
buses of up to 256 bits each. These core solutions have a parameter Mux Type to select a 
BUFT or LUT based multiplexer. Select the appropriate radio button in the CORE 
Generator system for the construction of the multiplexer. The default setting is LUT based, 
which is required for Spartan-3 generation multiplexers. The CORE Generator system also 
offers options for registering the output of the multiplexer.

http://www.xilinx.com
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The CORE Generator system also offers the specific functions of the BUFT-based 
Multiplexer (and the equivalent BUFE-based Multiplexer). As with the generic Bit and Bus 
Multiplexers, they are implemented in LUTs and/or muxes.

Figure 8-17: Bit Multiplexer CORE Symbol

Figure 8-18: Bus Multiplexer CORE Symbol
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Related Materials
The following document provides supplementary information useful with this chapter:

WP274: Multiplexer Selection

This white paper considers a variety of ways in which multiplexers can be implemented 
within Xilinx FPGA devices, including some alternative techniques that can lead to more 
efficient and lower cost implementations. 

Summary
The dedicated multiplexers in the Spartan-3 generation architecture enable wider 
functions than possible in the four-input LUTs. These multiplexers are automatically used 
by the software tools but careful coding can help optimize their use to minimize resource 
requirements and improve performance of designs.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp274.pdf
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Chapter 9

Using Carry and Arithmetic Logic

Summary
Dedicated carry and arithmetic logic improves the performance of adders, counters, 
comparators, multipliers, wide logic gates, and related functions in the Spartan®-3 
generation FPGA family. Carry logic consists of dedicated gates, multiplexers, and routing 
that are independent of the general-purpose logic resources and provide both higher 
density and higher performance. Carry logic can be explicitly called out in the design using 
primitives, implemented via library or user-defined macros, or inferred by the synthesis 
tools. Most arithmetic components automatically use the carry logic. This chapter 
describes the carry logic resources and how they can be used efficiently in Spartan-3 
generation FPGA designs.

Introduction
The basic building block of the FPGA is the look-up table, or LUT. Although arithmetic 
functions can be implemented in the LUTs, they require the generation of a sum and a 
carry for every input and could quickly use up LUT and routing resources. Arithmetic 
functions are common enough to warrant dedicating their own special resources for 
implementation. The arithmetic logic allows the generation of a sum outside the LUT and 
the carry logic provides dedicated routing resources for cascading a carry signal between 
slices of a CLB and between CLBs. The carry chain cascades from the bottom to the top of 
each column of CLB slices.

The arithmetic logic consists of a discrete XOR component for single level sum completion, 
an AND gate for multiplication, and multiplexers for controlling signal flow. These gates 
work in conjunction with the LUTs to implement efficient arithmetic functions, including 
counters and multipliers, typically at two bits per slice. Each CLB provides two separate 
carry chains of four bits each. The resources can be used to improve the performance of 
arithmetic functions and can also be used to cascade LUTs for wide-input logic functions.

Carry and Arithmetic Logic Differences between Spartan-3 
Generation Families

The carry and arithmetic logic is identical among all Spartan-3 generation families. The 
performance varies slightly between families due to minor variations in processing and 
characterization. In the Spartan-3E and Extended Spartan-3A families, most of the DCMs 
are embedded in the CLB array, and therefore limit the maximum length of the carry chain 
for those CLB columns containing DCMs. 

http://www.xilinx.com
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Look-Ahead Carry Addition
To understand the basic resources of the Spartan-3 generation carry logic, it is important to 
understand the basics of look-ahead carry addition. Normal addition of two digits requires 
simply an XOR gate to generate the Sum and an AND gate to generate a Carry, as shown 
in Table 9-1.

This logic is known as a half adder because it does not include a Carry input. Accounting 
for a Carry input can be done simply by repeating the half adder to add the first Sum and 
the Carry input and then generating a final Carry output if either half-adder generated a 
Carry (using an OR gate). A full adder is created as shown in Figure 9-1.

This logic can easily be implemented in two LUTs with three inputs each to generate Sum 
and Carry. The problem with this implementation is that it requires two LUTs for every 
input bit, and the Carry propagates through the full LUT delay for each bit.

A better implementation is to "look ahead" and determine if the input Carry signal needs to 
be propagated (the inputs are different) or generated (both inputs are High). See Table 9-2.

This case is similar to the half Sum and Carry values described earlier. The Propagate 
signal, which is the same as the half Sum in the first half adder, can be implemented using 
the same XOR gate.

If Propagate is not True, then A = B and either signal can be used directly as the Generate 
signal. Thus the Carry output can be defined by a multiplexer controlled by Propagate that 

Table 9-1: Binary Addition

A B
Sum 

(A XOR B)
 Carry Out
(A AND B)

0 0  0  0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 9-1: Full Adder

Table 9-2: Look-Ahead Carry

A B   Propagate   Generate

0 0  0                 0

0   1 1                  0

1   0  1                  0

1   1 0                  1

B
Sum

Carry Out

UG331_c11_01_072906

A

Half Adder Half Adder

Carry In
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allows the Carry input through when Propagate = 1 and allows A (or B) through when 
Propagate = 0.

The full Sum is still generated by a second XOR gate, resulting in the logic shown in 
Figure 9-2.

The logic has been split into three functions that cannot all be combined into one or two 
LUTs. To optimize the implementation of this logic, the Spartan-3 generation CLB provides 
a dedicated XOR gate outside the LUT to generate the Sum, called XORCY, and a dedicated 
mux to provide the Carry, called MUXCY, as shown in Figure 9-3.

An advantage of this structure is that it provides a very fast carry propagation, since it only 
requires the delay of a 2:1 mux. Also, this structure uses only one LUT, or one half of a slice, 
allowing two bits per slice and therefore an efficient, high-density implementation. With 
dedicated connections at each cascade point, from COUT to the CIN in the other half of a 
slice, to the CIN in the other slice in a CLB, and to the CIN of the next CLB, the carry chain 
can propagate up a column of CLBs with very high performance.

Resource Details
The Spartan-3 generation carry and arithmetic logic consists of dedicated CLB resources 
and inter-CLB routing. The logic is almost identical within the two logic cells in each of the 
slice and is identical in both the logic-only SLICEL and the SLICEM that adds distributed 
RAM capability. A simplified view of one logic cell is shown in Figure 9-4.

Figure 9-2: Look-Ahead Carry Implementation

Figure 9-3: Carry Logic in Spartan-3 Generation FPGAs
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This implementation adds flexibility to the MUXCY beyond the standard functionality 
described earlier. The A/B "Generate" input to the MUXCY can come from either signal, or 
even an AND of the two signals. The carry chain can be initialized with a 1 or 0 or fed by 
an independent bypass input to MUXCY. The MUXCY control input can be fixed to 1 to 
always propagate the carry. The output sum, the XORCY, can be optionally registered.

Figure 9-5 shows the entire carry logic and connections for one slice. The dashed lines 
indicate an additional fixed multiplexer that is only found in the SLICEM half of the CLB.

Figure 9-4: Simplified View of Spartan-3 Carry and Arithmetic Logic in One Logic 
Cell

Figure 9-5: Simplified View of Carry Logic in One Slice

B

Bypass CIN

COUT

LUT

MUXCY

XORCY

MULT_AND

Sum

D Q

UG331_c11_04_073006

A

1

1

0

0 1

UG331_c11_05_073006

COUT

BX
CIN

CYINT

CYMUXF
CYSELF

CYSELG

XORF

CY0F

FAND

F4

F1
F2
F3

0
1

1
0 1

0 1

0 1

F-LUT D Q XQ

XB

X

BY

CYMUXG

XORG

CY0G

GAND

G4

G1
G2
G3

0
1

1

G-LUT D Q YQ

YB

Y

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 277
UG331 (v1.5) January 21, 2009

Resource Details
R

MUXCY
The dynamic mux generically referred to as MUXCY is available at both the bottom (called 
CYMUXF) and top (CYMUXG) of each slice.

The "0" input to the MUXCY typically comes from one of the LUT inputs. It can be fed by 
two of the four LUT inputs (F1 or F2 on the bottom and G1 or G2 on the top). In addition, 
the "0" input can come from a dedicated AND gate (MULT_AND) of those two inputs (for 
multiplier functions, as discussed later). It can also be fed directly by a 0 or 1 to use it as a 
simple wide gate (to be discussed later). A sixth input comes from the CLB bypass input 
(BX or BY) as an alternative to using a LUT input, allowing the carry chain to be initialized 
or continued from anywhere in the device. This fixed 6:1 mux driving the 0 input on the 
MUXCY is called CY0F in the bottom half of the slice and CY0G in the top half.

The "1" input to the MUXCY is the carry input CIN, which also feeds the XORCY input.

The select input to the MUXCY is the LUT output, where the LUT is typically configured as 
an XOR gate for the Propagate selection. This is the same LUT output that provides the 
other XORCY input.

Carry Chain Bypass and Initialization
To bypass the carry chain logic and always propagate the carry in signal, the MUXCY can 
be set to always select the "1" input. This is done via a Carry Select Mux called CYSELF or 
CYSELG at the bottom and top of the slice, respectively.

The "1" input to the MUXCY also supports initialization. Another mux allows the BX input 
to drive the MUXCY "1" input instead of CIN. This mux, CYINIT, is only available on the 
bottom LUT within a CLB slice. The BX signal comes from outside the CLB and can be 
sourced from the dedicated VCC points in the interconnect or from any LUT forced to a 0, 
or even from internal logic, allowed initialization to 1, 0, or a variable.

The MUXCY can also be initialized via the "0" input. The "0" input can be permanently 
selected by forcing the LUT to a constant 0 and selecting the LUT through the Carry Select 
Mux CYSELF or CYSELG. The "0" input comes from the CY0F/G signal. The CY0F/G 
mux, in turn, can select a fixed "0" or "1" directly for carry initialization.

XORCY
The XOR gate generically referred to as XORCY is available at both the bottom (called 
XORF) and top (XORG) of each slice. The inputs are sourced by the carry signal input CIN 
and the LUT output. The XORCY output goes to the primary output of the logic cell (to 
both the combinatorial output and the flip-flop). This path goes through a fixed mux that 
chooses between the LUT, the wide multiplexers, or the XORCY, which is called FXMUX at 
the bottom and GYMUX at the top of the slice.

Carry Logic Connections
The carry path is very fast because it has dedicated connections within and between CLBs. 
These dedicated connections have zero delays.

Connections within a Slice
The carry output of the bottom half of a slice connects directly to the carry input on the top 
half of the slice (CYMUXF drives directly into CYMUXG), as shown in Figure 9-5, 
page 276.
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Connections between Slices and CLBs
The carry output (COUT) of the bottom slice of one side of a CLB then connects directly to 
the carry in (CIN) of the top slice. This appears as a net in the design but has zero delay. 
SLICEM at X0Y0 connects to SLICEM X0Y1 on the left side, while SLICEL X1Y0 connects to 
SLICEL X1Y1 on the right side.

In addition, the COUT of the top slice on one side of a CLB, connects directly to the CIN of 
the bottom slice of the CLB above. This net also has a zero delay. SLICEM at X0Y1 connects 
to SLICEM at X0Y0 in the CLB above, and SLICEL at X1Y1 connects to SLICEL at X1Y0 in 
the CLB above. See Figure 9-6, page 279.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=core_generator 
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=core_generator 
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=core_generator 
http://www.xilinx.com
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As a result of the dedicated routing structure, the carry chain runs vertically up the 
columns of CLBs, with four bits per CLB in the two slices on one side. The other side of the 
CLB has a completely independent carry chain, so there are two chains per column.

The total number of carry chains is twice the number of CLB columns, as shown in 
Table 9-3. The number of bits per column is limited by the number of logic cells per 

Figure 9-6: Carry Logic Connections within a CLB
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column. In the Spartan-3E and Spartan-3A/3AN/3A DSP architectures, some of the CLB 
columns are interrupted by the DCMs and provide fewer bits per column.

Carry chains can be split or cascaded to provide even more flexibility. Splitting the carry 
chain means connecting the COUT of one MUXCY to the CIN signal of multiple MUXCYs, 
continuing the carry into two chains without having to duplicate the logic. Cascading the 
carry chain means connecting COUT through normal logic to a CIN other than one directly 
above. This can be used to continue a carry chain into a second column.

Splitting and cascading can be done since the COUT from each MUXCY not only feeds the 
next MUXCY up the column, but is also available at a CLB bypass output (XB on the 
bottom, YB on the top). These CLB outputs can only be driven by the MUXCY or by the 
SRL16 shiftout. Also, the CIN can come from the CLB bypass inputs BX/BY or from a LUT 
input in either one of the two MUXCY components. 

Table 9-3: Number of Carry Chains per Device

Device Number of Carry Chains Bits per Column

XC3S50 24 64

XC3S200 40 96

XC3S400 56 128

XC3S1000 80 192

XC3S1500 104 256

XC3S2000 128 320

XC3S4000 144 384

XC3S5000 160 416

XC3S100E 24 88

XC3S250E 36 136

XC3S500E 52 184

XC3S1200E 76 240

XC3S1600E 100 304

XC3S50A/AN 24 64

XC3S200A/AN 32 128

XC3S400A/AN 48 160

XC3S700A/AN 64 192

XC3S1400A/AN 80 288

XC3SD1800A 96 352

XC3SD3400A 116 416

http://www.xilinx.com
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Multiplication Resources
Special resources are also available for multiplication. One-bit multiplication is logically 
very simple, requiring only sets of AND gates. 

Multiplication of larger values is performed by generating partial products by multiplying 
each value by one bit of the other factor. These AND gates either allow the input value to 
be passed, or force the partial product completely to zero. The partial products are then 
added to generate the final product, as shown in Figure 9-7. The carry logic is very effective 
for the adder, so a common function preceding it will be the partial product multiplication.

While the latter stages of the addition tree are pure add functions, look at the way in which 
the first two partial products are formed and then applied to the first stage adder in 
Figure 9-7. In the majority of cases, the two adder inputs are each driven by a 2-input AND 
gate. As these AND gates would each occupy a LUT, a multiplier suddenly becomes very 
large in an FPGA. In the case of a 12-bit by 8-bit multiplier it would require 12 x 8 = 96 
LUTs (48 slices) just to implement the AND gates.

However, an optimization is quickly visible. The AND gate associated with one of the 
adder inputs can be absorbed into the LUT forming the half sum for addition. This in itself 
reduces the size of the 12-bit by 8-bit multiplier by 48 LUTs (24 slices).

Table 9-4: Binary Multiplication

A B   
Product

(A AND B)

0 0        0

0 1        0

1 0        0

1 1        1

Figure 9-7: Partial Product Multiplication
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An ideal situation would be to absorb the other AND gate into the LUT, but the signal it 
produces is also required by the MUXCY part of the addition function. So this circuit 
appears to be the optimal that can be achieved. 

However, Spartan-3 generation FPGAs allow this second AND gate to be absorbed. Next 
to each LUT is yet another component called the MULT_AND. It has the effect of recreating 
the same input to the MUXCY, even though the desired signal is now buried within the 
LUT.

The generic MULT_AND gate is called FAND at the bottom of the slice, combining the F1 
and F2 LUT inputs into the MUXCY at the bottom, CYMUXF. GAND at the top of the slice 
combines G1 and G2 into the MUXCY at the top, CYMUXG (see Figure 9-5).

This dedicated AND gate can be used for any other function besides a multiplier, but it can 
only connect to a MUXCY, which in turn can feed a CLB output to any logic.

Component and Pin Names
Table 9-5 summarizes all the names used for the elements of the carry and arithmetic logic. 
Italicized names are Slice pins.

Figure 9-8: Implementing Partial Product Multiplication in a CLB

Figure 9-9: MULT_AND Optimizes Partial Product Multiplication
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Table 9-5: Carry and Arithmetic Logic Names

Name          Loc in Slice
   FPGA Editor 

Names 
 Inputs                 Outputs

XORCY Bottom XORF        CYINIT XOR F     X (XQ)

XORCY Top XORG        CYMUXF XOR G     Y (YQ)

MUXCY  Bottom CYMUXF  CYINIT or CY0F
    CYMUXF (and 

XB)

http://www.xilinx.com
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COUT and YB are always the same signal in the SLICEL components (SLICEM allows 
driving YB from the SRL16 output). In the same way the CYMUXF output always drives 
the XB output in the SLICEL.

Table 9-6 summarizes the carry logic functions. For a detailed picture of the CLB slice, see 
Chapter 4, “Using Configurable Logic Blocks (CLBs).”

MUXCY  Top CYMUXG  CYMUXF or CY0G  COUT (and YB)

CYINIT Bottom CYINIT CIN or BX  CYINIT

MULT_AND Bottom FAND F1 AND F2 CY0F

MULT_AND Top GAND G1 AND G2  CY0G

Table 9-5: Carry and Arithmetic Logic Names

Name          Loc in Slice
   FPGA Editor 

Names 
 Inputs                 Outputs

Table 9-6: Carry Logic Functions

Function Description

CYINIT Initializes carry chain for a slice. Fixed selection of:

• CIN carry input from the slice below
• BX input

CY0F Carry generation for bottom half of slice. Fixed selection of:

• F1 or F2 inputs to the LUT (both equal 1 when a carry is to be generated)
• FAND gate for multiplication
• BX input for carry initialization
• Fixed "1" or "0" input for use as a simple Boolean function

CY0G Carry generation for top half of slice. Fixed selection of:

• G1 or G2 inputs to the LUT (both equal 1 when a carry is to be generated)
• GAND gate for multiplication
• BY input for carry initialization
• Fixed "1" or "0" input for use as a simple Boolean function

CYMUXF Carry generation or propagation mux for bottom half of slice. Dynamic selection via CYSELF of:

• CYINIT carry propagation (CYSELF = 1)
• CY0F carry generation (CYSELF = 0)

CYMUXG Carry generation or propagation mux for top half of slice. Dynamic selection via CYSELF of:

• CYMUXF carry propagation (CYSELG = 1)
• CY0G carry generation (CYSELG = 0)

CYSELF Carry generation or propagation select for bottom half of slice. Fixed selection of:

• F-LUT output (typically XOR result)
• Fixed "1" to always propagate

CYSELG Carry generation or propagation select for top half of slice. Fixed selection of:

• G-LUT output (typically XOR result)
• Fixed "1" to always propagate

http://www.xilinx.com
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Performance
Performance of carry logic based functions is determined by three components: the delay 
to get into the carry chain, the delay for each bit of the function in the carry chain, and the 
delay to generate the last result (see Figure 9-10). The delay to get into the carry chain is 
from the F inputs to the COUT output, tOPCYF, is approximately 0.9 ns (see Figure 9-11). 
The delay for each slice is the zero delay routing plus the delay from CIN to COUT, which 
is tBYP, approximately 0.2 ns (see Figure 9-12). Some functions can fit four bits per slice 
while most fit two bits per slice. The delay to generate the final result is typically the CIN 
delay to the YQ output or tCINCK, which is approximately 1.3 ns, or tCINY for a 
combinatorial result, which is approximately 1.2 ns (see Figure 9-13). Thus the total delay 
is 2.1 ns for four bits (2.2 ns registered) plus 0.2 ns for every additional two bits.

XORF Sum generation for bottom half of slice. Inputs from:

• F-LUT
• CYINIT carry signal from previous stage

Result is sent to either the combinatorial or registered output for the top of the slice.

XORG Sum generation for top half of slice. Inputs from:

• G-LUT 
• CYMUXF carry signal from previous stage

Result is sent to either the combinatorial or registered output for the top of the slice.

FAND Multiplier partial product for bottom half of slice. Inputs:

• F-LUT F1 input
• F-LUT F2 input

Result is sent through CY0F to become the carry generate signal into CYMUXF

GAND Multiplier partial product for top half of slice. Inputs:

• G-LUT G1 input
• G-LUT G2 input

Result is sent through CY0G to become the carry generate signal into CYMUXG

Table 9-6: Carry Logic Functions

Function Description
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Figure 9-10: Carry Delay Path
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Figure 9-11: Bottom Operand Input to Carry Out, TOPCYF
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Figure 9-12: Carry Propagation, tBYP
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Optimize the delays to get to and from the carry-based function. Bring the source inputs 
close to the carry function; use registered signals in a column to the left of the carry 
function if possible to provide near-zero routing delay to the carry function. The output of 
the carry function can be registered directly in the same CLB to provide high performance 
through pipelining. 

The SLICEL timing is often faster than the SLICEM timing due to the simpler structure, 
and therefore the SLICEL should be favored for the highest performance.

Use the following estimates for Spartan-3 generation carry-based adders, counters, and 
accumulators:

• 8 bits: 3.0 ns or 333 MHz

• 16 bits: 3.8 ns or 263 MHz

• 32 bits: 5.4 ns or 185 MHz

• 64 bits: 8.6 ns or 116 MHz

Specifications
The carry and arithmetic logic is defined by multiple timing specifications to cover each of 
the possible signal paths, as described in Table 9-7. 

Figure 9-13: Carry Input to Top Sum Combinatorial Output, tCINY
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Table 9-7: Other Specifications

Specification Description Path

TCINYB Carry split or cascade to top slice
CIN input through CYINIT through CYMUXF 
through CYMUXG to YB output

TCINXB Carry split or cascade to bottom slice 
CIN input through CYINIT through CYMUXF to 
XB output

TCINX Carry input to bottom sum combinatorial output
CIN input through CYINIT through XORF to X 
output

TCINCK
Carry input to top or bottom sum registered 
output setup

CIN input through CYINIT through XORF to FFX 
setup; or to top logic cell through CYINIT 
through CYMUXF through XORG to FFY setup

TCKCIN Carry input hold time
Hold time for TCINCK, from CIN through XOR to 
flip-flops

TBXCY
Bottom bypass input to carry output for 
initialization 

BX input through CYINIT (or CY0F) through 
CYMUXF through CYMUXG to COUT output

TBXYB Carry split
BX input through CYINIT (or CY0F) through 
CYMUXF through CYMUXG to YB output

TBXXB Carry split
BX input through CYINIT (or CY0F) through 
CYMUXF to XB output

TBYCY Top bypass input to carry output for initialization 
BY input through CY0G through CYMUXG to 
COUT output

TBYYB Carry split
BY input through CY0G through CYMUXG to YB 
output

TBXY Bottom bypass input to top sum for initialization 
BX input through CYINIT through CYMUXF 
through XORG to Y output

TBXX
Bottom bypass input to bottom sum for 
initialization 

BX input through CYINIT through XORF to X 
output

TDICK Bottom bypass input to sum setup time
BX input through CYINIT through XORF to FFX 
setup (or through CYMUXF through XORG to 
FFY setup)

TOPFYB Bottom operand input to carry split out
F1-F2 inputs through CY0F through CYMUXF (or 
F1-F4 inputs through F-LUT through CYSELF to 
CYMUXF select) through CYMUXG to YB

TOPXB Bottom operand input to carry split out
F1-F4 inputs through F- LUT through CYSELF 
through CYMUXF select to XB output

TOPY Bottom operand input to top sum
F1-F4 inputs through F-LUT through CYSELF 
through CYMUXF select through XORG to Y 
output

TOPX Bottom operand input to bottom sum
F1-F4 inputs through F-LUT through XORF to X 
output

TOPCYG Top operand input to carry out
G1-G2 inputs through CY0G through CYMUXG 
(or G1-G4 through G-LUT through CYSELG to 
CYMUXG select) to COUT output 
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Designing with the Carry and Arithmetic Logic
It is important to understand whether a design uses the carry logic and make sure it is 
being used effectively. Carry logic can be instantiated via primitives or macros, selected for 
components created by the CORE Generator system, or used automatically by high-level 
synthesis tools.

Library Elements Using Carry
The most direct way to use the carry logic is to instantiate the library components that 
already have it built in. Library components are designed to use the carry and arithmetic 
logic when they will be efficient in most designs. The adders, adder/subtractors, and 
accumulators use the carry, along with the 8-bit and 16-bit counters that start with "CC". 
The widest logic gates of 16 inputs use the carry multiplexers. Any custom function 
beyond these can be built from the carry primitives.

TOPGYB Top operand input to carry split out 
G1-G2 inputs through CY0G through CYMUXG 
(or G1-G4 through G-LUT through CYSELG to 
CYMUXG select) to YB output

TOPGY Top operand input to sum 
G1-G4 inputs through G-LUT through XORG to Y 
output

TFANDCY Bottom factor input to carry out 
F1/F2 inputs through FAND through CY0F 
through CYMUXF through CYMUXG to COUT

TFANDYB   Bottom factor input to carry split out 
F1/F2 inputs through FAND through CY0F 
through CYMUXF through CYMUXG to YB 
output

TFANDXB   Bottom factor input to bottom carry split out 
F1/F2 inputs through FAND through CY0F 
through CYMUXF to XB

TGANDCY   Top factor input to carry out 
G1/G2 inputs through GAND through CY0G 
through CYMUXG to COUT output

TGANDYB Top factor input to carry split out 
G1/G2 inputs through GAND through CY0G 
through CYMUXG to YB output

Table 9-7: Other Specifications

Specification Description Path
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Primitives

MUXCY

The MUXCY primitive is used to implement a 1-bit high-speed carry propagate function. 
DI is mapped to a CLB Direct Input while CI is the Carry Input. The select input S comes 
from the LUT; when Low, S selects DI; when High, S selects CI. The O output can cascade 
to the CI of the next MUXCY above or be fed to a CLB output.

The MUXCY primitive gets mapped to the CYMUXF or CYMUXG components at the 
bottom and top of the Slice, respectively. The S select input is normally driven by an XOR 
gate in a LUT, but the LUT can be fixed to zero to always select the DI input. A fixed 1 on 
the S input always selects the CI carry input, and can be implemented inside the mux itself, 
saving the LUT for other functions.

The MUXCY is also available as two additional primitives with "local" outputs. Local 
outputs reflect the dedicated connections between logic elements, in this case the direct 
connections from COUT to CIN. The local output on the primitive does not control the 
routing but allows the design tools to better estimate the timing before implementation. An 
O pin on a MUXCY connected to a CI pin on another MUXCY almost always uses zero-
delay connections, reflected by the local output (LO). The general-purpose output reflects 
the longer block and routing delays for splitting the carry chain by feeding it to the bypass 
outputs XB or YB. MUXCY_L will model the zero delay of the COUT path while 
MUXCY_D has both local and general-purpose outputs. Both paths are always available 
and can be used at the same time. If the O pin connects to a CI of another MUXCY, use the 
LO output of the MUXCY_L or MUXCY_D. If O connects to anything else, use a generic 
MUXCY or a the O output of a MUXCY_D.

Figure 9-14: MUXCY Primitive

Figure 9-15: MUXCY_D and MUXCY_L Primitives
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VHDL Instantiation

-- Component Declaration for MUXCY should be placed
-- after architecture statement but before begin keyword
component MUXCY
port (O : out STD_ULOGIC;
CI : in STD_ULOGIC;
DI : in STD_ULOGIC;
S : in STD_ULOGIC);
end component;
-- Component Attribute specification for MUXCY
-- should be placed after architecture declaration but
-- before the begin keyword
-- Attributes should be placed here
-- Component Instantiation for MUXCY should be placed
-- in architecture after the begin keyword
MUXCY_INSTANCE_NAME : MUXCY
port map (O => user_O,
CI => user_CI,
DI => user_DI,
S => user_S);

Verilog Instantiation

MUXCY MUXCY_instance_name (.O (user_O),
.CI (user_CI),
.DI (user_DI),
.S (user_S));

XORCY

The XORCY primitive is a special dedicated XOR with general output used for generating 
faster and smaller arithmetic functions. The XORCY primitive gets mapped to the XORF or 
XORG component in the bottom or top of the slice, respectively. The Logic Input (LI) is 
driven by the LUT output, typically the same as the S input on the MUXCY. The Carry 
Input (CI) is driven by the output of a MUXCY or initialized by another signal. The O 
output drives the combinatorial or registered output of the slice.

XORCY is also available as two additional primitives with Local Outputs or LO pins. 
Although there is no special routing for the output of an XORCY as there is for the 
MUXCY, the fast delay modeled by the Local Output can be used when direct connections 
are to be used to the adjacent CLB or back to the same CLB, or when the XORCY directly 
feeds a flip-flop.

As mentioned earlier the XORCY is used to complete the sum initiated by an XOR in the 
LUT. The XOR in the LUT is represented by a general-purpose XOR2 component or similar 
function.

VHDL Instantiation

-- Component Declaration for XORCY should be placed
-- after architecture statement but before begin keyword

Figure 9-16: XORCY Primitive
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component XORCY
port (O : out STD_ULOGIC;
CI : in STD_ULOGIC;
LI : in STD_ULOGIC;
end component;
-- Component Attribute specification for XORCY
-- should be placed after architecture declaration but
-- before the begin keyword
-- Attributes should be placed here
-- Component Instantiation for XORCY should be placed
-- in architecture after the begin keyword
XORCY_INSTANCE_NAME : XORCY
port map (O => user_O,
CI => user_CI,
LI => user_LI);

Verilog Instantiation

XORCY XORCY_instance_name (.O (user_O),
.CI (user_CI),
.LI (user_LI));

MULT_AND

The MULT_AND primitive is an AND component used almost exclusively for building 
faster and smaller multipliers. The MULT_AND primitive maps into the FAND or GAND 
gate in the Spartan-3 Slices. The inputs come from two specific LUT inputs, F1 and F2 or G1 
and G2. The output can only connect to the DI input on a MUXCY, so the primitive is only 
available with an "LO" Local Output to reflect the lack of any routing delays in pre-
implementation timing analysis.

Even if a generic AND2 gate is used, if it feeds into the MUXCY data input, it will likely be 
placed in the MULT_AND for efficiency. In the same way, a MULT_AND feeding into a 
generic M2_1 mux typically forces the mux into the MUXCY. The MULT_AND is used to 
"duplicate" one of two AND gates in the LUT in a typical multiplier. Those AND gates are 
designated by general-purpose AND2 components.

VHDL Instantiation

-- Component Declaration for MULT_AND should be placed
-- after architecture statement but before begin keyword
component MULT_AND
port (LO : out STD_ULOGIC;
I0 : in STD_ULOGIC;
I1 : in STD_ULOGIC);
end component;
-- Component Attribute specification for MULT_AND
-- should be placed after architecture declaration but
-- before the begin keyword
-- Attributes should be placed here
-- Component Instantiation for MULT_AND should be placed

Figure 9-17: MULT_AND Primitive
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-- in architecture after the begin keyword
MULT_AND_INSTANCE_NAME : MULT_AND
port map (LO => user_LO,
I0 => user_I0,
I1 => user_I1);

Verilog Instantiation

MULT_AND MULT_AND_instance_name (.LO (user_LO),
.I0 (user_I0),
.I1 (user_I1));

Emulating Virtex-II ORCY Components

The ORCY primitive found in the Virtex®-II architecture is not available in the Spartan-3 
generation FPGAs. Although labeled similarly to the carry primitives, ORCY is not 
typically used for arithmetic functions. It is used to create a Sum-Of-Products solution in 
the Virtex-II family, creating an OR of the wide AND gates that can be created using the 
MUXCY resources. In Spartan-3 generation FPGAs, similar logic can be implemented in 
the LUTs with more placement flexibility. If an ORCY component is found in a Spartan-3 
generation design, it is mapped to a LUT.

Macros

Table 9-8 shows the library macros that use the carry logic. All adders, adder/subtractors, 
and accumulators use the carry logic. Only counters that begin with "CC" use the carry 
logic, along with Magnitude Comparators with "MC". Wide gates of 16 bits use the carry 
logic while 12-bit and smaller gates do not. None of the standard library macros use the 
MULT_AND gate.

Table 9-8: Library Macros Using Carry Logic

Macro Name Macro Description Slices
Carry Resources 

Used

Acct. 4-bit Accumulator 6 MUXCY, XORCY

Acct. 8-bit Accumulator 10 MUXCY, XORCY

Acct. 16-bit Accumulator 18 MUXCY, XORCY

Add 4-bit Adder 3 MUXCY, XORCY

Add 4-bit Adder 5 MUXCY, XORCY

Add 4-bit Adder 9 MUXCY, XORCY

Addis 4-bit Adder/Subtractor 3 MUXCY, XORCY

ADSU8 4-bit Adder/Subtractor 5 MUXCY, XORCY

ADSU16 4-bit Adder/Subtractor 9 MUXCY, XORCY

AND16 16-bit AND gate 2 MUXCY

CC8CE 
8-bit binary counter with clear and 
clock enable

5 MUXCY, XORCY

CC16CE   
16-bit binary counter with clear and 
clock enable

9 MUXCY, XORCY
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Using the CORE Generator System
The Xilinx CORE Generator system can be used to generate more complex or customized 
functions. The CORE Generator software should be used for multipliers, since it can use 
the MUXCY and MULT_AND components or trade off resources with the dedicated 
multipliers. 

Adder
The adder and adder/subtractor components in the CORE Generator software 
automatically use the carry logic in a similar fashion to the library macros. The CORE 
Generator version allows for more flexibility in terms of data widths and registered 
outputs, among other functions.

CC8/16CLE 
8/16-bit binary counter with clear, 
load, and clock enable

9/17 MUXCY, XORCY

CC8/16CLED 
8-bit binary counter with clear, load, 
bidirectional, and clock enable

17/33 MUXCY, XORCY

CC8/16RE 
8/16-bit binary counter with reset and 
clock enable

9/17 MUXCY, XORCY

COMPMC8 8-bit Magnitude Comparator 8 MUXCY

COMPMC16 16-bit Magnitude Comparator 16 MUXCY 

NAND16 16-bit NAND gate 2 MUXCY

NOR16 16-bit NAND gate 2 MUXCY 

OR16 16-bit NAND gate 2 MUXCY

Table 9-8: Library Macros Using Carry Logic

Macro Name Macro Description Slices
Carry Resources 

Used
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.

Accumulator
The CORE Generator system's Accumulator is similar to the Adder/Subtractor but with 
the registered output Q feeding back in the A input of the adder. Functions built using the 
Accumulator use the Spartan-3 generation carry logic.

Comparator
The CORE Generator system's Comparator function also takes advantage of the carry logic 
in implementation.

Multiplier
The CORE Generator system also includes a multiplier that can be targeted to either the 
carry logic or the dedicated 18 x 18 multipliers. The graphical interface for the Multiplier 
core includes the Multiplier Construction option. If Use LUTs is selected, the multiplier is 
built using the carry and MULT_AND logic. If Use 18 x 18 Multiplier Blocks is selected, the 
multiplier is built using the dedicated 18 x 18 multipliers.

Figure 9-18: CORE Generator Adder/Subtractor
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Logic Gates
The 16-input gates in the library are implemented using carry logic. However, the logic 
gates in the CORE Generator system basic elements get implemented in LUTs, not the 
carry logic. When Use RPMs is selected, the function is placed in a column similar to the 
carry-based functions. The arithmetic functions always use the carry logic even if Use 
RPMs is not selected.

Carry and Synthesis Constraints
Most synthesis tools recognize arithmetic operators as opportunities to use the carry logic. 
Synplicity Synplify and Mentor Precision tools automatically infer usage of the MUXCY 
for adders and related arithmetic functions and the MULT_AND for multipliers that do 
not use the dedicated 18 x 18 resources. Check with your synthesis tool vendor for specific 
information on when it will use these resources.

The Xilinx Synthesis Tool (XST) also automatically infers the use of the carry and 
arithmetic logic. A synthesis constraint USE_CARRY_CHAIN can be applied locally or 
globally to force the tool to use the carry logic. After trying automatic synthesis, use this 
option in designs containing arithmetic logic to see if it provides a more efficient 
implementation. The parameter has two settings: Yes or No.

MUX_STYLE Constraint
The MUX_STYLE constraint guides the Xilinx XST synthesis tool to the type of multiplexer 
implementation desired. This constraint controls the way the macrogenerator implements 
the multiplexer functions. Allowed values are:

Figure 9-19: Multiplier Interface in CORE Generator System
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• Auto: let synthesis tools decide which implementation is best (default)

• MUXF: use dedicated MUXF5, MUXF6, MUXF7, or MUXF8 multiplexers

• MUXCY: use dedicated MUXCY carry multiplexers.

The MUXF is used specifically to combine the results of LUTs or other MUXF functions, 
under control of a dedicated input, for the purpose of expanding a general-use function to 
more inputs. The MUXCY is restricted to combining a single LUT input with a dedicated 
carry input, under control of a LUT, and drives the carry output, for the purpose of 
propagating an arithmetic carry. MUXF and MUXCY have very different functions, and 
typically it will be clear whether to use one or the other. See Chapter 8, “Using Dedicated 
Multiplexers,” for more information on MUXF.

MULT_STYLE Constraint
The MULT_STYLE constraint guides the XST synthesis tool to the type of multiplier 
implementation desired. This constraint controls the way the macrogenerator implements 
the multiplier macros. Allowed values are:

• Auto: let synthesis tools decide which implementation is best (default in Project 
Navigator)

• Block: use dedicated MULT18X18 multipliers

• LUT (default at command line): implement using carry and MULT_AND logic

• Pipe_block: use dedicated MULT18X18S pipeline multipliers (to be supported in a 
future release)

• KCM: Constant Coefficient Multiplier (command line only)

• Pipe_LUT: pipeline multiplier using carry and MULT_AND logic with registered 
inputs and outputs

Try selecting specific types of multiplier implementations to determine if the performance 
or density improves for your own designs.

Carry and Relative Location Constraints
Carry logic is most efficient when it is implemented in a single column of slices, since the 
carry chain has direct connections running up each column. This placement can be found 
automatically by the place & route tools, or defined by the user via one of several 
alternative methods.

Xilinx library macros and CORE Generator System macros using the carry logic include 
mapping, placement and routing information using two types of constraints, FMAPs and 
RLOCs. The FMAP symbol is used to map logic to the function generator of a slice. FMAP 
constraints define the inputs and outputs of each LUT. Note that for carry-based functions, 
only the I1 or I2 inputs on the LUT can connect to the MUXCY or the MULT_AND, so the 
FMAP symbol needs to have the arithmetic inputs on one of those two pins. Dummy 
signals can be placed on the other two inputs if unused to prevent the arithmetic inputs 
from being moved there. The FMAP symbol is primarily being used for relative placement, 
however, which requires the addition of an RLOC property. 

Relative Location (RLOC) constraints define the placement of the carry logic components 
and LUTs relative to each other. These macros are known as Relationally Placed Macros or 
RPMs. RPMs provide order and structure to related design elements without requiring 
specification of their absolute placement on the FPGA die. This gives the implementation 
tools more flexibility to meet timing whereas floorplanning requires absolute placement of 
the logic. The advantage of relative placement is that it allows the function to move as a 
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complete whole anywhere in the device. For example, an adder can be defined as requiring 
adjacent slices in one column, but that stack of slices can be placed by the tools wherever it 
is most efficient inside the device. 

RLOC constraints can be applied to any of the carry primitives - MUXCY, XORCY, and 
MULT_AND, along with flip-flops. An RLOC constraint cannot be applied directly to a 
gate primitive but it can be applied to a LUT defined via the FMAP component. In 
Spartan-3 generation designs, the RLOC constraint is specified using the slice-based XY 
coordinate system (RLOC = X0Y0, etc.). Slices are numbered on an XY grid beginning in 
the lower left corner of the chip. X ascends in value horizontally from left to right. Y 
ascends in value vertically from bottom to top. A CLB actually encompasses two rows and 
two columns of the coordinate system; slices S2 (X1Y0) and S3 (X1Y1) are considered 
horizontally adjacent to slices S0 (X0Y0) and S1 (X0Y1) in the CLB. Each part of the 
hierarchy can have its own independent set of relative constraints, and the user can even 
define multiple sets per hierarchical block. 

Carry and Floorplanning
RLOCs can be specified directly in HDL code or a schematic, defined in the Floorplanner, 
or written into a constraints file. The carry-based functions can also be placed using PACE 
(Pinout and Area Constraints Editor). The RPMs are always placed as a complete group in 
both PACE and the Floorplanner. 

Because carry-based functions are in a column with the MSB at the top, related functions 
should be placed in a similar fashion. The data inputs should come from a column of CLBs, 
or IOBs on the left or right edges, also with MSB at the top.

RLOC constraints allow the user to place logic blocks relative to each other to increase 
speed and use die resources efficiently. When defining relative location constraints, it is 
important to remember how "tall" the target device is and stay within one column. 
However, if an area constraint is too tall, the carry path is automatically split to fit across 
multiple columns. With two LUTs per slice, the bottom two FMAPs should be assigned 

Figure 9-20: Arrangement of Slices within the CLB
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RLOC=X0Y0, the next two RLOC=X0Y1, and so on. See the example for the ADD4 library 
component in Figure 9-21.

For more information on relative location constraints, see the Libraries and Constraints 
guides. If relative locations are to be applied to both slices and other resources such as 
block RAM, consider using the RPM GRID system described in XAPP416.

Applications
Although the carry logic is most directly applicable to arithmetic functions, it can also be 
used for other types of logic.

Wide Gates
The MUXCY is useful for general-purpose logic because it is controlled by the LUT and can 
have a fixed 0 or 1 input without using resources. An AND gate can be implemented in a 
mux by selecting the input "A" when B is High, as shown in Figure 9-22. The 0 data on the 
0 side of the mux is available as a fixed input within the slice and does not require any 
resources.

Figure 9-21: ADD4 Schematic Implementation
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With two LUTs and two MUXCYs per slice, two four-input functions can be combined into 
one result in each slice, as shown in Figure 9-23.

The initial 1 on the 1 input of the MUXCY can be sourced by one of the global 1 signals 
available within the FPGA structure. Alternatively, it can be connected to a ninth input to 
create a 9-input AND gate. With appropriate inversions, the AND function can be turned 
into a NAND, OR, or NOR gate, with the same efficiency. A 1 is also available on the 
MUXCY data input, while an initial zero can be generated in any unused LUT.

This implementation of wide logic functions provides higher performance and more 
efficient utilization of the FPGA resources. The carry chain eliminates multiple levels of 
logic and provides a fast path to the final result. The only limit on the width of the gate is 
the number of LUTs in a column, allowing over 400 inputs in one function. Common 
applications include wide input decoding, comparators, and counters.

The 16-input gates in the Xilinx library use the MUXCY logic (see Figure 9-24). 12-input 
gates and smaller use multiple levels of LUTs.

Figure 9-22: Using a MUXCY Multiplexer as an AND Gate

Figure 9-23: Using MUXCY in Slice to AND Two 4-Input Functions
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Remember that another alternative for wide logic functions is to use the F5MUX and 
FiMUX (F6MUX, F7MUX, F8MUX). These multiplexers are more efficient for registered 
functions since they feed directly into the flip-flop in the same CLB, and can create any 
function of up to 8 inputs in one level of logic, and some functions of up to 79 inputs. See 
Chapter 8, “Using Dedicated Multiplexers” for more details.

Sum of Products

Generic logic descriptions will always be optimized into the four-input LUTs of the 
Spartan-3 architecture, minimizing the number of resources required. The Xilinx software 
is very efficient at optimizing logic to fit into the LUT structure, where the only limit is the 
number of inputs, not the type of function.

Some logic architectures, including CPLDs, incorporate a sum-of-products structure, using 
wide AND gates followed by OR gates. The wide AND gates can be implemented in the 
Spartan-3 FPGA using the carry logic. The OR gates would be implemented in LUTs, with 
up to four wide AND gates able to be combined in one fast LUT. Since carry-based AND 
gates will be vertical with the result at the top, the OR LUT should be placed in a CLB 
above the column-based AND gates.

Note that the ORCY function, used in the Virtex-II and Virtex-II Pro families to OR together 
carry-based AND gates, is not available in the Spartan-3 family. Using the LUT instead 
provides for a smaller CLB (and therefore lower cost), and offers more placement 
flexibility.

Comparators
The AND function in the MUXCY can be extended to implement an equality comparator 
of two four-bit values per slice.

Figure 9-24: Library AND16 Implementation Using Carry Logic

MUXCY

AND

4

16

MUXCY4

0

0 1

0 1

0

0 1

0

MUXCY4

Slice

OUT

OUT

Slice

LUT

UG331_c11_24_080106

LUT

LUT

VCC

MUXCY4

0 1
LUT

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 303
UG331 (v1.5) January 21, 2009

Applications
R

A magnitude comparator can also be implemented using the carry logic, at two bits per 
slice.

As with the logic gates, inverters can be used to generate inequality or other comparisons.

Adders
The adder is the fundamental function of the carry logic, as described earlier. Two bits per 
Logic Cell can be added.

Figure 9-25: Equality Comparator in One Slice

Figure 9-26: Magnitude Comparator in One Slice
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Counters
A binary counter can be implemented by toggling each flip-flop when all the lower-order 
flip-flops are High. Figure 9-28 shows a typical binary up counter using toggle flip-flops. 
Each bit toggles if all the lower-order bits are high. The AND gates are required for each bit 
and get wider as the counter gets larger.

These wide AND gates are also a candidate for the carry logic, especially since it avoids 
having to duplicate the gate at different widths. Figure 9-29 shows the same binary counter 
using the MUXCY in place of the AND gates. Each MUXCY expands the width of the AND 
gate by the additional bit needed for each stage of the counter, and there is no redundant 
logic. The performance limit is only the propagation of the carry chain instead of wide 
AND gates.

Figure 9-27: Basic Adder Cell
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Figure 9-30 shows the implementation of the carry-based binary counter using the D flip-
flops available in the slices. The inverter and XOR gates are implemented in the LUT 
preceding each flip-flop. 

Figure 9-29: Binary Counter Using MUXCY for AND Gates

Figure 9-30: Binary Counter Using D Flip-Flops
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Multipliers
Multiplication is typically done by generating partial products and then adding the results. 
The carry logic optimizes both aspects of the design.

One-bit multiplication is logically very simple, requiring only sets of AND gates. These 
gates either allow the input value to be passed or force the partial product completely to 
zero.

Then, all the partial products need to be added together with the appropriate bit 
weighting. If there is sufficient time (enough clock cycles), the classical serial "shift and 
add" technique can be adopted based on an accumulator; however, for a maximum 
performance parallel multiplier, an addition tree is needed. This tree is effectively 
implemented using carry-based adders, with pipelining registers available if desired for 
better performance.

These AND gates can be implemented in the MULT_AND and the LUTs available in the 
CLBs.

Figure 9-31: Partial Product Generation

Figure 9-32: Partial Product Multiplication
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Optimizing Carry-Based Multipliers

Figure 9-9, page 282 shows that two bits can be multiplied at a time using the carry and 
arithmetic logic. Therefore one of the inputs must be divided into 2-bit pieces and then the 
partial products combined in an adder tree. Fewer levels of logic will be required in the 
adder tree if the smaller value is the one divided into 2-bit sections. Also consider dividing 
the input whose number of bits is a power of 2, since that will provide more symmetry.

For example, a multiplier of an 8-bit value by a 12-bit value has the two possible 
implementations shown in Figure 9-34 and Figure 9-35.

Figure 9-33: Multiplier Implementation
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The fact that 8 is a power of 2 means that the "12 x 8" breaks down nicely into 4 multiplier 
adders in the first stage; hence, it leads to a symmetrical addition tree of 3 levels. In 
contrast, the "8 x 12" is less elegant: the 6 multiplier adders of the first stage do not sum 
easily, leading to more adders and 4 levels of logic. For a fully pipelined multiplier, there is 
even the requirement for delay compensation.

The multiplier adders and pure adders of the "8 x 12" are generally a smaller number of 
bits than in the "12 x 8"; but with the efficient carry-based adders in the Spartan-3 
architecture, this has a very minimal impact on performance. In any case, both multipliers 
have the same largest-size adder at the final stage. Combinatorial multiplier performance 
will be set by the number of logic levels, and in this case, the "12 x 8" will definitely win.

It is difficult to know for certain how each design entry tool handles the implementation of 
complex functions, so experiment with alternative implementations. Even simply 
switching the order of the inputs could have a significant affect on the performance and 
resource requirements.

MULT_AND vs. MULT18X18

The combination of the MULT_AND with the carry logic provides an efficient 
implementation of small multipliers. The multipliers can be placed in any column of the 
device. Larger multipliers should use the dedicated MULT18X18 resource, which provides 
high-speed multiplication of two 18-bit signed or two 17-bit unsigned values, without 
using any CLB resources. The different Spartan-3 densities have from 4 to 104 of the 
dedicated multipliers, and the Spartan-3A DSP platform has 84 to 126 DSP48A blocks. The 
dedicated resources should be used even for small functions if CLB resources are at a 
premium. The dedicated resources are faster for larger functions, especially if the inputs 
and outputs are pipelined with CLB flip-flops, allowing over 150 MHz multiplication. See 
Chapter 11, “Using Embedded Multipliers,” for more information.

MULT_AND vs. CLB Logic

For smaller and simpler multipliers even the MULT_AND logic might be unnecessary. 
Multiplying by 2n simply requires shifting the value n places and adding is eliminated, so 
the SRL16 or other resources can be used. Small multipliers can be implemented in LUTs, 

Figure 9-35: 8 x 12 Multiplier Dividing 12-Bit Input into 2-Bit Sections
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possibly using Muxes to expand to more inputs, and removes the column-based 
requirement of the MULT_AND based multipliers.

Other Types of Multipliers

There are many alternative variations on multipliers that might be more efficient in the 
LUT-based multiplier logic. For example, using Canonic Signed Digits instead of a binary 
representation provides the fewest number of non-zero bits by using subtraction to 
compress the representation and therefore can provide more efficiency. For example, 
multiplying by 119 would normally be broken down into (26 + 25 + 24 + 22 + 21 + 20) * x. A 
Canonic Signed Digits version would be implemented as (27 - 23 - 20)*x

Conclusion
Dedicated carry logic provides fast arithmetic addition and subtraction. The Spartan-3 
generation CLB has two separate carry chains with two bits per slice. The dedicated carry 
path and carry multiplexer can also be used to cascade function generators for 
implementing wide logic functions. The arithmetic logic includes an XOR gate that allows 
a two-bit full adder to be implemented within a slice. In addition, a dedicated AND 
improves the efficiency of multiplier implementations. These resources are used 
automatically by synthesis tools or can be explicitly called out by the user.

Related Materials and References
Information on the carry primitives and carry-based macros can be found in the Libraries 
Guide at:

http://www.xilinx.com/support/software_manuals.htm 

CORE Generator System component information can be found at:

www.xilinx.com/products/design_tools/logic_design/design_entry/coregenerator.htm 

Figure 9-36: Binary Multiplication by 119 Uses 5 Shifters and 5 Adders

Figure 9-37: CSD Multiplication by 119 Uses 2 Shifters and 2 Adder/Subtractors
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Chapter 10

Using I/O Resources

All signals entering and exiting a Spartan®-3 generation FPGA must pass through the I/O 
resources, known as I/O blocks or IOBs. Because FPGAs are used in more advanced 
applications, they must support an increasing variety of I/O features. The revolutionary 
SelectIO input/output capabilities of Spartan-3 generation FPGAs have met this need by 
providing a highly configurable, high-performance resource suitable for applications such 
as high-speed memory and programmable backplane interfaces.

The Spartan-3 generation FPGAs simplify high-performance design by offering selectable 
I/O standards for inputs and outputs. Over 20 different standards are supported in each 
family, with different specifications for current, voltage, I/O buffering, and termination 
techniques. As a result, the Spartan-3 generation FPGA can be used to integrate discrete 
translators and directly drive the most advance backplanes, buses, and memories. Directly 
providing the necessary interface standard not only eliminates the cost of external 
translators, but also significantly improves the chip-to-chip speed and reduces power 
consumption. 

This chapter describes how to take full advantage of the flexibility of the I/O capabilities 
and the design considerations to improve and simplify system level design. The following 
I/O topics are covered:

• “IOB Overview” 

• “I/O Differences between Spartan-3 Generation Families”

• “Design Entry”

• “Architectural Details”

• “SelectIO Signal Standards”

• “Supply Voltages for the IOBs”

IOB Overview
The Input/Output Block (IOB) provides a programmable, unidirectional or bidirectional 
interface between a package pin and the FPGA’s internal logic, supporting a wide variety 
of standard interfaces. The robust feature set includes programmable control of output 
strength and slew rate, registered or combinatorial inputs and outputs with dedicated 
double data rate (DDR) registers, programmable input delays, on-chip termination, and 
hot-swap capability.

Figure 10-1, page 313 is a simplified diagram of the IOB’s internal structure. There are 
three main signal paths within the IOB: the output path, input path, and 3-state path. Each 
path has its own pair of storage elements that can act as either registers or latches. For more 
information, see “Storage Element Functions,” page 324. The three main signal paths are as 
follows: 

http://www.xilinx.com
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• The input path carries data from the pad, which is bonded to a package pin, through 
an optional programmable delay element directly to the I line. After the delay 
element, there are alternate routes through a pair of storage elements to the IQ1 and 
IQ2 lines. The IOB outputs I, IQ1, and IQ2 lead to the FPGA’s internal logic. The delay 
element can be set to ensure a hold time of zero (see “Input Delay Functions”).

• The output path, starting with the O1 and O2 lines, carries data from the FPGA’s 
internal logic through a multiplexer and then a three-state driver to the IOB pad. In 
addition to this direct path, the multiplexer provides the option to insert a pair of 
storage elements. 

• The 3-state path determines when the output driver is high impedance. The T1 and T2 
lines carry data from the FPGA’s internal logic through a multiplexer to the output 
driver. In addition to this direct path, the multiplexer provides the option to insert a 
pair of storage elements.

All signal paths entering the IOB, including those associated with the storage elements, 
have an inverter option. Any inverter placed on these paths is automatically absorbed into 
the IOB.
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Figure 10-1: Simplified IOB Diagram
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I/O Differences between Spartan-3 Generation Families
The Spartan-3 generation families have the same basic I/O capabilities, but there are many 
differences in the details between each family.

Number of Resources per Device
The details showing the number of I/O resources in each part/package combination are 
found in Chapter 1, “Overview.” Table 10-1 summarizes the maximum number of I/Os for 
each device.

The devices offer complementary solutions for different applications. The Spartan-3A DSP 
platform is optimized for digital signal processing and similar logic-intensive applications. 
The Spartan-3AN platform offers a non-volatile FPGA solution. The Spartan-3A platform 
has the highest number of I/Os per gate, and is most cost-effective for applications that are 
I/O intensive. The Spartan-3E family offers a higher number of gates per I/O, making it 
cost-effective for applications requiring more logic than I/O. The I/O ratios differ 
primarily because the Extended Spartan-3A family has a dual, staggered I/O ring around 
the device, while the Spartan-3E family has a single in-line I/O ring. The Spartan-3 family 
offers even higher density solutions for both gates and I/Os, and also has a staggered I/O 
ring.

Input-Only Pins

To optimize the I/O ring and reduce cost, some I/O blocks in the Extended Spartan-3A 
and Spartan-3E families are input-only pins. Dedicated Inputs are IOBs usable only as 
inputs. Pin names designate a Dedicated Input if the name starts with IP, for example, IP_x 
or IP_Lxxx_x. Dedicated inputs retain the full functionality of the IOB for input functions 
with a single exception for differential inputs (IP_Lxxx_x). For the differential Dedicated 
Inputs, the on-chip differential termination is not available. To use the on-chip differential 
termination, either choose a differential pair that supports outputs (IO_Lxxx_x) or use an 
external 100Ω termination resistor on the board.

The unidirectional, input-only block has a subset of the full IOB capabilities. Thus there are 
no connections or logic for an output path. The following paragraphs assume that any 
reference to output functionality does not apply to the input-only blocks. The number of 
input-only blocks varies with device size but is never more than 25% of the total IOB count. 

Table 10-1: Maximum Number of I/Os per Spartan-3 Generation Device

Spartan-3A DSP 
FPGA

I/O
Spartan-3AN 

FPGA
I/O

Spartan-3A 
FPGA

I/O
Spartan-3E 

FPGA
I/O

Spartan-3 
FPGA

I/O

XC3SD1800A 519 XC3S50AN 108 XC3S50A 144 XC3S100E 108 XC3S50 124

XC3SD3400A 469 XC3S200AN 195 XC3S200A 248 XC3S250E 172 XC3S200 173

XC3S400AN 311 XC3S400A 311 XC3S500E 232 XC3S400 264

XC3S700AN 372 XC3S700A 372 XC3S1200E 304 XC3S1000 391

XC3S1400AN 502 XC3S1400A 502 XC3S1600E 376 XC3S1500 487

XC3S2000 565

XC3S4000 633

XC3S5000 633
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For details on the number of input-only pins in each part/package combination, see 
Chapter 1, “Overview.”

Package Footprint Compatibility 
Sometimes, applications outgrow the logic capacity of a specific FPGA, or it is possible to 
optimize down to a lower density solution. Fortunately, each family is designed so that 
multiple part types are available in pin-compatible package footprints, as described in 
Module 4 of each family’s data sheet. In some cases, there are subtle differences between 
devices available in the same footprint. These differences are outlined for each package, 
such as pins that are unconnected on one device but connected on another in the same 
package, or pins that are input-only pins on one package but full I/O on another. When 
designing the printed circuit board (PCB), plan for potential future upgrades and package 
migration. For details on the package pinout compatibility within a family, see Module 4 of 
the data sheet for each family.

The Spartan-3A and Spartan-3AN platforms are pin compatible, and the XC3SD1800A in 
the Spartan-3A DSP platform offers a straightforward upward migration. There is no other 
pin compatibility between families; the Extended Spartan-3A pinouts, Spartan-3E pinouts, 
and Spartan-3 pinouts are not compatible. There are significant differences between the 
other families in terms of the dedicated pins, number of I/Os per bank, and package 
options. Each family has been optimized to maximize the efficiency of the pinout for the 
features found in that family. Although, for example, the Spartan-3A XC3S200A and 
XC3S400A devices are completely pin-compatible in the FT256 package, they are not 
compatible with the Spartan-3E or Spartan-3 devices in the same FT256 package.

Also note that the XC3S200A and XC3S400A pinouts are different than the XC3S700A and 
XC3S1400A pinouts for the FT256 package. The larger two devices require additional 
power and ground pins due to their higher density. Therefore some of the I/O pins on the 
smaller parts become power and ground pins in the larger parts. Pinout compatibility 
could be maintained by using those I/O pins as virtual power and ground pins in the 
smaller parts (see “Optionally Place Virtual Ground Pins Around DCM Input and Output 
Connections” in Chapter 3. If the design uses differential I/O or HSTL/SSTL, the 
differences in differential pairing and VREF pins will also need to be accounted for.

The I/O pins are separated into independent banks, typically four per device. Each bank 
has a common output voltage supply (VCCO) and a common reference voltage for HSTL 
and SSTL standards (VREF). The banks are numbered clockwise from the top of the device 
(see Figure 10-35, page 351).

Summary of Differences

Table 10-2 highlights the major differences between the I/O resources of the different 
Spartan-3 generation FPGA families. Some of these differences are described in more detail 
later in this chapter.
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Design Entry
In many cases the I/O resources are automatically selected by the implementation tools. 
Users might want to specify particular components for special purposes, such as using 
dedicated clock inputs. The components listed below can be instantiated in HDL code or in 
a schematic.

Library Components
The Xilinx library includes an extensive list of components designed to provide support for 
the variety of I/O features (Table 10-3). Most of these components represent variations of 
the five generic I/O elements:

• IBUF (input buffer)

• IBUFG (global clock input buffer)

• OBUF (output buffer)

• OBUFT (3-state output buffer)

• IOBUF (input/output buffer)

Table 10-2: Differences Between Architectures

Features
Spartan-3A/3AN/3A DSP 

FPGA
Spartan-3E FPGA Spartan-3 FPGA

Input-Only Pins Yes Yes No

I/O Structure Staggered In-Line Staggered

Programmable Input Delay - 
Combinatorial

Dynamic, 
16 Values

Programmable, 
12 Values

Programmable, 
1 Value

Programmable Input Delay - 
Registered

Programmable, 
8 Values

Programmable, 
6 Values

Programmable, 
1 Value

IOSTANDARDs Vary – see details later Vary – see details later Vary – see details later

Banks 4 4 8

Differential Termination Yes, ~100Ω Yes, ~ 120Ω N/A

Single-Ended Termination N/A N/A Digitally Controlled 
Impedance (DCI)

Slew Rates 3 2 2

Hot Swap Fully Supported Requires Sequencing Requires Sequencing

VIN Absolute Maximum 4.6V 4.4V VCCO + 0.5V or 4.05V

IDDR2 Register Cascade Yes Yes N/A

ODDR2 Register Cascade Yes N/A N/A
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Earlier families had additional I/O components, but these are not recommended for use in 
new designs. These components included:

• Bus I/O (Example: IBUF4)

These are still available for schematic entry only at 4, 8, and 16 bits wide, but 
individual components allow more control over constraints.

• Registered I/O (Example: IFD)

These are also available for schematic entry and include both registered and latched 
I/Os. However, it is recommended that the software be allowed to optimize to either 
the IOB or the CLB, whichever is more efficient.

• I/O Standard Suffix (Example: IBUF_LVCMOS18)

These components included the IOSTANDARD as part of the component name. It is 
recommended to apply an IOSTANDARD constraint to a generic component instead.

Table 10-3: Spartan-3 Generation I/O Components

 
Spartan-3A/3AN/3A DSP 

FPGA
Spartan-3E 

FPGA
Spartan-3 

FPGA
Input Output

Three-
State

Differential

IBUF Y Y Y Y N N N

IBUFG Y Y Y Y N N N

IBUFDS Y Y Y Y N N Y

IBUFGDS Y Y Y Y N N Y

IBUF_DLY_ADJ Y N N Y N N N

IBUFDS_DLY_ADJ Y N N Y N N Y

OBUF Y Y Y N Y N N

OBUFDS Y Y Y N Y N Y

OBUFT Y Y Y N Y Y N

OBUFTDS Y Y Y N Y Y Y

IOBUF Y Y Y Y Y Y N

IOBUFDS(1) Y Y Y Y Y Y Y

IDDR2 Y Y
IFDDRCPE 

and 
IFDDRRSE

Y N N optional(2)

ODDR2 Y Y
OFDDRCPE 

and 
OFDDRRSE

N Y N optional(2)

PULLUP Y Y Y Y Y - -

PULLDOWN Y Y Y Y Y - -

KEEPER Y Y Y Y Y - -

Notes: 
1. Must use a bidirectional differential IOSTANDARD such as BLVDS.
2. Must be differential if the DDR_ALIGNMENT = C0/C1 feature is used.
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Registered I/O

The Spartan-3 generation IOB includes an optional flip-flop or latch on the input path, 
output path, and 3-state control input. However, there are no special library components 
for the I/O registers. To simplify design, especially synthesis, the standard register 
primitives are automatically absorbed into the IOB when possible. This feature is selected 
by the user by turning on the Map Property "Pack I/O Registers/Latches into IOBs", which 
can be set to Off (default), For Inputs Only, For Outputs Only, or For Inputs and Outputs. 
Alternatively, the IOB = TRUE property can be placed on a register to force the mapper to 
place the register in an IOB.

An optional delay element is associated with the input path in each logic input primitive 
(IBUF or IOBUF). When the buffer drives an input register within the IOB, the delay 
element activates by default to ensure a zero hold time requirement. The delay element is 
not used for non-registered inputs, to provide higher performance. The user can override 
the defaults; see “Input Delay Functions,” page 321 for more details.

Differential I/O

The Spartan-3 generation IOBs include differential I/O standards such as LVDS, BLVDS, 
and RSDS. Differential I/O requires two pins for every signal, which toggle in opposite 
directions. To support differential signaling, most I/O components have differential 
versions with DS in the name and two I/O pins on the component.

On the inputs, if only the P side of the differential pair is called out, the N side is 
automatically configured as the other half of the differential pair. If the N input is called 
out in a design for simulation and system-level integration, it is trimmed during the 
mapping process, although physically it is still used in conjunction with the P input, and 
the software does not allow it to be used for any other purpose.

On the outputs, both the P and N sides of the differential pair must be defined. The IOB 
must have the same net source the control pins: clock, set/reset, three-state, three-state 
clock enable, and output clock enable. In addition, the output pins must be inverted with 
respect to each other, and, if output registers are used, the D inputs must be inverted to 
each other and the INIT states must be opposite values (one High and one Low). Three-
state registers must have the same inputs and have the same INIT states. INIT states must 
be set correctly for the power-up state even if the INIT function is not used in the design 
(INIT is connected to ground).

The pins that can be used as differential pairs are specified in the Module 4 pinout tables, 
including the special pairs that can be used for clock inputs. 

IBUF

Signals used as inputs to the device must source an input buffer (IBUF) via an external 
input port. Figure 10-2 shows the generic IBUF symbol.

Figure 10-2: Input Buffer (IBUF) Symbol
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IBUFG

IBUFG is a special global clock input buffer that can connect directly to the BUFG (global 
clock buffer) and DCM components. A standard input driving a clock signal is put onto an 
IBUFG by the Xilinx tools, or the user can instantiate the IBUFG directly. See Chapter 2, 
“Using Global Clock Resources,” for more details. Figure 10-3 shows the generic IBUFG 
symbol.

IBUFDS

IBUFDS is an input buffer that supports differential signaling. In IBUFDS, a design level 
interface signal is represented as two ports (I and IB), one deemed the "master" and the 
other the "slave." The master and the slave are opposite phases of the same logical signal 
(for example, MYNET and MYNETB). Figure 10-4 shows the generic IBUFDS symbol.

OBUF

An OBUF must drive outputs through an external output port. Figure 10-5 shows the 
generic output buffer (OBUF) symbol.

OBUFT

The generic 3-state output buffer OBUFT, shown in Figure 10-7, typically implements 
3-state outputs. Unused I/Os are configured with a disabled OBUFT.

Figure 10-3: Global Clock Input Buffer (IBUFG) Symbol
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Figure 10-4: Differential Input Buffer (IBUFDS) Symbol
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Figure 10-5: Output Buffer (OBUF) Symbol
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Figure 10-6: 3-State Output Buffer (OBUFT) Symbol
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IOBUF

Use the IOBUF symbol for bidirectional signals that require both an input buffer and a 
3-state output buffer with an active high 3-state pin. This symbol combines the 
functionality of the OBUFT and IBUF symbols. Figure 10-7 shows the generic 
input/output buffer IOBUF.

Pull-Up, Pull-Down, and Keeper Circuits

Three-state output buffers and bidirectional buffers can have a pull-up resistor, a pull-
down resistor, or a keeper circuit. Control this feature by adding the appropriate symbol to 
the output net of the OBUFT or IOBUF (PULLUP, PULLDOWN, or KEEPER).

VREF is typically needed only for inputs that use an IOSTANDARD requiring VREF, such as 
HSTL and SSTL inputs. However, an IOB configured using an OBUFT with a weak keeper 
circuit requires the input buffer to sample the I/O signal. Therefore, using an OBUFT 
requires the use of the VREF pins in the bank if the OBUFT is configured with KEEPER and 
a standard that requires VREF. In most applications, the VREF pins in the bank are needed 
anyway because the OBUFT is usually combined with an input IBUF component.

DDR and Adjustable Delay I/O Components

The DDR components (IDDR2 and ODDR2) are discussed in “Double-Data-Rate 
Transmission,” page 326. The adjustable delay (IBUF_DLY_ADJ) is discussed in “Input 
Delay Functions,” page 321.

HDL Entry

I/O components can be easily instantiated in VHDL or Verilog code. The Xilinx 
development system includes language templates for any of the standard I/O 
components.

Following is an example of the template for the IOBUF input/output buffer component. 
Registers can automatically be merged into the I/O block, simplifying the generation of 
the HDL code.

-- INOUT_PORT : inout STD_LOGIC;
--**Insert the following between the
-- 'architecture' and 'begin' keywords**
  signal IN_SIG, OUT_SIG, T_ENABLE: std_logic;
component IOBUF
      port (I, T: in std_logic;
            O: out std_logic;
         IO: inout std_logic);

Figure 10-7: Input/Output Buffer (IOBUF) Symbol
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end component;
   --**Insert the following after the 'begin' keyword**
U1: IOBUF port map (I => OUT_SIG, T => T_ENABLE,
              O => IN_SIG, IO => INOUT_PORT);

Architectural Details

Input Delay Functions
An optional delay element is associated with each input path. When the buffer drives an 
input register within the IOB, the delay element activates by default to ensure a zero hold 
time requirement. This is desirable because the clock signal has a longer path to the IOB 
through the global clock buffer and global clock routing, as shown in Figure 10-8. The 
delay element slows down the data input so that when data and clock pins change at the 
same time, the clock arrives first and clocks in the data set up on the previous clock edge. 
The delayed data signal then arrives at the flip-flop, ready for the next clock edge.

There are actually two flip-flops on the input path to support double data rate signaling 
called IFF1 and IFF2. They generate IOB signals IQ1 and IQ2, respectively, as shown in 
Figure 10-1, page 313. The delay element choice affects both flip-flops.

The delay element is not used for non-registered (combinatorial) inputs in order to provide 
higher performance. An IOB can supply both a registered and a non-registered version of 
the same input pad if required in the application. When both paths are used, the delay 
element choice is independent for the two paths, for example, allowing the registered path 
to be delayed while the combinational path is not.

The user can override the defaults, either adding the delay to a combinatorial input or 
removing it from a registered input. Extra delay might be required on some clock or data 
inputs, for example, in interfaces to various types of RAM. If the design uses a DCM in the 
clock path, then the delay element can be removed from registered inputs, still without a 
hold time requirement.

Programmable Delay

In the Spartan-3E and Extended Spartan-3A families, the delay block itself has 
programmable delay values.

Figure 10-8: Simplified View of Data and Clock Routing to Input Flip-Flop

Pad

Pad

Delay

D

IOB

BUFG

Q

UG331_c10_08_111106

http://www.xilinx.com


322 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 10: Using I/O Resources
R

Each IOB has a programmable delay block that can delay the input signal by a 
programmable amount. In Figure 10-9, the signal path has a coarse delay element that can 
be bypassed. The input signal then feeds a 6-tap delay line in the Spartan-3E family (an 8-
tap delay line in the Extended Spartan-3A family). All six taps are available via a 
multiplexer for use as an asynchronous input directly into the FPGA fabric. Three of the six 
taps are also available via a multiplexer to the D inputs of the synchronous storage 
elements. The coarse delay element is common to both asynchronous and synchronous 
paths, and must be either used or not used for both paths.

These delay values are set up in the silicon once at configuration time through the 
IBUF_DELAY_VALUE and the IFD_DELAY_VALUE parameters. The default 
IBUF_DELAY_VALUE is 0, bypassing the delay elements for the asynchronous input. The 
user can set this parameter to 0-12 in the Spartan-3E family. The default 
IFD_DELAY_VALUE is AUTO; the Xilinx software chooses the default value automatically 
because the value depends on device size. The default values are shown in the data sheet 
timing specifications, and are indicated in the Map report generated by the 
implementation tools. The user can select a specific IFD_DELAY_VALUE from 0-6 in the 
Spartan-3E family, and the resulting timing is reported by the Timing Analyzer tool.

IBUF_DELAY_VALUE and IFD_DELAY_VALUE are independent for each input. If the 
same input pin uses both registered and non-registered input paths, both parameters can 
be used, but they must both be in the same half of the total delay (both either bypassing or 
using the initial delay element).

Dynamic Delay in Extended Spartan-3A Family

The Extended Spartan-3A family has the same input delay structure as described for 
Spartan-3E devices, but add more taps (8 on the registered path and 16 on the 
combinatorial path) and dynamic adjustment on the combinatorial path. The delay on the 
combinatorial input can be dynamically adjusted during operation without having to 
reconfigure the device, allowing the device to be fine-tuned to the specific operating 
conditions of the system. Three control inputs to the delay element taps allow immediate 
changes to the delay amount. The choice of the coarse delay element is still fixed as part of 
the device configuration. Note that dynamic input delay adjustment was not supported on 

Figure 10-9: Programmable Fixed Input Delay Elements
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banks 0 and 2 (top and bottom) until ISE® software, version 9.2i became available in mid-
2007.

The delay values at configuration are still controlled by the IFD_DELAY_VALUE and 
IBUF_DELAY_VALUE parameters. To use the dynamic adjustment delay for 
combinatorial inputs, replace the IBUF component with the IBUF_DLY_ADJ component 
(see Figure 10-11) and connect the three select inputs. The IBUF_DLY_ADJ component is 
only used for the combinatorial (non-registered) path, and has no affect on the IFD 
(registered) path.

The IBUF_DLY_ADJ only allows moving up or down half of the total delay amount. The 
DELAY_OFFSET parameter specifies whether it is the first half or the second half of the 
delay amounts. DELAY_OFFSET = ON feeds the coarse delay element into the dynamic 
mux, while DELAY_OFFSET = OFF bypasses the coarse delay element. Table 10-4 shows 
how the IBUF_DELAY_VALUE corresponds to the Select lines. The binary equivalents of 
the Select lines, 0 to 7, correspond to the IBUF_DELAY_VALUE options of 1-8 or 9-16. An 
IBUF_DELAY_VALUE of 0 corresponds to completely bypassing the delay functions, and 
is available with the IBUF component only, not IBUF_DLY_ADJ.

Figure 10-10: Spartan-3A/3AN/3A DSP Programmable Dynamic Input Delay 
Elements

Figure 10-11: Input Buffer Symbol with Dynamic Delay Adjustment
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Figure 10-12 shows how the two types of delay specifications control the muxes.

Storage Element Functions
There are three pairs of storage elements in each IOB, one pair for each of the three paths. 
It is possible to configure each of these storage elements as an edge-triggered D-type flip-
flop (FD) or a level-sensitive latch (LD). 

The storage-element pair on either the Output path or the Three-State path can be used 
together with a special multiplexer to produce Double-Data-Rate (DDR) transmission. 

Table 10-4: Fixed and Dynamic Delay Values

S[2:0] DELAY_OFFSET Equivalent IBUF_DELAY_VALUE

0

OFF

1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

0
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5 14

6 15

7 16

Figure 10-12: Fixed and Dynamic Delay Controls
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This is accomplished by taking data synchronized to the clock signal’s rising edge and 
converting it to bits synchronized on both the rising and the falling edge. The combination 
of two registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop 
(ODDR2). 

Table 10-5 describes the signal paths associated with the storage element.

As shown in Figure 10-1, page 313, the upper registers in both the output and three-state 
paths share a common clock. The OTCLK1 clock signal drives the CK clock inputs of the 
upper registers on the output and three-state paths. Similarly, OTCLK2 drives the CK 
inputs for the lower registers on the output and three-state paths. The upper and lower 
registers on the input path have independent clock lines: ICLK1 and ICLK2. 

Clock routing resources are often shared between adjacent IOBs, including differential 
pairs. In these situations, the two OTCLK1, OTCLK2, ICLK1, and ICLK2 signals must be 
identical when both IOBs used them. The software can swap between the upper and lower 
registers if necessary, unless both are used in a DDR configuration.

The OCE enable line controls the CE inputs of the upper and lower registers on the output 
path. Similarly, TCE controls the CE inputs for the register pair on the three-state path and 
ICE does the same for the register pair on the input path.

The Set/Reset (SR) line entering the IOB controls all six registers, as is the Reverse (REV) 
line.

In addition to the signal polarity controls, each storage element additionally supports the 
controls described in Table 10-6.

Table 10-5: Storage Element Signal Description

Storage 
Element 
Signal 

Description Function 

D Data input Data at this input is stored on the active edge of CK and enabled by CE. For latch 
operation when the input is enabled, data passes directly to the output Q. 

Q Data output The data on this output reflects the state of the storage element. For operation as a latch 
in transparent mode, Q mirrors the data at D. 

CK Clock input Data is loaded into the storage element on this input’s active edge with CE asserted.

CE Clock Enable input When asserted, this input enables CK. If not connected, CE defaults to the asserted state. 

SR Set/Reset input This input forces the storage element into the state specified by the SRHIGH/SRLOW 
attributes. The SYNC/ASYNC attribute setting determines if the SR input is 
synchronized to the clock or not. If both SR and REV are active at the same time, the 
storage element gets a value of 0.

REV Reverse input This input is used together with SR. It forces the storage element into the state opposite 
from what SR does. The SYNC/ASYNC attribute setting determines whether the REV 
input is synchronized to the clock or not. If both SR and REV are active at the same time, 
the storage element gets a value of 0.
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Double-Data-Rate Transmission
Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to 
both the rising and falling edges of the clock signal. Register pairs are available in all three 
IOB paths to perform DDR operations. 

The pair of storage elements on the IOB’s Output path (OFF1 and OFF2), used as registers, 
combine with a special multiplexer to form a DDR D-type flip-flop (ODDR2). This 
primitive permits DDR transmission where output data bits are synchronized to both the 
rising and falling edges of a clock. DDR operation requires two clock signals (usually 50% 
duty cycle), one the inverted form of the other. These signals trigger the two registers in 
alternating fashion, as shown in Figure 10-13. The Digital Clock Manager (DCM) generates 
the two clock signals by mirroring an incoming signal, and then shifting it 180 degrees. 
This approach ensures minimal skew between the two signals. Alternatively, the inverter 
inside the IOB can be used to invert the clock signal, thus only using one clock line and 
both rising and falling edges of that clock line as the two clocks for the DDR flip-flops.

The storage-element pair on the Three-State path (TFF1 and TFF2) also can be combined 
with a local multiplexer to form a DDR primitive. This permits synchronizing the output 
enable to both the rising and falling edges of a clock. This DDR operation is realized in the 
same way as for the output path. 

The storage-element pair on the input path (IFF1 and IFF2) allows an I/O to receive a DDR 
signal. An incoming DDR clock signal triggers one register, and the inverted clock signal 
triggers the other register. The registers take turns capturing bits of the incoming DDR data 
signal. The primitive to allow this functionality is called IDDR2.

Note that the ODDR2 and IDDR2 primitives must be used to access the special DDR logic 
in the IOBs.

Aside from high bandwidth data transfers, DDR outputs also can be used to reproduce, or 
mirror, a clock signal on the output. This approach is used to transmit clock and data 
signals together (source synchronously). A similar approach is used to reproduce a clock 
signal at multiple outputs. The advantage for both approaches is that skew across the 
outputs is minimal. 

Table 10-6: Storage Element Options

Option Switch Function Specificity

FF/Latch Chooses between an edge-triggered flip-flop or a 
level-sensitive latch 

Independent for each storage element

SYNC/ASYNC Determines whether the SR set/reset control is 
synchronous or asynchronous 

Independent for each storage element

SRHIGH/SRLOW Determines whether SR acts as a Set, which forces 
the storage element to a logic "1" (SRHIGH) or a 
Reset, which forces a logic "0" (SRLOW)

Independent for each storage element, except 
when using ODDR2. In the latter case, the 
selection for the upper element will apply to 
both elements. 

INIT1/INIT0 When Global Set/Reset (GSR) is asserted or after 
configuration this option specifies the initial state 
of the storage element, either set (INIT1) or reset 
(INIT0). By default, choosing SRLOW also selects 
INIT0; choosing SRHIGH also selects INIT1.

Independent for each storage element, except 
when using ODDR2, which uses two IOBs. In 
the ODDR2 case, selecting INIT0 for one IOBs 
applies to both elements within the IOB, 
although INIT1 could be selected for the 
elements in the other IOB. 
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Register Cascade Feature

In the Spartan-3E and Extended Spartan-3A families, one of the IOBs in a differential pair 
can cascade its storage elements with those in the other IOB of the differential pair. This is 
intended to make DDR operation at high speed much simpler to implement. The new 
IDDRIN1/2 connections that are available are shown in Figure 10-1 (dashed lines), and are 
only available for routing between IOBs and are not accessible to the FPGA fabric and are 
only used within the IDDR2/ODDR2 components. Note that this feature is only available 
when using differential I/O and is not available in the Spartan-3 family and is supported 
on inputs only (IDDR2) in the Spartan-3E family. The supported differential standards 
include the true differential signaling standards, such as LVDS, MINI_LVDS, and RSDS, 
but do not include the pseudo-differential standards, such as DIFF_HSTL, DIFF_SSTL, and 
LVPECL.

Note that the register cascade feature is accessed using the same IDDR2 and ODDR2 
primitives as for the standard DDR interface, but with the DDR_ALIGNMENT attribute 
set to either clock C0 or clock C1. The cascaded register does not need to be instantiated, 
but the adjacent I/O must be unused (as the other half of a differential pair). The default is 
DDR_ALIGNMENT=NONE, which does not use the cascade feature.

IDDR2

As a DDR input pair, the master IOB registers incoming data on the rising edge of ICLK1 
(= D1) and the rising edge of ICLK2 (= D2), which is typically the same as the falling edge 
of ICLK1. This data is then transferred into the FPGA fabric. At some point, both signals 
must be brought into the same clock domain, typically ICLK1. This can be difficult at high 
frequencies because the available time is only one half of a clock cycle assuming a 50% 
duty cycle. See Figure 10-14 for a graphical illustration of this function.

Figure 10-13: Two Methods for Clocking the DDR Register
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When using the cascade feature (DDR_ALIGNMENT=C0/C1), the signal D2 can be 
cascaded into the storage element of the adjacent slave IOB. There it is re-registered to 
ICLK1, and only then fed to the FPGA fabric where it is now already in the same time 
domain as D1. Here, the FPGA fabric uses only the clock ICLK1 to process the received 
data. See Figure 10-16 for a graphical illustration of this function.

Figure 10-14: Input DDR (without Cascade Feature)

Figure 10-15: IDDR2 Component
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ODDR2

As a DDR output pair, the master IOB registers data coming from the FPGA fabric on the 
rising edge of OCLK1 (= D1) and the rising edge of OCLK2 (= D2), which is typically the 
same as the falling edge of OCLK1. These two bits of data are multiplexed by the DDR mux 
and forwarded to the output pin. The D2 data signal must be resynchronized from the 
OCLK1 clock domain to the OCLK2 domain using FPGA slice flip-flops. Placement is 
critical at high frequencies, because the time available is only one half a clock cycle. See 
Figure 10-17 for a graphical illustration of this function.

In the ODDR2 component for the Extended Spartan-3A family, the DDR_ALIGNMENT 
attribute allows both data bits to be captured on C0 or C1 (DDR_ALIGNMENT=C0 or 
DDR_ALIGNMENT=C1).

Caution! The Spartan-3E family does not support using the C0 or C1 alignment feature of the 
ODDR2 flip-flop. The ODDR2 flip-flop without the alignment feature is fully supported, as is the 
IDDR2 flip-flop with alignment. Without the alignment feature, the ODDR2 component behaves 
equivalently to the ODDR flip-flop components on previous Xilinx FPGA families. The Spartan-
3A/3AN production devices and Spartan-3A DSP devices fully support this feature.

Clock routing resources are often shared between adjacent IOBs, including differential 
pairs. In these situations, the two OTCLK1, OTCLK2, ICLK1, and ICLK2 signals must be 
identical when both IOBs used them. The software can swap between the upper and lower 
registers if necessary, unless both are used in a DDR configuration.

Figure 10-16: Input DDR Using Cascade Feature (IDDR2 with 
DDR_ALIGNMENT=C0/C1)
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Pull-Up and Pull-Down Resistors
Pull-up and pull-down resistors inside each IOB optionally force a floating I/O or Input-
only pin to a determined state. Pull-up and pull-down resistors are commonly applied to 
unused I/Os, inputs, and three-state outputs, but can be used on any I/O or Input-only 
pin. The pull-up resistor connects an IOB to VCCO through a resistor. The resistance value 
depends on the VCCO voltage (see Module 3 for the specifications). The pull-down resistor 
similarly connects an IOB to ground with a resistor. The pull-down resistor is powered by 
VCCAUX in the Extended Spartan-3A family and by VCCO in the Spartan-3/3E families.

The PULLUP and PULLDOWN attributes and library primitives turn on these optional 
resistors. By default, PULLDOWN resistors terminate all unused I/O and Input-only pins. 
Unused I/O and Input-only pins can alternatively be set to PULLUP or FLOAT. To change 
the unused I/O Pad setting, set the Bitstream Generator (BitGen) option UnusedPin to 
PULLUP, PULLDOWN, or FLOAT. The UnusedPin option is accessed through the 
Properties for Generate Programming File in the ISE software. 

Figure 10-17: Output DDR (without Cascade Feature)

Figure 10-18: ODDR2 Component
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During configuration, a Low logic level on the PUDC_B pin (HSWAP in the Spartan-3E 
family and HSWAP_EN in the Spartan-3 family) activates pull-up resistors on all I/O and 
Input-only pins not actively used in the selected configuration mode.

FPGA Pull-Up Resistor Values

The value of the dedicated and optional pull-up resistors is specified as a current, symbol 
IPU in the respective Spartan-3 generation data sheet. The equivalent resistor values 
provided in Table 10-7 are for reference. Note that these resistor values are stronger than a 
typical weak pull-up resistor, especially in the earlier Spartan-3 and Spartan-3E families, 
and require proper external resistor values to overcome them. See the data sheets for more 
exact values:

• Spartan-3: DS099

• Spartan-3E: DS312

• Spartan-3A: DS529

• Spartan-3AN: DS557

• Spartan-3A DSP: DS610

Caution! The pull-up resistors in Spartan-3 generation FPGAs are strong, especially at higher 
supply voltages.

Keeper Circuit 
Each I/O has an optional keeper circuit (see Figure 10-19) that keeps bus lines from 
floating when not being actively driven. The KEEPER circuit retains the last logic level on 
a line after all drivers have been turned off. Apply the KEEPER attribute or use the 
KEEPER library primitive to use the KEEPER circuitry. Pull-up and pull-down resistors 
override the KEEPER settings.

Table 10-7: Pull-Up Resistor Ranges by Spartan-3 Generation Family

Voltage Range
Spartan-3

FPGA
Spartan-3E

FPGA
Spartan-3A/3AN/3A DSP

FPGA
Units 

VCCAUX or VCCO = 3.0 to 3.6V 
5.1 to 23.9 

kΩ
VCCO = 3.0 to 3.45V 1.27 to 4.11 2.4 to 10.8 

VCCAUX or VCCO = 2.3 to 2.7V 1.15 to 3.25 2.7 to 11.8 6.2 to 33.1(1) 

VCCO = 1.7 to 1.9V 2.45 to 9.10 4.3 to 20.2 8.4 to 52.6 

Notes: 
3. Spartan-3AN FPGAs require VCCAUX = 3.0 to 3.6V

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds610.pdf
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JTAG Boundary-Scan Capability
All IOBs support Boundary-Scan testing compatible with IEEE 1149.1/1532 standards. For 
more information, see Chapter 21, “Using Boundary-Scan and BSDL Files.”

SelectIO Signal Standards 
The Input/Output Blocks (IOBs) feature inputs and outputs that support a wide range of 
single-ended I/O signaling standards. The majority of the I/Os also can be used to form 
differential pairs to support any of the differential signaling standards. This flexibility 
allows the user to select the best I/O standard on each pin that meets the interface and 
signal integrity requirements of the application.

The I/O pins are separated into independent banks, typically four per device. Each bank 
has a common output voltage supply (VCCO) and a common reference voltage for HSTL 
and SSTL standards (VREF). The banks are numbered clockwise from the top of the device 
(see Figure 10-35, page 351).

Overview of I/O Standards
Modern bus applications, pioneered by the largest and most influential companies in the 
digital electronics industry, are commonly introduced with a new I/O standard tailored 
specifically to the needs of that application. The bus I/O standards provide specifications 
to other vendors who create products designed to interface with these applications. Each 
standard often has its own specifications for current, voltage, I/O buffering, and 
termination techniques. 

The ability to provide the flexibility and time-to-market advantages of programmable logic 
is increasingly dependent on the capability of the programmable logic device to support an 
ever increasing variety of I/O standards. The SelectIO resources feature highly 
configurable input and output buffers which provide support for a wide variety of I/O 
standards. 

Table 10-8 provides a brief overview of the I/O standards supported by the Spartan-3 
generation FPGAs, including the sponsors and common uses for the standard. The 
standard numbers are indicated where appropriate.

Figure 10-19: Keeper Circuit
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Table 10-8: I/O Signaling Standards

Standard Description Spec Use/Sponsor Input Buffer Output Buffer

Single-Ended Standards

LVTTL Low Voltage TTL JESD8C General purpose 
3.3V

LVTTL Push-Pull

LVCMOS Low Voltage CMOS JESD8C General purpose CMOS Push-Pull

PCI Peripheral 
Component 
Interconnect

PCI SIG PCI bus LVTTL Push-Pull

GTL Gunning Transceiver 
Logic

JESD8-3 High-speed bus, 
backplane; Xerox

VREF-based Open Drain

GTL+ GTL Plus Intel® Pentium® Pro

HSTL High-Speed 
Transceiver Logic

JESD8-6 Hitachi SRAM; IBM; 
three of four classes 
supported

VREF-based Push-Pull

SSTL3 Stub Series 
Terminated Logic for 
3.3V

JESD8-8 SRAM/ SDRAM 
bus; Hitachi and 
IBM; two classes

VREF-based Push-Pull

SSTL2 SSTL for 2.5V JESD8-9

SSTL18 SSTL for 1.8V JC42.3

Differential Standards

LVDS Low Voltage 
Differential Signaling

ANSI/TIA/EIA-
644-A

High-speed 
interface, backplane, 
video; National, TI

Differential Pair Differential Pair

BLVDS Bus LVDS ANSI/TIA/EIA-
644-A

Multipoint LVDS Differential Pair Differential Pair

LVPECL Low Voltage Positive 
ECL

Freescale 
Semiconductor 
(formerly 
Motorola)

High-speed clocks Differential Pair Differential Pair

LDT Lightning Data 
Transport 
(HyperTransport™)

HyperTransport 
Spec v3.0

Bidirectional 
serial/parallel high-
bandwidth, low-
latency computer 
bus; HyperTransport 
Consortium

Differential Pair Differential Pair

MINI_LVDS mini-LVDS TI Flat panel displays Differential Pair Differential Pair

LVDSEXT LVDS Extended Extension of 
LVDS

Higher drive 
requirements

Differential Pair Differential Pair

RSDS Reduced Swing 
Differential Signaling

National 
Semiconductor

Flat panel displays Differential Pair Differential Pair

http://www.xilinx.com
http://www.jedec.org/download/search/jesd8c.pdf
http://www.hypertransport.org/
http://www.hypertransport.org/
http://www.hypertransport.org/default.cfm?page=HyperTransportSpecifications3
http://www.jedec.org
http://www.pcisig.com/
http://www.ansi.org/
http://www.ansi.org/
http://www.ti.com/sc/docs/products/msp/intrface/mini_lvds/overview1.htm
http://www.national.com/appinfo/fpd/0,2132,943,00.html
http://www.jedec.org/download/search/jesd8c.pdf
http://www.jedec.org/download/search/jesd8-3.pdf
http://www.jedec.org/download/search/jesd8-8.pdf
http://www.jedec.org/download/search/jesd8-9b.pdf
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LVTTL — Low-Voltage TTL

The Low-Voltage TTL (LVTTL) standard is a general-purpose EIA/JESD standard for 3.3V 
applications that uses an LVTTL input buffer and a Push-Pull output buffer. This standard 
requires a 3.3V output source voltage (VCCO), but does not require the use of a reference 
voltage (VREF) or a termination voltage (VTT). 

LVCMOS — Low-Voltage CMOS

The Low-Voltage CMOS standard is used for general-purpose applications at voltages 
from 1.2V to 3.3V. This standard does not require the use of a reference voltage (VREF) or a 
board termination voltage (VTT). 

PCI — Peripheral Component Interface

The Peripheral Component Interface (PCI) standard specifies support for both 33 MHz 
and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a Push-Pull output 
buffer. This standard does not require the use of a reference voltage (VREF) or a board 
termination voltage (VTT); however, it does require a 3.3V output source voltage (VCCO). 

GTL — Gunning Transceiver Logic Terminated

The Gunning Transceiver Logic (GTL) standard is a high-speed bus standard invented by 
Xerox. Xilinx has implemented the terminated variation for this standard. This standard 
requires a VREF-based input buffer and an Open-Drain output buffer.

GTL+ — Gunning Transceiver Logic Plus

The Gunning Transceiver Logic Plus (GTL+) standard is a high-speed bus standard 
(JESD8.3) first used by the Intel Pentium Pro processor.

HSTL — High-Speed Transceiver Logic

The High-Speed Transceiver Logic (HSTL) standard is a general-purpose, high-speed 1.5V 
or 1.8V bus standard sponsored by IBM. This standard has four variations or classes: Class 
I, II, III, and IV. This standard requires a VREF-based input buffer and a Push-Pull output 
buffer.

SSTL3 — Stub Series Terminated Logic for 3.3V

The Stub Series Terminated Logic standard is a general-purpose memory bus standard 
sponsored by Hitachi and IBM (JESD8-8). This standard has multiple voltages from 1.8V to 
3.3V, and two classes, I and II. This standard requires a VREF-based input buffer and a 
Push-Pull output buffer.

TMDS Transition Minimized 
Differential Signaling

Digital Display 
Working Group

Silicon Image; 
DVI/HDMI 

Differential Pair Differential Pair

PPDS Point-to-Point 
Differential Signaling

National 
Semiconductor

LCDs Differential Pair Differential Pair

Table 10-8: I/O Signaling Standards

Standard Description Spec Use/Sponsor Input Buffer Output Buffer

http://www.xilinx.com
http://www.ddwg.org/
http://www.national.com/appinfo/fpd/ppds.html
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SSTL2 — Stub Series Terminated Logic for 2.5V

The Stub Series Terminated Logic standard is a general-purpose memory bus standard 
sponsored by Hitachi and IBM (JESD8-8). This standard has multiple voltages from 1.8V to 
3.3V, and two classes, I and II. This standard requires a VREF-based input buffer and a 
Push-Pull output buffer.

SSTL18 — Stub Series Terminated Logic for 1.8V

The SSTL18 standard, specified by JEDEC Standard JC42.3, is a general-purpose 1.8V 
memory bus standard. This voltage-referenced standard has two variations or classes, both 
of which require a reference voltage of 0.90 V, an input/output source voltage of 1.8 V, and 
a termination voltage of 0.90 V. This standard requires a VREF-based input buffer and a 
Push-Pull output buffer. SSTL18 is used for high-speed SDRAM interfaces.

LVDS — Low Voltage Differential Signal

LVDS is a differential I/O standard. As with all differential signaling standards, LVDS 
requires that one data bit is carried through two signal lines, and it has an inherent noise 
immunity over single-ended I/O standards. The voltage swing between two signal lines is 
approximately 350 mV. The use of a reference voltage (VREF) or a board termination 
voltage (VTT) is not required. LVDS requires the use of two pins per input or output. LVDS 
requires resistor termination.

BLVDS — Bus LVDS

Allows for bidirectional LVDS communication between two or more devices. The Bus 
LVDS standard requires external resistor termination.

LVPECL — Low Voltage Positive Emitter Coupled Logic

Differential I/O standard with voltage swing between two signal lines of approximately 
850 mV. The use of a reference voltage (VREF) or a board termination voltage (VTT) is not 
required. The LVPECL standard requires external resistor termination.

LDT — HyperTransport (formerly known as Lightning Data Transport)

A differential high-speed, high-performance I/O interface standard. It is a point-to-point 
standard requiring a 2.5V VCCIO, in which each HyperTransport technology bus consists 
of two point-to-point unidirectional links. Each link is 2 to 32 bits. The HyperTransport 
technology standard does not require an input reference voltage. However, it does require 
a 100Ω termination resistor between the two signals at the input buffer.

mini-LVDS

A serial, intra-flat panel solution that serves as an interface between the timing control 
function and an LCD source driver.

LVDS Extended — Extended Mode LVDS

Provides a higher drive capability and voltage swing (350 - 750 mV), which makes it ideal 
for long-distance or cable LVDS links. This LVDS Extended Mode driver is intended for 
situations that require higher drive capabilities in order to produce an LVDS signal that is 
within EIA/TIA specification at the receiver.

http://www.xilinx.com
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RSDS — Reduced Swing Differential Signaling

A signaling standard that defines the output characteristics of a transmitter and inputs of 
a receiver along with the protocol for a chip-to-chip interface between Flat Panel timing 
Controllers and Column Drivers.

TMDS — Transition Minimized Differential Signaling

Technology for transmitting high-speed serial data used by the DVI and HDMI video 
interfaces. The TMDS standard requires external 50Ω resistor pull-ups to 3.3V on inputs.

PPDS — Point-to-Point Differential Signaling

Differential next-generation LCD standard for interface to row and column drivers.

I/O Standard Differences between Spartan-3 Generation Families
The Spartan-3 generation FPGA families all support the common single-ended I/O 
standards of LVCMOS at 1.2V to 3.3V, LVTTL, PCI, SSTL at 1.8V and 2.5V, and HSTL at 
1.8V. All families also support the common differential I/O standards of LVDS, LVPECL, 
BLVDS, and RSDS. The primary differences between the families result from the 
optimization of the drive capability of the I/O transistors to reduce die size and cost. The 
Spartan-3E family is optimized with smaller transistors and lower drive, while the 
Extended Spartan-3A family has high drive on banks 1 and 3 and smaller transistors 
(lower output drive) on banks 0 and 2. The Extended Spartan-3A family also offers the 
most flexibility for differential standards, but limits differential outputs to banks 0 and 2.

Table 10-10 and Table 10-11 show the available I/O standards for the Spartan-3 generation 
families.

Table 10-9: I/O Standard Differences between Spartan-3 Generation Families

Feature
Spartan-3A/3AN/3A DSP 

FPGAs
Spartan-3E 

FPGAs
Spartan-3 

FPGAs

LVCMOS Drive, Max 24 mA, Banks 1/3 16 mA 24 mA

Differential Outputs Banks 0/2 All Banks All Banks

Differential VCCO 3.3V or 2.5V 2.5V 2.5V

LVDS/RSDS Solution Excellent Very Good Good

Newest Differential Standard TMDS/PPDS mini-LVDS RSDS

PCI 66 MHz 66 MHz 33 MHz

Number of Banks 4 4 4-8

Digitally Controlled Impedance No No Yes

http://www.xilinx.com
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Table 10-10: Available Single-Ended I/O Standards

Standard VCCO Drive/Class
Spartan-3A/3AN/3A DSP 

FPGAs
Spartan-3E 

FPGAs
Spartan-3 

FPGAs

LVCMOS

1.2V
2 mA √ √ √

up to 6 mA Banks 1/3 √

1.5V
up to 6 mA √ √ √

up to 12 mA Banks 1/3 √

1.8V
up to 8 mA √ √ √

up to 16 mA Banks 1/3 √

2.5V
up to 12 mA √ √ √

up to 24 mA Banks 1/3 √

3.3V
up to 16 mA √ √ √

up to 24 mA Banks 1/3 √

LVTTL 3.3V
up to 16 mA √ √ √

up to 24 mA √ √

PCI33
3.0V - √ √ √

3.3V - √ √ √

PCI66 3.3V - √ √

SSTL

1.8V
I √ √ √

II √(1) √

2.5V
I √ √ √

II √(1) √

3.3V
I √

II √

HSTL

1.5V
I √(1) √

III √(1) √

1.8V

I √ √ √

II √(1) √

III √ √ √

GTL
- - √

- Plus √

DCI option - - √

Notes: 
1. Outputs are restricted to banks 1 and 3. Inputs are unrestricted.

http://www.xilinx.com
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Specifying an I/O Standard with the IOSTANDARD Attribute
To define the I/O signaling standard in a design, set the IOSTANDARD attribute to the 
appropriate setting. The IOSTANDARD attribute can be applied to any I/O primitive. For 

Table 10-11: Available Differential I/O Standards

Standard VCCO
Spartan-3A/3AN/3A DSP 

FPGAs
Spartan-3E 

FPGAs
Spartan-3 

FPGAs

LVDS
2.5V √(1) √ √

3.3V √(1)

BLVDS 2.5V √ √ √

MINI_LVDS
2.5V √(1) √

3.3V √(1)

LVPECL
2.5V √ √ √

3.3V √

RSDS
2.5V √(1) √ √

3.3V √(1)

TMDS
2.5V √

3.3V √(1)

PPDS
2.5V √(1)

3.3V √(1)

LDT 2.5V √

LVDSEXT 2.5V √

DIFF_SSTL18_I 1.8V √ √

DIFF_SSTL18_II 1.8V √(2)

DIFF_SSTL2_I 2.5V √ √

DIFF_SSTL2_II 2.5V √(2) √

DIFF_SSTL3_I 3.3V √

DIFF_SSTL3_II 3.3V √

DIFF_HSTL_I_18 1.8V √ √

DIFF_HSTL_II_18 1.8V √(2) √

DIFF_HSTL_III_18 1.8V √ √

DIFF_TERM - ~100Ω ~120Ω

DCI Option - √

Notes: 
1. These differential outputs are restricted to banks 0 and 2. Inputs are unrestricted.
2. These high-drive outputs are restricted to banks 1 and 3. Inputs are unrestricted.

http://www.xilinx.com
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each I/O primitive, there is a version supporting single-ended IOSTANDARD attributes 
and a version supporting differential IOSTANDARD attributes.

Earlier libraries had I/O components with IOSTANDARD already specified as part of the 
component, such as IBUF_LVTTL. These are not recommended for use in new designs. The 
preferred method is to use the I/O component IBUF and assign IOSTANDARD = LVTTL.

IOSTANDARD can be attached to a net or signal when the net or signal is connected to a 
pad. In this case, IOSTANDARD is treated as attached to the IOB primitive. When attached 
to a design element, IOSTANDARD propagates to all applicable elements in the hierarchy 
within the design element. 

In VHDL, before using IOSTANDARD, it must be declared with the following syntax: 

attribute iostandard: string; 

After IOSTANDARD has been declared, specify the VHDL constraint as follows: 

attribute iostandard of {component_name|label_name}: {component|label} 
is “iostandard_name”;

In Verilog, specify IOSTANDARD as follows:

// synthesis attribute iostandard [of] {module_name|instance_name} [is] 
iostandard_name; 

IOSTANDARD can also be specified in a constraints file, which can be created directly or 
by using the Pin and Area Constraints Editor (PACE) tool. PACE is mainly used to assign 
location constraints to I/Os. It can also be used to assign certain I/O properties, such as 
I/O standards, and LVCMOS drive strengths and slew rates. PACE is accessible from the 
Processes window in the Project Navigator. The PACE tool is opened by selecting:

User Constraints > Assign Package Pins

The resulting IOSTANDARD syntax in the user constraints file (UCF) is the following:

NET “pad_net_name” IOSTANDARD=iostandard_name; 

IOSTANDARD can also be specified on the I/O component:

INST “instance_name” IOSTANDARD=iostandard_name; 

I/O standards can also be specified in the Floorplan Editor. For more details on all 
constraints and entry methods, see the Constraints Guide in the software documentation, 
especially the section on "Entry Strategies for Xilinx Constraints".

Table 10-12: Components for Single-Ended and Differential Standards

Component Single-Ended IOSTANDARD Differential IOSTANDARD

Input IBUF IBUFDS

Clock Input IBUFG IBUFGDS

Adjustable Delay 
(Spartan-3A/3AN/3A DSP 

FPGAs only)
IBUF_DLY_ADJ IBUFDS_DLY_ADJ

Output OBUF OBUFDS

Output Three-State OBUFT OBUFTDS

Input DDR IDDR2

Output DDR ODDR2

http://www.xilinx.com
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Timing Analysis

The choice of IOSTANDARD affects the timing for the I/O pin. The data sheet provides 
example timing for the LVCMOS25 I/O standard with Fast slew rate and 12 mA drive. 
This delay requires adjustment whenever a signal standard other than LVCMOS25 is 
assigned to an Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew 
rate is assigned to an Output. The adjustments are automatically included in the Timing 
Analyzer reports generated by the Xilinx development tools.

When measuring timing parameters at the programmable I/Os, different signal standards 
call for different test conditions. The data sheets list the conditions to use for each standard. 

The method for measuring Input timing is as follows: a signal that swings between a Low 
logic level of VL and a High logic level of VH is applied to the Input under test. Some 
standards also require the application of a bias voltage to the VREF pins of a given bank to 
properly set the input-switching threshold. The measurement point of the Input signal 
(VM) is commonly located halfway between VL and VH.

For the Output test setup, one end of the termination resistor RT is connected to a 
termination voltage VT and the other end is connected to the Output. For each standard, RT 
and VT generally take on the standard values recommended for minimizing signal 
reflections. If the standard does not ordinarily use terminations (for example, LVCMOS, 
LVTTL), then RT is set to 1MΩ to indicate an open connection, and VT is set to zero. The 
same measurement point (VM) that was used at the Input is also used at the Output.

The capacitive load (CL) is connected between the output and GND. The Output timing for 
all standards, as published in the speed files and the data sheet, is always based on a CL 
value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any 
delay that the test fixture might contribute to test measurements is subtracted from those 
measurements to produce the final timing numbers as published in the speed files and 
data sheet.

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. 
The parameters found in the IBIS model (VREF, RREF, and VMEAS) correspond directly with 
the parameters found in the data sheet (VT, RT, and VM). Do not confuse VREF (the 
termination voltage) from the IBIS model with VREF (the input-switching threshold) from 
the table. A fourth parameter, CREF, is always zero. The four parameters describe all 
relevant output test conditions. IBIS models are found in the Xilinx development software 
as well as at the following link:

http://www.xilinx.com/support/download/index.htm

Figure 10-20: Output Test Setup
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Delays for a given application are simulated according to its specific load conditions as 
follows:

1. Simulate the desired signal standard with the output driver connected to the test setup 
shown in the data sheet. Use parameter values VT, RT, and VM from the data sheet; 
CREF is zero.

2. Record the time to VM.

3. Simulate the same signal standard with the output driver connected to the PCB trace 
with load. Use the appropriate IBIS model (including VREF, RREF, CREF, and VMEAS 
values) or capacitive value to represent the load.

4. Record the time to VMEAS.

5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in 
delay to (or from) the appropriate Output standard adjustment to yield the worst-case 
delay of the PCB trace.

LVCMOS/LVTTL Slew Rate Control and Drive Strength
Each IOB has a slew-rate control that sets the output switching edge rate for LVCMOS and 
LVTTL outputs. The SLEW attribute controls the slew rate and can be set to SLOW 
(default), FAST, or QUIETIO (Spartan-3A/3AN/3A DSP devices only; slowest slew rate). 
The slowest slew rate setting provides the lowest noise and power consumption, while the 
faster slew rate settings improve timing.

Each LVCMOS and LVTTL output additionally supports up to seven different drive 
current strengths as shown in Table 10-13 and Table 10-14. To adjust the drive strength for 
each output, the DRIVE attribute is set to the desired drive strength: 2, 4, 6, 8, 12, 16, and 24. 
Unless otherwise specified in the FPGA application, the software default IOSTANDARD is 
LVCMOS25, SLOW slew rate, and 12 mA output drive.

Each method of specifying IOSTANDARD (schematic, HDL, constraints file, PACE, 
Floorplan Editor) also supports specification of the LVCMOS/LVTTL DRIVE and SLEW 
options.

Table 10-13: Spartan-3A/3AN/3A DSP Programmable Output Drive Current

IOSTANDARD
Output Drive Current (mA) 

2 4 6 8 12 16 24

LVTTL 9 9 9 9 9 9 9

LVCMOS33 9 9 9 9 9 9 Banks 
1,3

LVCMOS25 9 9 9 9 9 Banks 
1,3

Banks 
1,3

LVCMOS18 9 9 9 9 Banks 
1,3

Banks 
1,3

LVCMOS15 9 9 9 Banks 
1,3

Banks 
1,3

-

LVCMOS12 9 Banks 
1,3

Banks 
1,3

- - -
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High output current drive strength and FAST output slew rates generally result in fastest 
I/O performance. However, these same settings can also result in transmission line effects 
on the PCB for all but the shortest board traces. Each IOB has independent slew rate and 
drive strength controls. Use the slowest slew rate and lowest output drive current that 
meets the performance requirements for the end application. Note that in the Extended 
Spartan-3A family, the 16 mA drive setting is faster than the 24 mA drive setting for the 
slow slew rate. If 24 mA drive and the highest performance is needed, use the fast slew rate 
instead.

LVCMOS25/33 and LVTTL standards have about 100 mV of hysteresis on inputs.

Simultaneously Switching Outputs

Likewise, due to lead inductance, a given package supports a limited number of 
simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Only use fast, 
high-drive outputs when required by the application.

Module 3 of each family's data sheet provides guidelines for the recommended maximum 
allowable number of SSOs. These guidelines describe the maximum number of user I/O 
pins of a given output signal standard that should simultaneously switch in the same 
direction, while maintaining a safe level of switching noise. Meeting these guidelines for 
the stated test conditions ensures that the FPGA operates free from the adverse effects of 
ground and power bounce.

Table 10-14: Spartan-3E Programmable Output Drive Current

IOSTANDARD
Output Drive Current (mA) 

2 4 6 8 12 16 

LVTTL 9 9 9 9 9 9

LVCMOS33 9 9 9 9 9 9

LVCMOS25 9 9 9 9 9 -

LVCMOS18 9 9 9 9 - -

LVCMOS15 9 9 9 - - -

LVCMOS12 9 - - - - -

Table 10-15: Spartan-3 Programmable Output Drive Current

IOSTANDARD
Output Drive Current (mA) 

2 4 6 8 12 16 24

LVTTL 9 9 9 9 9 9 9

LVCMOS33 9 9 9 9 9 9 9

LVCMOS25 9 9 9 9 9 9 9

LVCMOS18 9 9 9 9 9 9

LVCMOS15 9 9 9 9 9 -

LVCMOS12 9 9 9 - - -
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Ground or power bounce occurs when a large number of outputs simultaneously switch in 
the same direction. The output drive transistors all conduct current to a common voltage 
rail. Low-to-High transitions conduct to the VCCO rail; High-to-Low transitions conduct to 
the GND rail. The resulting cumulative current transient induces a voltage difference 
across the inductance that exists between the die pad and the power supply or ground 
return. The inductance is associated with bonding wires, the package lead frame, and any 
other signal routing inside the package. Other variables contribute to SSO noise levels, 
including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-
induced voltage consequently affects internal switching noise margins and ultimately 
signal quality.

For each device/package combination, the data sheet provides the number of equivalent 
VCCO/GND pairs. For each output signal standard and drive strength, the data sheet 
recommends the maximum number of SSOs, switching in the same direction, allowed per 
VCCO/GND pair within an I/O bank. The guidelines are categorized by package style, 
slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O 
bank. Multiply the appropriate numbers from each table to calculate the maximum 
number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result 
in increased power or ground bounce, degraded signal integrity, or increased system jitter.

The recommended maximum SSO values assumes that the FPGA is soldered on the 
printed circuit board and that the board uses sound design practices. The SSO values do 
not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the 
socket.

The number of SSOs allowed for quad-flat packages (TQ) is lower than for ball grid array 
packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array 
packages are recommended for applications with a large number of simultaneously 
switching outputs.

SSO effects can be minimized by adding virtual ground pins. A virtual ground is created 
by defining an output pin driven by a logic 0. See “Optionally Place Virtual Ground Pins 
Around DCM Input and Output Connections” in Chapter 3

HSTL/SSTL VREF Reference Voltage
HSTL and SSTL inputs use the reference voltage (VREF) to bias the input-switching 
threshold, as shown in Figure 10-21. Each input also has an associated board termination 
voltage, called VTT. 

Once a configuration data file is loaded into the FPGA that calls for the inputs of a given 
bank to use HSTL/SSTL, a few specifically reserved I/O pins on the same bank 
automatically convert to VREF inputs. All the VREF inputs on a bank need to be connected, 
and all need to connect to the same voltage. As a result, HSTL and SSTL inputs can only be 
combined in a bank if they use the same VREF voltage (for example, the 1.8V versions of the 

Figure 10-21: Example Terminated SSTL2 Class I
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SSTL and HSTL standards, where VREF = 0.9V.) For banks that do not contain HSTL or 
SSTL, VREF pins remain available for user I/Os or input pins.

VREF is also required for inputs using the GTL and GTLP I/O standards, which are 
supported only in the Spartan-3 family. LVTTL and LVCMOS standards do not require 
VREF. The only differential standards that require VREF are the differential forms of the 
HSTL and SSTL I/O standards (DIFF_HSTL and DIFF_SSTL).

Single-Ended I/O Termination Techniques
The delay of an electrical signal along a wire is dominated by the rise and fall times when 
the signal travels a short distance. Transmission line delays vary with inductance and 
capacitance, but a well-designed board can experience delays of approximately 180 ps per 
inch.

Transmission line effects, or reflections, typically start at 1.5 inches for fast (1.5 ns) rise and 
fall times. Poor (or non-existent) termination or changes in the transmission line 
impedance cause these reflections and can cause additional delay in longer traces. As 
system speeds continue to increase, the effect of I/O delays can become a limiting factor, 
and therefore transmission line termination becomes increasingly more important. 

A variety of termination techniques reduce the impact of transmission line effects. Output 
termination techniques include the following:

• None

• Series

• Parallel (Shunt)

• Series and Parallel (Series-Shunt)

Input termination techniques include the following:

• None

Table 10-16: VREF Values for IOSTANDARD Settings

IOSTANDARD VREF VTT

HSTL_I_18 0.9 0.9

HSTL_II_18 0.9 0.9

HSTL_III_18 1.1 1.8

HSTL_I 0.75 0.75

HSTL_III 0.9 1.5

SSTL18_I 0.9 0.9

SSTL18_II 0.9 0.9

SSTL2_I 1.25 1.25

SSTL2_II 1.25 1.25

SSTL3_I 1.5 1.5

SSTL3_II 1.5 1.5

GTL 0.8 1.2

GTLP 1.0 1.5
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• Parallel (Shunt)

These termination techniques can be applied in any combination. A generic example of 
each combination of termination methods appears in Figure 10-22, page 345.

Sample circuits illustrating valid termination techniques for several HSTL and SSTL 
standards appear in Figure 10-23 through Figure 10-29. LVTTL, LVCMOS, and PCI 
standards require no termination. For GTL or DCI termination in the Spartan-3 family, see 
the Spartan-3 data sheet at DS099.

Figure 10-22: Overview of Standard Input and Output Termination Methods

Figure 10-23: Terminated HSTL Class I

Figure 10-24: Terminated HSTL Class III
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Figure 10-25: Terminated HSTL Class IV

Figure 10-26: Terminated SSTL3 Class I

Figure 10-27: Terminated SSTL3 Class II

Figure 10-28: Terminated SSTL2 Class I

Figure 10-29: Terminated SSTL2 Class II
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Differential I/O Standards
Differential standards employ a pair of signals, one the opposite polarity of the other. The 
noise canceling properties (for example, Common-Mode Rejection) of these standards 
permit exceptionally high data transfer rates. This subsection introduces the differential 
signaling capabilities of Spartan-3 generation devices. 

Each device-package combination designates specific I/O pairs specially optimized to 
support differential standards. Differential pairs can be shown in the PACE tool with the 
“Show Differential Pairs” option. A unique L-number, part of the pin name, identifies the 
line pairs associated with each bank. For each pair, the letters P and N designate the true 
and inverted lines, respectively. For example, the pin names IO_L43P_3 and IO_L43N_3 
indicate the true and inverted lines comprising the line pair L43 on Bank 3. 

Each family offers a different combination of differential I/O standards and specifications. 
The Extended Spartan-3A family offers the largest number of differential standards and 
also offers the best differential signaling characteristics.

On-Chip Differential Termination

Extended Spartan-3A family and Spartan-3E devices provide an on-chip differential 
termination across the input differential receiver terminals. The on-chip input differential 
termination potentially eliminates the external 100Ω termination resistor commonly found 
in differential receiver circuits (see Figure 10-30). Differential termination is used for LVDS, 
mini-LVDS, and RSDS as applications permit. On-chip differential termination is not 
supported on input-only pins.

The on-chip differential termination is powered by VCCO. Therefore, the VCCO level in a 
bank must match the voltage standard for any input using differential termination. In the 
Extended Spartan-3A family, on-chip differential termination is specified at 100Ω nominal 
in banks with VCCO = 3.3V. The on-chip differentiation termination can be used in banks 
powered by VCCO = 2.5V, but a wider resistance range is specified. See Module 3 of DS529, 
Spartan-3A FPGA Family Data Sheet for specific values. Figure 10-31 shows the details of 
using the differential termination in the Extended Spartan-3A family.

Figure 10-30: Differential Inputs and Outputs
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In the Spartan-3E family, on-chip differential termination is only supported on banks with 
VCCO = 2.5V, and is specified at 120Ω nominal (see Module 3 of DS312, Spartan-3E FPGA 
Family Data Sheet).

The DIFF_TERM attribute is set to TRUE to enable differential termination on a differential 
I/O pin pair. This attribute uses the following syntax in the UCF:

INST <I/O_BUFFER_INSTANTIATION_NAME> DIFF_TERM = “<TRUE/FALSE>”;

TMDS_33 Termination

The Extended Spartan-3A family TMDS_33 standard requires pull-up resistors as shown 
in Figure 10-32. 

Figure 10-31: External Input Termination Resistors for Spartan-3A/3AN/3A DSP LVDS, RSDS, MINI_LVDS, 
and PPDS I/O Standards
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Figure 10-32: External Input Resistors Required for TMDS_33 I/O Standard
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BLVDS Output Termination

BLVDS outputs require external termination as shown in Figure 10-33.

In the Extended Spartan-3A family, the BLVDS outputs are allowed on any bank, and there 
is no VCCO restriction on inputs, as shown in Figure 10-34.

DCI Digitally Controlled Impedance

In the Spartan-3 family, many standards support the Digitally Controlled Impedance (DCI) 
feature, which uses integrated terminations to eliminate unwanted signal reflections. This 
feature is also known as XCITE technology. DCI provides two kinds of on-chip 
terminations. Parallel terminations make use of an integrated resistor network. Series 
terminations result from controlling the impedance of output drivers.

DCI is available only by selecting certain IOSTANDARD options, as listed in the Spartan-3 
data sheet. The DCI feature operates independently for each of the device’s eight banks. 
Each bank has an ‘N’ reference pin (VRN) and a ‘P’ reference pin (VRP) to calibrate driver 
and termination resistance. Only when using certain DCI standards on a given bank do 
these two pins function as VRN and VRP. When not using a DCI standard that requires 
them, the two pins function as user I/Os. Add an external reference resistor to pull the 
VRN pin up to VCCO and another reference resistor to pull the VRP pin down to GND. 

For more details on DCI, see DS099, Spartan-3 FPGA Family Data Sheet.

Figure 10-33: External Output and Input Termination Resistors for BLVDS I/Os

Figure 10-34: Spartan-3A/3AN/3A DSP External Output and Input Termination 
Resistors for BLVDS I/Os
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Supply Voltages for the IOBs
The IOBs are powered by three supplies:

1. The VCCO supplies, one for each of the FPGA’s I/O banks, power the output drivers. 
The voltage on the VCCO pins determines the voltage swing of the output signal. All 
VCCO pins should be connected. If a bank is unused, VCCO pins should be connected to 
an available VCCAUX or VCCO rail.

2. VCCINT is the main power supply for the FPGA’s internal logic.

3. VCCAUX is an auxiliary source of power, primarily to optimize the performance of 
various FPGA functions, such as the DCM, differential signals including LVPECL_33 
and TMDS_33 inputs, and some single-ended input signals, such as LVCMOS25 and 
LVCMOS33 inputs.

Spartan-3A and Spartan-3A DSP FPGA Dual-Range VCCAUX
The Spartan-3A and Spartan-3A DSP FPGAs in the Extended Spartan-3A family allow 
VCCAUX to be either 2.5V or 3.3V. The option provides greater flexibility to the user, and 
allows VCCAUX to be set to the same level as an existing VCCO rail to minimize the number 
of power rails. The user must set the CONFIG VCCAUX constraint to either 2.5 or 3.3 
according to the voltage being provided to the VCCAUX rails. The CONFIG VCCAUX 
constraint is used by the ISE software to determine if LVCMOS25 inputs can be powered 
by VCCAUX. If CONFIG VCCAUX = 2.5, VCCAUX is used to power LVCMOS25 inputs. If 
CONFIG VCCAUX = 3.3, VCCO must be 2.5V for any banks with LVCMOS25 inputs. The 
Spartan-3AN platform requires that VCCAUX be set to 3.3V for the In-System Flash 
memory.

ESD Protection
Protection circuitry on all Spartan-3 generation I/Os protects all device pads against 
damage from electro-static discharge (ESD) as well as excessive voltage transients. ESD 
protection specifications are typically ±2000V for the Human Body Model. Details are 
provided in Module 3 of each family’s data sheet.

In the Extended Spartan-3A family, this protection circuitry does not limit I/O voltage 
range.

In the Spartan-3E and Spartan-3 families, clamp diodes protect all device pads against 
damage from both ESD as well as excessive voltage transients. Each I/O has two clamp 
diodes: one diode extends P-to-N from the pad to VCCO, and a second diode extends 
N-to-P from the pad to GND. During operation, these diodes are normally biased in the off 
state. These clamp diodes are always connected to the pad, regardless of the signal 
standard selected. The presence of diodes limits the ability of Spartan-3/3E I/Os to tolerate 
high signal voltages. The VIN absolute maximum rating in Module 3 of each data sheet 
specifies the voltage range that I/Os can tolerate. Input voltages outside the VIN max 
voltage range are permissible provided that the IIK input diode clamp diode rating is met 
and no more than 100 pins exceed the range simultaneously.

The Spartan-3A/3AN/3A DSP FPGA families have clamp diodes only after configuring 
the I/Os to the PCI33 or PCI66 I/O standards.

IOBs Organized into Banks
Spartan-3 generation FPGAs allow multiple I/O standards to be combined in the same 
device. Although the outputs are always powered by VCCO, multiple standards are 
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available under one of the five possible VCCO values. In addition, inputs often do not need 
to match the voltage applied to VCCO.

Further flexibility is achieved by offering multiple VCCO levels in a single device. The 
VCCO power rails are provided independently each bank of I/Os, or side of the device. 
Most Spartan-3 generation devices organize IOBs into four I/O banks as shown in 
Figure 10-35. Each bank maintains separate VCCO and VREF supplies. The separate 
supplies allow each bank to independently set VCCO (which provides current to the 
outputs and additionally powers the on-chip differential termination) and VREF  (which 
supplies the reference voltage for HSTL and SSTL). Refer to Table 10-17 through 
Table 10-19 for VCCO and VREF requirements. Most members of the Spartan-3 family have 
eight I/O banks—see DS099, Spartan-3 FPGA Family Data Sheet for more details.

The design implementation tools automatically assign pins to separate banks when 
necessary to meet VCCO or VREF requirements. The user can also assign pins using any of 
the floorplanning tools available, including the Pinout and Area Constraints Editor 
(PACE). PACE shows the bank associations for each pin, even when viewed in the BGA 
ball grid pattern. In the pinout, bank numbers are specified for each I/O pin on the device. 
For example, IO_L18P_0 is a part of differential pair L18 on bank 0.

Single-Ended I/O Standard Bank Compatibility

For a particular VCCO voltage, Table 10-17 through Table 10-19 list all of the single-ended 
IOSTANDARDs that can be combined, and if IOSTANDARD is supported only for inputs 
or can be used for both inputs and outputs. 

Figure 10-35: Spartan-3 Generation I/O Banks (top view) 
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Table 10-17: Spartan-3A/3AN/3A DSP Single-Ended IOSTANDARD Bank Compatibility

Single-Ended 
IOSTANDARD

VCCO Supply/Compatibility Input Requirements

1.2V 1.5V 1.8V 2.5V 3.3V VREF

Board 
Termination 
Voltage (VTT)

LVTTL Input Input Input Input Input/
Output

N/R(1) N/R

LVCMOS33 Input Input Input Input Input/
Output

N/R N/R

LVCMOS25 Input(2) Input(2) Input(2) Input/
Output

Input(2) N/R N/R

http://www.xilinx.com
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LVCMOS18 Input Input
Input/
Output

Input Input N/R N/R

LVCMOS15 Input
Input/
Output

Input Input Input N/R N/R

LVCMOS12
Input/
Output

Input Input Input Input N/R N/R

PCI33_3 Input Input Input Input
Input/
Output

N/R N/R

PCI66_3 Input Input Input Input
Input/
Output

N/R N/R

HSTL_I_18 Input Input
Input/
Output

Input Input 0.9 0.9

HSTL_II_18 Input Input Input/
Output

Input Input 0.9 0.9

HSTL_III_18 Input Input Input/
Output

Input Input 1.1 1.8

HSTL_I Input Input/
Output

Input Input Input 0.75 0.75

HSTL_III Input Input/
Output

Input Input Input 0.9 1.5

SSTL18_I Input Input Input/
Output

Input Input 0.9 0.9

SSTL18_II Input Input Input/
Output

Input Input 0.9 0.9

SSTL2_I Input Input Input Input/
Output

Input 1.25 1.25

SSTL2_II Input Input Input Input/
Output

Input 1.25 1.25

SSTL3_I Input Input Input Input Input/
Output

1.5 1.5

SSTL3_II Input Input Input Input
Input/
Output 1.5 1.5

Notes: 
1. N/R - Not required for input operation.
2. To use LVCMOS25 inputs when VCCO is not 2.5V, VCCAUX must be set to 2.5V.

Table 10-17: Spartan-3A/3AN/3A DSP Single-Ended IOSTANDARD Bank Compatibility (Continued)

Single-Ended 
IOSTANDARD

VCCO Supply/Compatibility Input Requirements

1.2V 1.5V 1.8V 2.5V 3.3V VREF

Board 
Termination 
Voltage (VTT)
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Table 10-18: Spartan-3E Single-Ended IOSTANDARD Bank Compatibility

Single-Ended 
IOSTANDARD

VCCO Supply/Compatibility Input Requirements

1.2V 1.5V 1.8V 2.5V 3.3V VREF

Board 
Termination 
Voltage (VTT)

LVTTL - - - -
Input/
Output N/R(1) N/R

LVCMOS33 - - - -
Input/
Output N/R N/R

LVCMOS25 - - -
Input/
Output Input N/R N/R

LVCMOS18 - -
Input/
Output Input Input N/R N/R

LVCMOS15 -
Input/
Output Input Input Input N/R N/R

LVCMOS12
Input/
Output Input Input Input Input N/R N/R

PCI33_3 - - - -
Input/
Output

N/R N/R

PCI66_3 - - - -
Input/
Output

N/R N/R

HSTL_I_18 - -
Input/
Output

Input Input 0.9 0.9

HSTL_III_18 - -
Input/
Output

Input Input 1.1 1.8

SSTL18_I - -
Input/
Output

Input Input 0.9 0.9

SSTL2_I - - -
Input/
Output

Input 1.25 1.25

Notes: 
1. N/R - Not required for input operation.
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Table 10-19: Spartan-3 Single-Ended IOSTANDARD Bank Compatibility

Single-Ended 
IOSTANDARD

VCCO Supply/Compatibility Input Requirements

1.2V 1.5V 1.8V 2.5V 3.3V VREF
(1)

Board 
Termination 
Voltage (VTT)

LVTTL - - - -
Input/
Output N/R(2) N/R

LVCMOS33 - - - -
Input/
Output N/R N/R

LVCMOS25 - - -
Input/
Output - N/R N/R

LVCMOS18 - -
Input/
Output - - N/R N/R

LVCMOS15 -
Input/
Output - - - N/R N/R

LVCMOS12
Input/
Output - - - - N/R N/R

PCI33_3 - - - -
Input/
Output

N/R N/R

HSTL_I_18 - -
Input/
Output

Input Input 0.9 0.9

HSTL_II_18 - -
Input/
Output

Input Input 0.9 0.9

HSTL_III_18 - -
Input/
Output

Input Input 1.1 1.8

HSTL_I -
Input/
Output

Input Input Input 0.75 0.75

HSTL_III -
Input/
Output

Input Input Input 0.9 1.5

SSTL18_I - -
Input/
Output

Input Input 0.9 0.9

SSTL18_II - -
Input/
Output

Input Input 0.9 0.9

SSTL2_I - - -
Input/
Output

Input 1.25 1.25

SSTL2_II - - -
Input/
Output

Input 1.25 1.25

GTL Note 2 0.8 1.2

GTLP - Note 2 1.0 1.5

Notes: 
1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using VREF.
2. The VCCO level used for the GTL and GTLP standards must be no lower than the termination voltage (VTT), nor can it be lower than 

the voltage at the I/O pad.

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 355
UG331 (v1.5) January 21, 2009

Supply Voltages for the IOBs
R

Differential I/O Standard Bank Compatibility

Most of the differential I/O standards are compatible and can be combined within any 
given bank. In the Extended Spartan-3A family, banks 0 and 2 can each support any two of 
the following 2.5V differential standards: 

• LVDS_25 outputs

• MINI_LVDS_25 outputs

• RSDS_25 outputs

• PPDS_25 outputs

Extended Spartan-3A family banks 0 and 2 alternatively support any two of the following 
3.3V differential outputs:

• LVDS_33 outputs

• MINI_LVDS_33 outputs

• RSDS_33 outputs

• PPDS_33 outputs

• TMDS_33 outputs

Maximizing Availability of Differential Pins in Extended Spartan-3A Family

In the Extended Spartan-3A family, differential outputs are limited to two of the four 
banks. If a large number of differential signals are needed, put differential inputs on banks 
1 and 3, freeing up banks 0 and 2 for differential outputs and I/O. A larger device or larger 
package will further increase the available differential I/O. Note that the pseudo-
differential standards (BLVDS_25 and Differential SSTL/HSTL) do not have this bank 
restriction. BLVDS_25 could be considered as an alternative to LVDS_25. The advantage is 
that BLVDS_25 allows outputs in banks 1 and 3, but the disadvantage is that it requires 
external resistors.

In the Spartan-3E family, each bank can support any two of the following differential 
standards:

• LVDS_25 outputs

• MINI_LVDS_25 outputs

• RSDS_25 outputs

As an example, LVDS_25 outputs, RSDS_25 outputs, and any other differential inputs 
while using on-chip differential termination are a valid combination. A combination not 
allowed is a single bank with LVDS_25 outputs, RSDS_25 outputs, and MINI_LVDS_25 
outputs.

Table 10-20: Spartan-3A/3AN/3A DSP Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

I/O Type VCCAUX
(3) VCCO

Differential Pad Type Differential Bank 
Restriction(1)

IP IO

BLVDS_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM Not available No

Output 2.5/3.3 2.5 No Yes No
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LVDS_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 2.5 No Bank 0/2 Yes

LVDS_33

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 3.3 No Bank 0/2 Yes

MINI_LVDS_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 2.5 No Bank 0/2 Yes

MINI_LVDS_33

Input 2.5/3.3 2.5 - 3.3 Yes Yes No

Input with DIFF_TERM 2.5/3.3 3.3 No Yes No

Output 2.5/3.3 3.3 No Bank 0/2 Yes

RSDS_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 2.5 No Bank 0/2 Yes

RSDS_33

Input 2.5/3.3 2.5 - 3.3 Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 3.3 No Bank 0/2 Yes

PPDS_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 2.5 No Bank 0/2 Yes

PPDS_33

Input 2.5/3.3 2.5 - 3.3 Yes Yes No

Input with DIFF_TERM 2.5/3.3 2.5 - 3.3 No Yes No

Output 2.5/3.3 3.3 No Bank 0/2 Yes

LVPECL_25

Input 2.5/3.3 Any Yes Yes No

Input with DIFF_TERM Not available No

Output Not available No

LVPECL_33

Input 3.3(4) 2.5 - 3.3 Yes Yes No

Input with DIFF_TERM Not available No

Output Not available No

TMDS_33

Input 3.3(4) 2.5 - 3.3 Yes Yes No

Input with DIFF_TERM 3.3(4) 3.3 No Yes No

Output 2.5/3.3 3.3 No Bank 0/2 Yes

DIFF_HSTL 2.5/3.3 Same as Single-Ended Standards

Table 10-20: Spartan-3A/3AN/3A DSP Differential IOSTANDARD Bank Compatibility (Continued)

Differential 
IOSTANDARD

I/O Type VCCAUX
(3) VCCO

Differential Pad Type Differential Bank 
Restriction(1)

IP IO
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DIFF_SSTL 2.5/3.3 Same as Single-Ended Standards

Notes: 
1. Banks 0 and 2 can each support any two of the following 2.5V differential standards: LVDS_25 outputs, MINI_LVDS_25 outputs, 

RSDS_25 outputs, PPDS_25 outputs, or any two of the following 3.3V differential standards: LVDS_33 outputs, MINI_LVDS_33 
outputs, RSDS_33 outputs, PPDS_33 outputs, TMDS_33 outputs. Other I/O bank restrictions might apply.

2. VREF is not used for the differential I/O standards except for DIFF_HSTL and DIFF_SSTL.
3. Spartan-3AN FPGAs require VCCAUX = 3.3V
4. Power VCCAUX rails at 3.3V and set CONFIG VCCAUX = 3.3.

Table 10-20: Spartan-3A/3AN/3A DSP Differential IOSTANDARD Bank Compatibility (Continued)

Differential 
IOSTANDARD

I/O Type VCCAUX
(3) VCCO

Differential Pad Type Differential Bank 
Restriction(1)

IP IO

Table 10-21: Spartan-3E Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

VCCO Supply Differential Bank 
Restriction(1)

1.8V 2.5V 3.3V

LVDS_25 Input
Input,

On-chip Differential Termination(2),
Output

Input
Applies to 

Outputs Only

RSDS_25 Input
Input,

On-chip Differential Termination(2),
Output

Input
Applies to 

Outputs Only

MINI_LVDS_25 Input
Input,

On-chip Differential Termination(2),
Output

Input
Applies to 

Outputs Only

LVPECL_25 Input Input Input

No Differential 
Bank Restriction 
(other I/O bank 

restrictions might 
apply)

BLVDS_25 Input Input, Output Input

DIFF_HSTL_I_18 Input, Output Input Input

DIFF_HSTL_III_18 Input, Output Input Input

DIFF_SSTL18_I Input, Output Input Input

DIFF_SSTL2_I Input Input, Output Input

Notes: 
1. Each bank can support one of the following: LVDS_25 outputs, MINI_LVDS_25 outputs, RSDS_25 outputs.
2. On-chip differential termination is not supported on input-only pins (differential pad type IP).
3. VREF is not used for the differential I/O standards except for DIFF_HSTL and DIFF_SSTL.

Table 10-22: Spartan-3 Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

VCCO Supply Differential Bank 
Restriction(1)

1.8V 2.5V 3.3V

LVDS_25 Input Input, Output Input
Applies to Outputs 

Only

RSDS_25 Input Input, Output Input
Applies to Outputs 

Only
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I/O Banking Rules
When assigning I/Os to banks, these VCCO rules must be followed: 

1. All VCCO pins on the FPGA must be connected even if a bank is unused.

2. All VCCO lines associated within a bank must be set to the same voltage level. 

3. The VCCO levels used by all standards assigned to the I/Os of any given bank must 
agree. The Xilinx development software checks for this. Table 10-17 through 
Table 10-22 describe how different standards use the VCCO supply. 

4. If a bank does not have any VCCO requirements, connect VCCO to an available voltage, 
such as 2.5V or 3.3V. Some configuration modes might place additional VCCO 
requirements. 

If any of the standards assigned to the inputs of the bank use VREF, then the following 
additional rules must be observed:

1. All VREF pins must be connected within a bank.

2. All VREF lines associated with the bank must be set to the same voltage level. 

3. The VREF levels used by all standards assigned to the inputs of the bank must agree. 
The Xilinx development software checks for this. Table 10-17 through Table 10-19 
describe how different standards use the VREF supply. 

If VREF is not required to bias the input switching thresholds, all associated VREF pins 
within the bank can be used as user I/Os or input pins.

Using Large-Swing Signals
Independent of the I/O standard compatibility with VCCO , care must be taken to ensure 
that VIN input voltages do not exceed the maximum specifications, which are sometimes 
specified in relation to VCCO. For example, the Spartan-3 family specifies a VIN 
recommended maximum of VCCO + 0.3V to avoid turning on the input protection diodes 
(see Module 3 of DS099, Spartan-3 FPGA Family Data Sheet for the specifications). The 
Spartan-3E family specifies a VIN recommended maximum of VCCO + 0.5V to avoid 

LDT_25 (ULVDS_25) Input Input, Output Input
Applies to Outputs 

Only

LVDSEXT_25 Input Input, Output Input
Applies to Outputs 

Only

LVPECL_25 Input Input, Output Input No Differential 
Bank Restriction

(other I/O bank 
restrictions might 

apply)

BLVDS_25 Input Input, Output Input

DIFF_HSTL_II_18 Input, Output Input Input

DIFF_SSTL2_II Input Input, Output Input

Notes: 
1. Each bank can support any two of the following: LVDS_25 outputs, RSDS_25 outputs, LDT_25 (ULVDS_25) outputs, LVDSEXT_25 

outputs.
2. VREF is not used for the differential I/O standards except for DIFF_HSTL and DIFF_SSTL.

Table 10-22: Spartan-3 Differential IOSTANDARD Bank Compatibility (Continued)

Differential 
IOSTANDARD

VCCO Supply Differential Bank 
Restriction(1)

1.8V 2.5V 3.3V
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turning on the input protection diodes (see Module 3 of DS312, Spartan-3E FPGA Family 
Data Sheet for the specifications). The Spartan-3A/3AN/3A DSP maximum VIN values are 
independent of VCCO, except for the PCI standards —see Module 3 of DS529, Spartan-3A 
FPGA Family Data Sheet for the specifications.

In some applications it might be desirable to receive signals with a greater voltage swing 
than the I/Os ordinarily permit. The most common case is receiving 5V signals on pins set 
to a 3.3V I/O standard. These large-swing signals might be by design or can be a result of 
severe overshoot. 

A similar situation might exist on the outputs, where the Spartan-3 generation FPGA 
needs to drive external devices supporting standards with larger swing. The Spartan-3 
generation outputs at 3.3V can directly drive most 5V devices, although with less margin. 
Similarly, the LVCMOS25 dedicated configuration outputs can directly drive most 3.3V 
external devices.

For the specific case of interfacing to the PCI bus, see XAPP457, Powering and Configuring 
Spartan-3 Generation FPGAs in Compliant PCI Applications.

Voltage Translators

Xilinx recommends the use of voltage level translators as the preferred solution when 
interfacing with large-swing signals. A voltage level translator can be as simple as a two-
resistor voltage divider, or as complex as a PCI-to-PCI bridge.

Open-Drain Interfacing

According to another approach, the outputs of certain external devices can be configured 
as open-drain outputs. Such outputs with pull-up resistors tied to a low voltage rail can be 
used to limit the signal swing so that the FPGA’s Power Diode does not turn on. See 
Figure 10-36.

The open-drain output is comparatively slow with reduced noise margin; it is most 
suitable for cases where timing is not too critical. Fortunately, in most cases, Dedicated 
Inputs (PROG_B, TDI, TMS, and TCK) do not usually need to switch very fast.

Figure 10-36: A 3.3V Open-Drain Output Connected to an FPGA’s Dedicated Input
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Voltage Clamps Using Internal Diodes

Input voltages outside the recommended range are permissible provided that the IIK input 
clamp diode rating is met and I/O coupling effects are accounted for. To meet the IIK input 
clamp diode rating in the Spartan-3 and Spartan-3E families, a series resistor can be added 
to the input. This solution can be used to apply 3.3V signals to configuration pins 
dedicated to LVCMOS25 standards. For more information on the configuration interface, 
see UG332, Spartan-3 Generation Configuration User Guide, and XAPP453, The 3.3V 
Configuration of Spartan-3 FPGAs.

In this type of solution, the internal Power Diode between the FPGA’s output and its 
associated power rail is allowed to turn on, and a resistor in series with the output is used 
to limit the current. The current, which flows back into the regulator, is known as reverse 
current. Another resistor can be put across the power supply’s output to help ensure proper 
regulation. 

In this solution, parasitic leakage current between user I/Os in differential pin pairs can 
occur, even though the I/Os are configured with single-ended standards. This parasitic 
leakage can occur when the VIN is beyond the recommended operating conditions, either 
positive or negative, even if the input current is limited. This parasitic current can cause 
unexpected device behavior, but does not damage the device. If you use this technique for 
large-swing signals, you should either leave the other pin of the differential pair unused, or 
manage the potential effects of the increased leakage. See XAPP459, “Eliminating I/O 
Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on 
Spartan-3 Generation FPGAs.”

I/O and Input-Only Pin Behavior During Power-On, Configuration, and 
User Mode

In this section, all behavior described for I/O pins also applies to input-only pins and dual-
purpose I/O pins that are not actively involved in the currently selected configuration 
mode.

The VCCINT (1.2V), VCCAUX, and VCCO supplies can be applied in any order. Before the 
FPGA can start its configuration process, VCCINT, VCCO Bank 2 (Bank 4 in the Spartan-3 
family) and VCCAUX must have reached their respective minimum recommended 
operating levels indicated in Module 3 of each family’s data sheet. At this time, all output 
drivers are in a high-impedance state. VCCO Bank 2, VCCINT, and VCCAUX serve as inputs 
to the internal power-on reset (POR) circuit. 

A Low level applied to the Pull Up During Configuration (PUDC_B) input enables the 
pull-up resistors on user-I/O and input-only pins from power-on throughout 
configuration. A High level on PUDC_B disables the pull-up resistors, allowing the I/Os to 
float. PUDC_B contains a weak pull-up and defaults to High if left floating. In the 
Spartan-3E family, this pin is called HSWAP, and in the Spartan-3 family, it is named 
HSWAP_EN.

As soon as power is applied, the FPGA begins initializing its configuration memory. At the 
same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously 
resets all IOB storage elements to a default Low state.

Upon the completion of initialization and the beginning of configuration, INIT_B goes 
High, sampling the M0, M1, and M2 inputs to determine the configuration mode. 
Configuration data is then loaded into the FPGA. The I/O drivers remain in a high-
impedance state (with or without pull-up resistors, as determined by the PUDC_B input) 
throughout configuration.
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At the end of configuration, the GSR net is released, placing the IOB registers in a Low state 
by default, unless the loaded design reverses the polarity of their respective SR inputs.

The Global Three State (GTS) net is released during start-up, marking the end of 
configuration and the beginning of design operation in the User mode. After the GTS net is 
released, all user I/Os go active while all unused I/Os are weakly pulled down 
(PULLDOWN). The designer can control how the unused I/Os are terminated after GTS is 
released by setting the UnusedPin Bitstream Generator (BitGen) option to PULLUP, 
PULLDOWN, or FLOAT. 

One clock cycle later (default), the Global Write Enable (GWE) net is released allowing the 
RAM and registers to change states. Once in User mode, any pull-up resistors enabled by 
PUDC_B revert to the user settings and PUDC_B is available as a general-purpose I/O. For 
more information on PULLUP and PULLDOWN, see “Pull-Up and Pull-Down Resistors,” 
page 330.

For more information on the power-up and configuration processes, see UG332, Spartan-3 
Generation Configuration User Guide.

Behavior of Unused I/O Pins After Configuration
By default, the Xilinx ISE development software automatically configures all unused I/O 
pins as input pins with individual internal pull-down resistors to GND.

This default behavior is controlled by the UnusedPin BitGen option.

Related Materials and References
• Spartan-3 Generation Data Sheets

I/O specifications and pin-outs.
http://www.xilinx.com//support/documentation/index.htm

• UG332: Spartan-3 Generation Configuration User Guide
I/O pin function during configuration.
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

• I/O Block Application Notes
http://www.xilinx.com/support/documentation/topicfpgafeaturedesign_ioblock.htm

• Signal Integrity Central
Documents and links designed to give you everything you need to achieve reliable 
PCB designs on the first try.
http://www.xilinx.com/signalintegrity
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Chapter 11

Using Embedded Multipliers

Summary
Dedicated 18x18 multipliers speed up DSP logic in the Spartan®-3 generation families. The 
multipliers are fast and efficient at implementing signed or unsigned multiplication of up 
to 18 bits. In addition to basic multiplication functions, the embedded multiplier block can 
be used as a shifter or to generate magnitude or two’s-complement return of a value. The 
multipliers can be cascaded with each other or CLB logic for larger or more complex 
functions.

The Spartan-3A DSP platform devices includes high-performance DSP48A blocks that are 
compatible with the Virtex®-4 FPGA DSP48 architecture. These blocks support multiply 
accumulate operations at over 250 MHz. 

Introduction
Spartan-3 generation FPGAs have a number of features to fortify the chip’s arithmetic 
capabilities. Carry logic and dedicated carry routing continues to be provided as in past 
generations. Dedicated AND gates in the CLBs accelerate array multiplication operations. 
The most significant addition is the dedicated 18x18 two’s-complement multiplier block. 
With 3 to 104 of these dedicated multipliers in each device, fast arithmetic functions can be 
implemented with minimal use of the general-purpose resources. In addition to the 
performance advantage, dedicated multipliers require less power than CLB-based 
multipliers.

The embedded multipliers offer fast, efficient means to create 18-bit signed by 18-bit 
signed multiplication products. The multiplier blocks share routing resources with the 
Block SelectRAM™ memory, allowing for increased efficiency for many applications. 

Applications such as signed-signed, signed-unsigned, and unsigned-unsigned 
multiplication, logical, arithmetic, and barrel shifters, two’s-complement and magnitude 
return are easily implemented. 

High-level synthesis tools usually automatically infer the dedicated multiplier for generic 
multiplication operations in VHDL or Verilog. To allow more user control or to use special 
features of the multiplier, it can be instantiated in a design or defined using the 
CORE Generator™ system.
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Embedded Multiplier Resource Differences between Spartan-3 
Generation Families

The Spartan-3E and Spartan-3A/3AN FPGA families have similar embedded multiplier 
resources, with the Spartan-3A/3AN families offering additional routing flexibility. 
Although the resources are similar, there are timing differences between the families. The 
families share the same multiplier primitive, MULT18X18SIO, with optional input and 
output registers and cascade signals. The original Spartan-3 family offers a simpler 
multiplier without pipelining or cascade capabilities and uses the MULT18X18 
(combinatorial) or MULT18X18S (registered) primitives. This chapter focuses on the 
architecture of the Spartan-3E and Spartan-3A/3AN families. For details on the Spartan-3 
multiplier, see DS099, Spartan-3 FPGA Family Data Sheet and XAPP467, Using Embedded 
Multipliers in Spartan-3 FPGAs.

The Spartan-3A DSP platform has a new high-performance DSP48A block that is 
compatible with the Virtex-4 DSP48 and supports multiply accumulate operations at over 
250 MHz. This block is backwards compatible with the Spartan-3E and Spartan-3A/3AN 
FPGA multipliers. For more information, see UG431, XtremeDSP Slice for Spartan-3A DSP 
FPGAs User Guide.

Two’s-Complement Signed Multiplier
The multiplier primitive MULT18X18SIO is shown in Figure 11-1. The multiplier blocks 
primarily perform two’s complement numerical multiplication but can also perform some 
less obvious applications, such as simple data storage and barrel shifting. Each multiplier 
performs the principle operation P = A × B, where A and B are 18-bit words in two’s 
complement form, and P is the 36-bit full-precision product, also in two’s complement 
form. The 18-bit inputs represent values ranging from -131,07210 to +131,07110 and the 
resulting product ranges from -17,179,738,11210 to +17,179,869,18410.

Optional registers are available on both the A and B inputs and the P output. The 
registered paths share a common clock CLK and have independent active-High clock 
enables and synchronous resets. The CLK, CE, and RST inputs all have programmable 
polarity.

Figure 11-1: MULT18X18SIO Primitive

MULT18X18SIO
A[17:0] P[35:0]

BCOUT[17:0]

B[17:0]

CEA

CEB

CEP

CLK
RSTA

RSTB

RSTP

BCIN[17:0]

DS312-2_28_021205

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug431.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp467.pdf


Spartan-3 Generation FPGA User Guide www.xilinx.com 365
UG331 (v1.5) January 21, 2009

Two’s-Complement Signed Multiplier
R

The 18-bit width of the Spartan-3 generation multiplier is unusual but matches with the 18-
bit width of the block RAM, which includes parity bits. Standard 8-bit or 16-bit multipliers 
can be created by using part of the multiplier block, or a 32-bit multiplier can be created via 
cascading. The Xilinx architecture allows any non-standard bit width to be implemented, 
exactly matching the needs of the application. Unused multiplier inputs are connected 
automatically to zero via connections to unused LUTs that are set to zero.

Location Constraints
MULT18X18SIO embedded multiplier instances can have LOC properties attached to them 
to constrain placement. MULT18X18SIO placement locations differ from the convention 
used for naming CLB locations, allowing LOC properties to transfer easily from array to 
array.

Table 11-1: Number of Multipliers per Spartan-3 Generation Device

Device Multiplier Columns Multipliers

Spartan-3A DSP FPGAs

XC3SD1800A 4 84 DSP48A

XC3SD3400A 5 126 DSP48A

Spartan-3A/3AN FPGAs

XC3S50A/AN 1 3

XC3S200A/AN 2 16

XC3S400A/AN 2 20

XC3S700A/AN 2 20

XC3S1400A/AN 2 32

Spartan-3E FPGAs

XC3S100E 1 4

XC3S250E 2 12

XC3S500E 2 20

XC3S1200E 2 28

XC3S1600E 2 36

Spartan-3 FPGAs

XC3S50 1 4

XC3S200 2 12

XC3S400 2 16

XC3S1000 2 24

XC3S1500 2 32

XC3S2000 2 40

XC3S4000 4 96

XC3S5000 4 104
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The LOC properties use the following form:

LOC = MULT18X18_X#Y#

For example, MULT18X18_X0Y0 is the bottom-left MULT18X18SIO location on the device. 

Multiplier/Block RAM Routing Interaction
Each multiplier is located adjacent to an 18 Kbit block RAM and shares some interconnect 
resources. In the Spartan-3 and Spartan-3E families, configuring an 18 Kbit block RAM for 
32/36-bit wide data (512 x 36 mode) prevents use of the associated dedicated multiplier 
because the lower 16 bits of the A multiplicand input are shared with the upper 16 bits of 
the block RAM’s Port A Data input. Similarly, the lower 16 bits of the B multiplicand input 
are shared with Port B’s Data input.

The Spartan-3A/3AN platforms offer additional routing between the block RAM and 
multiplier. The A port inputs are independent, so the multiplier can always be used even if 
the block RAM outputs the full 36-bit width On port A. Because Port B is still shared, it is 
recommended to define a mixed-width block RAM with the 36-bit data on port A and the 
narrower data (up to x18) on port B. 

The Spartan-3A/3AN platforms also offer direct routing from the block RAM into the 
multiplier. This path helps improve routability and performance when the multiplier 
coefficients are stored in the adjacent block RAM. See Figure 11-2 for details of the 
Spartan-3A/3AN platform block RAM and multiplier connections.

The Spartan-3A DSP platform offers enhanced routing and features that avoid conflicts 
between block RAM and multiplier routing.

Optional Pipeline Registers
As shown in Figure 11-3, each multiplier block has optional registers on each of the 
multiplier inputs and the output. The registers, named AREG, BREG, and PREG, and can 
be used in any combination. The clock input is common to all the registers within a block, 
but each register has an independent clock enable and synchronous reset controls making 
it ideal for storing data samples and coefficients.

Figure 11-2: Spartan-3A/3AN Multiplier/Block RAM Connectivity
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The pipeline registers can be inferred or instantiated. A single-stage multiplier typically 
infers usage of the output PREG register. A two-stage multiplier typically infers the usage 
of both the AREG/BREG input registers and the PREG output register.

To instantiate the pipeline registers on the MULT18X18SIO primitive, the individual 
AREG, BREG, and PREG attributes are set to 1 to insert the associated register or to 0 to 
remove it and make the signal path combinatorial. The default is 1 or fully pipelined. The 
attribute can be modified via the generic map (VHDL) or named parameter value 
assignment (Verilog) as a part of the instantiated component.

Timing Specification
Multiplier performance can be enhanced by limiting the number of bits or putting critical 
signals on the LSBs, or by pipelining. When pipelining, the registers boost the multiplier 
clock rate, beneficial for higher performance applications. 

The result is generated faster for the LSBs than the MSBs, since the MSBs require more 
levels of addition, so timing specifications are different for each of the 36 multiplier 
outputs. Designs should use only as many output bits as are necessary. For example, if two 
unsigned numbers will never have a product of 235 or higher, the P[35] output is always 
zero. For any pair of signed numbers of n bits, if you will never have -2n-1 x -2n-1, then the 
MSB is always identical to the next lower-order bit (P[2n-1] = P[2n-2]). Also consider that if 
some outputs must have longer routing delays, they should be put on the output LSBs to 
balance with the MSB delays.

For the same reason, the data input setup time for the registered output multiplier is 
shorter for the MSBs than the LSBs, but the timing parameters do not differentiate between 
pins for setup time. For additional safety margin in a design, slower inputs should be put 
on the MSBs. 

Figure 11-3: Principle Ports and Functions of Dedicated Multiplier Blocks
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Expanding Multipliers
Multiplication using inputs with more than 18 bits is possible by decomposing the 
multiplication process into smaller subprocesses. The binary representation of either input 
can be split at any point, provided the proper weighting and sign of the MSBs is taken into 
account. Splitting off the 18 MSBs of the input makes the best use of the 18-bit signed 
multipliers.

Cascading Multipliers
The Spartan-3E/3A/3AN MULT18X18SIO primitive has two additional ports called BCIN 
and BCOUT to cascade or share the multiplier’s B input among several multiplier blocks. 
The 18-bit BCIN “cascade” input port offers an alternate input source from the more 
typical B input. The B_INPUT attribute specifies whether the specific implementation uses 
the BCIN or B input path. Setting B_INPUT to DIRECT chooses the B input. Setting 
B_INPUT to CASCADE selects the alternate BCIN input. The BREG register then 
optionally holds the selected input value, if required.

BCOUT is an 18-bit output port that always reflects the value applied to the multiplier’s 
second input. This value is the B input, the cascaded value from the BCIN input, or the 
output of the BREG, if it is inserted.

Figure 11-4 illustrates the four possible configurations using different settings for the 
B_INPUT attribute and the BREG attribute.

The BCIN and BCOUT ports have associated dedicated routing that connects adjacent 
multipliers within the same column. Via the cascade connection, the BCOUT port of one 
multiplier block drives the BCIN port of the multiplier block directly above it. There is no 
connection to the BCIN port of the bottom-most multiplier block in a column or a 

Figure 11-4: Four Configurations of the B Input
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connection from the BCOUT port of the top-most block in a column. As an example, 
Figure 11-5 shows the multiplier cascade capability for a column of multipliers four blocks 
tall. For clarity, the figure omits the register control inputs.

When using the BREG register, the cascade connection forms a shift register structure 
typically used in DSP algorithms such as direct-form FIR filters. When the BREG register is 
omitted, the cascade structure essentially feeds the same input value to more than one 
multiplier. This parallel connection serves to create wide-input multipliers and implement 
transpose FIR filters. It is used in any application requiring several multipliers to have the 
same input value.

Examples
For example, Figure 11-6 shows how a 22x16 multiplier could be implemented. The 22-bit 
value is decomposed into an 18-bit signed value and a 4-bit unsigned value from the LSBs. 
Two partial products are formed. The first is a 20-bit signed product, which is the result of 
multiplying the 16-bit signed value by the 4-bit unsigned section. The second is a 34-bit 
signed product, formed by multiplying the 16-bit signed value by the 18-bit signed section. 
The addition process restores the weighting of the products (note the least significant bits 
of the first product bypass the addition) and forms the final 38-bit product. Since the first 

Figure 11-5: Multiplier Cascade Connection
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product is signed, the 20-bit value needs to be sign-extended before addition. The adder 
itself only needs to be 34 bits, requiring 17 slices.

The implementation can vary depending on the performance needs and available 
resources. The second multiplier can be implemented in the MULT18X18SIO resource or in 
CLBs if it is small. Pipelining can be added to improve performance, using the built-in 
capabilities of the dedicated multipliers. If both inputs are greater than 18 bits, then four 
partial products are formed, but the purely unsigned result from the LSBs simply can be 
concatenated with the 36-bit signed product of the MSBs and added to the other two 
results.

Figure 11-7 represents the cascaded scheme used to implement a 35-bit by 35-bit signed 
multiplier utilizing four embedded multipliers and two adders.

The fixed adder is 53 bits wide (17 LSBs are always 0 on one input).

The 34-bit by 34-bit unsigned submodule is constructed in a similar manner with the most 
significant bit on each operand being tied to logic Low.

Figure 11-6: 22x16 Multiplier Implementation
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Two Multipliers in a Single Primitive
The dedicated multiplier can be used to multiply two smaller numbers at the same time. 
By putting one value on the LSBs and one on the MSBs, two independent results can be 
obtained as long as the results do not overlap with each other on the outputs. Shifting one 
of the values n positions to the MSBs is the same as multiplying it by 2n. If the value shifted 
to the MSBs is X, then the new value is X * 2n. If the value on the LSBs is Y, then the 
complete multiplier input is X * 2n + Y.

For simplified illustration purposes, an assumption of two squares being implemented in 
the same MULT18X18SIO primitive is used. The following equation shows the form of the 
multiplication.

Two Multipliers per Primitive:

(X * 2n + Y)(X * 2n + Y) = (X2 * 22n) + (XY * 2n+1) + (Y2)

For values 0 on X or Y, the equation becomes:

X2 * 22n {Y=0} (X2 on the output MSBs)

Y2 {X=0} (Y2 on the output LSBs)

0 {X=0, Y=0}

With both X and Y at non-zero values, care must be taken to avoid overlap between the 
results on the MSBs and LSBs and the middle term (XY * 2n+1). Two multipliers can coexist 
in one MULT18X18SIO primitive, if the conditions in the following inequalities are met 
when neither X nor Y are 0.

Inequality Conditions for Two Multipliers per Primitive:

Figure 11-7: 35x35 Signed Multiplier
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(X2 * 22n)min > (XY * 2n+1)max, (XY * 2n+1)min > (Y2)max 

Table 11-2 shows values for X and Y where these conditions are met.

Figure 11-8 represents the MULT18X18SIO connections for calculating the square of both a 
6-bit signed number and a 5-bit unsigned number.

Design Entry
There are many options for including the Spartan-3 generation multiplier in a design. The 
library primitive MULT18X18SIO described earlier can be instantiated in the schematic or 
HDL code. Synthesis tools can infer a multiplier block from the multiply operator, 
including Xilinx XST, Synplicity Synplify, and Mentor Precision. They will infer the register 
when the operation is controlled by a clock for a synchronous multiplier.

Mentor synthesis features a pipeline multiplier that involves putting levels of registers in 
the logic to introduce parallelism and, as a result, use CLB resources instead of the 
dedicated multipliers. A certain construct in the input RTL source code description is 
required to allow the pipelined multiplier feature to take effect. See the Synthesis and 
Simulation Design Guide for more information.

The following VHDL example will infer the MULT18X18SIO with the PREG output 
register:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18sio is
port ( a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);

Table 11-2: Two Multipliers per MULT18X18SIO Allowable Sizes

X * X Y * Y 

Signed Size Unsigned Size Unsigned Size

6 X 6 5 X 5 5 X 5

5 X 5 4 X 4 6 X 6

4 X 4 3 X 3 7 X 7

Figure 11-8: Two Multipliers in One Primitive
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    clk : in std_logic;
   prod : out std_logic_vector(15 downto 0));
end mult18x18sio;
architecture arch_mult18x18sio of
mult18x18sio is

begin
process(clk) is begin
if clk’event and clk = ’1’ then
prod <= a*b;

end if;
end process;
end arch_mult18x18sio;

The following is a Synchronous Multiplier VHDL example coded for Mentor:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18sio is
port( clk: in std_logic;

 a: in std_logic_vector(7 downto 0);
 b: in std_logic_vector(7 downto 0);
    prod: out std_logic_vector(15 downto 0));
end mult18x18sio;
architecture arch_mult18x18sio of
mult18x18sio is

signal reg_prod : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if(rising_edge(clk))then
reg_prod <= a * b;
prod <= reg_prod;

end if;
end process;
end arch_mult18x18sio;

The following is a Synchronous Multiplier Verilog example coded for Synplify and XST:

module mult18x18sio(a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] prod;
always @(posedge clk) prod <= a*b;

endmodule

The following is a Synchronous Multiplier Verilog example coded for Mentor:

module mult18x18sio (a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] reg_prod, prod;
always @(posedge clk) begin
reg_prod <= a*b;
prod <= reg_prod;

endmodule
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MULT_STYLE Constraint
The MULT_STYLE constraint controls the implementation of the MULT18X18SIO 
primitives. In the Project Navigator, the default is that the Xilinx Synthesis Tool (XST) will 
select the best type of implementation. To ensure that the embedded multipliers are used, 
set MULT_STYLE = Block or select "Block" for the "Multiplier Style" property in the Project 
Navigator. The MULT_STYLE constraint can also be applied globally at the XST command 
line. For the MULT18X18SIO, the MULT_STYLE constraint is attached to the component, 
not the output bus. See the Constraints Guide for more information.
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Using the CORE Generator System
Multipliers that make use of the embedded Spartan-3 generation 18-bit x 18-bit two’s-
complement multipliers can be easily generated using the CORE Generator Multiplier 
module. This core is available with the CORE Generator system. Features of the Multiplier 
Generator include:

• Easy-to-use graphical interface generates instantiation templates for VHDL or Verilog

• Generates parallel multipliers using the dedicated multiplier blocks

Also can use other resources for parallel multipliers or generate sequential/serial-
sequential, and fixed/reloadable constant coefficient multipliers

• Supports two’s-complement signed/unsigned modes

• Supports inputs ranging from 1 to 64 bits wide

• Supports outputs ranging from 1 to 129 bits wide

• Generates purely combinatorial and fully pipelined implementations

• Provides optional registered input or output with optional clock enable and 
asynchronous and synchronous clears

• Provides optional handshaking signals

Figure 11-9 shows the logic symbol for the Core Multiplier Generator. The RFD (Ready For 
Data) output goes High to indicate the multiplier is ready to accept data. The ND (New 
Data) input can be asserted to indicate new data is available on the multiplier inputs. The 
RDY (Ready) signal indicates that the output is the current product. LOADB and SWAPB 
are used in constant coefficient multipliers.

The CORE Generator system uses the embedded multiplier for the default Parallel 
multiplier type. The Multiplier Construction XCO parameter option or the c_mult_type 
Generic option gives the user the choice to implement the function in look-up tables 
instead.

Figure 11-9: Core Multiplier Generator Symbol

A

X467_06_032403

A_SIGNED

ND

B

LOADB

SWAPB

ACLR

SCLR

CE

CLK

O

Q

RFD

RDY

LOAD_DONE

http://www.xilinx.com


376 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 11: Using Embedded Multipliers
R

Figure 11-10 shows the timing diagram for the Multiplier Generator.

System Generator
The Multiplier Generator is used by the System Generator for DSP when the MULT block 
is used. System Generator presents a high level and abstract view of the design, but also 
exposes key features in the underlying silicon, making it possible to build extremely high-
performance FPGA implementations. The System Generator also provides blocks for 
compiling MATLAB M-code into synthesizable HDL code. The System Generator uses the 
embedded multiplier when a parallel multiplier is selected.

MAC Cores
The CORE Generator system and the System Generator can also implement more complex 
functions using the multiplier as a building block. The Multiply Accumulator (MAC) core 
supports up to 32-bit inputs and optional user-defined pipelining. The options of an 
Embedded or LUT based implementation control whether the dedicated multipliers or 
CLB resources are used for the function. The MAC implementation uses relatively few CLB 
resources beyond the dedicated multipliers and provides flexibility that is key to matching 
a design to the lowest density and lowest cost solution possible. 

The MAC and MAC-based FIR filters include an automatic pipeline control which is based 
on required system clock performance. Levels of pipeline will automatically be inserted 
based on the design requirement for a perfect speed/area trade-off.

Figure 11-10: Multiplier Generator Timing Diagram
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Spartan-3 Family Library Primitives
The original Spartan-3 family uses the MULT18X18 (combinatorial) and MULT18X18S 
(registered) library primitives for the embedded multipliers. Table 11-3 defines each port of 
the MULT18X18SIO primitive.
 

Table 11-3: MULT18X18SIO Embedded Multiplier Primitives Description

Signal Name Direction Function

A[17:0] Input The primary 18-bit two’s complement value for multiplication. The block multiplies by this 
value asynchronously if the optional AREG and PREG registers are omitted. When AREG 
and/or PREG are used, the value provided on this port is qualified by the rising edge of 
CLK, subject to the appropriate register controls.

B[17:0] Input The second 18-bit two’s complement value for multiplication if the B_INPUT attribute is set 
to DIRECT. The block multiplies by this value asynchronously if the optional BREG and 
PREG registers are omitted. When BREG and/or PREG are used, the value provided on this 
port is qualified by the rising edge of CLK, subject to the appropriate register controls.

BCIN[17:0] Input The second 18-bit two’s complement value for multiplication if the B_INPUT attribute is set 
to CASCADE. The block multiplies by this value asynchronously if the optional BREG and 
PREG registers are omitted. When BREG and/or PREG are used, the value provided on this 
port is qualified by the rising edge of CLK, subject to the appropriate register controls.

P[35:0] Output The 36-bit two’s complement product resulting from the multiplication of the two input 
values applied to the multiplier. If the optional AREG, BREG and PREG registers are 
omitted, the output operates asynchronously. Use of PREG causes this output to respond to 
the rising edge of CLK with the value qualified by CEP and RSTP. If PREG is omitted, but 
AREG and BREG are used, this output responds to the rising edge of CLK with the value 
qualified by CEA, RSTA, CEB, and RSTB. If PREG is omitted and only one of AREG or BREG 
is used, this output responds to both asynchronous and synchronous events.

BCOUT[17:0] Output The value being applied to the second input of the multiplier. When the optional BREG 
register is omitted, this output responds asynchronously in response to changes at the 
B[17:0] or BCIN[17:0] ports according to the setting of the B_INPUT attribute. If BREG is 
used, this output responds to the rising edge of CLK with the value qualified by CEB and 
RSTB. 

CEA Input Clock enable qualifier for the optional AREG register. The value provided on the A[17:0] 
port is captured by AREG in response to a rising edge of CLK when this signal is High, 
provided that RSTA is Low.

RSTA Input Synchronous reset for the optional AREG register. AREG content is forced to the value zero 
in response to a rising edge of CLK when this signal is High.

CEB Input Clock enable qualifier for the optional BREG register. The value provided on the B[17:0] or 
BCIN[17:0] port is captured by BREG in response to a rising edge of CLK when this signal is 
High, provided that RSTB is Low.

RSTB Input Synchronous reset for the optional BREG register. BREG content is forced to the value zero 
in response to a rising edge of CLK when this signal is High. 

CEP Input Clock enable qualifier for the optional PREG register. The value provided on the output of 
the multiplier port is captured by PREG in response to a rising edge of CLK when this signal 
is High, provided that RSTP is Low.

RSTP Input Synchronous reset for the optional PREG register. PREG content is forced to the value zero 
in response to a rising edge of CLK when this signal is High.

Notes: 
1. The control signals CLK, CEA, RSTA, CEB, RSTB, CEP, and RSTP have the option of inverted polarity. 
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Binary multiplication is similar to regular multiplication with the multiplicand multiplied 
by each bit of the multiplier to generate partial products, and then the partial products 
added together to create the result. The Xilinx multiplier block uses the modified Booth 
algorithm, in effect using multiplexers to create the partial products.

Data Flow
Each embedded multiplier block (MULT18X18SIO primitive) supports two independent 
dynamic data input ports: 18-bit signed or 17-bit unsigned. The two inputs are referred to 
as the multiplicand and the multiplier, or the factors, while the output is the product. 

Multipliers with inputs less than 18 bits are implemented by sign-extending the inputs 
(i.e., replicating the most-significant bit). Wider multiplication operations are performed 
by combining the dedicated multipliers and slice-based logic in any viable combination or 
by time-sharing a single multiplier.

Unsigned multiplication is performed by restricting the inputs to the positive range. The 
most-significant bit is tied Low and the unsigned value is represented in the remaining 17 
less-significant bits.

Multipliers in the Spartan-3 Generation Architecture
The multipliers are located adjacent to the block RAM, making it convenient to store inputs 
or results in the block memory (see Figure 11-11). There are two columns of multipliers in 
most devices. The smallest devices have one column, while the largest devices have four to 
five columns (see Table 11-1). Where there are two columns, they have two columns of 
CLBs between them and the edge, allowing the multiplier to be easily driven by CLB or 
IOB logic. There are four CLBs, or 16 slices and 32 LUTs, on either side of a given multiplier 
block, allowing 32 input and output signals to be connected immediately adjacent to the 
multiplier block. One possible high-speed layout is to put A[15:0] on one side, B[15:0] on 
the other side, and intersperse the P[31:0] outputs on both sides. For a full-size 18x18 
multiplier, the extra inputs and outputs can connect to the next CLB column. 
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Alternative Applications to Multiplication
Since binary multiplication by 2n is the same as shifting the value n places, a multiplier can 
be used as a shifter or other general-purpose resource. These can be considered in 
applications that otherwise would not need the large number of available multipliers.

Shifter
A multiplier can be used as a shifter. One operand is routed to the output, shifted by n 
positions, if the other operand is a power of two (2n). Since the sign-bit (MSB) cannot be 
used to control the shift, the 18x18 two’s-complement multiplier can shift by 0 to 16 
positions. 

Of the 36 output lines, those less significant than the shifted data lines are automatically 
filled with zeros; those more significant than the shifted data are filled with zeros or ones, 
depending on the state of the MSB input. This is the natural result of the two’s-complement 
multiplication.

Figure 11-11: Location of Multipliers in Spartan-3 Generation Architecture
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The user can either perform a logic shift of 17 input bits by holding the MSB input Low, or 
perform an arithmetic shift of an 18-bit two’s-complement number, effectively sign-
extending the MSB. 

A conventional CLB-based shifter would use an array of n multiplexers, each with n 
inputs, and require a large amount of routing resources. Multiplier-based shifters larger 
than 18 bits, and barrel shifters of any length, require external OR gating of the outputs, but 
use far fewer CLB resources.

Magnitude Return
To generate the absolute value of a number by using multiplication, multiply by 1 if it is 
positive (MSB is zero), and multiply by -1 if it is negative (MSB is one). In two’s-
complement notation, 1 is all zeros ending in a one as the LSB, and -1 is all ones, including 
the LSB. Therefore, a magnitude return or absolute value generator can be implemented by 
multiplying by a value with a one as the LSB and the MSB of the input value in all the other 
bit positions. Figure 11-12 shows a magnitude return generator. 

Two’s-Complement Return
Generating the two’s complement of a number typically requires only one LUT per bit 
with the carry logic used for larger numbers. However, if LUTs are heavily used, the 
multiplier can be used to return the two’s complement of the input. Multiplying an input 
number by an equivalent length number of all ones generates the two’s complement of the 
number over the same length of the output bits. Any extraneous higher-order bits are 
ignored. Figure 11-13 shows a two’s complement return generator.

Figure 11-12: Magnitude Return
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Complex Multiplication
Complex multiplication is multiplication of complex numbers, which contain real and 
imaginary components with the imaginary unit i equal to the square root of -1. Complex 
multiplication can be carried out using only three real multiplications: ac, bd, and 
(a + b)(c + d). The real part of (a + ib)(c + id) is ac - bd, and the imaginary part is 
(a + b)(c + d) - ac - bd. The large number of multipliers in the Spartan-3 generation 
architecture makes it convenient to do even complex multiplication.

Time Sharing in Matrix Multiplication 
Many pipelined functions in the computer graphics and video fields are expressed in 
matrix mathematics. A 3 x 3 matrix multiplication would require 27 multiplies and 18 adds 
to generate the 3 x 3 matrix result. Color conversion can be described as a 3 x 3 matrix 
multiplication by a constant, which requires nine multiplies and six adds to generate the 
three results.

The high-speed capability of a Spartan-3 generation device allows the user to "time share" 
the multipliers. Instead of nine multipliers, the design feeds nine sets of inputs resulting in 
nine sets of results at nine times the clock rate of the system, reducing the multiplier count 
to one. The adder logic is implemented in CLB resources, and at every third clock, the 
adder output is stored in output registers to capture the three results. See XAPP284 for 
more information.

Floating-Point Multiplication 
Floating-point values add an exponent to the number and sign bit used in binary 
multiplication. A 32-bit floating-point multiplier can be implemented using four of the 
dedicated multiplier blocks and CLB resources. Such multipliers are available from Xilinx 
AllianceCORE partners.

Figure 11-13: Two’s-Complement Return
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Related Materials and References
• Spartan-3 Generation Data Sheets

Architectural description and timing parameters.
http://www.xilinx.com/support/documentation/index.htm

• XtremeDSP Technology Solutions
http://www.xilinx.com/products/design_resources/dsp_central/grouping/
Information that will enable you to achieve the maximum benefit from our DSP 
solutions.

• IP Center (http://www.xilinx.com/ipcenter)
Xilinx and Alliance partner core solutions.

• Xilinx Software Documentation 
(http://www.xilinx.com/support/software_manuals.htm)
Libraries Guide descriptions, Synthesis and Simulation Design Guide instantiation 
examples for HDL.

• XAPP195: Implementing Barrel Shifters Using Multipliers
8-bit and 32-bit barrel shifter examples.

• XAPP284: Matrix Math, Graphics, and Video
Uses one multiplier running at 9x the clock rate to provide the nine results for a 3x3 
matrix multiplication in one system clock cycle.

• UG431: XtremeDSP Slice for Spartan-3A DSP FPGAs User Guide
Describes the DSP48A block in the Spartan-3A DSP platform.

• XAPP467: Using Embedded Multipliers in Spartan-3 FPGAs
Details how to use the MULT18X18 and MULT18X18S for the Spartan-3 family.

• XAPP636: Optimal Pipelining of the I/O Ports of Virtex-II Multipliers
Describes a high-speed, optimized implementation of the dedicated multiplier 
resulting from pipelined inputs and outputs and effective placement and routing 
constraints.

• WP277: Expanding Dedicated Multipliers
This white paper describes methods for expanding the natural bit-width capability of 
dedicated multipliers in a way that will make best use of the complete FPGA 
resources. 

Conclusion
FPGAs have a significant advantage over general-purpose DSP chips because their logic 
can be customized for the specific application. Some functions can run over 100 times 
faster and require much less expense in an FPGA. A key feature to take advantage of is the 
dedicated multiplier block. Take advantage of the automatic optimization of 
multiplication logic, and the user controls when necessary to get the exact results desired. 
The CORE Generator system can create simple multipliers or combine them into more 
complex functions such as MACs.

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/products/design_resources/dsp_central/grouping/
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/documentation/application_notes/xapp195.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp467.pdf
http://www.xilinx.com/support/documentation/white_papers/wp277.pdf
http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Xilinx+DSP
http://www.xilinx.com/ipcenter
http://www.xilinx.com/support/documentation/application_notes/xapp284.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp636.pdf
http://www.xilinx.com/support/documentation/user_guides/ug431.pdf
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Appendix A: Two's-Complement Multiplication
Two’s-complement representation allows the use of binary arithmetic operations on 
signed integers, yielding the correct two’s-complement results. Positive two’s-complement 
numbers are represented as simple binary. Negative two’s-complement numbers are 
represented as the binary number that when added to a positive number of the same 
magnitude equals zero. To calculate the two's complement of an integer, invert the binary 
equivalent of the number by changing all of the ones to zeros and all of the zeros to ones 
(also called one’s complement), and then add one. The MSB (left-most) bit indicates the 
sign of the integer; therefore it is sometimes called the sign bit. If the sign bit is zero, the 
number is positive. If the sign bit is one, the number is negative. To extend a signed integer 
to a larger width, duplicate the MSB on the left side of the number.

Two’s-complement multiplication follows the same rules as binary multiplication, which 
are the same as the truths of the AND gate:

0 x 0 = 0 

0 x 1 = 0 

1 x 0 = 0 

1 x 1 = 1, and no carry or borrow bits

For example,

1111 1100 = -4

× 0000 0100 = +4

1111 0000 = -16
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Chapter 12

Using Interconnect

Interconnect is the programmable network of signal pathways between the inputs and 
outputs of functional elements within the FPGA, such as IOBs, CLBs, DCMs, and block 
RAM.

Overview
Interconnect, also called routing, is segmented for optimal connectivity. There are four 
kinds of interconnect: long lines, hex lines, double lines, and direct lines. The Xilinx ISE® 

Place and Route (PAR) software exploits the rich interconnect array to deliver optimal 
system performance and the fastest compile times. Knowledge of the interconnect details 
can help guide design techniques but is typically not necessary to efficient FPGA design. 
Some types of global interconnect are controlled by the design. These include the clock 
routing, selected via the use of global clock buffers, and discussed in more detail in 
Chapter 2, “Using Global Clock Resources.” Two other global signals, GTS (Global Three-
State) and GSR (Global Set/Reset), are selected via the use of the STARTUP component, 
which is described at the end of this chapter.

Interconnect Differences between Spartan-3 Generation Families
Functionally, interconnect resources are almost identical between the Spartan®-3, 
Spartan-3E, and Extended Spartan-3A families. Although the Spartan-3E and Extended 
Spartan-3A families have the DCM and block RAM/Multiplier resources “embedded” in 
the array, the long routing resources extend across those elements. The Spartan-3A/3AN 
platforms offer additional routing connections between the block RAM and the 
multipliers. This additional routing provides a fast path from the block RAM into the 
multiplier, useful for storing multiplicands in adjacent block RAM. The additional routing 
also allows Port A of the block RAM to be used in full 36-bit mode even while the adjacent 
multiplier is used. This is only supported on Port A for the Spartan-3A/3AN platforms. 
See “Multiplier/Block RAM Routing Interaction,” page 366 for more details. The Spartan-
3A DSP platform replaces the multiplier with the DSP48A block. Although the primary 
global control signals GSR and GTS are identical in functionality for each family, there are 
different primitives per family. See “Global Controls,” page 389 for more information.

Switch Matrix
The switch matrix connects to the different kinds of interconnects across the device. An 
interconnect tile, shown in Figure 12-1, is defined as a single switch matrix connected to a 
functional element, such as a CLB, IOB, or DCM. If a functional element spans across 
multiple switch matrices such as the block RAM or multipliers, then an interconnect tile is 
defined by the number of switch matrices connected to that functional element. A device 
can be represented as an array of interconnect tiles where interconnect resources are for the 
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channel between any two adjacent interconnect tile rows or columns as shown in 
Figure 12-2.

Figure 12-1: Four Types of Interconnect Tiles (CLBs, IOBs, DCMs, and Block 
RAM/Multiplier)
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Figure 12-2: Array of Interconnect Tiles in an FPGA
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The four types of general-purpose interconnect available in each channel, shown in 
Figure 12-3, are described below.

Long Lines
Each set of 24 long line signals spans the die both horizontally and vertically and connects 
to one out of every six interconnect tiles. At any tile, four of the long lines drive or receive 
signals from a switch matrix. Because of their low capacitance, these lines are well-suited 
for carrying high-frequency signals with minimal loading effects (e.g. skew). If all global 
clock lines are already committed and additional clock signals remain to be assigned, long 
lines serve as a good alternative. 

Hex Lines
Each set of eight hex lines are connected to one out of every three tiles, both horizontally 
and vertically. Thirty-two hex lines are available between any given interconnect tile. Hex 
lines are only driven from one end of the route. 

Horizontal and 
Vertical Long Lines
(horizontal channel 
shown as an example)

Horizontal and 
Vertical Hex Lines
(horizontal channel 
shown as an example)

Horizontal and 
Vertical Double Lines
(horizontal channel 
shown as an example)

Direct Connections

Figure 12-3: Interconnect Types between Two Adjacent Interconnect Tiles
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Double Lines
Each set of eight double lines are connected to every other tile, both horizontally and 
vertically. in all four directions. Thirty-two double lines available between any given 
interconnect tile. Double lines are more connections and more flexibility, compared to long 
line and hex lines. 

Direct Connections
Direct connect lines route signals to neighboring tiles: vertically, horizontally, and 
diagonally. These lines most often drive a signal from a "source" tile to a double, hex, or 
long line and conversely from the longer interconnect back to a direct line accessing a 
"destination" tile. 

Viewing Interconnect Details with FPGA Editor
The FPGA Editor can be used to view the interconnect of a blank device or to view the 
interconnect used in an implemented design. FPGA Editor is a graphical application for 
displaying and configuring FPGAs. The FPGA Editor requires a Native Circuit Description 
(.ncd) file. This file contains the logic of your design mapped to components (such as 
CLBs and IOBs). In addition, the FPGA Editor reads from and writes to a Physical 
Constraints File (PCF).

The following list summarizes some functions you can perform on your designs in the 
FPGA Editor:

• Place and route critical components before running the automatic place and route 
tools.

• Finish placement and routing if the routing program does not completely route your 
design.

• Add probes to your design to examine the signal states of the targeted device. Probes 
are used to route the value of internal nets to an IOB for analysis during the 
debugging of a device.

• Cross-probe your design with Timing Analyzer.

• Run the BitGen program and download the resulting BIT file to the targeted device.

• Create an entire design by hand (advanced users). 

To access the FPGA Editor, first run place and route on your design. Then double-click on 
the View/Edit Routed Design (FPGA Editor) process to open FPGA Editor.

For details on using FPGA Editor, see the on-line help within the FPGA Editor application.
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Global Controls
In addition to the general-purpose interconnect, Spartan-3 generation FPGAs have two 
global logic control signals, as described in Table 12-1. 

The Global Set/Reset (GSR) signal replaces the global reset signal included in many ASIC-
style designs. Use the GSR control instead of a separate global reset signal in the design to 
free up CLB inputs, resulting in a smaller, more efficient design. However, the GSR signal 
always re-initializes every flip-flop. The GSR signal is asserted automatically during the 
FPGA configuration process, guaranteeing that the FPGA starts-up in a known state.

STARTUP_SPARTAN3 Primitives
The GSR and GTS signal sources are defined and connected using a special primitive for 
each family: STARTUP_SPARTAN3, STARTUP_SPARTAN3E, or STARTUP_SPARTAN3A 
(used for Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs). GSR and GTS are active 
during configuration, and connecting signals to them on the STARTUP primitive defines 
how they are controlled after configuration. By default, they are disabled on a selected 
clock cycle of the start-up phase, enabling the flip-flops and I/Os in the device. The 
primitives also include one or two other signals used specifically during configuration. 
Each family has a CLK input that is an alternate clock for the start-up process (see the 
“Sequence of Events” chapter in UG332, Spartan-3 Generation Configuration User Guide). The 
Spartan-3E family has an additional input MBT for the MultiBoot Trigger (see the 
“Reconfiguration and MultiBoot” chapter in UG332, Spartan-3 Generation Configuration User 
Guide).

Table 12-1: Global Logic Control Signals

Global Control 
Input

Description

GSR

Global Set/Reset: When High, asynchronously places all registers and flip-
flops in their initial state (see “Initialization,” page 161). Asserted 
automatically during the FPGA configuration process (see “Start-Up” in 
UG332, the Spartan-3 Generation Configuration User Guide).

GTS
Global Three-State: When High, asynchronously forces all I/O pins to a 
high-impedance state (Hi-Z, three-state).

Figure 12-4: STARTUP Primitives for Spartan-3 Generation FPGAs
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Summary
The flexible interconnect resources of the Spartan-3 generation FPGA families allow 
efficient implementation of almost any configuration of the logic and I/O resources. The 
Xilinx ISE software automatically places and routes designs to take best advantage of these 
resources. Customers can control the usage of the global clock signals by the use of global 
clock buffers. The global set/reset and global three-state signals are controlled by the use 
of the STARTUP component.
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Section II:  Design Software

“Using ISE Design Tools”

“Using IP Cores”

“Embedded Processing and Control Solutions”
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Chapter 13

Using ISE Design Tools

Summary
Software is critical to the effective use of programmable logic. The Spartan®-3 generation 
is supported by the complete set of Xilinx Integrated Software Environment (ISE®) design 
tools, with additional support available from a variety of partners. This chapter provides 
an overview of those design tools. It is intended primarily for the user who is new to the 
Xilinx development system. This chapter can be used to get a better understanding of the 
specific tools mentioned elsewhere in the Spartan-3 generation literature. The first half 
provides an overview of the general design flow, while the second half describes the 
specific tools used at the different steps in the flow. Use the Xilinx development system 
documentation for detailed information and introductory tutorials:

http://www.xilinx.com/support/software_manuals.htm

This chapter applies to all Spartan-3 generation FPGA families: Spartan-3, Spartan-3E, 
Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA platforms.

Introduction
Combined with the Spartan-3 generation FPGA family, the ISE optimized design tools help 
you finish faster and lower your project costs. The ISE package is a collection of Xilinx 
software design tools that concentrate on delivering the most productivity available for 
your Spartan-3 generation logic performance. With ProActive Timing Closure technology, 
you get the fastest runtimes in programmable logic ensuring you reach your performance 
goals quicker. Incremental Design delivers faster re-compile times with guaranteed 
performance, and the optional Xilinx ChipScope™ Pro verification tools provide real-time 
debug with advantages that are not possible in ASIC designs. The ISE development system 
makes sure you get through the logic design process faster, saving both time and project 
costs, and getting you to market ahead of your competition.

Design Flow
The standard design flow for Spartan-3 generation FPGAs consists of the following three 
major steps. The entire design implementation flow is run simply by selecting the desired 
result in the Xilinx Graphical User Interface (GUI). The tools automatically determine 
which programs and files are needed to bring the appropriate output up to date.

1. Design Entry and Synthesis

In this step of the design flow, you create your design using a Xilinx-supported 
schematic editor, a Hardware Description Language (HDL) for text-based entry, or 
both. If you use an HDL for text-based entry, you must synthesize the HDL file into an 
industry-standard Electronic Data Interchange Format (EDIF) file. If you use the Xilinx 
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Synthesis Technology (XST) tool, a Xilinx-specific NGC netlist file is created, which can 
be converted to an EDIF file.

2. Design Implementation

By implementing the specific Xilinx Spartan-3 generation architecture, you convert the 
logical design file format, such as EDIF, that you created in the design entry or 
synthesis stage into a physical file format. The physical information is contained in the 
Native Circuit Description (NCD) file. Then you create a bitstream file from these files 
and optionally program a PROM for subsequent programming of your Spartan-3 
generation device.

3. Design Verification

Using a gate-level simulator, you ensure that your design meets your timing 
requirements and functions properly. In-circuit verification can be performed by 
downloading your design to the device using Xilinx iMPACT Programming Software. 
Design verification can begin immediately after design entry and can be repeated after 
various steps of design implementation.

Figure 13-1 shows the general overall design flow for Spartan-3 generation FPGAs.
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Design Entry and Synthesis
You can enter a design with a schematic editor or a text-based tool for HDL code. Design 
entry begins with a design concept, expressed as a drawing or functional description. From 
the original design, a generic EDIF netlist is created, then synthesized and translated into a 
Xilinx netlist file. This file is fed into a program called NGDBuild, which produces a logical 
Native Generic Database (NGD) file. Xilinx libraries provide access to features specific to 
the Spartan-3 generation architecture.

Figure 13-2 shows the design entry and synthesis flow.

Figure 13-1: Design Flow
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Hierarchical Design

Design hierarchy is important in both schematic and HDL entry for the following reasons:

• Helps you conceptualize your design

• Adds structure to your design

• Promotes easier design debugging

• Makes it easier to combine different design entry methods (schematic, HDL, or state 
editor) for different parts of your design

• Makes it easier to design incrementally, which consists of designing, implementing, 
and verifying individual parts of a design in stages

• Reduces optimization time

• Facilitates concurrent design, which is the process of dividing a design among a 
number of people who develop different parts of the design in parallel, such as in 
Modular Design

Xilinx strongly recommends that you name the components and nets in your design. These 
names are preserved and used by the Xilinx tools. These names are also used for back-
annotation and appear in the debug and analysis tools. If you do not name your 
components and nets, the tools automatically generate the names, making it difficult to 
analyze circuits.

Figure 13-2: Design Entry and Synthesis Flow
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Schematic Entry

Schematic tools provide a graphical interface for design entry. You can use these tools to 
connect symbols representing the logic components in your design. You can build your 
design with individual gates, or you can combine gates to create functional blocks.

Primitives and macros are the “building blocks” of a device library. The Xilinx Spartan-3 
generation libraries provide primitives as well as common high-level macro functions, all 
optimized for the Spartan-3 generation architecture. Primitives are basic circuit elements, 
such as AND and OR gates, and special device resources, such as the DCM and block 
RAM. Each primitive has a unique library name, symbol, and description.

Macros contain multiple library elements, which can include primitives and other macros. 
Soft macros have pre-defined functionalities, but have flexible mapping, placement, and 
routing. Relationally Placed Macros (RPMs) have fixed mapping and relative placement. 
Macros are not available for synthesis because synthesis tools have their own module 
generators and do not require RPMs. If you wish to override the module generation, you 
can instantiate Xilinx-provided CORE Generator™ modules, which include pre-built 
optimization for the Spartan-3 generation architecture. For most leading-edge synthesis 
tools, this is not needed unless it is for a module that cannot be inferred.

HDL Entry and Synthesis

A typical Hardware Description Language (HDL) supports a mixed-level description in 
which gate and netlist constructs are used with functional descriptions. This mixed-level 
capability enables you to describe system architectures at a high level of abstraction, then 
incrementally refine a design’s detailed gate-level implementation. HDL descriptions offer 
the following advantages:

• You can verify design functionality early in the design process. A design written as an 
HDL description can be simulated immediately. Design simulation at this high level 
— at the gate-level before implementation — allows you to evaluate architectural and 
design decisions.

• An HDL description is more easily read and understood than a netlist or schematic 
description. HDL descriptions provide technology-independent documentation of a 
design and its functionality. Because the initial HDL design description is technology 
independent, you can use it again to generate the design in a different technology, 
without having to translate it from the original technology.

• Large designs are easier to handle with HDL tools than schematic tools.

After creating your HDL design, you must synthesize it. During synthesis, behavioral 
information in the HDL file is translated into a structural netlist, and the design is 
optimized for the Spartan-3 generation architecture. Xilinx supports HDL synthesis tools 
for several third-party synthesis vendor partners. In addition, Xilinx offers its own 
synthesis tool, Xilinx Synthesis Technology (XST). 

Functional simulation tests the logic in your design to determine if it works properly. You 
can save time during subsequent design steps if you perform functional simulation early 
in the design flow. 

Although HDL entry offers the advantage of technology independence, it is helpful to 
understand the available resources in the Spartan-3 generation architecture and design to 
take advantage of those resources. For example, the abundance of registers at every I/O 
and following every look-up table encourages pipelining. Most synthesis tools 
automatically infer Xilinx-specific resources and optimize for the architecture. Simple 
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ways to specify implementation requirements are to instantiate Spartan-3 generation 
library components or add constraints.

Constraints

You might want to constrain your design within certain timing or placement parameters to 
specify your required pin locations or timing requirements. You can specify logic mapping, 
block placement, and timing specifications. Constraints can be entered as parameters or 
attributes on library components. You can enter constraints by hand or use one of several 
graphical tools for generating constraint files and evaluating the results. Constraints found 
in the design are written to an NCF file (Netlist Constraints File). Constraints created 
separately are written to a UCF file (User Constraints File).

Design Implementation
Design Implementation begins with the translating and then mapping of a logical design 
file to a specific Spartan-3 generation device. It is complete when the physical design is 
successfully routed and a bitstream is generated. You can alter constraints during 
implementation in the same way as during the Design Entry step.

Figure 13-3 shows an overall view of the design implementation flow for Spartan-3 
generation FPGAs.
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Translating

NGDBuild performs all the steps necessary to read a netlist file in EDIF or NGC format and 
create an NGD file describing the logical design. A logical design is in terms of logic 
elements, such as AND gates, OR gates, decoders, flip-flops, and RAMs. The NGD file 
resulting from an NGDBuild run contains both a logical description of the design reduced 
to Xilinx primitives and a description in terms of the original hierarchy expressed in the 
input netlist. The output NGD file then can be mapped to the Spartan-3 generation 
resources.

NGDBuild performs the following steps to convert a netlist to an NGD file:

1. Reads the source netlist(s). NGDBuild invokes the Netlister Launcher. The Netlist 
Launcher determines the type of the input netlist and starts the appropriate netlist 
reader program. The netlist readers incorporate NCF files associated with each netlist. 
NCF files contain timing and layout constraints for each module.

Figure 13-3: Design Implementation Flow
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2. Reduces all components in the design to NGD primitives. NGDBuild merges 
components that reference other files. NGDBuild also finds the appropriate system 
library components, physical macros, and behavioral models.

3. Checks the design by running a Logical Design Rule Check (DRC) on the converted 
design. The Logical DRC is a series of tests on the logical design.

4. Writes an NGD file as output.

Mapping

The MAP program maps a logical design to a Spartan-3 generation FPGA. The input to 
MAP is an NGD file, which contains a logical description of the design in terms of both the 
hierarchical components used to develop the design and the lower-level Xilinx primitives. 
Additionally, it contains any number of hard placed-and-routed physical macro files. MAP 
then maps the logic to the components (logic cells, I/O cells, and other components) in the 
Spartan-3 generation architecture. The output design is a Native Circuit Description 
(NCD) file, which is a physical representation of the design mapped to the components in 
the Spartan-3 generation architecture. The NCD file then can be placed and routed.

MAP performs the following steps when mapping a design:

1. Selects the target Xilinx device, package, and speed.

2. Reads the information in the input design file.

3. Performs a Logical DRC (Design Rule Check) on the input design. If any DRC errors 
are detected, the MAP run is aborted. If any DRC warnings are detected, the warnings 
are reported, but MAP continues to run.

4. Removes unused logic, where all unused components and nets are removed.

5. Maps pads and their associated logic into IOBs.

6. Maps the logic into Xilinx components (IOBs, CLBs, etc.). If any Xilinx mapping 
control symbols appear in the design hierarchy of the input file, MAP uses the existing 
mapping of these components in preference to re-mapping them. The mapping is 
influenced by various constraints.

7. Updates the information received from the input NGD file and writes this updated 
information into an NGM file. This NGM file contains both logical information about 
the design and physical information about how the design was mapped. The NGM file 
is used only for back-annotation.

8. Creates a physical constraints (PCF) file. This text file contains any constraints 
specified during design entry. If no constraints were specified during design entry, an 
empty file is created so that you can enter constraints directly into the file using a text 
editor.

9. Runs a physical Design Rule Check (DRC) on the mapped design. If DRC errors are 
found, MAP does not write an NCD file.

10. Creates an NCD file, which represents the physical design. The NCD file describes the 
design in terms of Xilinx components (CLBs, IOBs, and so forth).

11. Writes a MAP report (MRP) file, which lists any errors or warnings found in the 
design, details how the design was mapped, and supplies statistics about component 
usage in the mapped design.
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Placing and Routing

After creating a mapped NCD file, you can place and route the file using the automatic 
Place And Route (PAR) tool. PAR accepts an NCD file as input, places and routes the 
design, and outputs an NCD file to be used by the bitstream generator (BitGen). You can 
use the output NCD file as a guide file for additional runs of PAR after making minor 
changes to your design. 

PAR places and routes a design based on the following considerations:

• Cost-Based: Placement and routing are performed using various cost tables that 
assign weighted values to relevant factors such as constraints, length of connection, 
and available routing resources.

• Timing-Driven: The Xilinx timing analysis software enables PAR to place and route a 
design based upon your timing constraints.

Placing

The PAR placer executes multiple phases of the placer. PAR writes the NCD after all the 
phases are completed. During placement, PAR places components into sites based on 
factors such as constraints specified in the PCF file, the length of connections, and the 
available routing resources. Timing-driven placement is automatically invoked if PAR 
finds timing constraints in the physical constraints file.

Routing

The next stage is routing the placed design. PAR writes the NCD file when the design is 
fully routed. At this point the design can be analyzed against timing. A new NCD is 
written as the routing improves. The router performs a procedure to converge on a 
solution that routes the design to completion and meets timing constraints. Timing-driven 
routing is automatically invoked if PAR finds timing constraints in the physical constraints 
file.

Floorplanning

Floorplanning is the process of specifying user placement constraints. The Pinout and Area 
Constraint Editor (PACE) and Floorplanner tools provide a graphical view of placement, 
while the FPGA Editor provides a graphical view of both placement and routing. Both 
tools can be used before or after PAR to analyze or constrain the design.

Bitstream Generation

After the design has been completely routed, it is necessary to configure the device so that 
it can execute the desired function. This configuration is done using files generated by 
BitGen, the Xilinx bitstream generation program. BitGen takes a fully routed NCD file as 
its input and produces a configuration bitstream (binary BIT file).

The BIT file contains all of the configuration information from the NCD file defining the 
internal logic and interconnections of the Spartan-3 generation FPGA, plus device-specific 
information from other files associated with the target device. The binary data in the BIT 
file then can be downloaded into the FPGA memory cells or it can be used to create a 
PROM file. 

Design Verification
Design verification is the process of testing the functionality and performance of your 
design. You can verify Xilinx designs in the following ways:
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• Simulation (functional and timing using back-annotation)

• Static timing analysis

• In-circuit verification

Design verification procedures should occur throughout your design process, as shown in 
Figure 13-4.

Simulation

Design simulation involves testing your design using software models. It is most effective 
when testing the functionality of your design and its performance under worst-case 
conditions. You can easily probe internal nodes to check your circuit’s behavior, and then 
use these results to make changes in your design. Simulation is performed using Xilinx or 
third-party tools that are linked to the Xilinx Development System. The software models 
provided for your simulation tools are designed to perform detailed characterization of 
your design. You can perform functional or timing simulation.

Figure 13-4: Design Verification Flow
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Functional Simulation

Functional simulation determines if the logic in your design is correct before you 
implement it in a device. Functional simulation can take place at the earliest stages of the 
design flow. Because timing information for the implemented design is not available at this 
stage, the simulator tests the logic in the design using unit delays.

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device 
under worst-case conditions. This process is performed after your design is mapped, 
placed, and routed. At this time, all design delays are known. Timing simulation is 
valuable because it can verify timing relationships and determine the critical paths for the 
design under worst-case conditions. It also can determine whether or not the design 
contains setup or hold violations. Before you can simulate your design, you must go 
through the back-annotation process, as described below. During this process, the Xilinx 
netlist writers create suitable formats for various simulators.

Note that naming the nets during your design entry is important for both functional and 
timing simulation because it allows you to find the nets in the simulations more easily than 
looking for a software-generated name.

Back-Annotation

Before timing simulation can occur, the physical design information must be translated 
and distributed back to the logical design. This back-annotation process is done with a 
program called NGDAnno. These programs create a database for the netlist writers, which 
translate the back-annotated information into a netlist format that can be used for timing 
simulation.

NGDAnno is a command line program that distributes information about delays, setup 
and hold times, clock to out, and pulse widths found in the physical NCD design file back 
to the logical NGD file. NGDAnno reads an NCD file as input. The NCD file can be a 
mapped-only design, or a partial or fully placed and routed design. An NGM file, created 
by MAP, is an optional source of input. NGDAnno merges mapping information from the 
NGM file with placement, routing, and timing information from the NCD file. NGDAnno 
outputs a Native Generic Annotated (NGA) file, which is a back-annotated NGD file. This 
file is input to the appropriate netlist writer, which converts the binary Xilinx database 
format back to an ASCII netlist.

Netlist Writers (NGD2EDIF, NGD2VER, or NGD2VHDL) take the output of NGDAnno 
and create a simulation netlist in the specified format. An NGD or NGA file is input to each 
of the netlist writers. The NGD file is a logical design file containing primitive components, 
while the NGA file is a back-annotated logical design file.

Static Timing Analysis

Static timing analysis is best for quick timing checks of a design after it is placed and 
routed. It also allows you to determine path delays in your design. Following are the two 
major goals of static timing analysis:

• Timing verification is the process of verifying that the design meets your timing 
constraints.

• Reporting is the process of enumerating input constraint violations and placing them 
into an accessible file. You can analyze partially or completely placed and routed 
designs. The timing information depends on the placement and routing of the input 
design.
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You can run static timing analysis using the Timing Reporter And Circuit Evaluator 
(TRACE) program, which is accessible through the Timing Analyzer GUI. Use either tool 
to evaluate how well the place and route tools met the input timing constraints.

In-Circuit Verification

As a final test, you can verify how your design performs in the target application. In-circuit 
verification tests the circuit under typical operating conditions. Because you can program 
your Xilinx devices repeatedly, you can easily load different iterations of your design into 
your device and test it in-circuit. To verify your design in-circuit, download your design 
bitstream into a device using the iMPACT programming software with the Parallel Cable 
IV or Platform Cable USB.

ISE Development Environment

Introduction to ISE Tools
Xilinx development systems are available in a number of easy to use configurations, 
collectively known as the Integrated Software Environment (ISE) Series. Creating 
Spartan-3 generation designs is easy with Xilinx ISE development systems, which support 
advanced design capabilities, including ProActive Timing Closure, integrated logic 
analysis, and the fastest place and route runtimes in the industry. ISE solutions enable 
designers to get the performance they need, quickly and easily.

Note: To get the full details on ISE tools for Spartan-3 generation devices, go to 
http://www.xilinx.com/ise/ise_promo/ise_spartan3.htm.

Project Navigator is the user interface that helps you manage the entire design process 
including design entry, simulation, synthesis, implementation and finally configuration of 
your device.

The following is an outline of the features offered in the ISE tools:

Design Entry

• HDL Editor

• Schematic Editor - Engineering Capture System (ECS)

• CORE Generator system

Synthesis

• XST - Xilinx Synthesis Technology

• Integration with Precision synthesis from Mentor Graphics

• Integration with Synplify/Pro and Amplify synthesis from Synplicity

Simulation

• ISE Simulator

• Integration with ModelSim Simulator from Model Technology

Implementation

• Translate

http://www.xilinx.com/ise/ise_promo/ise_spartan3.htm
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• Map

• Place and Route (PAR)

• Floorplanner

• FPGA Editor

• Timing Analyzer

• XPower Power Analysis

Device Download 

• BitGen Bitstream Generator

• iMPACT Configuration Tool

• ChipScope Pro Logic Analyzer

ISE Versions
The ISE development systems are available in the following configurations.

• ISE WebPACK™ Tool

The ISE WebPACK tool is the easiest development system to get. This free tool is 
downloadable from the Xilinx website at: (http://www.xilinx.com/webpack). 

ISE WebPACK software combines support for advanced HDL entry, synthesis, and 
verification capabilities for all Xilinx CPLDs and lower-density FPGAs. All Spartan-3 
generation FPGA families are supported. The original Spartan-3 family is supported 
up to the XC3S1500 density, while all densities are supported for the Spartan-3E and 
Spartan-3A/3AN families.

• ISE Foundation™ Tool

The ISE Foundation tool is a complete, ready-to-use design environment that 
integrates schematic, synthesis, and verification technologies into an intuitive, yet 
highly advanced design solution. The tool has full device support as well as the full 
suite of tools. See more information at 
http://www.xilinx.com/ise/logic_design_prod/foundation.htm

To see a table comparison of these versions, see the Development Systems Overview at 
http://www.xilinx.com/ise/devsys_feature_guide.pdf.

Development system updates are provided on a regular basis. These are available as 
Service Packs that can be downloaded from the Xilinx website 
(http://www.xilinx.com/support/download/index.htm). Always use the latest 
development system update for the best results.

Project Navigator
Project Navigator is the primary user interface for the Xilinx ISE tools. You can create, 
define, and compile your Spartan-3 generation design using a suite of tools accessible from 
Project Navigator. Each step of the design process, from design entry to downloading the 
design to the device, is managed from Project Navigator as part of a project. These include:

• Design Entry

• Constraint Entry

• Synthesis

• Simulation

http://www.xilinx.com
http://www.xilinx.com/webpack
http://www.xilinx.com/ise/logic_design_prod/foundation.htm
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• Implementation

• Device Programming

Project Navigator Main Window

The Project Navigator workspace is made up of a title bar, a status bar, a menu bar, 
toolbars, and windows.

Project

The ISE development system organizes and tracks your design as a project. A project is a 
collection of all files necessary to create and download your design to the selected device. 
The following information is required for each project:

• A unique project name

• A specified target device family (architecture)

• A specified target device

• A specified design flow

Each project has a directory, device family, device, and design flow associated with it as 
project properties. The project properties enable Project Navigator to display and run only 
those processes appropriate for the targeted device and design flow.

Figure 13-5: Project Navigator Main Window
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Sources

A source is any element that contains information about a design. In Project Navigator, you 
can create and add sources to your project. Each project can contain many sources, each 
one representing a different part of the overall design. Sources can include the description 
of circuits (as represented by schematics and hardware description language files), state 
diagrams, simulation models, test files, and documentation of the design.

Source Hierarchy

One source file in a project is the top-level source for the design. The top-level source 
defines the inputs and outputs to be mapped into the device, and references the logic 
descriptions contained in lower-level sources in a hierarchical design. A project must 
contain at least one source as the top-level source. All source files and their accompanying 
icons are displayed in the Sources in Project window below the project file.

The term instantiation describes when one source references another. Lower-level sources 
also can instantiate sources to build as many levels of logic hierarchy as necessary to 
describe your design.

Valid top-level source types include the following:

• Schematics

• HDL files (VHDL or Verilog)

• EDIF

For more information on the Project Navigator, see 
http://www.xilinx.com/products/design_tools/logic_design/design_entry/projnav.htm.

ISE Tools
The ISE development system includes a number of individual tools and capabilities that 
can be accessed standalone or within the Project Navigator.

Engineering Capture System (ECS)

The Engineering Capture System (ECS) allows you to create, view, and edit schematics and 
symbols. You can use ECS to create a top-level schematic and use any of the following to 
define the lower levels of the design: ECS, CORE Generator System, or HDL code. Then 
you can translate the schematics created by ECS to a structural HDL for simulation and 
synthesis, or use the schematics solely for documentation purposes.

HDL Editor

The HDL Editor is a text editor designed especially for editing HDL source files. In 
addition to regular editing features, the editor provides syntax coloring. The syntax-
coloring feature supports both VHDL and Verilog. The HDL Editor operates as a standard 
text editor as well. The ISE HDL Editor provides optimized, ready-to-use language and 
synthesis templates for easy insertion into an HDL source file.

Xilinx Synthesis Technology (XST)

Xilinx Synthesis Technology (XST) provides cutting edge design optimization techniques 
from a Xilinx-developed synthesis tool. XST supports the Verilog and VHDL design 
languages. RTL Viewer displays the results of XST synthesis in a schematic view.
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For more information on XST, see 
http://www.xilinx.com/products/design_tools/logic_design/synthesis/xst.htm.

HDL Advisor

The HDL Advisor gives advisory messages in the XST synthesis report files. The messages 
are designed to make suggestions on how code can be changed to reduce design size and 
meet timing requirements. These HDL advisors allow designers to produce better code 
earlier, reducing design time, and resulting in better space utilization in the Spartan-3 
generation FPGA.

Partner Tools

The Xilinx tools provide easy integration with third-party tools, including Precision 
synthesis from Mentor Graphics and Synplify/Pro and Amplify synthesis from Synplicity. 
These tools can be purchased separately from the vendor.

ModelSim simulators from Model Technology can provide the simulation functions for an 
ISE development system. ModelSim Xilinx Edition III (MXE-III) is available as an option 
from Xilinx. It offers a complete PC HDL simulation environment that enables you to 
verify the HDL source code as well as the functional and timing models of your designs.

Intellectual Property (IP)

Get to market faster and less expensively using the latest pre-verified, pre-optimized 
Intellectual Property (IP) cores, reference designs, and design services for Xilinx FPGAs. 
Xilinx-created LogiCORE™ products form the most successful core program in the 
programmable logic industry, including PCI bus interfaces and MicroBlaze™ soft 
processors. As a result, Xilinx has gained considerable experience developing and selling 
cores, and servicing FPGA core customers. Through the AllianceCORE program, Xilinx is 
expanding the availability of quality cores for programmable logic by sharing what has 
been learned with leading third-party core developers. The AllianceCORE program is a 
cooperative effort between Xilinx and independent third-party core developers. It is 
designed to produce a broad selection of industry-standard solutions dedicated for use in 
Xilinx programmable logic. Xilinx also provides many reference designs and design 
examples provided “as-is” to help get you started with your own designs. 

CORE Generator System

The Xilinx CORE Generator System provides a catalog of ready-made functions, ranging 
in complexity from simple arithmetic operators like adders, accumulators, and multipliers, 
to system-level building blocks such as filters, transforms, and memory resources. Cores 
are organized by functional type into folders that expand or contract on demand.

The Xilinx CORE Generator System produces an EDIF netlist, schematic symbol, Verilog 
template file with a Verilog wrapper file, and a VHDL template file with a VHDL wrapper 
file. The Electronic Data Netlist (EDN) file contains the information for implementing the 
module. The template files contain code that can be used as a model to instantiate a CORE 
Generator module in a Verilog or VHDL design so that it can be simulated and integrated 
into a design.

For more information on the CORE Generator system, see 
http://www.xilinx.com/products/design_tools/logic_design/design_entry/coregenerator.htm.

http://www.xilinx.com
http://www.xilinx.com/products/design_tools/logic_design/design_entry/coregenerator.htm
http://www.xilinx.com/products/design_tools/logic_design/synthesis/xst.htm
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System Generator for DSP

The System Generator for DSP software enables electronic designs to be created, tested, 
and translated into hardware for Spartan-3 generation FPGAs. The tool extends Simulink 
(from The MathWorks, Inc.) to support bit- and cycle-accurate system-level simulation, 
and automatic code generation for Xilinx FPGAs. System Generator co-simulation 
interfaces extend Simulink to incorporate FPGA hardware and HDL simulation into the 
system-level environment as naturally as other library blocks. System Generator presents a 
high-level and abstract view of the design, but also exposes key features in the underlying 
silicon, making it possible to build extremely high-performance FPGA implementations.

For more information on System Generator for DSP, see 
http://www.xilinx.com/ise/optional_prod/system_generator.htm.

Embedded Development Kit and Platform Studio

The Embedded Development Kit (EDK) bundle is an integrated software solution for 
designing embedded processing systems. This preconfigured kit includes the award-
winning Platform Studio tool suite as well as all the documentation and IP required for 
designing Xilinx Platform FPGAs with embedded MicroBlaze soft processor cores. In 
addition to the flexible MicroBlaze 32-bit soft processors, Xilinx processing solutions 
include small footprint PicoBlaze™ 8-bit soft processors, along with a broad range of IP 
and processing peripherals with robust third-party ecosystem support.

For more information on the Embedded Development Kit and Platform Studio, see 
http://www.xilinx.com/edk.

Clocking Wizard

To reduce the complexities of new device technologies like Digital Clock Managers (DCM), 
ISE tools include Architecture Wizards, allowing users access through an intuitive easy-to-
use dialog. Through the use of the ISE Architecture Wizards, designers can access these 
leading edge technologies quickly by creating the component through a push-button flow 
rather than learning all the attributes in HDL. Then the component simply can be 
instantiated in the user’s design by copying the instantiation template created by the 
Architecture Wizard. The Clocking Wizard supports all the capabilities of the Spartan-3 
generation DCMs.

Data2MEM Tool

Data2MEM is fundamentally a data translation tool. It translates contiguous fragments of 
data into the proper initialization records for Block RAMs. It automates distribution of that 
data across multiple physical Block RAMs that constitute a contiguous logical data space. 
Data2MEM is also a simplified means for initializing block RAMs.

Automatic Implementation Tools

The automatic implementation tools (synthesis, translation, mapping, placement, and 
routing) provide the best results for any design. ProActive Timing Closure technologies 
deliver the industry's highest performance in programmable logic designs, quickly and 
efficiently. The technologies include:

• Physical Synthesis

♦ Includes place and route information to work on the real critical paths first 

♦ Achieves better quality of results of 5 to 20% 

http://www.xilinx.com
http://www.xilinx.com/edk
http://www.xilinx.com/ise/optional_prod/system_generator.htm
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♦ Supported through Synplicity's Amplify, Mentor Graphic's Time Closer, and 
Xilinx's own XST synthesis tool 

♦ Timing optimization prior to physical place and route 

• Macro Builder 

♦ Lets you freeze placement information for a given design 

♦ You can then re-use that macro in future designs using relative placement 

♦ Performance preservation

• Advanced Place and Route Algorithms

♦ Critical Path Placement first 

♦ Xplorer script automates multiple implementation runs

♦ Directed Routing that lets the designer specify routing with IP 

• Timing Improvement Wizard

♦ Interactively helps designer improve design 

♦ Click on a timing problem and receive suggestions that can improve design 
timing 

• Timing Cross-Probing

♦ Decreases debug time by cross-probing from the timing report directly to 
Floorplanner 

♦ Click on the error, path, or net in the timing report and instantly see it in 
Floorplanner or Synthesis Source Tool

• HDL Advisors

♦ Included in XST synthesis reports, clicking on an error or warning suggests 
changes to HDL to improve the implementation

Incremental Design

Incremental Design gets your overall design to market faster by minimizing the impact 
from late-arriving design changes. The Incremental Design flow facilitates more debug 
cycles in a day when making small design changes. A designer quickly and easily can 
floorplan design areas along hierarchy boundaries, and then finish the design as normal. 
Later, if a design change is required, Incremental Design ensures that only the area of the 
design change need be re-implemented; the rest of the design stays locked and intact, 
delivering overall design completion faster. 

For more information on Incremental Design, see 
http://www.xilinx.com/products/design_tools/logic_design/advanced/incrementaldesign.htm.

Modular Design

Modular Design lets you implement a “divide and conquer” approach to multi-million 
gate FPGA designs. Partitioning a design into smaller functional modules reduces the 
complexities of design, implementation, and verification. These design modules then can 
be brought through the design flow independently, leveraging all of the powerful tools 
within the Xilinx FPGA design flow. Once completed, a module's implementation is 
preserved, guaranteeing the timing in the finished device. This technology is a 
requirement for any organization employing a team design methodology for the design of 
a multi-million gate FPGA.

http://www.xilinx.com
http://www.xilinx.com/products/design_tools/logic_design/advanced/incrementaldesign.htm
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Constraints Editor

Constraints are user instructions placed on elements of a schematic or HDL design, either 
in the design itself or in a separate file. They can indicate a number of things such as 
placement, implementation, naming, signal direction, and timing considerations. In the 
Xilinx development system, logical constraints are placed in a file called the UCF (User 
Constraints File). The Constraints Editor is a graphical program that you can use to create 
and modify those constraints.

PACE

Pinout and Area Constraints Editor (PACE) is an interactive graphical application that you 
can use to do the following functions:

• View and edit location constraints for I/Os and global logic

• View and create area constraints for hierarchical symbols in your design

• Determine connectivity and resource requirements of your design

• Determine resource layout of your target FPGA

• Determine how your design maps onto the FPGA via location and area constraints

PACE fits into the Xilinx implementation flow at the very beginning. Because PACE 
supports I/O layout with an NGD file, it can be used early at the design entry stage of the 
flow. PACE reads an NGD file and reads and writes a UCF file.

For information on the PACE tool, see 
http://www.xilinx.com/products/design_tools/logic_design/design_entry/pace.htm.

Floorplanner

Use the Floorplanner interactive graphical tool to perform the following functions on your 
designs:

• Floorplan resource placement at a detailed level

• Use Macro Builder to create a Relationally Placed Macro (RPM) core that can be used 
in other designs

• View and edit location constraints

• Find logic or nets by name or connectivity

• Cross-probe from the Timing Analyzer to the Floorplanner

• Automatic placement of ports for modular design

The graphical user interface includes pull-down menus and toolbar buttons that contain 
all of the necessary commands for changing the design hierarchy, floorplanning, and 
performing design rule checks. Dialog boxes allow you to quickly set parameters and 
options for command execution.

For information on the Floorplanner tool, see 
http://www.xilinx.com/products/design_tools/logic_design/design_entry/floorplanner.htm.

PlanAhead Tool

The optional PlanAhead™ tool provides an intuitive environment that delivers a faster, 
more efficient design solution, allowing designers to find and fix problems early and 
helping to achieve performance goals. The PlanAhead tool provides hierarchical, block-
based, modular and incremental design methodologies, enabling designers to change only 
part of the design, leaving placement of the rest intact, thus shortening design iterations. It 

http://www.xilinx.com
http://www.xilinx.com/products/design_tools/logic_design/design_entry/floorplanner.htm
http://www.xilinx.com/products/design_tools/logic_design/design_entry/pace.htm


412 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 13: Using ISE Design Tools
R

helps designers consistently maintain the required performance, even while making 
frequent changes.

For more information on the PlanAhead tool, see http://www.xilinx.com/planahead.

FPGA Editor

The FPGA Editor is a graphical application for displaying and configuring FPGAs. The 
FPGA Editor requires an NCD file. This file contains the logic of your design mapped to 
components such as CLBs and IOBs. In addition, the FPGA Editor reads from and writes to 
a Physical Constraints File (PCF).

The following is a list of a few of the functions you can perform on your designs in the 
FPGA Editor:

• Place and route critical components before running automatic place and route

• Fine-tune placement and routing after running automatic place and route

• Add probes to design to examine the signal states of the targeted device

• Run the Bitstream Generator and download the resulting file to the targeted device

• Create an entire design by hand (for advanced users)

For more information on the FPGA Editor PROBE tool, see 
http://www.xilinx.com/products/design_tools/logic_design/verification/fpgaeditorprobe.htm.

Interactive Timing Analyzer

The Interactive Timing Analyzer provides a powerful, flexible, and easy way to perform 
static timing analysis. With Timing Analyzer, analysis can be performed immediately after 
mapping, placing, or routing a Spartan-3 generation FPGA design.

Timing Analyzer verifies that the delay along a given path or paths meets specified timing 
requirements. It organizes and displays data that allows you to analyze critical paths in a 
circuit, the cycle time of the circuit, the delay along any specified path(s), and the path with 
the greatest delay. It also provides a quick analysis of the effect different speed grades have 
on the same design. 

Timing Analyzer creates timing analysis reports based on existing timing constraints or 
user specified paths within the program. Timing reports have a hierarchical browser to 
quickly jump to different sections of the reports. Timing paths in reports can be cross-
probed to synthesis tools (Exemplar and Synplicity) and the Floorplanner.

ISE Simulator

ISE Simulator provides a complete, full-featured HDL simulator integrated within the ISE 
development system. ISE Simulator comes in two versions:

• Free ISE Simulator Lite, included with all ISE configurations, is ideal for low-density 
FPGA designs and is limited to 15,000 lines of HDL source code. 

• ISE Simulator full version supports any design density and is a low-cost optional 
add-on to ISE Foundation.

For more information on the ISE Simulator, see 
http://www.xilinx.com/products/design_tools/logic_design/verification/ise_simulator.htm.

http://www.xilinx.com
http://www.xilinx.com/products/design_tools/logic_design/verification/ise_simulator.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/fpgaeditorprobe.htm
http://www.xilinx.com/planahead
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iMPACT Configuration Tool

The iMPACT configuration tool, a command line and GUI based tool, allows you to 
configure your PLD designs using Boundary Scan, Slave Serial, SelectMap, and Desktop 
Configuration modes. It also allows you to do the following:

• Download

• Read back and verify design configuration data

• Debug configuration problems

• Create PROM, SVF, STAPL, and System ACE™ CF programming files

ChipScope Pro Analyzer

The ChipScope Pro analyzer delivers in-circuit real-time debugging with shorter 
verification cycles and lower project costs. By inserting special low-impact IP debugging 
cores directly into your HDL code or design netlist, you can debug and verify FPGA logic 
and system bus activity, capturing signals at or near system operating speeds. You easily 
can change your trace points without having to recompile your design. The ChipScope Pro 
analyzer embeds Integrated Logic Analyzer (ILA) and Integrated Bus Analyzer (IBA) cores 
into your design. These cores allow the user to view all the internal signals and nodes 
within the Spartan-3 generation FPGA.

For more information on the ChipScope Pro analyzer, see 
http://www.xilinx.com/chipscope.

Power Analysis Tools

The ISE development system provides the tools to help understand power issues and 
reduce the dynamic power in a Spartan-3 generation design. Advanced synthesis and 
implementation algorithms help reduce dynamic power by an average of 10%. 

The XPower Estimator spreadsheet is a pre-implementation analysis tool for estimating 
power consumption in Spartan-3 generation FPGAs. Design requirements can be entered 
directly or imported from the ISE Map results. The user specifies toggle rates for each part 
of the design. 

The XPower Analyzer is a post-route analysis tool for interactively and automatically 
analyzing power consumption for Xilinx devices. XPower Analyzer reads VCD simulation 
data to set estimation stimulus, reducing setup time. XPower Analyzer accepts VCD files 
from Mentor (ModelSim), Cadence, and Synopsys. XPower Analyzer uses device 
knowledge and design data to estimate device power and by-net power utilization. 
Information is presented in both HTML and ASCII (text) report formats. 

For more information on the XPower tools, see http://www.xilinx.com/power.

Related Materials and References
The following documents provide supplementary information useful with this chapter:

• Xilinx Design Tools Center
http://www.xilinx.com/products/design_resources/design_tool/

• ISE Software for Spartan-3 Generation Designs
http://www.xilinx.com/ise/ise_promo/ise_spartan3.htm

• Software Download Center
http://www.xilinx.com/support/download/index.htm

http://www.xilinx.com
http://www.xilinx.com/power
http://www.xilinx.com/products/design_resources/design_tool/
http://www.xilinx.com/ise/ise_promo/ise_spartan3.htm
http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/chipscope
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• Software Manuals
http://www.xilinx.com/support/software_manuals.htm

Conclusion
The ISE design environment brings you the fastest, most complete family of design tools 
available. The ISE tools are available in multiple configurations with various optional tools 
and interfaces to third-party tools, allowing you to customize the set of tools for your own 
needs. The ISE development system combines advanced technologies such as ProActive 
Timing Closure with a flexible, easy-to-use graphical interface to help you achieve the best 
possible designs with the least time and effort, regardless of your experience level. 

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm
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Chapter 14

Using IP Cores

Summary
This chapter provides an overview of the Xilinx CORE Generator™ System and the Xilinx 
Intellectual Property (IP) offerings that facilitate the Spartan®-3 generation design process. 
For more detailed and complete information, consult the CORE Generator System on-line 
help available at http://toolbox.xilinx.com/docsan/xilinx92/help/iseguide/
mergedProjects/coregen/coregen.htm, and the Xilinx IP Center available at 
http://www.xilinx.com/ipcenter/index.htm.

This chapter applies to all Spartan-3 generation FPGA families.

The CORE Generator System
The Xilinx CORE Generator System is the cataloging, customization, and delivery vehicle 
for IP cores targeted to Xilinx FPGAs. The CORE Generator provides centralized access to 
a catalog of ready-made IP functions ranging in complexity from simple arithmetic 
operators, such as adders, accumulators, and multipliers to system-level building blocks, 
such as filters, transforms, and memories. Cores can be displayed alphabetically, by 
function, by vendor, or by type. Each core comes with its own data sheet, which documents 
the core’s functionality in detail.

The CORE Generator user interface makes it very easy to access the latest Spartan-3 
generation IP releases and to get helpful, up-to-date information. Links to partner IP 
providers also are built in for the various partner-supplied AllianceCORE products. The 
use of CORE Generator IP cores in Spartan-3 generation designs enables designers to 
shorten design time, and it also helps them realize high levels of performance and area 
efficiency without any special knowledge of the Spartan-3 generation architecture. 

When installing the CORE Generator software, the designer gains immediate access to 
dozens of cores supplied by the LogiCORE™ program. In addition, data sheets are 
available for all AllianceCORE products, and additional, separately licensed, advanced 
function LogiCORE products are also available. New and updated Spartan-3 generation IP 
for the CORE Generator can be downloaded from the IP Center and added to the CORE 
Generator catalog.

Xilinx IP Solutions and the IP Center
The CORE Generator tool works in conjunction with the Xilinx IP Center 
(www.xilinx.com/ipcenter). To make the most of this resource, Xilinx highly recommends 
that whenever starting a design, one first does a quick search of the IP Center to see 
whether a ready-made core solution is already available.

A complete catalog of Xilinx cores and IP tools resides on the IP Center, including:

http://toolbox.xilinx.com/docsan/xilinx92/help/iseguide/mergedProjects/coregen/coregen.htm
http://toolbox.xilinx.com/docsan/xilinx92/help/iseguide/mergedProjects/coregen/coregen.htm
http://www.xilinx.com/ipcenter/index.htm
http://www.xilinx.com/ipcenter
http://www.xilinx.com
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• LogiCORE Products

• AllianceCORE Products

• Candidate Core Products

• Design Files

• Alliance Program Partner Services

LogiCORE Products
LogiCORE products are designed, sold, licensed, and supported by Xilinx. LogiCORE 
products include a wide selection of generic, parameterized functions, such as muxes, 
adders, multipliers, and memory cores, which are bundled with the Xilinx CORE 
Generator software at no additional cost to licensed software customers. System-level 
cores, such as PCI, Reed-Solomon, ADPCM, HDLC, POS-PHY, and Color Space 
Converters are also available as optional, separately licensed products. The CORE 
Generator commonly is used to quickly generate Spartan-3 generation block and 
distributed memories. A more detailed listing of available Spartan-3 generation LogiCORE 
products is available in Table 14-1, page 417 and on the Xilinx IP Center website 
(http://www.xilinx.com/ipcenter).

Types of IP currently offered by the Xilinx LogiCORE program include:

• Basic Elements: logic gates, registers, multiplexers, adders, multipliers

• Communications and Networking: ADPCM modules, HDLC controllers, ATM 
building blocks, forward error correction modules, cable modem solutions, 10/100 
Ethernet MAC, SPI-4.2, and POS-PHY interfaces

• DSP and Video Image Processing: cores ranging from small building blocks (e.g., Time 
Skew Buffers) to larger system-level functions (e.g., FIR Filters and FFTs)

• System Logic: accumulators, adders, subtracters, complementers, multipliers, 
integrators, pipelined delay elements, single and dual-port distributed and block 
RAM, ROM, and synchronous and asynchronous FIFOs

• Standard Bus Interfaces: PCI Interfaces, PCI Express PIPE Endpoint, I2C, CAN

• Processor Solutions: MicroBlaze™ 32-bit soft processor, PicoBlaze™ 8-bit soft 
processor, and peripherals

AllianceCORE Products
AllianceCORE products are intellectual property (IP) cores developed, sold, and 
supported by third-party Xilinx Alliance Program members. AllianceCORE certification 
provides a showcase for the most popular IP cores offered. 

To receive the AllianceCORE designation, members must submit netlist deliverables of the 
core in the form of an ISE® project that includes both VHDL and Verilog wrapper files for 
the current devices recommended for new designs. Xilinx then performs a “flow check” on 
these deliverables to verify they run through the Xilinx design tools, and the reported 
implementation results (device utilization and clock rates) are repeatable. Xilinx does not 
verify core functionality or compliance with specific standards.

Candidate Core Products
Candidate core products are developed, sold, and supported by third-party Xilinx Alliance 
Program partners. To receive the Candidate core designation, the partner must submit ISE 

http://www.xilinx.com/ipcenter
http://www.xilinx.com
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report files to demonstrate that they have run the core through the Xilinx tools to target 
specific Xilinx programmable logic devices.

Design Files
Xilinx offers two types of design files: XAPP application notes developed by Xilinx and 
reference designs developed by Xilinx and its partners. Both types are extremely valuable 
to customers looking for guidance when designing systems. Application notes developed 
by Xilinx usually include supporting design files. They are supplied free of charge, without 
technical support or warranty. Reference designs often can be used as starting points for 
implementing a broad spectrum of functions in Xilinx programmable logic. 

Xilinx Alliance Program Partner Services
Xilinx established the Xilinx Alliance Program to provide customers with access to a 
worldwide network of certified design consultants who are proficient with Xilinx FPGAs, 
software, and IP core integration. All members are certified and have extensive expertise 
and experience with Xilinx technology in various vertical applications, such as 
communications and networking, DSP, video and image processing, system I/O 
interfaces, and home networking. Partners are an integral part of the Xilinx strategy to 
provide customers with cost-efficient design solutions, while accelerating time to market. 

SignOnce
The SignOnce IP License has been the industry’s first and only set of common license terms 
for programmable logic soft IP cores. Xilinx and leading third-party providers have agreed 
to offer cores to FPGA customers under a common set of terms known as the SignOnce IP 
License, simplifying the process by which customers can access IP from multiple suppliers. 
For more information see http://www.xilinx.com/ipcenter/signonce.htm.

Spartan-3 Generation IP Cores
Table 14-1 provides a partial listing of cores available for Spartan-3 generation designs. For 
a complete catalog of Spartan-3 generation IP solutions and details on supported FPGA 
families, visit the Xilinx IP Center parametric search engine and search for the latest 
Spartan-3 generation core solutions.

Table 14-1: Spartan-3 Generation IP Cores Support

Product Name Vendor Type SignOnce Supported Devices

Audio Video and Image Processing

1394a Link Layer Controller (C1394A) CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

Accelerated Display Graphics Engine 
(BADGE)

BitSim AB Candidate Core Spartan-3 FPGAs

Adaptive Image Enhancement (Iridix) Apical Limited Candidate Core
Spartan-3E, Spartan-3 

FPGAs

ADPCM, 128 Simplex (CS4125)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-II 
FPGAs

ADPCM, 16 Simplex (CS4110)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

http://www.xilinx.com/products/ipcenter/advancedsearch.htm
http://www.xilinx.com/ipcenter/signonce.htm
http://www.xilinx.com
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Audio Sample Rate Converter, Low 
Cost (CWda50)

Coreworks Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Burst Locked PLL (BURST_PLL)
Pinpoint Solutions, 

Inc.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

Compact Video Controller (logiCVC) Xylon d.o.o. AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Discrete Wavelet Transform 
(BA113FDWT)

Barco-Silex AllianceCORE X Spartan-3 FPGAs

Gamma Correction, Dynamic
Digital Design 
Corporation

Candidate Core Spartan-3 FPGAs

H.264 / MPEG4 Part 10, Decoder, 
Baseline (4i2i)

4i2i Communications 
Ltd.

Candidate Core
Spartan-3E, Spartan-3 

FPGAs

H.264 Encoder, Baseline (4i2i)
4i2i Communications 

Ltd.
AllianceCORE X Spartan-3 FPGAs

H.264 Encoder, Baseline Multichannel 
HD (H264-E)

CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

I2S Receiver (CWda10) Coreworks Candidate Core X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

I2S to SPDIF Converter (CWda04) Coreworks Candidate Core X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

I2S Transmitter (CWda06) Coreworks Candidate Core X
Spartan-3, Spartan-IIE 

FPGAs

JPEG, 2000 Decoder 
(BA111JPEG2000D)

Barco-Silex AllianceCORE X Spartan-3 FPGAs

JPEG, 2000 Encoder 
(BA112JPEG2000E)

Barco-Silex AllianceCORE X Spartan-3 FPGAs

JPEG, Codec (JPEG_C) CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

JPEG, Decoder (JPEG_D) CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

JPEG, Encoder (JPEG_E) CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

JPEG, Motion Codec V1.0 (CS6190)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

JPEG, Motion Decoder (CS6150)
Amphion 

Semiconductor, Ltd.
AllianceCORE X Spartan-3 FPGAs

JPEG, Motion Encoder (CS6100)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

Longitudinal Time Code Generator Deltatec S.A. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Motion JPEG Decoder 
(JPEG Decoder)

4i2i Communications 
Ltd.

AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Table 14-1: Spartan-3 Generation IP Cores Support (Continued)
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Motion JPEG Encoder 
(JPEG Encoder)

4i2i Communications 
Ltd.

AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

MPEG-2 Video Decoder (CS6651)
Amphion 

Semiconductor, Ltd.
AllianceCORE X Spartan-3 FPGAs

MPEG4 Simple Profile Decoder Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-3A 

FPGAs

MPEG4 Simple Profile Encoder Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-3A 

FPGAs

MPEG-4 Video Compression Decoder
4i2i Communications 

Ltd.
AllianceCORE X Spartan-3 FPGAs

MPEG-4 Video Compression Encoder
4i2i Communications 

Ltd.
AllianceCORE X Spartan-3 FPGAs

NTSC Color Separator 
(NTSC-COSEP)

Pinpoint Solutions, 
Inc.

AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

SPDIF to I2S Converter (CWda03) Coreworks Candidate Core X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

SPDIF-AES/EBU Feed-Forward 
Receiver (CWda01)

Coreworks Candidate Core X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

SPDIF-AES/EBU Feed-Forward 
Transmitter (CWda02)

Coreworks Candidate Core X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

SPDIF-AES/EBU Transmitter 
(CWda05)

Coreworks Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

VGA Compatible Cores 
(INT416-SM, INT416-SXGA)

Intrinsix Corporation Candidate Core
Spartan-3E, Spartan-3 

FPGAs

Basic Logic

8b/10b Decoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

8b/10b Encoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Binary Counter Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

Binary Decoder Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

BUFE-based Multiplexer Slice Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Comparator Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

FD-based Parallel Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

FD-based Shift Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs
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Floating Point Comparator 
(DFPCOMP)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

LD-based Parallel Latch Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Linear Feedback Shift Register (LFSR) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

RAM-based Shift Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

8b/10b Decoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

8b/10b Encoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Binary Counter Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

Binary Decoder Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

BUFE-based Multiplexer Slice Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Comparator Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

FD-based Parallel Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

FD-based Shift Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Floating Point Comparator 
(DFPCOMP)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

LD-based Parallel Latch Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Linear Feedback Shift Register (LFSR) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

RAM-based Shift Register Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

Bus Interface and I/O

1394 Link Layer Controller (SI16FW10)
Silicon Interfaces 

America Inc.
Candidate Core Spartan-3 FPGAs

1394a Link Layer Controller (C1394A) CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

CAN (DO-DI-CAN) Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-3A 
DSP FPGAs
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CAN 2.0 B Compatible Network 
Controller (LogiCAN)

Xylon d.o.o. AllianceCORE X
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

CAN 2.0B Bus Controller (iCAN)
Intelliga Integrated 

Design, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

CAN Bus Controller (MC-XIL-OPB-
XCAN)

Avnet Design Services AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

CAN Bus Controller 2.0B CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

I2C Bus Controller (I2C) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

I2C Bus Controller Master (DI2CM) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

I2C Bus Controller Slave (DI2CS) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

J1850 Class B Interface 
(J1850_BDLC_VPW)

Drivven, Inc. Candidate Core X Spartan-3 FPGAs

LIN - Local Interconnect Network Bus 
Controller (iLIN)

Intelliga Integrated 
Design, Ltd.

AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

LIN Controller CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

MIL-STD-1553 Bus Interface 
(FlightCORE-1553)

GE Fanuc Embedded 
Systems, Inc.

Candidate Core
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

OPB Arbiter Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB IIC Master and Slave Bus 
Controller (DO-DI-IIC-SD)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB IPIF Architecture Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

OPB to OPB Bridge (Lite Version) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB/PLB PCI32 Interface Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

PCI 32-bit Master Interface (PCI-M32) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PCI 32-Bit Multifunction Target 
Interface (PCI-TMF)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PCI 32-bit Target Interface (PCI-T32) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PCI Express (PExCore-254)
NitAl Consulting 

Services, Inc.
Candidate Core X Spartan-3 FPGAs
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PCI Express PIPE Endpoint LogiCORE 
(DO-DI-PCIE-PIPE)

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3 

FPGAs

PCI Host Bridge (PCI-HB) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PCI Interface (NWL PCI) Northwest Logic AllianceCORE X Spartan-3 FPGAs

PCI32 Single Project Spartan Series 
(DO-DI-PCI32-SP)

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

PCI32 Spartan Series Interface 
(DO-DI-PCI32-IP)

Xilinx, Inc. LogiCORE X

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

PCI64 Virtex® and Spartan Series 
Interface, IP Only (DO-DI-PCI64-IP)

Xilinx, Inc. LogiCORE X

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

PCI64 Interface Design Kit (DO-DI-
PCI64-DKT)

Xilinx, Inc. LogiCORE X
Spartan-3A, Spartan-3A 
DSP, Spartan-3, Spartan-

IIE, Spartan-II FPGAs

PCI-PCI Bridge (EP440) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PowerPC® Bus Master (EP201) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PowerPC Bus Slave (EP100) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Serial ATA I/II Host Controller 
(SATA_H1)

ASICS World Service, 
Ltd.

Candidate Core X Spartan-3 FPGAs

Smart Card Interface (HCLT SCI)
HCL Technologies 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

SPI Master Interface (HCL_SPI_M)
HCL Technologies 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

SPI-Master/Slave (DSPI) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SPI-Slave (DSPIS) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Two-Wire Serial Interface - I2C 
(MC-XIL-TWSI)

Avnet Design Services AllianceCORE X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

USB 1.1 Function Controller (CUSB) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

USB 1.1 Host (USB1_HOST)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

USB 2.0 Function Controller (CUSB2) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs
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USB 2.0 Function Controller 
(USB2_DEV)

ASICS World Service, 
Ltd.

Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

USB 2.0 On-The-Go (USB2_OTG)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

USB Function Controller with On-Chip 
Peripheral Bus (CUSB_OPB)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

V3.0 PCI 32-bit/(66-33 MHz) Core and 
Design Kit

Xilinx, Inc. LogiCORE X
Spartan-3A DSP, Spartan-

3A, Spartan-3, Spartan-
IIE, Spartan-II FPGAs

V3.0 PCI 64-bit/(66-33 MHz) and PCI 
32-bit/(66-33 MHz) Core

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

V5.0 PCI 64-bit/33 MHz, V3.0 PCI 
64-bit/(66-33MHz) and PCI 32-bit

Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

VLYNQ Interface for Texas Instruments 
Processors

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3 

FPGAs

VME Address and Data Interface 
(ML7C964)

Millogic Ltd Candidate Core
Spartan-3E, Spartan-3, 

Spartan-II FPGAs

Communications and Networking

1394 Link Layer Controller (SI16FW10)
Silicon Interfaces 

America Inc.
Candidate Core Spartan-3 FPGAs

1394a Link Layer Controller (C1394A) CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

16550 UART w/ FIFOs (D16550) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

16750 UART w/ FIFOs (D16750) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

16750 UART w/FIFOs and sync CPU 
Interface (H16750S)

CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

85C30 Serial Communication 
Controller (ML85C30)

Millogic Ltd Candidate Core
Spartan-3E, Spartan-3 

FPGAs

8b/10b Decoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

8b/10b Encoder Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Additive White Gaussian Noise Xilinx, Inc. LogiCORE X Spartan-3 FPGAs

ADPCM, 128 Simplex (CS4125)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

ADPCM, 16 Simplex (CS4110)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

AES Encryption CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs
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AES Encryptor/Decryptor 
(AES_CORE_G2_XE)

Algotronix, Ltd. Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

AES Fast Encryptor (Helion)
Helion Technology 

Limited
AllianceCORE X

Spartan-3E, Spartan-3 
FPGAs

AES Standard Encryptor/Decryptor
Helion Technology 

Limited
AllianceCORE X

Spartan-3E, Spartan-3 
FPGAs

AES Tiny Encryptor/Decryptor
Helion Technology 

Limited
AllianceCORE X

Spartan-3E, Spartan-3 
FPGAs

ATA Host Controller (HCL ATA)
HCL Technologies 

Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

ATA-4/UDMA-33 IDE Host 
(Nuvation)

Nuvation Research 
Corporation

Candidate Core
Spartan-3E, Spartan-3 

FPGAs

ATA-5/UDMA-66 IDE Host 
(Nuvation)

Nuvation Research 
Corporation

Candidate Core
Spartan-3E, Spartan-3 

FPGAs

ATM Adaptation Layer 5 (AAL5) ModelWare, Inc. AllianceCORE X Spartan-3 FPGAs

Convolutional Encoder Xilinx, Inc. LogiCORE
Spartan-3A DSP, Spartan-

3E, Spartan-3, Spartan-
IIE, Spartan-II FPGAs

CRC-32 for 10 Gbps OC192 systems 
(CORE-CRC-128)

Calyptech Pty Ltd. AllianceCORE X Spartan-3 FPGAs

Deframer, STM0/OC1, STM1/OC3, 
STM4/OC12 (sdh.dfrm.001)

Aliathon Ltd. Candidate Core X Spartan-3 FPGAs

Demapper, STM0/OC1, STM1/OC3, 
STM4/OC12 (sdh.dmap.001)

Aliathon Ltd. Candidate Core X Spartan-3 FPGAs

DES Encryption CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

DES3 Encryption CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Digital Up Converter Xilinx, Inc. LogiCORE Spartan-3 FPGAs

Ethernet 1000BASE-X 
PCS/PMA or SGMII

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-3A FPGAs

Ethernet MAC, 10/100 (MAC) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Ethernet Statistics Xilinx, Inc. LogiCORE X
Spartan-3A DSP, 

Spartan-3E, Spartan-3, 
Spartan-3A FPGAs

Fast AES decryptor 
Helion Technology 

Limited
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

Framer, SONET OC-3 to OC-768 (Xelic) Xelic, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

Framer, STM0/OC1, STM1/OC3, 
STM4/OC12 (sdh.frm.001)

Aliathon Ltd. Candidate Core X Spartan-3 FPGAs
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Generic Framing Procedure 
(DO-DI-GFP)

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3 

FPGAs

Gigabit Ethernet Media Access 
Controller (GEMAC)

Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-3A FPGAs

HDLC, Single-Channel 
(MC-XIL-HDLC)

Avnet Design Services AllianceCORE X Spartan-3 FPGAs

Inverse Multiplexing for ATM (IMA) 
for PhyCore (005-002-002)

Phystream Ltd. Candidate Core X Spartan-3 FPGAs

IPsec ESP Security Engine (Helion)
Helion Technology 

Limited
AllianceCORE X

Spartan-3E, Spartan-3 
FPGAs

Mapper, STM0/OC1, STM1/OC3, 
STM4/OC12 (sdh.map.001)

Aliathon Ltd. Candidate Core X Spartan-3 FPGAs

MD5 Message Digest Algorithm CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Multi Rate Performance Monitor, 
2.5 Gb/s (CORE-PM-MR)

Calyptech Pty Ltd. AllianceCORE X Spartan-3 FPGAs

OPB 10/100 Ethernet MAC Lite 
(OPB EMAC Lite)

Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB 10/100 Ethernet Media Access 
Controller (EMAC)

Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

OPB ATM Utopia Level 2 Master and 
Slave

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB Single Channel HDLC Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-II 

FPGAs

Packet Queue Xilinx, Inc. LogiCORE X
Spartan-3A DSP, 

Spartan-3A, Spartan-3E, 
Spartan-3 FPGAs

PCI Express (PExCore-254)
NitAl Consulting 

Services, Inc.
Candidate Core X Spartan-3 FPGAs

Pseudorandom Number Generator 
(ANSI X9.17/X9.31 PRNG)

Helion Technology 
Limited

AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Reed-Solomon Decoder (RSDX1)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

Reed-Solomon Decoder Xilinx, Inc. LogiCORE X
Spartan-3A DSP, 

Spartan-3A, Spartan-3E, 
Spartan-3 FPGAs

Reed-Solomon Encoder (RSEX1)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

Reed-Solomon Encoder Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDLC Controller (SDLC) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Table 14-1: Spartan-3 Generation IP Cores Support (Continued)

Product Name Vendor Type SignOnce Supported Devices

http://www.xilinx.com


426 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 14: Using IP Cores
R

Serial ATA I/II Host Controller 
(SATA_H1)

ASICS World Service, 
Ltd.

Candidate Core X Spartan-3 FPGAs

SHA-1, SHA-224, SHA-256 and MD5, 
Tiny with HMAC (Helion)

Helion Technology 
Limited

AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

SHA-1,SHA-256 and MD5 Hashing, 
Fast (Helion)

Helion Technology 
Limited

AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

SPI Master Interface (HCL_SPI_M)
HCL Technologies 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

SPI-3 Link Layer Interface, 
Multi-channel

Xilinx, Inc. LogiCORE X
Spartan-3A DSP, Spartan-

3E, Spartan-3 FPGAs

SPI-3 Physical Layer Interface, 
Multi-channel 

Xilinx, Inc. LogiCORE X
Spartan-3A, Spartan-3A 

DSP, Spartan-3E, Spartan-
3 FPGAs

SPI-4 Phase 2 Interface Solutions 
(DO-DI-POSL4MC)

Xilinx, Inc. LogiCORE X
Spartan-3A DSP,

Spartan-3A, Spartan-3E, 
Spartan-3 FPGAs

SPI-Master/Slave (DSPI) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SPI-Slave (DSPIS) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

TDES AMBA Platform SoC Solutions, LLC AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

TDM Interface, Multi-port 
Programmable

Phystream Ltd. Candidate Core X Spartan-3 FPGAs

TDM Switch (TDM_H110) Calyptech Pty Ltd. AllianceCORE X
Spartan-3, Spartan-II 

FPGAs

Tri-Mode Ethernet Media Access 
Controller (TEMAC)

Xilinx, Inc. LogiCORE X
Spartan-3A DSP, 

Spartan-3E, Spartan-3, 
Spartan-3A FPGAs

Turbo Convolutional Code Decoder, 
CDMA2000/3GPP2

Xilinx, Inc. LogiCORE

Spartan-3A, 
Spartan-3A DSP, 

Spartan-3E, Spartan-3, 
Spartan-II FPGAs

Turbo Convolutional Code Encoder, 
CDMA2000/3GPP2

Xilinx, Inc. LogiCORE
Spartan-3A DSP, Spartan-
3A, Spartan-3E, Spartan-

3, Spartan-II FPGAs

Turbo Product Code (TPC) Decoder Xilinx, Inc. LogiCORE Spartan-3 FPGAs

Turbo Product Code (TPC) Encoder Xilinx, Inc. LogiCORE Spartan-3 FPGAs

UART, Generic Compact 
(MC-XIL-UART)

Memec Design AllianceCORE X Spartan-3 FPGAs

UMTS/3GPP Turbo Convolutional 
Decoder

Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, 
Spartan-3A DSP FPGAs
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UMTS/3GPP Turbo Convolutional 
Encoder

Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, 

USB 1.1 Function Controller (CUSB) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

USB 1.1 Host (USB1_HOST)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

USB 2.0 Function Controller (CUSB2) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

USB 2.0 Function Controller 
(USB2_DEV)

ASICS World Service, 
Ltd.

Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

USB 2.0 On-The-Go (USB2_OTG)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

USB Function Controller with On-Chip 
Peripheral Bus (CUSB_OPB)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

UTOPIA, Multi-port Serial Bridge Phystream Ltd. Candidate Core X Spartan-3 FPGAs

Viterbi Decoder Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

Viterbi Decoder, 
(IEEE 802-Compatible)

Xilinx, Inc. LogiCORE X
Spartan-3, Spartan-IIE 

FPGAs

Z80 Serial I/O Controller (CZ80SIO) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Digital Signal Processing

Additive White Gaussian Noise Xilinx, Inc. LogiCORE X Spartan-3 FPGAs

ADPCM, 128 Simplex (CS4125)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

ADPCM, 16 Simplex (CS4110)
Amphion 

Semiconductor, Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

Convolutional Encoder Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

CORDIC Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Digital Up Converter Xilinx, Inc. LogiCORE Spartan-3 FPGAs

Direct Digital Synthesizer Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Discrete Wavelet Transform 
(BA113FDWT)

Barco-Silex AllianceCORE X Spartan-3 FPGAs
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Divider Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

DVB-S.2 FEC Encoder Xilinx, Inc. LogiCORE X
Spartan-3A DSP, Spartan-

3E, Spartan-3 FPGAs

Fast Fourier Transform Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A

FFT, Pipelined (Vectis HiSpeed) RF Engines, Ltd. AllianceCORE Spartan-3 FPGAs

FFT, Pipelined (Vectis-QuadSpeed) RF Engines, Ltd. AllianceCORE Spartan-3 FPGAs

FFT/IFFT (FC100)
Sundance 

Multiprocessor 
Technology Ltd

Candidate Core Spartan-3 FPGAs

FIR Compiler Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, 
Spartan-3A DSP

Floating-Point Operators Xilinx, Inc. LogiCORE Spartan-3E, Spartan-3, 

High Data Rate Demodulator 
(Zaltys HDRM-D)

Silicon Infusion 
Limited

Candidate Core X Spartan-3 FPGAs

IEEE 802.16E CTC Decoder Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-II 

FPGAs

IEEE 802.16e CTC Encoder Xilinx, Inc. LogiCORE
Spartan-3A DSP, 

Spartan-3E, Spartan-3, 
Spartan-3A FPGAs

IEEE 802.16e LDPC Encoder Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

J.83 Universal Modulator Annex A/C Xilinx, Inc. LogiCORE X Spartan-3 FPGAs

J.83 Universal Modulator Annex B Xilinx, Inc. LogiCORE X Spartan-3 FPGAs

Linear Feedback Shift Register (LFSR) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

Reed-Solomon Decoder (RSDX1)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

Reed-Solomon Decoder Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-3A FPGAs

Reed-Solomon Encoder (RSEX1)
ASICS World Service, 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

Reed-Solomon Encoder Xilinx, Inc. LogiCORE X
Spartan-3A DSP, Spartan-
3E, Spartan-3, Spartan-IIE 

FPGAs

Sine Cosine Look Up Table Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs
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TMS32025 DSP Processor (C32025) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

TMS32025TX Digital Signal Processor 
(C32025TX)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Turbo Product Code (TPC) Decoder Xilinx, Inc. LogiCORE Spartan-3 FPGAs

Turbo Product Code (TPC) Encoder Xilinx, Inc. LogiCORE Spartan-3 FPGAs

Viterbi Decoder Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

Viterbi Decoder, 
(IEEE 802-Compatible)

Xilinx, Inc. LogiCORE X

Spartan-3A DSP,
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE 

FPGAs

WiMAX FEC Pack Xilinx, Inc. LogiCORE X
Spartan-3E, Spartan-3 

FPGAs

Math

Accumulator Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Adder/Subtracter Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Comparator Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3 

FPGAs

Complex Multiplier Xilinx, Inc. LogiCORE
Spartan-3A, Spartan-3A 

DSP, Spartan-3E, Spartan-
3 FPGAs

CORDIC Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Discrete Wavelet Transform 
(BA113FDWT)

Barco-Silex AllianceCORE X Spartan-3 FPGAs

FFT, Pipelined (Vectis HiSpeed) RF Engines, Ltd. AllianceCORE Spartan-3 FPGAs

FFT, Pipelined (Vectis-QuadSpeed) RF Engines, Ltd. AllianceCORE Spartan-3 FPGAs

FFT/IFFT (FC100)
Sundance 

Multiprocessor 
Technology Ltd

Candidate Core Spartan-3 FPGAs

Floating Point Adder (DFPADD) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Floating Point Comparator 
(DFPCOMP)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

Floating Point Divider (DFPDIV) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs
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Floating Point Multiplier (DFPMUL) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

Floating Point Square Root Operator 
(DFPSQRT)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

Floating Point to Integer Converter 
(DFP2INT)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

Floating-Point Operators Xilinx, Inc. LogiCORE Spartan-3E, Spartan-3

Integer to Floating Point Converter 
(DINT2FP)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

Multiplier Accumulator Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Multiplier Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Sine Cosine Look Up Table Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 
Spartan-IIE, Spartan-II 

FPGAs

Memory Interface and Storage Element

Asynchronous FIFO Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Block Memory Generator Xilinx, Inc. LogiCORE X

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs 

BUFT-based Multiplexer Slice Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Content Addressable Memory (CAM) Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Distributed Memory Generator Xilinx, Inc. LogiCORE X

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Distributed Memory Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Table 14-1: Spartan-3 Generation IP Cores Support (Continued)

Product Name Vendor Type SignOnce Supported Devices

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 431
UG331 (v1.5) January 21, 2009

Spartan-3 Generation IP Cores
R

Dual-Port Block Memory Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

FD-based Parallel Register Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

FD-based Shift Register Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

FIFO Generator Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

LD-based Parallel Latch Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

RAM-based Shift Register Xilinx, Inc. LogiCORE

Spartan-3A DSP, 
Spartan-3A, Spartan-3E, 
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

SDRAM Controller, DDR 
(DDR-XS-XILINX)

Array Electronics AllianceCORE X Spartan-3 FPGAs

SDRAM Controller, DDR (NWL) Northwest Logic AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDRAM Controller, DDR/DDR2 
(EP532)

Eureka Technology Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

SDRAM Controller, DDR2 (NWL) Northwest Logic AllianceCORE X
Spartan-XL, Spartan-3 

FPGAs

SDRAM Controller, SDR (NWL) Northwest Logic AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDRAM Controller, SDR 
(SDR-XS-XILINX)

Array Electronics Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

Single-Port Block Memory Xilinx, Inc. LogiCORE

Spartan-3A, Spartan-3A 
DSP, Spartan-3E, Spartan-
3, Spartan-IIE, Spartan-II 

FPGAs

Synchronous FIFO Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Embedded Processing

16550 UART w/ FIFOs (D16550) Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs
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16750 UART w/ FIFOs (D16750) Digital Core Design Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

16750 UART w/FIFOs and sync CPU 
Interface (H16750S)

CAST, Inc. Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

2910A Microprogram Controller 
(C2910A)

CAST, Inc. AllianceCORE X
Spartan-3E, Spartan-3 

FPGAs

68000 Compatible Microprocessor 
(C68000)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

68681 DUART (ML68681) Millogic Ltd Candidate Core
Spartan-3E, Spartan-3 

FPGAs

8051 High-speed 8-bit RISC 
Microcontroller (R80515)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

8051 Microcontroller, PicoBlaze 
Emulated (PB8051-MX/TF)

Roman-Jones, Inc. AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

80C51 Compatible RISC 
Microcontroller (R8051)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

82C51 USART (ML82C51) Millogic Ltd Candidate Core
Spartan-3E, Spartan-3 

FPGAs

85C30 Serial Communication 
Controller (ML85C30)

Millogic Ltd Candidate Core
Spartan-3E, Spartan-3 

FPGAs

ATA Host Controller (HCL ATA)
HCL Technologies 

Ltd.
AllianceCORE X

Spartan-3, Spartan-IIE 
FPGAs

ATA-4/UDMA-33 IDE Host 
(Nuvation)

Nuvation Research 
Corporation

Candidate Core
Spartan-3E, Spartan-3 

FPGAs

ATA-5/UDMA-66 IDE Host 
(Nuvation)

Nuvation Research 
Corporation

Candidate Core
Spartan-3E, Spartan-3 

FPGAs

Block RAM (BRAM) Block (v1.00a) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

CAN Bus Controller 
(MC-XIL-OPB-XCAN)

Avnet Design Services AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Channelized Direct Memory Access 
and Scatter Gather

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

ChipScope OPB IBA Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

ChipScope PLB IBA Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Compact Video Controller (logiCVC) Xylon d.o.o. AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

DCR Interrupt Controller (DO-EDK) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Digital Clock Manager (DCM) Module Xilinx, Inc. LogiCORE Spartan-3 FPGAs
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Fixed Interval Timer (FIT) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

FSL_V20 Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

IPsec ESP Security Engine (Helion)
Helion Technology 

Limited
AllianceCORE X

Spartan-3E, Spartan-3 
FPGAs

LMB BRAM Interface Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

MC68230 Parallel Interface/Timer 
(ML68230)

Millogic Ltd Candidate Core
Spartan-3E, Spartan-3 

FPGAs

MicroBlaze Parameterized Netlist Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Multi Channel OPB DDR Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A 

FPGAs

Multi Channel OPB DDR2 Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A 

FPGAs

Multi Channel OPB EMC Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A 

FPGAs

Multi-Channel-OPB (MCH_OPB) 
SDRAM Controller

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

OPB 16550 UART Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB Arbiter Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB ATM Utopia Level 2 
Master and Slave

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB BRAM Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB Bus Structure Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

OPB Central DMA Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

OPB DDR SDRAM Controller Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

OPB Delta-Sigma Analog to Digital 
Converter (ADC)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs
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OPB Delta-Sigma Digital to Analog 
Converter (DAC) 

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

OPB EMC (DO-EDK) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 
Spartan-IIE, Spartan-II 

FPGAs

OPB GPIO Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB IIC Master and Slave Bus 
Controller (DO-DI-IIC-SD)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB Interrupt Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB IPIF Architecture Xilinx, Inc. LogiCORE
Spartan-3E, Spartan-3, 

Spartan-3A, Spartan-IIE 
FPGAs

OPB PCI Arbiter Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-II FPGAs

OPB SDRAM Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-II FPGAs

OPB Single Channel HDLC Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-II 

FPGAs

OPB SPI Master and Slave Bus 
Controller

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB System ACE Interface Controller 
(DO-EDK)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB TimeBase/WatchDog Timer 
(WDT)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB Timer/Counter Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB to OPB Bridge (Lite Version) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB UART 16450 Controller Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-II FPGAs

OPB UART Lite Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

OPB ZBT Controller (DO-EDK) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

OPB/PLB PCI32 Interface Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

PCI Host Bridge (PCI-HB) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PIC1655x Fast RISC Microcontroller 
(DFPIC1655X)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs
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PIC16C55x Fast RISC Microcontroller 
(DRPIC1655X)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

PIC16C6x Fast RISC Microcontroller 
(DRPIC166X)

Digital Core Design AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

PicoBlaze for Spartan-3, Virtex-II, and 
Virtex-II Pro FPGAs

Xilinx, Inc. Spartan-3 FPGAs

PLB ATMC Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

PLB Ethernet 10/100 Mbps Media 
Access Controller (PLB EMAC)

Xilinx, Inc. LogiCORE
Spartan-3, Spartan-3A, 

Spartan-IIE FPGAs

PLB to OPB Bridge (DO-EDK) Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE 

FPGAs

PowerPC Bus Master (EP201) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

PowerPC Bus Slave (EP100) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

SD/SDIO/MMC Host Controller 
(SDMMCH1)

ASICS World Service, 
Ltd.

Candidate Core X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDRAM Controller, DDR (EP525) Eureka Technology AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

SDRAM Controller, DDR (NWL) Northwest Logic AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDRAM Controller, DDR/DDR2 
(EP532)

Eureka Technology Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

SDRAM Controller, DDR2 (NWL) Northwest Logic AllianceCORE X
Spartan-XL, Spartan-3 

FPGAs

SDRAM Controller, SDR (NWL) Northwest Logic AllianceCORE X
Spartan-3E, Spartan-3, 

Spartan-IIE FPGAs

SDRAM Controller, SDR 
(SDR-XS-XILINX)

Array Electronics Candidate Core X
Spartan-3E, Spartan-3 

FPGAs

Smart Card Interface (HCLT SCI)
HCL Technologies 

Ltd.
Candidate Core X

Spartan-3, Spartan-IIE 
FPGAs

TDES AMBA Platform SoC Solutions, LLC AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

TMS32025 DSP Processor (C32025) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

TMS32025TX Digital Signal Processor 
(C32025TX)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

UART, Generic Compact (MC-XIL-
UART)

Memec Design AllianceCORE X Spartan-3 FPGAs

USB Function Controller with On-Chip 
Peripheral Bus (CUSB_OPB)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Table 14-1: Spartan-3 Generation IP Cores Support (Continued)

Product Name Vendor Type SignOnce Supported Devices
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Related Materials and References
• Xilinx IP Center:

http://www.xilinx.com/ipcenter

• IP Parametric Search
http://www.xilinx.com/products/ipcenter/advancedsearch.htm

• DSP Design Tools
http://www.xilinx.com/ise/dsp_design_prod/index.htm

• Embedded Design Tools
http://www.xilinx.com/ise/embedded_design_prod/index.htm

• IP Updates (Download Center)
http://www.xilinx.com/support/download/index.htm

• CORE Generation System Online Help
http://toolbox.xilinx.com/docsan/xilinx92/help/iseguide/mergedProjects/coregen
/coregen.htm

Util Bus Split Operation Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Util Flop-Flop Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Util Reduced Logic Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

Util Vector Logic Xilinx, Inc. LogiCORE
Spartan-3, Spartan-IIE, 

Spartan-II FPGAs

VGA Compatible Cores 
(INT416-SM, INT416-SXGA)

Intrinsix Corporation Candidate Core
Spartan-3E, Spartan-3 

FPGAs

Z80 Compatible Programmable 
Counter/Timer (CZ80CTC)

CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Z80 Serial I/O Controller (CZ80SIO) CAST, Inc. AllianceCORE X
Spartan-3, Spartan-IIE 

FPGAs

Table 14-1: Spartan-3 Generation IP Cores Support (Continued)

Product Name Vendor Type SignOnce Supported Devices

http://www.xilinx.com/ipcenter
http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/ise/dsp_design_prod/index.htm
http://www.xilinx.com/ise/embedded_design_prod/index.htm
http://www.xilinx.com/products/ipcenter/advancedsearch.htm
http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx92/help/iseguide/mergedProjects/coregen/coregen.htm
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Chapter 15

Embedded Processing and Control 
Solutions

Introduction
In a variety of applications, an embedded processor or controller is key to system 
flexibility, maintainability, and low cost. Spartan®-3 generation FPGAs support two 
powerful yet flexible Field Programmable Controller solutions, shown in Table 15-1. The 
PicoBlaze™ processor is a simple, highly efficient 8-bit RISC controller optimized for the 
Spartan-3 generation FPGA architecture (see Figure 15-1). The MicroBlaze™ processor is a 
powerful, full-featured, high-performance 32-bit RISC processor offering high-level 
language and real-time operating system (RTOS) support (see Figure 15-2).

Figure 15-1: PicoBlaze Embedded Microcontroller Block Diagram
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Figure 15-2: MicroBlaze Core Block Diagram

Table 15-1: Embedded Processing/Control Solutions for Spartan-3 Generation FPGAs

Function/Feature PicoBlaze Processor MicroBlaze Processor

Processor Architecture 8-bit RISC controller 32-bit RISC CPU

Typical Applications Embedded control, state machines, 
I/O processing

Embedded computation and control

Memory Architecture Harvard
(separate data/code data paths)

Harvard
(separate data/code data paths)

ALU/register width 8 bits (byte) 32 bits (word)

Registers 16 byte-wide 32 word-wide

Pipeline Stages 0 3

Code Address Space 512 or 1K instructions 512 to 4G bytes

Code Storage Block RAM (internal) Block RAM (internal)
External memory

Data Address Space 64 bytes (internal) 0 to 4G bytes

Data Storage Distributed RAM (internal) Block RAM (internal)
External memory

I/O Address Space 256 locations N/A

Processor Instructions 57 106

Operands per Instruction 2 3

http://www.xilinx.com
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The PicoBlaze processor is always fully embedded within a Spartan-3 generation FPGA 
using on-chip block RAM and distributed RAM for code and data storage. The MicroBlaze 
processor optionally uses internal FPGA memory resources or interfaces to external 
memory to support larger code or data storage requirements. The Embedded 
Development Kit (EDK) for the MicroBlaze processor includes hardware IP cores to 
support external Flash, SRAM, SDRAM, DDR DRAM, and ZBT SRAM memory. Similarly, 
the MicroBlaze processor supports both instruction and data caches, each up to 64 Kbytes, 
to increase performance when connected to external memory.

Clocks per Instruction 2 1 to 3, 34 for integer divide

Call/Return/Interrupt Stack 31 locations (internal) Variable size, in data memory

Interrupts 1, Expandable 1, Expandable

Maximum Interrupt Latency 4 clock cycles
(46 ns at maximum clock rate)

7 to 40 clock cycles
(application dependent)

Instruction Cache N/A 64 to 64K 

Data Cache N/A 64 to 64K 

Floating-Point Unit N/A Optional, up to 120X performance 
improvement

Hardware Multiplier N/A 32x32 = 32 in 3 cycles

Hardware Divider N/A Optional, up to 20% performance 
improvement

Hardware Barrel Shifter N/A Optional, up to 15X performance 
improvement

Hardware Debugger Support N/A XMD

LocalLink Direct Processor 
Interface

N/A 200 MB/sec communication

Table 15-1: Embedded Processing/Control Solutions for Spartan-3 Generation FPGAs (Continued)

Function/Feature PicoBlaze Processor MicroBlaze Processor

Table 15-2: PicoBlaze and MicroBlaze Resource Requirements and Performance

Function/Feature PicoBlaze Processor MicroBlaze Processor

Resource Requirements

Slices (4 slices = 1 CLB) 96 525

Block RAMs 0.5 or 1 2+

Effective cost in high-volume 
applications (250Ku)

From US$0.40 From US$1.40

Spartan-3A DSP FPGAs

Percent of XC3SD1800A 0.5% – 1% 3%+

Percent of XC3SD3400A 0.5% – 1% 2%+

Spartan-3A/3AN FPGAs

Percent of XC3S50A/AN 17%-33% 75%+

http://www.xilinx.com
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Using Spartan-3 generation FPGAs, both MicroBlaze and PicoBlaze processors consume 
minimal FPGA resources and are highly cost effective, as shown in Table 15-2. Complete 
PicoBlaze solutions cost as little as $0.40 in high-volume applications. MicroBlaze solutions 
start from $1.40 in volume.

Both the MicroBlaze and PicoBlaze processors provide significant numbers of flexible I/O 
at much lower cost than off-the-shelf controllers. Similarly, the peripheral set for both 
processors can be customized to meet the specific feature, function, and cost requirements 
of the target application. Because both processors are delivered in synthesizable HDL, both 
cores are future-proof, safe from any possible product obsolescence. Being integrated into 
the FPGA, both processors reduce board space, design cost, and inventory.

Percent of XC3S200A/AN 5%-6% 29%+

Percent of XC3S400A/AN 3%-5% 15%+

Percent of XC3S700A/AN 3%-5% 10%+

Percent of XC3S1400A/AN 2%-3% 6%+

Spartan-3E FPGAs

Percent of XC3S100E 10%-25% 55%+

Percent of XC3S250E 4%-8% 21%+

Percent of XC3S500E 3%-5% 11%+

Percent of XC3S1200E 2%-4% 7%+

Percent of XC3S1600E 2%-3% 6%+

Spartan-3 FPGAs

Percent of XC3S50 13% – 25% 68%+

Percent of XC3S200 5% – 8% 27%+

Percent of XC3S400 3% – 6% 15%+

Percent of XC3S1000 2% – 4% 8%+

Percent of XC3S1500 2% – 3% 6%+

Percent of XC3S2000 1.3% – 3% 5%+

Percent of XC3S4000 0.5% – 1% 2%+

Percent of XC3S5000 0.5% – 1% 2%+

Performance (Spartan-3 FPGA –5 speed grade)

Maximum clock frequency 87 MHz 100 MHz

Instructions per second 43.5M 92M

Dhrystone MIPS (D-MIPS) N/A 92

Table 15-2: PicoBlaze and MicroBlaze Resource Requirements and Performance (Continued)

Function/Feature PicoBlaze Processor MicroBlaze Processor

http://www.xilinx.com
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PicoBlaze Application Development Support
The PicoBlaze processor solution is a simple 8-bit RISC controller with an easy-to-use 
assembler. The PicoBlaze core has no direct support for in-system debugging although it 
can be debugged using the standard Xilinx JTAG-based interface. A simple instruction-set 
simulator is available.

The PicoBlaze reference design also includes UART transmitter and receiver macros with 
integrated 16-byte FIFOs. The UART supports 8-bit data, no parity, with one stop bit. 

MicroBlaze Application Development Support
The MicroBlaze processor offers complete application development support, including a 
full suite of software development tools, an IP library of processor hardware peripheral 
functions, plus in-circuit hardware debugger/emulation support.

Embedded Development Kit (EDK)
The Embedded Development Kit (EDK) is an all-encompassing solution for creating 
embedded programmable systems design. The EDK includes and supports the MicroBlaze 
soft processor core. 

Xilinx Platform Studio (XPS)

• Tools for editing software; creating hardware and software platforms 

• Runs library generation, and compiler tool chains; generates implementation and 
simulation netlists for use with ISE® Logic Design Tools 

GNU Software Development Tools

• C/C++ compiler for MicroBlaze cores (GNU gcc) 

• Debugger for MicroBlaze cores (GNU gdb) 

• Other GNU utilities 

Hardware/Software Development Tools

• XMD - Xilinx Microprocessor Debug engine for MicroBlaze cores

• System ACE™ tools 

• Data2MEM – Updates internal block RAM contents without recompiling the FPGA 
design

Board Support Packages (BSPs)

• Stand Alone BSP - For non-RTOS systems (MicroBlaze cores) 

Operating Systems
Many embedded processing applications require operating system capabilities. The 
following operating systems and real-time operating systems (RTOS) have ports to the 
MicroBlaze processor.

• Micriμm μC/OS-II Real-Time Operating System
http://www.micrium.com/products/rtos/kernel/rtos.html

http://www.micrium.com/products/rtos/kernel/rtos.html
http://www.xilinx.com
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• μClinux Operating System
http://www.uclinux.org 
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux/ 

• ATI Nucleus Real-Time Operating System
http://www.mentor.com/nucleus 

• Xilkernel Libraries 

♦ Highly modular scheduler, network stack, and file system

♦ Minimal resource requirements and footprint size

♦ Royalty-free license included with EDK purchase

♦ Fully supported by Xilinx

Processor Peripheral IP Functions
The EDK includes the following processor IP cores that support the MicroBlaze processor. 
The IP cores also include device drivers and RTOS adaptation layers. Add one or more IP 
cores to create a custom processor to meet specific application requirements.

Processor Peripherals

• Timer/Counter

• Timebase/Watchdog Timer

• UART-Lite

• Interrupt Controller

• General-Purpose I/O port (GPIO)

Serial I/O

• SPI Master and Slave

• JTAG UART

• 16450 UART*

• 16550 UART*

• I2C two-wire serial Master and Slave*

Memory Interfaces

• SDRAM controller and interface

• DDR SDRAM controller and interface

• Flash memory interface

• SRAM memory interface

• Block RAM interface

Networking Interfaces

• Single-channel HDLC controller*

• ATM Utopia L2 master and slave controller*

• 10/100 Ethernet Media Access Controller (MAC)* (Full and Lite versions)

* IP core available as a separate product. Plugs into EDK. Evaluation versions available.

http://www.uclinux.org
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux/
http://www.mentor.com/nucleus
http://www.xilinx.com
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In-Circuit Hardware Debugger Support
• EDK Software Debugger

♦ Requires MicroBlaze Hardware Debug Module

♦ Connects via FPGA JTAG port using Xilinx Parallel Cable IV

Related Materials and References
• Xilinx Embedded Processing

http://www.xilinx.com/products/design_resources/proc_central/index.htm

• MicroBlaze 32-bit RISC Processor
http://www.xilinx.com/microblaze 

• PicoBlaze 8-bit RISC Controller
http://www.xilinx.com/picoblaze 

• Platform Studio and the Embedded Development Kit (EDK)
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm 

• Spartan-3E MicroBlaze Development Kit
http://www.xilinx.com/products/devkits/DO-SP3E1600E-DK-UNI-G.htm

• Embedded Systems Development Training Course
http://www.xilinx.com/support/training/abstracts/embedded-systems.htm 

http://www.xilinx.com/microblaze
http://www.xilinx.com/picoblaze
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/support/training/abstracts/embedded-systems.htm
http://www.xilinx.com
http://www.xilinx.com/products/devkits/DO-SP3E1600E-DK-UNI-G.htm
http://www.xilinx.com/products/design_resources/proc_central/index.htm
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Section III:  PCB Design Considerations

“Packages and Pinouts”

“Package Drawings”

“Powering Spartan-3 Generation FPGAs”

“Power Management Solutions”

“Using IBIS Models”

“Using Boundary-Scan and BSDL Files”
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Chapter 16

Packages and Pinouts

Summary
This section describes the various pin functions on Spartan®-3 generation FPGAs and 
general information about the packages. For specific information on connections within 
the supported component packages, see Module 4 of the individual data sheets. For 
package drawings, see Chapter 17, “Package Drawings.”

Differences in Pinouts Between Spartan-3 Generation FPGAs
The Spartan-3A and Spartan-3AN platforms have identical pinouts for common 
part/package offerings, and there can be upward migration to the XC3SD1800A FG676 in 
the Spartan-3A DSP platform. See the data sheets for specific part/package offerings and 
information on pinout compatibility.

There are significant differences in pinouts between the Extended Spartan-3A, Spartan-3E, 
and Spartan-3 families. A device from one of those three groups cannot be used as a drop-
in replacement for a device in another group because of the functional differences. Each 
group has a pinout optimized to its own unique features.

Within a family, however, there is pin compatibility, allowing the user to easily migrate to 
a larger density or optimize to a smaller device as required. Minor differences between 
densities might exist in a given package, and they are shown in the pinout tables found in 
Module 4 of the data sheet for each family.

There are also some differences in pin naming between the families due to improved 
naming conventions and improvements made in functionality. Table 16-1 shows the pin 
naming differences.

Table 16-1: Differences in Pin Names Between Families

Spartan-3A/3AN/3A DSP 
FPGAs

Spartan-3E 
FPGAs

Spartan-3 
FPGAs

Configuration

Pull-Ups During 
Configuration

IO/PUDC_B IO/HSWAP HSWAP_EN

Low During Configuration IO/LDC2-LDC0 IO/LDC2-LDC0 N/A

High During Configuration IO/HDC IO/HDC N/A

SPI Variant Select IO/V2-V0 IO/V2-V0 N/A

SPI Output IO/MOSI MOSI N/A

Chip Select Input IO/CSI_B IO/CSI_B IO/CS_B

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com
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Chip Select Output IO/CSO_B IO/CSO_B N/A

Parallel Address IO/A25-A0 IO/A23-A0 N/A

Parallel Status N/A IO/BUSY IO/BUSY

Parallel Read/Write IO/RDWR_B IO/RDWR_B/
GCLK0

IO/RDWR_B

Configuration Clock IO/CCLK IO/CCLK CCLK

Mode IO/M2-M0 IO/M2/GCLK1, 
IO/M1, IO/M0

M2-M0

User Function

Suspend SUSPEND N/A N/A

Awake IO/AWAKE N/A N/A

Input-Only IP_# IP N/A

Global Clock IO/GCLK15-GCLK0 IO/GCLK15-
GCLK0/D7-D1

IO/GCLK7-
GCLK0

Left Half Clock IO/LHCLK7-LHCLK0 IO/LHCLK7-
LHCLK0

N/A

Right Half Clock IO/RHCLK7-RHCLK0 IO/RHCLK7-
RHCLK0/A10-A3

N/A

DCI Reference Inputs N/A N/A IO/VRN, 
IO/VRP

Notes: 
1. # = I/O bank number, an integer between 0 and 3 (7 for the Spartan-3 family).

Table 16-1: Differences in Pin Names Between Families (Continued)

Spartan-3A/3AN/3A DSP 
FPGAs

Spartan-3E 
FPGAs

Spartan-3 
FPGAs

http://www.xilinx.com
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Pin Types
Most pins on a Spartan-3 generation FPGA are general-purpose, user-defined I/O pins. 
There are, however, up to 12 different functional types of pins on Spartan-3 generation 
packages, as outlined in Table 16-2. The color coding is used in the package footprint 
drawings that are found in Module 4 of each data sheet.

Table 16-2: Types of Pins on Spartan-3 Generation FPGAs

Type / Color 
Code

Description Pin Name(s) in Type

I/O Unrestricted, general-purpose user-I/O pin. Most pins can be 
paired together to form differential I/Os. 

IO_#
IO_Lxxy_# 

INPUT Unrestricted, general-purpose input-only pin. This pin does not 
have an output structure.

IP_#
IP_Lxxy_#

DUAL Dual-purpose pin used in some configuration modes during the 
configuration process and then usually available as a user I/O 
after configuration. If the pin is not used during configuration, 
this pin behaves as an I/O-type pin. See UG332: Spartan-3 
Generation Configuration User Guide for additional information on 
these signals.

M[2:0]
PUDC_B (Spartan-3A/3AN/3A DSP 
FPGA)
HSWAP (Spartan-3E FPGA)
HSWAP_EN (Spartan-3 FPGA)
CCLK
MOSI/CSI_B
D[7:1]
D0/DIN
CSO_B
RDWR_B
BUSY/DOUT
INIT_B
A[25:0]
VS[2:0]
LDC[2:0]
HDC

VREF Dual-purpose pin that is either a user-I/O pin or Input-only pin, 
or, along with all other VREF pins in the same bank, provides a 
reference voltage input for certain I/O standards. If used for a 
reference voltage within a bank, all VREF pins within the bank 
must be connected.

IP/VREF_# 
IP_Lxx_#/VREF_#
IO/VREF_# 
IO_Lxx_#/VREF_#

CLK Either a user-I/O pin or an input to a specific clock buffer driver. 
Every package has 16 global clock inputs that optionally clock the 
entire device. The RHCLK inputs optionally clock the right-half of 
the device. The LHCLK inputs optionally clock the left-half of the 
device. See Chapter 2, “Using Global Clock Resources,” for 
additional information on these signals.

IO_Lxx_#/GCLK[15:0],
IO_Lxx_#/LHCLK[7:0],
IO_Lxx_#/RHCLK[7:0]

CONFIG Dedicated configuration pin. Not available as a user-I/O pin. 
Every package has three dedicated configuration pins. These pins 
are powered by VCCAUX. See UG332: Spartan-3 Generation 
Configuration User Guide for additional information on these 
signals.

DONE, PROG_B

PWRMGMT Control and status pins for the Spartan-3A/3AN/3A DSP power-
saving Suspend mode. SUSPEND is a dedicated pin. AWAKE is a 
Dual-Purpose pin and an I/O if Suspend mode is not enabled.

SUSPEND, AWAKE

http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com
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Pin Labeling 
The pin label is abbreviated but descriptive for each pin. All I/O pins begin with IO, while 
the input-only pins begin with IP. If a pin can be used as a differential signal, the name 
includes an L followed by the pair number and the bank number (see “Differential Pair 
Labeling”). Bank numbers are also indicated on single-ended pins and on the voltage 
inputs that are bank-specific, VCCO and VREF. Dual-purpose pins have a forward slash 
separating the two functions. _B is used as the active-Low designator, as in CSI_B.

Differential Pair Labeling 
A pin supports differential standards if the pin is labeled in the format Lxxy_#. The pin 
name suffix has the following significance. Figure 16-1 provides a specific example 
showing a differential input to and a differential output from Bank 1. 

L indicates that the pin is part of a differentiaL pair. 

xx is a two-digit integer, unique for each bank, that identifies a differential pin-pair. 

y is replaced by P for the true signal or N for the inverted. These two pins form one 
differential pin-pair. 

JTAG Dedicated JTAG pin. Not available as a user-I/O pin. Every 
package has four dedicated JTAG pins. These pins are powered by 
VCCAUX. 

TDI, TMS, TCK, TDO 

GND Dedicated ground pin. The number of GND pins depends on the 
package used. All must be connected. 

GND

VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX 
pins depends on the package used. All must be connected. See 
Chapter 18, “Powering Spartan-3 Generation FPGAs,” for 
additional information on this signal. VCCAUX is 2.5V in Spartan-
3 and Spartan-3E families. Extended Spartan-3A family devices 
can have VCCAUX at either 2.5V or 3.3V and the user should set 
CONFIG VCCAUX = 2.5 or 3.3. The value should be 3.3V in the 
Spartan-3AN platform when using the In-System Flash memory.

VCCAUX

VCCINT Dedicated internal core logic power supply pin. The number of 
VCCINT pins depends on the package used. All must be connected 
to +1.2V. See Chapter 18, “Powering Spartan-3 Generation 
FPGAs,” for additional information on this signal.

VCCINT

VCCO Along with all the other VCCO pins in the same bank, this pin 
supplies power to the output buffers within the I/O bank and sets 
the input threshold voltage for some I/O standards. See 
Chapter 18, “Powering Spartan-3 Generation FPGAs,” for 
additional information on these signals.

VCCO_#

N.C. This package pin is not connected in this specific device/package 
combination but might be connected in larger devices in the same 
package. 

N.C. 

Notes: 
1. # = I/O bank number, an integer between 0 and 3 (7 for the Spartan-3 family).

Table 16-2: Types of Pins on Spartan-3 Generation FPGAs (Continued)

Type / Color 
Code

Description Pin Name(s) in Type
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# is an integer, 0 through 3 (7 in the Spartan-3 family), indicating the associated I/O 
bank. 

Pinout Files
The pinouts are found in the data sheets for each family. Comma-delimited text files and 
Excel graphical footprints for the pinouts specific to each Spartan-3 FPGA family are 
available from the data sheets on xilinx.com. Using a spreadsheet program with the 
comma-delimited CSV files, the data can be sorted and reformatted according to any 
specific needs. Similarly, the ASCII text file is easily parsed by most scripting programs. 
For information on how to use these files to create OrCAD symbols, see Answer Record 
10078 at http://www.xilinx.com/support/answers/10078.htm.

The following subsections provide additional details on using the downloadable pinout 
files.

Pinout Tables

The comma-delimited ASCII text files located in the /tables directory list pinout 
information for a specific package type. Each line represents one pin on the package. 
Pinout information for all devices available in the package for the family appears on the 
line. This subsection provides brief descriptions of the fields available on each line.

SORT_PIN (QFP Packages Only)

Sorting by SORT_PIN orders the pins sequentially on the quad flat pack style packages, 
such as VQ100, TQ144, and PQ208.

SORT_ROW (BGA Packages Only)

Sorting by SORT_ROW orders the pins alphabetically on the ball grid array packages. 
Sorting by SORT_ROW is sufficient for the smaller BGA packages. However, the larger 
BGA packages have ROW indices such as AA and AB. An additional field, called 
SORT_ROW_#, is provided on the large BGA packages to aid sorting:

SORT_ROW_# (Larger BGA Packages Only)

The SORT_ROW_# field is similar to SORT_ROW, except that SORT_ROW_# is an integer 
value instead of an alphabetic value and is used for sorting pins on the BGA package.

Figure 16-1: Differential Pair Labeling
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http://www.xilinx.com/support/documentation/index.htm
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SORT_COLUMN (BGA Packages Only)

SORT_COLUMN is an integer value indicating the column number of the pin on a BGA 
package.

PIN_NUMBER

PIN_NUMBER is the pin identifier for each pin on the package.

For a particular package and family, there can be multiple FPGAs available in that package. 
For each pin, all possible FPGAs are listed. Each device is represented by two fields on each 
line, XC3S**_PIN and XC3S**_TYPE, described below.

XC3S**_PIN

The XC3S**_PIN field indicates the name for a particular package pin and for a particular 
Spartan-3 generation FPGA in that package. The ** characters here indicate a wildcard 
character. In the pinout table file, the ** characters are replaced by an actual part number, 
such as XC3S250E.

XC3S**_TYPE

The XC3S**_TYPE field indicates the pin type for a particular package pin and for a 
particular Spartan-3 generation FPGA in that package. The listed type matches those 
described in Module 4 of the data sheet. The ** characters here indicate a wildcard 
character. In the pinout table file, the ** characters are replaced by an actual part number, 
such as XC3S250E.

BANK

Sorting by BANK orders the pins by their associated I/O bank. The possible values for 
BANK include integers between 0 and 3 (0 and 7 for the Spartan-3 family), VCCAUX, and 
N/A. N/A indicates that the pin is not associated with a specific bank.

DIFFERENCE

Sorting by DIFFERENCE in descending order highlights any pinout differences between 
Spartan-3E FPGAs in the same package. A period (.) indicates that the pins match 
identically. DIFF indicates that the pins are different between packages.

To locate unconnected pins in a package type, sort by the TYPE of the smallest device 
offered in the package footprint. Any unconnected pins on larger devices are a subset of 
those on the smallest device.

Footprint Diagrams

The files in the \footprints directory are all Microsoft Excel spreadsheet files. These 
files present a common footprint for each package type and show the pins on the package 
as viewed from the top (QFP packages) or through the top of the package (BGA packages). 
Note the location of the pin 1 indicator on QFP packages.

Each pin is labeled and color -coded according to Module 4 of the data sheet. No Connect 
(N.C.) pins are also indicated with special symbols.

Most footprints were saved as 50% to 75% of normal size so that the entire footprint is 
visible on the screen. To change the magnification, select View --> Zoom from the Excel top 
menu, then select the desired magnification factor.

http://www.xilinx.com
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Excel might issue a warning when you open the file, indicating that the file might contain 
macros. Select either Disable Macros or Enable Macros. There are no active macros in the 
Excel files.

PartGen

The pinout files can also be generated from the Xilinx ISE® development system by using 
the PartGen program. To create pinout files in PartGen, go to a command prompt and type, 
for example, partgen -p xc3s50atq144. That command writes a text file called 
xc3s50atq144.pkg to the current directory, which contains a list of the pin names and 
pin numbers. Using the -v option (verbose) generates a more detailed .pkg file that 
includes the bank number and nearest CLB, among other information. Details on using 
PartGen are found in the PartGen chapter of the Development System Reference Guide. The 
ISE 10 version is found at 
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

ISE Development System Pin Assignment Reports

The ISE development system can also be used to list or view the pinout for a design, 
showing the actual placement of signals resulting from Place & Route.

The Place and Route (PAR) program generates three reports showing the actual pin 
assignments:

• a PAD file, containing I/O pin assignments in a parsable database form

• a CSV file, containing I/O pin assignments in a format supported by spreadsheet 
programs, delimited by the “|” character

• a TXT file, containing I/O pin assignments in an ASCII text version for viewing in a 
text editor

Pinout and Area Constraints Editor (PACE) Tool
The Pinout and Area Constraints Editor (PACE) tool is an interactive graphical application 
that can be used as follows:

• To view and edit location constraints for I/Os

• To view and create area constraints for logic in your design

• To determine resource requirements of your design

• To determine resource layout of your target device

Use the PACE tool during initial design entry or after consolidation of a design into a 
netlist file. For initial design entry, the PACE tool reads and writes VHDL and Verilog files, 
limited to I/O definitions. For consolidated netlists, the PACE tool reads the NGD file. In 
both cases, PACE reads and writes user constraint files (UCFs).

The PACE tool provides the following functions:

• Pin Assignment

Use the pin assignment function to assign I/O locations, specify I/O banks, specify 
I/O standards, prohibit I/O locations, and create legal pin assignments using the 
built-in DRC. You can use built-in tools for making I/O assignment compatible among 
multiple packages and for meeting Xilinx recommendations for simultaneous output 
switching.

• Design Browser 

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf
http://www.xilinx.com
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Use the Design Browser function to browse the design hierarchy while viewing a wide 
range of information about parts of the design.

• Area Constraints (FPGA Only)

Use the area constraints function to display a high-level abstraction of your device 
resources (Device Architecture view), create area constraints for logic in your design, 
and display I/Os on the periphery to show connectivity.

The Device Architecture window displays the die for a selected part type. This window is 
a scrollable, scalable view of a resource map of the device that is specified in your design. 
To floorplan, drag selected global logic or hierarchical logic groups from the Design 
Browser window and drop it into this window.

The Package Pins window (Figure 16-2) displays the graphical layout of the pins in a 
package. You can do the following with the Package Pins window:

• Park the cursor on a pin to display a data tip with the pin name and pin type. If a 
symbol is placed in the selected location, the symbol name is also shown.

• Select an I/O in any view to display the I/O as selected in all other views. 

• Display the bottom or top view for the package. 

• I/O banks are displayed by default.

• Differential pairs can be displayed by a red line between the pins in the pair.

• Move I/Os around, and drag and drop I/Os from the other windows.

• Prohibit or allow user I/O.

http://www.xilinx.com
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PlanAhead Design Analysis Tool
The PlanAhead™ tool streamlines the design step between synthesis and place and route, 
allowing you to divide a larger design up into smaller, more manageable blocks and focus 
efforts toward optimization of each module. This methodology results in improved 
performance and quality of the entire design. PlanAhead includes PinAhead Technology 
to help users better deal with the complexities of pin assignments. PinAhead offers an 
environment for fully automatic or semi-automated assignment of I/O ports to physical 
package pins. All ISE® Design Suite configurations now include PlanAhead Lite, 
providing the I/O pin planning capabilities of the PinAhead technology. It also includes 
design analysis and floorplanning capabilities as well as implementation control with the 
ExploreAhead environment. For more information, see 
http://www.xilinx.com/planahead. 

Figure 16-2: PACE Package View Window

UG331_c16_02_120206

http://www.xilinx.com/planahead
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Packages
Table 16-3 shows the low-cost, space-saving production package styles for the Spartan-3 
generation families. 

Pb-Free Packages
Each package style is available as a standard and an environmentally friendly lead-free 
(Pb-free) option. The Pb-free packages include an extra G in the package style name. For 
example, the standard TQ144 package becomes TQG144 when ordered as the Pb-free 
option. The mechanical dimensions of the standard and Pb-free packages are similar, as 
shown in the mechanical drawings provided in Table 17-1, page 461. The materials listed 
in the Material Declaration Data Sheet and the thermal characteristics will be different. The 

Table 16-3: Spartan-3 Generation Package Options

Spartan-3A 
DSP FPGAs

Spartan-3AN 
FPGA

Spartan-3A 
FPGA

Spartan-3E 
FPGA

Spartan-3 
FPGA

Package Leads Type
Max 
I/O

Lead 
Pitch 
(mm)

Footprint 
Area (mm)

Height 
(mm)

Mass(1) 
(g)

X X X VQ100/
VQG100

100 Very Thin Quad 
Flat Pack (TQFP)

66 0.5 16 x 16 1.20 0.6

X CP132/
CPG132

132 Chip-Scale Ball 
Grid Array (CS)

92 0.5 8 x 8 1.10 0.1

X X X X TQ144/
TQG144

144 Thin Quad Flat 
Pack (TQFP)

108 0.5 22 x 22 1.60 1.4

X X PQ208/
PQG208

208 Quad Flat Pack 
(QFP)

158 0.5 30.6 x 
30.6

4.10 5.3

X X X X FT256/
FTG256

256 Fine-pitch, Thin 
Ball Grid Array 
(FBGA)

195 1.0 17 x 17 1.55 0.9

X X X FG320/
FGG320

320 Fine-pitch Ball 
Grid Array 
(FBGA)

251 1.0 19 x 19 2.00 1.4

X X X FG400/
FGG400

400 Fine-pitch Ball 
Grid Array 
(FBGA)

311 1.0 21 x 21 2.43 2.2

X FG456/
FGG456

456 Fine-pitch Ball 
Grid Array 
(FBGA)

333 1.0 23 x 23 2.60 2.2

X X X FG484/
FGG484

484 Fine-pitch Ball 
Grid Array 
(FBGA)

376 1.0 23 x 23 2.60 2.2

X CS484/
CSG484

484 Chip-Scale Ball 
Grid Array (CS)

309 0.8 19 x 19 1.80 1.4

X X X X FG676/
FGG676

676 Fine-pitch Ball 
Grid Array 
(FBGA)

519 1.0 27 x 27 2.60 3.4

X FG900/
FGG900

900 Fine-pitch Ball 
Grid Array 
(FBGA)

633 1.0 31 x 31 2.60 4.2

Notes: 
1. Package mass is ±10%. 

http://www.xilinx.com
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pinouts are always identical between the standard and Pb-free packages. For more 
information on Pb-free packages, see Xilinx Pb-Free and RoHS-compliant Products.

Differences in Packages Between Spartan-3 Generation Families
Not all Spartan-3 generation devices are available in all packages. For a specific package, 
however, there is a common footprint within the associated family that supports all the 
devices available in that package for the family. See the footprint diagrams in the data 
sheets. There is no footprint compatibility between families.

For additional package information, see UG112: Device Package User Guide.

Selecting the Right Package Option
Spartan-3 generation FPGAs are available in both quad-flat pack (QFP) and ball grid array 
(BGA) packaging options. While QFP packaging offers the lowest absolute cost, the BGA 
packages are superior in almost every other aspect, as summarized in Table 16-4. 
Consequently, Xilinx recommends using BGA packaging whenever possible.

Package Thermal Characteristics
The power dissipated by an FPGA application has implications on package selection and 
system design. The power consumed by a Spartan-3 generation FPGA is reported using 
either the XPower Estimator worksheet or the XPower Analyzer integrated in the Xilinx 
ISE development software. For more information on these tools, see the Power Solutions 
page.

The power is then combined with the thermal resistance to calculate the resulting 
temperature. Module 4 of each family’s data sheet provides the thermal characteristics for 
the specific package offerings within each family. The Package Thermal Data Query tool 
allows the user to use the Device Family (for example, Spartan-3E, Device name (for 
example, XC3S100E), and Package code (for example, FT256) to obtain product-specific 
Thermal Data. Three types of thermal resistance are provided as shown in Table 16-5. All 
resistance values are relative to the die junction temperature and are measured in °C per 
watt.

Table 16-4: QFP and BGA Comparison

Characteristic
Quad Flat Pack 

(QFP)
Ball Grid Array 

(BGA)

Maximum User I/O 158 633

Packing Density (Logic/Area) Good Better

Signal Integrity Fair Better

Simultaneous Switching Output (SSO) Support Fair Better

Thermal Dissipation Fair Better

Minimum Printed Circuit Board (PCB) Layers 4 4-6

Hand Assembly/Rework Possible Difficult

http://www.xilinx.com/system_resources/lead_free/index.htm
http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com/products/design_resources/power_central/index.htm
http://www.xilinx.com/products/design_resources/power_central/index.htm
http://www.xilinx.com/cgi-bin/thermal/thermal.pl
http://www.xilinx.com
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Related Materials and References
The following list provides additional information related to pinouts and packages:

• Chapter 17, “Package Drawings”

Mechanical drawings for each package and links to the Material Declaration Data 
Sheets for each package.

• DS610, Spartan-3A DSP Pinouts
Module 4 contains detailed information on the pinouts specific to the Spartan-3A DSP 
FPGAs.

• Spartan-3A DSP ASCII Pinouts and Excel Footprints

Comma-delimited text files and Excel graphical footprints for the pinouts specific to 
the Spartan-3A DSP FPGAs.

• DS557, Spartan-3AN Pinouts
Module 4 contains detailed information on the pinouts specific to the Spartan-3AN 
FPGAs.

• DS529, Spartan-3A Pinouts

Module 4 contains detailed information on the pinouts specific to the Spartan-3A 
FPGAs.

• Spartan-3A/3AN ASCII Pinouts and Excel Footprints

Comma-delimited text files and graphical footprints for the pinouts specific to the 
Spartan-3A/3AN FPGAs.

• DS312, Spartan-3E Pinouts

Module 4 contains detailed information on the pinouts specific to the Spartan-3E 
FPGAs.

• Spartan-3E ASCII Pinouts and Excel Footprints

Comma delimited text files and Excel graphical footprints for the pinouts specific to 
the Spartan-3E FPGAs

• DS099, Spartan-3 Pinouts

Module 4 contains detailed information on the pinout specific to the Spartan-3 FPGAs.

• Spartan-3 ASCII Pinouts and Excel Footprints

Comma-delimited text files and Excel graphical footprints for the pinouts specific to 
the Spartan-3 FPGAs.

Table 16-5: Thermal Characteristics

Symbol Characteristic Description

θJA Junction to Ambient

Temperature difference between ambient environment and 
junction. Drops with increasing air flow. Specified at air flow 
rates of 0 (still air), 250, 500, and 750 Linear Feet Per Minute 
(LFPM)

θJB Junction to Board Temperature difference between board and junction.

θJC Junction to Case
Temperature difference between the package body (case) and 
junction.

http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf
http://www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds610.pdf
http://www.xilinx.com/support/documentation/data_sheets/s3adsp_pin.zip
http://www.xilinx.com
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• UG112, Device Package User Guide 

Description and specifications for packages, pack and ship, thermal characteristics, 
electrical characteristics, PCB design rules, moisture sensitivity, and reflow soldering 
guidelines.

• Device Packaging Application Notes

Application notes on board routability, solder reflow, and related topics.

http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com/support/documentation/device_packaging.htm
http://www.xilinx.com
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Chapter 17

Package Drawings

Summary
This chapter provides mechanical drawings of the Spartan®-3 generation packages listed 
in Table 17-1. These drawings are also available on the Xilinx website at 
http://www.xilinx.com/support/documentation/package_specifications.htm. Also 
found on the Xilinx website is the Material Declaration Data Sheet for the standard and Pb-
free versions of each package.

Table 17-1: Spartan-3 Generation Mechanical Drawings

Package
Spartan-3A DSP 

FPGA
Spartan-3AN 

FPGA
Spartan-3A 

FPGA
Spartan-3E 

FPGA
Spartan-3 

FPGA

Package Drawing
MDDS URL 

(http://www.xilinx.com/
support/documentatio

n/package_specs/)

UG331 
Page

Xilinx.com URL 
(http://www.xilinx.com/
support/documentation

/package_specs/)

VQ100 √ √ √
page 463 vq100.pdf

pk173_vq100.pdf

VQG100 √ √ √ pk130_vqg100.pdf

CP132 √
page 464 cp132.pdf

pk147_cp132.pdf

CPG132 √ pk101_cpg132.pdf

TQ144 √ √ √
page 465 tq144.pdf

pk169_tq144.pdf

TQG144 √ √ √ √ pk126_tqg144.pdf

PQ208 √ √
page 466 pq208.pdf

pk166_pq208.pdf

PQG208 √ √ pk123_pqg208.pdf

FT256 √ √ √
page 467 ft256.pdf

pk158_ft256.pdf

FTG256 √ √ √ √ pk115_ftg256.pdf

FG320 √ √ √
page 468 fg320.pdf

pk152_fg320.pdf

FGG320 √ √ √ pk106_fgg320.pdf

FG400 √ √
page 469 fg400.pdf

pk182_fg400.pdf

FGG400 √ √ √ pk108_fgg400.pdf

FG456 √
page 470 fg456.pdf

pk154_fg456.pdf

FGG456 √ pk109_fgg456.pdf

FG484 √ √
page 471 fg484.pdf

pk183_fg484.pdf

FGG484 √ √ √ pk110_fgg484.pdf

CS484 √
page 472 cs484.pdf

pk230_cs484.pdf

CSG484 √ pk231_csg484.pdf

FG676 √ √ √
page 473 fg676.pdf

pk155_fg676.pdf

FGG676 √ √ √ √ pk111_fgg676.pdf

FG900 √
page 474 fg900.pdf

pk186_fg900.pdf

FGG900 √ pk114_fgg900.pdf

http://www.xilinx.com/support/documentation/package_specifications.htm
http://www.xilinx.com/support/documentation/package_specs/pk231_csg484.pdf
http://www.xilinx.com/support/documentation/package_specs/cs484.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/package_specs/vq100.pdf
http://www.xilinx.com/support/documentation/package_specs/cp132.pdf
http://www.xilinx.com/support/documentation/package_specs/tq144.pdf
http://www.xilinx.com/support/documentation/package_specs/pq208.pdf
http://www.xilinx.com/support/documentation/package_specs/ft256.pdf
http://www.xilinx.com/support/documentation/package_specs/ft320.pdf
http://www.xilinx.com/support/documentation/package_specs/fg400.pdf
http://www.xilinx.com/support/documentation/package_specs/fg456.pdf
http://www.xilinx.com/support/documentation/package_specs/fg484.pdf
http://www.xilinx.com/support/documentation/package_specs/fg676.pdf
http://www.xilinx.com/support/documentation/package_specs/fg900.pdf
http://www.xilinx.com/support/documentation/package_specs/pk173_vq100.pdf
http://www.xilinx.com/support/documentation/package_specs/pk130_vqg100.pdf
http://www.xilinx.com/support/documentation/package_specs/pk147_cp132.pdf
http://www.xilinx.com/support/documentation/package_specs/pk101_cpg132.pdf
http://www.xilinx.com/support/documentation/package_specs/pk169_tq144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk126_tqg144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk166_pq208.pdf
http://www.xilinx.com/support/documentation/package_specs/pk123_pqg208.pdf
http://www.xilinx.com/support/documentation/package_specs/pk158_ft256.pdf
http://www.xilinx.com/support/documentation/package_specs/pk115_ftg256.pdf
http://www.xilinx.com/support/documentation/package_specs/pk152_fg320.pdf
http://www.xilinx.com/support/documentation/package_specs/pk106_fgg320.pdf
http://www.xilinx.com/support/documentation/package_specs/pk108_fgg400.pdf
http://www.xilinx.com/support/documentation/package_specs/pk109_fgg456.pdf
http://www.xilinx.com/support/documentation/package_specs/pk110_fgg484.pdf
http://www.xilinx.com/support/documentation/package_specs/pk111_fgg676.pdf
http://www.xilinx.com/support/documentation/package_specs/pk114_fgg900.pdf
http://www.xilinx.com/support/documentation/package_specs/pk154_fg456.pdf
http://www.xilinx.com/support/documentation/package_specs/pk155_fg676.pdf
http://www.xilinx.com/support/documentation/package_specs/pk182_fg400.pdf
http://www.xilinx.com/support/documentation/package_specs/pk183_fg484.pdf
http://www.xilinx.com/support/documentation/package_specs/pk186_fg900.pdf
http://www.xilinx.com/support/documentation/package_specs/pk230_cs484.pdf
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FG1156(1) √
page 475 fg1156.pdf

N/A

FGG1156(1) √ N/A

Notes: 
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See 

http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf for details.

Table 17-1: Spartan-3 Generation Mechanical Drawings

Package
Spartan-3A DSP 

FPGA
Spartan-3AN 

FPGA
Spartan-3A 

FPGA
Spartan-3E 

FPGA
Spartan-3 

FPGA

Package Drawing
MDDS URL 

(http://www.xilinx.com/
support/documentatio

n/package_specs/)

UG331 
Page

Xilinx.com URL 
(http://www.xilinx.com/
support/documentation

/package_specs/)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/package_specs/fg1156.pdf
http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf 
http://www.xilinx.com/support/documentation/customer_notices/xcn07022.pdf 
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VQ100/VQG100 Very Thin QFP Package (pk012)

Figure 17-1: VQ100/VQG100 Very Thin QFP Package (pk012)

http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0
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CP132/CPG132 Chip Scale BGA Package (pk500)

Figure 17-2: CP132/CPG132 Chip Scale BGA Package (pk500)

http://www.xilinx.com
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TQ144/TQG144 Thin QFP Package (pk009)

Figure 17-3: TQ144/TQG144 Thin QFP Package (pk009)

http://www.xilinx.com/xlnx/xweb/xil_feedback.jsp?key=ug331.pdf&contentType=XFILE&transTable=XFILE_TRANS&revName=REV_NUM&title=TITLE&iLanguageID=1&revNum=1.0
http://www.xilinx.com
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PQ208/PQG208 QFP Package (pk007)

Figure 17-4: PQ208/PQG208 QFP Package (pk007)

http://www.xilinx.com
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FT256/FTG256 Fine-Pitch Thin BGA Package (pk053)

Figure 17-5: FT256/FTG256 Fine-Pitch Thin BGA Package (pk053)
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FG320/FGG320 Fine-Pitch BGA Package (pk071)

Figure 17-6: FG320/FGG320 Fine-Pitch BGA Package (pk071)
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FG400/FGG400 Fine-Pitch BGA Package (pk083)

Figure 17-7: FG400/FGG400 Fine-Pitch BGA Package (pk083)
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FG456/FGG456 Fine-Pitch BGA Package (pk034)

Figure 17-8: FG456/FGG456 Fine-Pitch BGA Package (pk034)
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FG484/FGG484 Fine-Pitch BGA Package (pk081)

Note: The Spartan-3 generation FPGAs use the 4-layer version of the FG484 package

Figure 17-9: FG484/FGG484 Fine-Pitch BGA Package (pk081)
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CS484/CSG484 Chip-Scale BGA Package (pk223)

Figure 17-10: CS484/CSG484 Fine-Pitch BGA Package (pk223)
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FG676/FGG676 Fine-Pitch BGA Package (pk035)

Figure 17-11: FG676/FGG676 Fine-Pitch BGA Package (pk035)
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FG900/FGG900 Fine-Pitch BGA Package (pk038)

Figure 17-12: FG900/FGG900 Fine-Pitch BGA Package (pk038)
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FG1156/FGG1156 Fine-Pitch BGA Package (pk039)

Figure 17-13: FG1156/FGG1156 Fine-Pitch BGA Package (pk039)
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Chapter 18

Powering Spartan-3 Generation FPGAs

Introduction
FPGA designers are faced with a unique task when it comes to designing power supplies 
and power distribution systems. Most other ICs have very specific requirements. Because 
FPGAs can implement a countless number of applications at undetermined frequencies 
and in multiple clock domains, and have multiple selectable power supplies, it is 
important to carefully determine the requirements for a specific application and design to 
those requirements.

Differences between Spartan-3 Generation Families
The Spartan®-3, Spartan-3E, and extended Spartan-3A families share the same 90 nm 
process technology and core VCCINT voltage of 1.2V, and have similar architectures. 
Therefore they have similar power consumption characteristics. Unlike the other families, 
the Spartan-3A and Spartan-3A DSP platforms allow VCCAUX to be 3.3V (the user should 
set the CONFIG VCCAUX constraint to match the value used). In the Spartan-3AN 
platform, VCCAUX must be set to 3.3V. Using a VCCAUX of 3.3V can eliminate the 2.5V 
power rail by providing full 3.3V compliance and by being compliant to all aspects of hot-
swap applications. Table 18-1 highlights significant differences between the families.

Specific requirements for power supplies, including ramp rates and quiescent current, are 
different for each family and are specified in the FPGA data sheets. Dynamic power 

Table 18-1: Differences between Spartan-3 Generation Families

Feature
Spartan-3AN 

FPGA
Spartan-3A/3A DSP 

FPGA
Spartan-3E 

FPGA
Spartan-3 

FPGA

VCCINT 1.2V 1.2V 1.2V 1.2V

VCCAUX 3.3V 2.5V or 3.3V 2.5V 2.5V

VCCO 1.2V to 3.3V + 10% 1.2V to 3.3V + 10% 1.2V to 3.3V + 5% 1.2V to 3.3V + 5%

VIN Max Recommended 4.6V 4.6V VCCO + 0.5V 3.75V or VCCO + 0.3V

Hot Swap Full Support Full Support Sequenced Connector Sequenced Connector

VCCO Banks 4 4 4 4-8

Power-On Reset Inputs 
VCCINT, VCCAUX, 

VCCO Bank 2
VCCINT, VCCAUX, 

VCCO Bank 2
VCCINT, VCCAUX, 

VCCO Bank 2
VCCINT, VCCAUX, 

VCCO Bank 4

Power-Off Mode with 
Active Inputs

VCCO can be 
removed

VCCO can be 
removed

VCCO must be 
maintained

VCCO must be 
maintained

Suspend Mode Supported Supported N/A N/A

http://www.xilinx.com
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consumption also varies by family and can be estimated using the Xilinx power estimator 
tools.

Voltage Supplies
Spartan-3 generation FPGAs have multiple voltage supply inputs, as shown in Table 18-2. 
There are two supply inputs for internal logic functions, VCCINT and VCCAUX. In the 
Spartan-3A/3A DSP platforms, the VCCAUX level is programmable as either 2.5V (default) 
or 3.3V. The user specifies the value in the software through the CONFIG VCCAUX=2.5 or 
CONFIG VCCAUX=3.3 constraint. In the Spartan-3AN platform, the user must set CONFIG 
VCCAUX=3.3 (default) for using the In-System Flash.

Each of the I/O banks has a separate VCCO supply input that powers the output buffers 
within the associated I/O bank. All of the VCCO connections to a specific I/O bank must be 
connected to the same voltage. The VCCO voltage can be 1.2V to 3.3V, depending on the 
output standard specified for a given bank.

Most devices have four I/O banks. The Spartan-3 family offers eight I/O banks in most 
packages, one for each half-edge, except the TQ144 and CP132 packages, which have one 
VCCO level per side. In those packages, the VCCO signals are connected together to form the 
equivalent of VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM, and VCCO_LEFT.

In a 3.3V-only application, all VCCO supplies and VCCAUX in the Extended Spartan-3A 
family, connect to 3.3V. However, Spartan-3 generation FPGAs allow bridging between 

Table 18-2: Spartan-3 Generation Voltage Supplies

Supply 
Input

Description(1) Nominal Supply Voltage

VCCINT

Internal core supply voltage. Supplies all internal logic functions, such as CLBs, 
block RAM, and multipliers. Input to the Power-On Reset (POR) circuit. Powers 
input signals for standards at 1.2V, 1.5V, and 1.8V.

1.2V

VCCAUX

Auxiliary supply voltage. Supplies Digital Clock Managers (DCMs), differential 
drivers, dedicated configuration pins, JTAG interface. Powers 2.5V and 3.3V 
input signals. Input to the POR circuit.

2.5V; 3.3V option in 
Spartan-3A/3A DSP 

platforms; 
3.3V requirement in 

Spartan-3AN platform

VCCO_0 Supplies the output buffers in I/O Bank 0, the bank along the top edge of the 
FPGA.

Selectable: 3.3V, 3.0V, 
2.5V, 1.8V, 1.5V, or 1.2V

VCCO_1
Supplies the output buffers in I/O Bank 1, the bank along the right edge of the 
FPGA. In Byte-Wide Peripheral Interface (BPI) Parallel Flash Mode, connects to 
the same voltage as the Flash PROM.

Selectable: 3.3V, 3.0V, 
2.5V, 1.8V, 1.5V, or 1.2V

VCCO_2
Supplies the output buffers in I/O Bank 2, the bank along the bottom edge of the 
FPGA. Connects to the same voltage as the FPGA configuration source. Input to 
the POR circuit.

Selectable: 3.3V, 3.0V, 
2.5V, 1.8V, 1.5V, or 1.2V

VCCO_3
Supplies the output buffers in I/O Bank 3, the bank along the left edge of the 
FPGA.

Selectable: 3.3V, 3.0V, 
2.5V, 1.8V, 1.5V, or 1.2V

Notes: 
1. The VCCO designations apply to Spartan-3E and Spartan-3A/3AN/3A DSP FPGAs. The Spartan-3 family has eight VCCO supplies 

numbered 0 to 7 clockwise, starting from the top left half-edge. The Spartan-3 devices in the TQ144 and CP132 packages have four 
VCCO supplies as shown, but are connected together to make the equivalent of VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM, and 
VCCO_LEFT.
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different I/O voltages and standards by applying different voltages to the VCCO inputs of 
different banks. Refer to “I/O Banking Rules,” page 358 for which I/O standards can be 
intermixed within a single I/O bank.

In the Extended Spartan-3A family, the 3.3V supplies support the full ±10% range from 
3.0V to 3.6V, simplifying the selection of the 3.3V power supply. The Spartan-3/3E families 
support –10% to + 5%, or 3.0V to 3.45V.

The Extended Spartan-3A family also allows input voltages (VIN) of up to 4.1V, 
independent of the VCCO level. The Spartan-3/3E families restrict VIN to no more than 
0.3V/0.5V above VCCO (or VCCAUX for dedicated pins). For applications requiring higher 
voltages, see XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing 
Single-Ended Signals to User I/O Pins on Spartan-3 Generation FPGAs”.

VREF
Each I/O bank also has a separate, optional input voltage reference supply, called VREF. If 
the I/O bank includes an I/O standard that requires a voltage reference such as HSTL or 
SSTL, then all VREF pins within the I/O bank must be connected to the same voltage. The 
VREF pins are available as I/O pins if no standards within a bank require them. 

Xilinx recommends to always separate VREF from VTT as the VTT supply is very noisy. A 
stable VREF using a small LDO is the desirable implementation. A voltage divider 
implementation is also possible. Knowledge of the PCB environment, such as frequency of 
coupled noise, is required to correctly calculate the resistance and capacitance values of the 
divider circuit. As a result, an isolated reference supply is usually a more robust and 
simpler approach. 

Power Estimation
Xilinx provides a number of spreadsheet and Internet-based power estimation tools, 
power analyzers, and power-related documentation to meet all power solutions needs. 
The Power Solutions page on xilinx.com provides access to these tools, documentation, 
news, and supply solutions.

There are two recommended ways to estimate the total power consumption (quiescent 
plus dynamic) for a specific design:

• The XPower Power Estimator spreadsheet provides quick, approximate, typical 
estimates, and does not require a netlist of the design. (The Spartan-3 family uses the 
“Web Power Tool”.)

• The XPower Analyzer is delivered with ISE® software and uses a netlist as input to 
provide maximum estimates as well as more accurate typical estimates.

Voltage Regulators
The choice of a voltage regulator depends on system requirements and the estimated 
power consumption requirements for the FPGA. Use the XPower tools to calculate the 
requirements for a specific device and design. If the design is not complete or the XPower 
tool does not support the target device, use the closest match in the Spartan-3 generation 
families that is supported. Then choose a regulator from a pin-compatible family so the 
current capability can be adjusted up or down. External power FETs are easy to upgrade. A 
softstart feature that controls output ramp time is useful.

http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com
http://www.xilinx.com/products/design_resources/power_central/index.htm
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With care, use of overcurrent protection is possible, such as foldback or fuses. In this case, 
apply VCCAUX no later than VCCINT to avoid the surplus ICCINT current (see “Surplus 
ICCINT if VCCINT is Applied before VCCAUX,” page 481). Also be aware that capacitors will 
be charging at power-on and might draw a significant amount of current for a short time. 
If necessary, slow the supply voltage ramp to control the charge current. If foldback is not 
a design requirement, it is best to avoid it, keeping the power supply design simple.

Various power supply manufacturers offer complete power solutions for Xilinx FPGAs 
including some with integrated three-rail regulators specifically designed for Spartan-3 
generation FPGAs. The Xilinx Power Solutions website provides links to vendor solution 
guides and Xilinx power estimation and analysis tools.

Power-On Behavior
Spartan-3 generation FPGAs have a built-in Power-On Reset (POR) circuit that monitors 
the three power rails required to successfully configure the FPGA (see Figure 18-1). At 
power-up, the POR circuit holds the FPGA in a reset state until the VCCINT, VCCAUX, and 
VCCO Bank 2 supplies reach their respective input threshold levels (see the respective 
FPGA data sheets). In the Spartan-3 family, the POR input is VCCO Bank 4, the equivalent 
half-edge to VCCO Bank 2 in the Spartan-3E and Spartan-3A/3AN/3A DSP devices. 
References to POR and VCCO_2 apply to VCCO_4 in the Spartan-3 family. After all three 
supplies reach their respective thresholds, the POR reset is released and the FPGA begins 
its configuration process.

Supply Sequencing
Because the three FPGA supply inputs must be valid to release the POR and can be 
supplied in any order, there are no FPGA-specific voltage sequencing requirements. 
Applying the FPGA’s VCCINT supply last uses the least ICCINT current.

Although the FPGA has no specific voltage sequence requirements, be sure to consider any 
potential sequencing requirement of the configuration device attached to the FPGA, such 
as an SPI serial Flash PROM, a parallel NOR Flash PROM, or a microcontroller. For 
example, Flash PROMs have a minimum time requirement before the PROM can be 

Figure 18-1: Simplified POR Circuit Diagram
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selected, and this time must be considered if the 3.3V supply is the last in the sequence. See 
the Spartan-3 Generation Configuration User Guide (UG332) for more details.

For the Spartan-3AN devices, when configuring from the In-System Flash, VCCAUX must 
be in the recommended operating range. On power-up make sure VCCAUX reaches at least 
3.0V before INIT_B goes High to indicate the start of configuration. VCCINT, VCCAUX, and 
VCCO supplies to the FPGA can be applied in any order if this requirement is met.

When all three supplies are valid, the minimum current required to power-on the FPGA 
equals the worst-case quiescent current, specified in the FPGA data sheets. Spartan-3 
generation FPGAs do not require Power-On Surge (POS) current to successfully configure.

Surplus ICCINT if VCCINT is Applied before VCCAUX
If the VCCINT supply is applied before the VCCAUX supply, the FPGA might draw a surplus 
ICCINT current in addition to the ICCINT quiescent current levels specified in the FPGA data 
sheets. The momentary additional ICCINT surplus current might be a few hundred 
milliamperes under nominal conditions, significantly less than the instantaneous current 
consumed by the bypass capacitors at power-on. However, the surplus current 
immediately disappears when the VCCAUX supply is applied, and, in response, the FPGA’s 
ICCINT quiescent current demand drops to the levels specified in the data sheets. The FPGA 
does not use or require the surplus current to successfully power-on and configure. If 
applying VCCINT before VCCAUX, ensure that the regulator does not have a foldback 
feature that could inadvertently shut down in the presence of the surplus current. To avoid 
the surplus current, apply VCCINT after VCCAUX has reached its minimum recommended 
operating condition and is stable. For the lowest power-on current, apply VCCINT last, after 
both VCCAUX and VCCO have been applied.

Ramp Rate
To ensure successful power-on, VCCINT, VCCO Bank 2, and VCCAUX supplies must rise 
through their respective threshold-voltage ranges with no dips. The FPGA data sheets 
specify any ramp rate requirements. The Spartan-3 family has no ramp rate requirements 
for the current revision; refer to the Spartan-3 FPGA Family Data Sheet (DS099) for 
specifications for earlier versions. The Spartan-3E family has ramp rate requirements from 
0.2 to 50 ms. The Spartan-3A/3AN/3A DSP device ramp rate requirements are from 0.2 to 
100 ms.

Hot Swap
Hot swap, also known as hot plug or hot insertion, refers to plugging an unpowered board 
into a powered system. To support hot swap, an unpowered board or device must be able 
to be plugged directly into a powered system or backplane without affecting or damaging 
the system or the board/device. Devices that support hot swap include the following I/O 
features:

• Signals can be applied to I/O pins before powering the device

• I/O pins are high-impedance (that is, three-stated) before and throughout the power-
up and configuration processes

• There is no current path from the I/O pin back to the voltage supplies

While all Spartan-3 generation families can be used in hot-swap applications, they do not 
offer the same levels of support. The Extended Spartan-3A family is fully hot-swap 

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/ug332.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
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compliant to the definition provided above. The Spartan-3/3E families require sequenced 
connectors to make sure power is applied to the FPGA before the I/Os receive signals. 

Configuration Data Retention, Brown-Out
The FPGA’s configuration data is stored in robust CMOS configuration latches. The data in 
these latches is retained even when the voltages drop to the minimum levels necessary to 
preserve RAM contents, as specified in the FPGA data sheets.

After configuration, if the VCCAUX or VCCINT supply drops below its minimum data 
retention voltage, the integrity of the CMOS configuration latches is no longer guaranteed, 
and the current device configuration must be cleared using one of the following methods:

• Force the VCCAUX or VCCINT supply voltage below the minimum POR voltage 
threshold (as shown in the FPGA data sheets), then raise the voltage above the 
maximum threshold requirement.

• Assert PROG_B Low.

The POR circuit does not monitor the VCCO_2 supply after configuration. Consequently, 
dropping the VCCO_2 voltage does not reset the device by triggering a POR event. The 
PROG_B input bypasses the POR circuit (see Figure 18-1) and therefore can be used as an 
independent means to initialize the FPGA.

After the INIT_B signal goes High to indicate successful clearing of the FPGA, reconfigure 
the FPGA.

Saving Power
Lower power consumption not only reduces power supply requirements but also reduces 
heat, which increases reliability and might allow for smaller form factor packaging and 
eliminate heat sinks and fans. Xilinx FPGAs are designed to minimize power consumption 
without sacrificing high performance and low cost. 

Dynamic power consumption can be reduced by reducing the number or frequency of 
nodes and I/O toggling in a design. The lowest power state is the quiescent state with no 
inputs toggling, all outputs disabled, and no pull-up or pull-down resistors in use. In this 
state, the power consumption equals the sum of the power required for each power supply.

Consider the following techniques to eliminate any unnecessary switching in a design and 
reduce dynamic power:

• Bring all incoming signals to a static state

• Apply rail-to-rail levels to inputs wherever possible

♦ Use signals that swing from GND to VCCO

• Turn off as many outputs as possible

• Tie all unused inputs to VCCO or GND outside device

• Avoid instantiating pull-up and pull-down resistors on I/Os

• Disable as many internal oscillating circuits as possible

• Assign signal standards with small swings to outputs

• Have block RAMs operate in "No read on write" mode to reduce toggling of the 
outputs of the block RAM

• Reduce the total length of heavy loaded signals to reduce capacitance

http://www.xilinx.com
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Saving Clock Routing Power
Clocks are a significant aspect of power consumption because of their high fanout nets and 
also because controlling them limits the number of logic elements toggling in a design. If 
possible, stop the clock where it enters the FPGA, so that it will not consume any FPGA 
power. If you cannot gate the clock externally, then disable it inside the FPGA using the 
BUFGCE component (see Figure 18-2). The BUFGCE functions as an AND gate for the 
clock.

Avoid using logic to generate gated or multiple clocks. Using CLB logic on a clock signal 
introduces route-dependent skew and makes the design sensitive to the timing hazards of 
lot-to-lot variations.

Minimizing the amount of routing a clock net uses is helpful. The Xilinx software 
automatically disables clock nets in unused columns of CLBs, so reduce the number of 
clock columns in use by concentrating the clocked logic in the fewest possible columns of 
CLBs. Also reduce the number of rows that the clock is driving.

Floorplanning can be helpful to minimize clock power. Partition logic driven by global 
clocks into clock regions and reduce the number of clock regions to which each global clock 
is routed. Organize the design into independent clock domains, and clock each domain at 
the lowest possible frequency.

Even if the clock cannot be manipulated, the activity on the loads can be controlled 
through the use of clock enables to reduce switching activity on the outputs of flip-flops. 

Power-Off Mode
In some cases, the device can simply be powered off to save power. This is useful for 
designs where the FPGA has lengthy periods of non-operation and the power 
consumption must be as low as possible. For the Extended Spartan-3A family, all three 
supplies can be removed even if signals are still toggling on the inputs (see Figure 18-3). 
For the Spartan-3E and Spartan-3 families, VCCO must be kept at a valid level to keep the 
power diodes off (see Figure 18-4). VCCINT and VCCAUX can still be removed, reducing the 
total static current to the typical ICCO quiescent value. External FETs can be used to switch 
power. Configuration and memory data will be lost, so the FPGA must be reconfigured 
after powering on again.

Figure 18-2: Using BUFGCE to Disable a Clock
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To enter the Power-Off state, first pull PROG_B Low to turn the outputs off and initialize 
the configuration memory to all zeros. After INIT_B and DONE go Low, switch off VCCINT 
and VCCAUX. To restore power, reapply VCCINT and VCCAUX and then pull PROG_B back 
High. After INIT_B goes High, reconfigure the FPGA and return to user mode.

Figure 18-3: Spartan-3A/3AN/3A DSP Power-Off Diagram

Figure 18-4: Spartan-3/3E Power-Off Diagram
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Suspend Mode
The Spartan-3A/3AN/3A DSP Suspend Mode reduces power to below quiescent current 
levels while saving the state of the device, including all configuration and user data. For 
details on the Suspend Mode, see Chapter 19, “Power Management Solutions.”

Board Design and Signal Integrity
Building a working system today requires knowledge of a great deal more than just 
Boolean logic and HDL code. Feature size reduction and the need for reduced power 
consumption has driven core voltages down from the old standard of 5V to the 1.0V range. 
This change in voltage and signal frequency content requires the use of new design 
practices that take into account electrical effects that previously could be ignored. The 
documents and links on the Xilinx Signal Integrity website provide everything needed to 
achieve reliable PCB designs the first time.

Simultaneously Switching Outputs
Ground or power bounce occurs when a large number of outputs simultaneously switch in 
the same direction. The output drive transistors all conduct current to a common voltage 
rail. Low-to-High transitions conduct to the VCCO rail; High-to-Low transitions conduct to 
the GND rail. The resulting cumulative current transient induces a voltage difference 
across the inductance that exists between the die pad and the power supply or ground 
return. The inductance is associated with bonding wires, the package lead frame, and any 
other signal routing inside the package. Other variables contribute to SSO noise levels, 
including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-
induced voltage consequently affects internal switching noise margins and ultimately 
signal quality.

The number of SSOs allowed for quad-flat packages (VQ, TQ, PQ) is lower than for ball 
grid array packages (FG) due to the larger lead inductance of the quad-flat packages. The 
results for chip-scale packaging are better than quad-flat packaging but not as good as for 
ball grid array packaging. Ball grid array packages are recommended for applications with 
a large number of simultaneously switching outputs.

Each FPGA data sheet provides guidelines for the recommended maximum allowable 
number of Simultaneous Switching Outputs (SSOs). These guidelines describe the 
maximum number of user I/O pins of a given output signal standard that should 
simultaneously switch in the same direction, while maintaining a safe level of switching 
noise. Meeting these guidelines for the stated test conditions ensures that the FPGA 
operates free from the adverse effects of ground and power bounce.

Power Distribution System Design and Decoupling/Bypass Capacitors
Good power distribution system (PDS) design is important for all FPGA designs, 
especially for high-performance applications greater than 100 MHz. Proper design results 
in better overall performance, lower clock and DCM jitter, and a generally more robust 
system. Before designing the printed circuit board (PCB) for the FPGA design, please 
review XAPP623, Power Distribution System (PDS) Design: Using Bypass/Decoupling 
Capacitors.

http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf
http://www.xilinx.com
http://www.xilinx.com/products/design_resources/signal_integrity/
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No Internal Charge Pumps or Free-Running Oscillators
Some system applications are sensitive to sources of analog noise. Spartan-3 generation 
FPGA circuitry is fully static and does not employ internal charge pumps.

The CCLK configuration clock is active during the FPGA configuration process. After 
configuration completes, the CCLK oscillator is automatically disabled unless the 
Bitstream Generator (BitGen) option Persist=Yes.

Large-Swing Signals
Under recommended operating conditions, the User I/O and Dual-Purpose pins of 
Spartan-3 generation FPGAs handle signals that swing anywhere from 1.2V to 3.3V. The 
Dedicated pins of these FPGAs normally use the LVCMOS25 standard. To handle signals 
with a larger swing than is ordinarily recommended, see the guidelines in XAPP459, 
Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended SIgnals to User I/O 
Pins on Spartan-3 Generation FPGAs.

Related Documents
• Power Solutions (http://www.xilinx.com/power)

• Signal Integrity 
(http://www.xilinx.com/products/design_resources/signal_integrity)

• XAPP453, The 3.3V Configuration of Spartan-3 FPGAs 

• XAPP623, Power Distribution System (PDS) Design - Using Bypass/Decoupling Capacitors 

• UG332, Spartan-3 Generation Configuration User Guide

• Spartan-3 Generation Data Sheets 

http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com/power
http://www.xilinx.com/products/design_resources/signal_integrity
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com
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Chapter 19

Power Management Solutions

Overview
While some applications require the lowest possible system cost or highest performance, 
still other applications require the lowest possible standby power. Spartan®-3 generation 
FPGAs offer low-power options that balance cost and performance trade-offs.

All Spartan-3 generation FPGAs offer a power management option called Hibernate, 
which essentially allows all or most of the FPGA logic to be turned off to save power. This 
option also requires that the FPGA be reconfigured before returning to normal operation, 
and it does not preserve the state of the FPGA application.

The Extended Spartan-3A family (including the Spartan-3A, Spartan-3AN, and Spartan-
3A DSP platforms) offers an advanced power management feature called Suspend mode, 
which reduces FPGA power consumption while retaining the FPGA’s configuration data 
and application state. While Hibernate provides the most power savings, Suspend retains 
all data and offers fast wake-up times.

Table 19-1 summarizes the difference between Suspend and Hibernate.

Table 19-1: Spartan-3 Generation Power-Saving Options

Extended Spartan-3A
Family Suspend

Extended Spartan-3A
Family Hibernate

Spartan-3/3E
Family Hibernate

Configuration data retained Yes No

Application state retained
(flip-flops, RAM, SRL16)

Yes No

Time to exit from
power-saving mode

Approximately 500 μs + DCM 
lock time + programmable timing

FPGA configuration time 
(tens of milliseconds)

Power consumption while
in power-saving mode

Low Lowest

Power supplies Maintained or scaled down to 
save additional power

Removed
Removed except for 

VCCO

http://www.xilinx.com
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Extended Spartan-3A Family Suspend Mode
The Extended Spartan-3A family introduces an advanced power management option 
called Suspend mode. This section describes the system advantages of Suspend mode. 
More details on Suspend mode can be found in XAPP480, Using Suspend Mode in Spartan-3 
Generation FPGAs.

Figure 19-1 graphically demonstrates the effect that Suspend mode has on some example, 
representative designs measured on a typical XC3S1400A FPGA. The results for other 
array sizes roughly scale with device density. The Suspend mode primarily affects current 
consumption on the VCCINT and VCCAUX power rails, there are also power savings for the 
VCCO rail, depending on the how the user-programmable SUSPEND constraints are 
defined in the application (see “Define the I/O Behavior During Suspend Mode,” 
page 495).

Figure 19-1 includes three example designs that highlight the Suspend mode behavior:

• Blank: A blank FPGA design. No logic is used in this application. A blank design 
provides the lowest quiescent current and establishes the baseline power 
consumption.

• 32LVDS: A design that includes 32 LVDS differential input channels (64 pins) 
connected to 32 LVDS differential output channels (64 pins). On Extended Spartan-3A 
family FPGAs, the differential I/O buffers are powered by the VCCAUX voltage 
supply.

• 32LVDS+8DCM: A design that includes the circuitry described for 32LVDS plus eight 
Digital Clock Managers (DCMs). On Extended Spartan-3A family FPGAs, the 
differential I/O buffers and DCMs are powered by the VCCAUX voltage supply. 

Figure 19-1: Effects of Suspend Mode on Example Designs Measured on Typical XC3S1400A
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Figure 19-1 also shows four bars, indicating the typical quiescent current on the VCCINT 
and VCCAUX supplies under normal quiescent conditions with all clocks stopped and 
during Suspend mode. The associated current measurement, in mA, appears along the 
left-side vertical axis. Note that the current on VCCAUX during Suspend mode is near the 
base of the chart, highlighted in burgundy.

Furthermore, Figure 19-1 shows the quiescent power (current multiplied by the voltage 
applied to each power rail). The associated resulting power measurement, in mW, appears 
on the right-side vertical axis. On Spartan-3A/3A DSP FPGAs, VCCAUX can be either 2.5V 
or 3.3V nominally. By physics, the quiescent power is lower when VCCAUX = 2.5V. Note the 
significant reduction in total power consumption when the Spartan-3A FPGA is in 
Suspend mode. Although the total power savings is design dependent, Suspend mode 
typically reduces power consumption by 40% or more, with a minimum power savings of 
about 20%.

During Suspend mode, some of the circuitry powered by the VCCAUX supply is switched 
over to the VCCINT supply. Note the Blank design example in Figure 19-1. The current on 
the VCCINT supply actually increases while the current on the VCCAUX supply drops 
significantly! Fortunately, the total VCCINT current during Suspend remains below that 
used in an active FPGA application. Furthermore, despite the increased VCCINT current, 
the overall system power is reduced because current is being switched from the 2.5V or 
3.3V VCCAUX supply to the 1.2V VCCINT supply.

The power savings are more pronounced in the 32LVDS and 32LVDS+8DCM examples 
and both designs use circuitry that consumes current on the VCCAUX supply.

Suspend Features and Benefits
• Quiescent current is reduced by 40% or more and active current is significantly 

reduced.

• FPGA configuration data and the present state of the FPGA application during 
Suspend mode is retained.

• Fast, programmable FPGA wake-up time from Suspend mode, in as little as 500 μs.

• Each user-I/O pin has an individual control that defines how the pin behaves during 
Suspend mode.

• When enabled in the FPGA bitstream, Suspend mode is externally activated by the 
system using a single dedicated control pin called SUSPEND. Note that the SUSPEND 
pin, and therefore Suspend mode, is not available in the VQ100 package.

• The FPGA’s AWAKE pin indicates the present Suspend mode status. AWAKE is 
automatically dedicated when SUSPEND is enabled in the FPGA bitstream.

Design Preparation for Suspend Mode
To use the Suspend feature in an Extended Spartan-3A family FPGA application, follow 
these steps:

1. Define the I/O Behavior During Suspend Mode in the source design or in a user 
constraints file (UCF).

2. Define the AWAKE Pin Behavior when Suspend Feature Enabled.

3. Define the SUSPEND Input Glitch Filter setting.

4. Define the Suspend Mode Wake-Up Timing Controls.

5. Enable the Suspend Feature.

6. Generate the FPGA bitstream.

http://www.xilinx.com
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Entering Suspend Mode
Figure 19-2 provides a block diagram of how an Extended Spartan-3A family FPGA enters 
Suspend mode. Figure 19-3 provides example waveforms.

The FPGA can only enter Suspend mode if enabled in the configuration bitstream (see 
“Enable the Suspend Feature”). Once power is applied to the system, the FPGA always 
powers up and configures regardless of the value applied to the SUSPEND pin. Once 
enabled via the bitstream, the FPGA unconditionally and quickly enters Suspend mode if 
the SUSPEND pin is asserted. If Suspend is not enabled in the bitstream, the SUSPEND 
input will have no effect and the AWAKE pin will be usable as a general-purpose I/O.

When the FPGA enters Suspend mode, all nonessential FPGA functions are shut down to 
minimize power dissipation. The FPGA retains all application state and configuration data 
while in Suspend mode. All writable clock elements are write-protected against spurious 
write operations. All FPGA inputs and interconnects are shut down.

Each FPGA output pin or bidirectional I/O pin assumes its defined Suspend mode 
behavior, which is described as part of the FPGA design using a “SUSPEND Constraint”.

The AWAKE pin goes Low, indicating that the FPGA is in Suspend mode. The DONE pin 
remains High while the FPGA is in Suspend mode because the FPGA does not lose its 
configuration data.

Figure 19-2: Entering Suspend Mode
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Items 1 through 5 in Figure 19-3 are described below:

1. An external signal drives the FPGA’s SUSPEND pin High, unconditionally forcing the 
FPGA into the power-saving Suspend mode. Data values are captured for I/O pins 
with a SUSPEND constraint set to DRIVE_LAST_VALUE; however, this value is not 
presented until Step 4.

2. In response to the SUSPEND input going High, the FPGA immediately write protects 
and preserves the states of all clocked elements. The states of all flip-flops, block RAM, 
distributed RAM (LUT RAM), shift registers (SRL16), and I/O latches are preserved 
during Suspend mode.

3. The FPGA drives the AWAKE output Low to indicate that it is entering SUSPEND 
mode.

4. The FPGA switches the normal behavior of all outputs over to the Suspend mode 
behavior defined by the SUSPEND constraint assigned to each I/O. See “Define the 
I/O Behavior During Suspend Mode,” page 495.

5. FPGA inputs are blocked and the interconnects shut off to prevent any internal 
switching activity.

Figure 19-3: Suspend Mode Waveforms (Entering and Exiting)
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Exiting Suspend Mode
There are two possible ways to exit Suspend mode in a powered system:

1. Drive the SUSPEND input Low, exiting Suspend mode normally.

2. Pulse the PROG_B input Low, resetting the FPGA and causing the FPGA to reprogram.

Figure 19-4 is a block diagram showing how to exit Suspend mode using the SUSPEND 
pin.

When SUSPEND goes Low, the FPGA automatically re-enables all inputs and 
interconnects.

If enabled in the FPGA bitstream, all flip-flops are optionally, globally set or reset 
according the FPGA design description. By default, the flip-flops are not globally set or 
reset, which preserves the state of the FPGA application before entering Suspend mode.

The remaining wake-up process depends on the logic value applied to the AWAKE Pin. 
Once AWAKE goes High, two user-programmable timers define when FPGA outputs are 

Figure 19-4: Exiting Spartan-3A/3AN/3A DSP Suspend Mode
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re-enabled and when the write-protect lock is released from all writable clocked elements. 
The wake-up timing clock source is also programmable.

Items 6 through 10 correspond to the markers in Figure 19-3, page 491:

6. The system drives the FPGA’s SUSPEND input Low, causing the FPGA to exit 
Suspend mode.

7. The FPGA releases the inputs and interconnect, allowing signals to propagate 
internally. There is no danger of corrupting the internal state because all clocked 
elements are still write protected.

8. The FPGA asserts the AWAKE signal with the bitstream option drive_awake:yes. If the 
option is drive_awake:no, then the FPGA releases AWAKE to become an open-drain 
output. In this case, an external pull-up resistor is required or an external signal must 
drive AWAKE High before the FPGA continues to awaken. All subsequent timing is 
measured from when the AWAKE output goes High.

9. The FPGA switches output behavior from the specified SUSPEND Constraint to the 
function specified in the FPGA application. The timing of this switch-over is controlled 
by the Suspend/Wake sw_gts_cycle bitstream generation setting, which defines when 
the FPGA’s internal Global Three-State (GTS) control is released. After the specified 
number of clock cycles, the outputs are active according to normal FPGA application. 
By default, the outputs switch over four clock cycles after AWAKE goes High. The 
outputs are generally released before the clocked elements to allow signals to 
propagate out of the FPGA.

10. The writable, clocked elements are released according to the Suspend/Wake 
sw_gwe_cycle bitstream generator setting, which defines when the FPGA’s internal 
Global Write Enable (GWE) control is asserted. After the specified cycle, it is again 
possible to write to flip-flops, block RAM, distributed RAM (LUT RAM), shift registers 
(SRL16), and I/O latches. By default, the clocked elements are released five clock 
cycles after AWAKE goes High. Generally, the write-protect lock should be held until 
after outputs are enabled.

It is good design practice to apply a Reset to any design DCMs after exiting the Suspend 
mode.

PROG_B Programming Pin Always Overrides Suspend Mode

Pulsing the PROG_B programming pin Low always overrides Suspend mode and forces 
the FPGA to restart configuration. Likewise, power-cycling the FPGA also restarts 
configuration.

Suspend Mode Timing Example
Table 19-2 provides example, typical timing for the Extended Spartan-3A Family FPGA 
Suspend feature. Refer to the Spartan-3A FPGA Family Data Sheet (DS529), the Spartan-3AN 
FPGA Family Data Sheet (DS557), and the Spartan-3A DSP FPGA Family Data Sheet (DS610) 
as the official sources of these values.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds610.pdf
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Enable the Suspend Feature
The Suspend power-saving feature must first be enabled in the FPGA bitstream before it 
can be used. By default, the Suspend feature is disabled, SUSPEND has no effect, and the 
AWAKE pin is usable as a general-purpose I/O. When Suspend is enabled, the software 
will not allow use of the AWAKE pin for I/O.

Via User Constraints File (UCF)

Suspend mode is enabled and the SUSPEND Input Glitch Filter option is defined using a 
CONFIG statement in a user constraints file (UCF). Table 19-3 shows the available options. 
This is the recommended method for enabling Suspend mode as this constraint also 
automatically reserves the AWAKE pin.

Table 19-2: Suspend Mode Timing Parameters

Symbol Description Min Typ Max Units

Entering Suspend Mode

TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of
AWAKE pin without glitch filter (suspend_filter:No)

– 7 – ns

TSUSPENDFILTER Adjustment to SUSPEND pin rising edge parameters
when glitch filter enabled (suspend_filter:Yes)

+160 +300 +600 ns

TSUSPEND_GWE Rising edge of SUSPEND pin until FPGA output pins
drive their defined SUSPEND constraint behavior – 10 – ns

TSUSPEND_GTS Rising edge of SUSPEND pin to write-protect lock on
all writable clocked elements

– < 5 – ns

TSUSPEND_DISABLE Rising edge of the SUSPEND pin to FPGA input pins
and interconnect disabled

– 340 – ns

Exiting Suspend Mode

TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the
AWAKE pin. Does not include DCM lock time.

– 4 to 108 – μs

TSUSPEND_ENABLE Falling edge of the SUSPEND pin to FPGA input pins
and interconnect re-enabled

– 3.7 to 109 – μs

TAWAKE_GWE1 Rising edge of the AWAKE pin until write-protect
lock released on all writable clocked elements, using
sw_clk:InternalClk and sw_gwe_cycle:1.

– 67 – ns

TAWAKE_GWE512 Rising edge of the AWAKE pin until write-protect
lock released on all writable clocked elements, using
sw_clk:InternalClk and sw_gwe_cycle:512.

– 14 – μs

TAWAKE_GTS1 Rising edge of the AWAKE pin until outputs return to
the behavior described in the FPGA application,
usingsw_clk:InternalClk and sw_gts_cycle:1.

– 57 – ns

TAWAKE_GTS512 Rising edge of the AWAKE pin until outputs return to
the behavior described in the FPGA application,
usingsw_clk:InternalClk and sw_gts_cycle:512.

– 14 – μs

Figure 19-5: UCF Constraint Defining Suspend Mode Behavior for an I/O pin

CONFIG ENABLE_SUSPEND = “FILTERED” ;

http://www.xilinx.com


Spartan-3 Generation FPGA User Guide www.xilinx.com 495
UG331 (v1.5) January 21, 2009

Extended Spartan-3A Family Suspend Mode
R

Via BitGen

Caution! Setting the en_suspend bitstream option is an alternate way to enable the Suspend 
mode. However, this method is not recommended because it does not automatically reserve the 
AWAKE pin in the application.

bitgen -g en_suspend:Yes

Define the I/O Behavior During Suspend Mode
Use a SUSPEND Constraint to define the behavior of each pin to be programmed 
differently than the default, 3STATE.

Single-Ended I/O Standards

Each output, open-drain output, or bidirectional I/O pin in the FPGA application that uses 
a single-ended I/O standard can be individually programmed for one of the Suspend 
mode behaviors shown in Table 19-4. The default behavior is for the pin to be high 
impedance during Suspend mode although other options are available.

Differential I/O Standards

The differential output drivers and input receivers consume static power when used in an 
FPGA application. In Suspend mode, differential inputs and outputs are disabled to save 
power.

Table 19-3: Available Options for the ENABLE_SUSPEND Constraint

Option Suspend Mode SUSPEND Pin Filter AWAKE Pin

NO Suspend mode is disabled Not applicable. Connect 
SUSPEND pin to GND.

Available as a user I/O pin 
in the FPGA application

FILTERED Suspend mode is enabled Glitch filter is enabled AWAKE status indicator

UNFILTERED Glitch filter is bypassed

Table 19-4: Output Behavior Options during Suspend Mode

SUSPEND Attribute Function

DRIVE_LAST_VALUE The output continues to drive the level that was last stored in the 
output latch, according to the chosen standard. Requires VCCO to 
remain at the recommended operating conditions for the bank.

3STATE

(default)

The output is in the high-impedance state with no active internal 
pull-up or pull-down resistor. Results in the lowest possible I/O 
current draw.

3STATE_PULLUP The output is in the high-impedance state with an internal pull-up 
resistor to the associated VCCO supply. Requires VCCO to remain at 
the recommended operating conditions for the bank.

3STATE_PULLDOWN The output is in the high-impedance state with an internal pull-
down resistor to GND.

3STATE_KEEPER The output is high impedance. The internal bus keeper circuit is 
active. Requires VCCO to remain at the recommended operating 
conditions for the bank.

http://www.xilinx.com
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The output drivers for the “true” differential I/O standards (LVDS, RSDS, mini-LVDS, 
PPDS, TMDS) are high impedance, using one of the 3STATE attributes described in 
Table 19-4. The DRIVE_LAST_VALUE attribute is not supported for differential output 
drivers.

Treat the pseudo-differential I/O standards, such as BLVDS, LVPECL, DIFF_HSTL, and 
DIFF_SSTL, as two single-ended I/O pins. All the attributes apply as for “Single-Ended 
I/O Standards” although the settings must be set appropriately for the complementary 
pair.

When in the high-impedance state, the differential driver pair does not conduct current to 
the power or ground rails, or between adjacent pins.

Differential input receivers are disabled in Suspend mode.

Differential input termination (DIFF_TERM) is disabled when in Suspend mode.

SUSPEND Constraint

The SUSPEND constraint allows each pin to have an individually defined behavior during 
Suspend mode. The available options are in Table 19-4, page 495.

UCF Example

Figure 19-6 shows an example UCF constraint that defines the Suspend mode behavior for 
a specific pin. The SUSPEND constraint can be included on the same UCF line as other 
constraints for a pin.

More Information

For additional information on the SUSPEND constraint, see the Constraints Guide for the 
latest software version (www.xilinx.com/support/software_manuals.htm).

• Constraints Guide for ISE® 10 Software
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/cgd/cgd.pdf

Application State Retained during Suspend Mode
When entering Suspend mode, all writable clocked elements are write-protected. The state 
of all clocked memory elements is retained during Suspend mode.

• Logic block flip-flops

• I/O block latches and flip-flops

• Logic block distributed RAM (LUT RAM)

• Logic block shift registers (SRL16)

• Block RAM and registers

When exiting Suspend mode, all writable clocked elements are re-enabled, controlled by 
the sw_gwe_cycle setting.

An additional bitstream option called en_sw_gsr controls whether all clocked elements are 
globally set or reset when the FPGA awakens from Suspend mode. By default, 
en_sw_gsr:No, which means that clocked elements are not set or reset when the FPGA 
awakens and all states are preserved.

Figure 19-6: UCF Constraint Defining Suspend Mode Behavior for an I/O pin

NET "<net_name>" SUSPEND = “<io_type>” ;

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/cgd/cgd.pdf
http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm
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Suspend Mode Wake-Up Timing Controls
When exiting Suspend mode, the wake-up sequence for the FPGA is programmable and 
controlled by a single clock.

Wake-Up Timing Clock Source (sw_clk)

The wake-up timing when exiting Suspend mode is controlled by a selectable clock source 
as shown in Figure 19-7 and described in Table 19-5. The clock source is defined by up to 
two bitstream generator options, sw_clk and sometimes StartupClk.

The internal oscillator is disabled during Suspend mode to conserve power.

• The sw_clk option is specific to the Suspend feature. By default, sw_clk:InternalClk.

• The StartupClk option is available on every application. By default StartupClk:Cclk. 
Consequently, the CCLK pin is the default clock source when exiting Suspend mode.

Figure 19-7: Suspend Mode Wake-Up Timing Control Clock Selection
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Switch Outputs from Suspend to Normal Behavior (sw_gts_cycle)

The Suspend/Wake sw_gts_cycle bitstream option controls when I/O pins are released 
from their SUSPEND constraint settings and returned to normal operation. The timing is 
controlled by the “Wake-Up Timing Clock Source (sw_clk)” described above. The default 
sw_gts_cycle setting is 4 cycles, but this control can be set for any value between 1 and 
1,024 clock cycles.

This control becomes active after the AWAKE pin goes High. After the specified number of 
clock cycles, all output, open-drain output, and bidirectional I/O pins transition from their 
Suspend behavior, individually specified using a SUSPEND Constraint, back to the normal 
behavior specified in the original FPGA application.

It is best to release the outputs before releasing the write-protect lock on all clocked 
elements.

Release Write Protect on Clocked Elements (sw_gwe_cycle)

The Suspend/Wake sw_gwe_cycle bitstream option controls when the write-protect lock is 
released on all clocked elements.

The timing is controlled by the Wake-Up Timing Clock Source (sw_clk) described above. 
The default sw_gwe_cycle setting is 5 cycles, but this control can be set for any value 
between 1 and 1,024 clock cycles.

This control becomes active after the AWAKE pin goes High. After the specified number of 
clock cycles, the write-protect lock is released from all writable, clocked elements such as 
flip-flops, block RAM, etc.

If the en_sw_gsr:yes option was set, then the clocked elements are already globally set or 
reset to the value specified in the original FPGA design before the write-protect lock is 
released. If en_sw_gsr:no, then the state of the FPGA before entering Suspend mode is 
preserved.

It is best to release the outputs before releasing the write-protect lock on all clocked 
elements.

Table 19-5: Clock Sources to Wake-Up from Suspend Mode

sw_clk
Setting

StartupClk
Setting Clock Source Restriction

InternalClk -- Internal Oscillator The oscillator has an imprecise frequency of about 50 MHz.

StartupClk Cclk CCLK pin on FPGA This option is only available for FPGAs using Slave 
configuration mode. The bitstream option Persist:Yes must 
be set. This option is not available for FPGAs using the 
Master configuration mode; use InternalClk instead.

JtagClk TCK pin on FPGA The JTAG interface must be active to exit Suspend mode.

UserClk CLK input on the 
STARTUP_SPARTAN3A 

design primitive

The clock input to the STARTUP design primitive can 
originate from any nonclocked signal in the FPGA. It cannot 
originate from a flip-flop source because all clocked elements 
are write-protected while in Suspend mode.

http://www.xilinx.com
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Dedicated Configuration Pins Unaffected During Suspend Mode
The following dedicated configuration pins are unaffected when the FPGA is in Suspend 
mode:

• JTAG pins TDI, TMS, TCK, and TDO

• DONE pin

• PROG_B pin

SUSPEND Pin
When the Suspend feature is enabled (see “Enable the Suspend Feature,” page 494), the 
SUSPEND pin controls when the FPGA enters Suspend mode. During normal FPGA 
operation, the SUSPEND pin must be Low. When High, the SUSPEND pin forces the FPGA 
into the low-power Suspend mode. Table 19-6 describes the functionality of the SUSPEND 
pin.

If the Suspend feature is not enabled for an application (the application never enters low-
power mode), then connect the SUSPEND pin to GND.

Characteristics

The SUSPEND pin is an LVCMOS/LVTTL receiver, and power to the input buffer is 
supplied by the VCCAUX power rail. The SUSPEND pin has no pull-up resistors during 
configuration, and the PUDC_B control has no affect on the SUSPEND pin.

SUSPEND Input Glitch Filter

The SUSPEND pin has a programmable glitch filter to guard against short pulses, which 
could cause the FPGA to spuriously enter Suspend mode. Turning off the filter allows the 
FPGA to enter or exit SUSPEND mode more quickly, but the application must guard 
against spurious pulses.

Via User Constraints File (UCF)

The SUSPEND filter is set as part of the ENABLE_SUSPEND constraint, as described in 
“Via User Constraints File (UCF),” page 494.

Table 19-6: SUSPEND Pin Functionality

en_suspend
Setting

SUSPEND 
Pin Function

no
(default)

Suspend mode 
disabled

X

The suspend feature is disabled. The SUSPEND pin is 
unused and ignored. Connect the SUSPEND pin to GND.

yes

Suspend mode 
enabled

0

The FPGA performs the application described in the 
bitstream loaded into the FPGA during configuration. When 
the SUSPEND pin changes from High to Low, wake the 
FPGA from Suspend mode.

1 Force the FPGA to enter power-saving Suspend mode.

http://www.xilinx.com
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Bitstream Generator (BitGen) Option

The filter can also be enabled via a bitstream generator option:

bitgen -g suspend_filter:Yes

Effect on FPGA Configuration

Suspend mode is activated by an FPGA configuration bitstream option. Consequently, the 
SUSPEND pin has no effect on configuration.

If Suspend mode is enabled in the bitstream and the SUSPEND pin is High, the FPGA 
successfully configures and then immediately enters Suspend mode. The FPGA’s DONE 
pin will be High, but the AWAKE pin will be Low.

Tie SUSPEND to GND if not Using Suspend Mode

If not using Suspend mode, connect the SUSPEND pin to GND. Do not leave the pin 
floating.

http://www.xilinx.com
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AWAKE Pin
The AWAKE pin optionally provides status on the Suspend power-savings mode.

General Behavior (Suspend Feature Disabled)

Unless the Suspend feature is enabled, the AWAKE pin is a general-purpose user-I/O pin.

AWAKE Pin Behavior when Suspend Feature Enabled

If the Suspend feature is enabled, then the AWAKE pin indicates the present state of the 
FPGA, as summarized in Table 19-7. The AWAKE pin cannot be used by the FPGA 
application as a general-purpose I/O pin.

The AWAKE pin can further be configured as an open-drain output (the default) or a full-
swing output driver, as shown in Figure 19-8. This behavior is controlled by a bitstream 
generator (BitGen) option:

bitgen -g drive_awake:no

The AWAKE output pin is supplied by the VCCO power rail on bank 2 when Suspend 
mode is enabled.

When drive_awake:yes, the AWAKE pin is an active output driver, equivalent to a user 
I/O configured as LVCMOS, with 12 mA output drive and a Fast slew rate.

Controlling Wake-Up from an External Source

By default drive_awake:no. When drive_awake:no, the AWAKE pin is an open-drain 
output capable of sinking 12 mA. In this case, an external pull-up resistor is required to exit 
Suspend mode. The resistor value should be high to minimize the amount of current flow 
during Suspend mode. The resistor needs to be strong enough to overcome the I/O pin 
leakage. A large resistor value also equates to a longer AWAKE rise time. The FPGA does 
not exit Suspend mode until AWAKE goes High.

Table 19-7: AWAKE Pin Status

AWAKE Pin Indication

0 The FPGA is presently in the low-power Suspend mode.

1 The FPGA is active.

Figure 19-8: AWAKE Output Drive Options if Suspend Mode Enabled

AWAKE AWAKE

Internal
Awake
Signal Internal

Awake
Signal 

LVCMOS
12 mA
FAST 

LVCMOS
12 mA
FAST 

O O
T

(OE)

FPGA FPGA
VCC

20 kΩ 

drive_awake=yes drive_awake=no External Pull-up
Resistor Required

UG331_c19_07_011209

http://www.xilinx.com


502 www.xilinx.com Spartan-3 Generation FPGA User Guide
UG331 (v1.5) January 21, 2009

Chapter 19: Power Management Solutions
R

Holding the AWAKE pin Low delays the transition from Suspend mode to Active mode 
and allows an external controller to decide when to awaken the FPGA.

JTAG Operations Allowed During Suspend Mode
Table 19-8 shows the JTAG operations permitted when the FPGA is in Suspend mode. 
Executing these JTAG operations increases the FPGA’s power consumption while in 
Suspend mode.

Do not use any other JTAG instructions when in Suspend mode or while transitioning into 
and out of Suspend Mode. Furthermore, do not enter Suspend mode when performing a 
Readback operation.

Post-Configuration CRC Limitations When Using Suspend Mode
If an application uses the post-configuration CRC feature and an error occurs, do not enter 
Suspend mode. The FPGA will not wake from Suspend mode without reprogramming, 
such as asserting PROG_B or power-cycling the FPGA.

Several design options are possible:

1. Do not use the post-configuration CRC feature when the Suspend mode feature is 
enabled and vice versa.

2. If the post-configuration CRC feature is enabled, externally gate the SUSPEND pin 
input with the INIT_B pin. The post-configuration CRC feature signals an error by 
driving the INIT_B pin Low. The external gate ensures that the SUSPEND pin cannot 
drive High when the INIT_B pin is Low. Enable the SUSPEND Input Glitch Filter to 
avoid a possible race condition between the SUSPEND and INIT_B pins.

For more information, see the “Configuration CRC” chapter in UG332: Spartan-3 
Generation Configuration User Guide.

Table 19-8: JTAG Operations Allowed during Suspend Mode

Boundary Scan 
Command Description

IDCODE
Read the JTAG ID code that describes the Spartan-3A/3AN/3A 
DSP FPGA array type in the JTAG chain. This value is different 
from the Device DNA identifier, which is unique to every device.

BYPASS Enables BYPASS.

USERCODE Read the user-defined code embedded in the FPGA bitstream.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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Suspend Mode Bitstream Generator Options
Table 19-9 summarizes the various bitstream options associated with Suspend mode.

FPGA Voltage Requirements During Suspend Mode
During Suspend mode, the VCCINT and VCCAUX rails must remain powered at their 
specified data sheet levels. VCCO for bank 2 should also be maintained since it powers the 
AWAKE pin. However, the VCCO supply to the other three I/O banks can be potentially 
turned off to conserve additional power, depending on system requirements. Optionally, 

Table 19-9: Suspend Mode Bitstream Generator Options

Suspend Mode 
Bitstream 
Options

Options
(default) Description

en_suspend
No

Suspend mode is not used in this application. Connect the 
SUSPEND pin to GND.

Yes
Enables the power-saving Suspend feature, controlled by 
the SUSPEND pin.

drive_awake
No

If Suspend mode is enabled, indicates the present status on 
AWAKE using an open-drain output. An external pull-up 
resistor or High signal is required to exit SUSPEND mode.

Yes
If Suspend mode is enabled, indicates the present status by 
actively driving the AWAKE output.

suspend_filter Yes Enables the glitch filter on the SUSPEND pin.

No Disables the glitch filter on the SUSPEND pin.

en_sw_gsr No The state of all clocked elements in the FPGA is preserved.

Yes

Pulses the GSR signal during wake-up, setting or resetting 
all clocked elements, as originally specified in the FPGA 
application. The GSR pulse occurs before the AWAKE pin 
goes High and before the sw_gwe_cycle and sw_gts_cycle 
settings are active.

sw_clk
StartupClk

Uses the clock defined by the StartupClk bitstream 
generator setting to control the Suspend wake-up timing.

InternalClk
Uses the internally generated 50 MHz oscillator to control 
the Suspend wake-up timing.

sw_gwe_cycle

1,..,5,...,1024

After the AWAKE pin is High, indicates the number of clock 
cycles as defined by the sw_clk setting, when the global 
write-protect lock is released for writable clocked elements 
(flip-flops, block RAM, etc.). The default value is five clock 
cycles after the AWAKE pin goes High. Generally, this value 
is equal to or greater than the sw_gts_cycle setting.

sw_gts_cycle

1,..,4,...,1024

After the AWAKE pin is High, indicates the number of clock 
cycles as defined by the sw_clk setting, when the I/O pins 
switch from their SUSPEND Constraint settings back to 
their normal functions. The default value is four clock cycles 
after the AWAKE pin goes High. Generally, this value is 
equal to or less than the sw_gwe_cycle setting.

http://www.xilinx.com
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VCCO can be reduced to 1.0V during SUSPEND mode, but this also affects the voltage 
levels for any output pin with a SUSPEND=DRIVE_LAST_VALUE constraint.

The FPGA’s power-on reset (POR) circuit continues to monitor the VCCINT and VCCAUX 
supplies. The POR circuit does not monitor the VCCO supplies after configuration. By 
default, if the VCCINT or VCCAUX supply dips below the minimum specified data sheet 
voltage limit, then the FPGA restarts configuration.

Supply Requirements During Suspend Mode
When entering Suspend mode, the FPGA exhibits the following characteristics on the 
VCCINT and VCCAUX power rails:

• The current required on the VCCAUX supply drops significantly as the internal FPGA 
circuits powered by VCCAUX are internally switched over to the VCCINT supply 
during Suspend mode.

• The current required on the VCCINT supply increases slightly from its quiescent 
current level.

Hibernate
Hibernate provides the maximum possible power savings for applications that can be 
turned off for long periods of time and that can afford to lose the present application state.

Forcing FPGA to Quiescent Current Levels
Pulse PROG_B Low to achieve the quiescent current levels. Driving PROG_B Low forces 
all I/Os into a high-impedance state, ceases all internal switching, and converts the 
bitstream held in internal memory to all zeros. During and after the Low pulse on 
PROG_B, disable the internal pull-up resistors on all I/Os by driving the pull-up resistor 
control input High. The specific signal name varies by product family: PUDC_B for the 
Extended Spartan-3A family, HSWAP for the Spartan-3E family, or HSWAP_EN for 
Spartan-3 devices. Holding PROG_B Low continues clearing the configuration memory. To 
minimize quiescent current, release PROG_B High but hold off configuration by setting 
the Mode pins to a slave or JTAG configuration mode and disabling the external 
configuration clock (CCLK or TCK).

To restart the application, release PROG_B High and in slave or JTAG modes, enable the 
external configuration source. The FPGA must reconfigure before the application restarts. 
No state information is preserved.

If the application must retain the FPGA configuration bitstream, then there are a few 
options. If using Spartan-3A, Spartan-3AN, or Spartan-3A DSP FPGAs, use the Extended 
Spartan-3A Family Suspend Mode. If using Spartan-3E or Spartan-3 FPGAs, do not assert 
PROG_B. If all other test conditions are met (for example, no internal switching, I/Os are 
off), quiescent current levels are close to or slightly above the data sheet quiescent levels. 
Ensure that internal pull-up and pull-down resistors on I/O pins are disabled. 

Entering Hibernate State
Hibernate starts with the approach described in “Forcing FPGA to Quiescent Current 
Levels.” Hibernate provides further power savings by switching off power rails. This state 
reduces quiescent power consumption to the lowest possible level. The FPGA enters 
Hibernate by switching off the VCCINT (core) and VCCAUX (auxiliary) power supplies. 

http://www.xilinx.com
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Power is supplied to VCCO lines throughout the hibernation period. Figure 19-9 shows 
how to put Spartan-3 generation FPGAs into Hibernate.

During the Hibernation period, the VCCINT and VCCAUX rails are turned off. Power FETs 
with low “on” resistance are recommended to perform the switching action. Configuration 
data is lost upon entering Hibernate; therefore, the device will reconfigure after exiting the 
state. 

Holding the PROG_B input Low during the transition into Hibernation period keeps all 
FPGA output drivers in a high-impedance state. Release PROG_B after re-applying power 
to the VCCINT and VCCAUX rails. See “Design Considerations,” page 507 for recommended 
levels on Dedicated and Dual-Purpose pins.

Extended Spartan-3A Family FPGA: Turn Off VCCO

Extended Spartan-3A family I/O pins have a floating-well structure, providing full hot-
swap/hot-insertion capability. When a an Extended Spartan-3A family FPGA is in the 
Hibernate state, the VCCO supply can be safely turned off without adversely affecting 
either the FPGA or the external application.

Spartan-3E and Spartan-3 FPGAs: Maintain VCCO on I/O Banks Connected 
to Powered External Devices

Each user I/O or input-only pin on Spartan-3E and Spartan-3 FPGAs has a power diode 
between the pin and the associated VCCO rail. The power diodes are present on all signal-
carrying pins all of the time. In general, it is safest to maintain VCCO power for all banks 
throughout the Hibernation period to keep the power diodes inside the I/O block turned 
off when signals are applied to the pins. In Hibernate, the powered VCCO rails account for 
little current because the I/Os are in a high-impedance state. 

Under certain conditions, it is also possible to switch off the VCCO rail to a particular bank. 
This action eliminates the VCCO current for those banks (a few milliamperes). There are 
various ways to achieve this, as shown for the “Inactive Device” in Figure 19-9.

Figure 19-9: Spartan-3E Hibernate Example
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1. Turn off power to any external devices connected to a particular FPGA I/O bank. If 
both the FPGA I/O bank and the external device are unpowered, there is no current 
flow.

2. If the external device is powered but the FPGA I/O bank is not, then ensure that all 
signals driving into the FPGA are either high-impedance (Hi-Z) or that they are under 
0.5V. Both cases ensure that there is no current flow through the FPGA’s power diodes. 
Voltages higher than 0.5V can turn on the power diodes. Keep the diodes off to prevent 
"reverse current" from flowing into the VCCO rail.

Figure 19-10 shows the waveforms for entering and exiting Hibernate. The steps for 
entering Hibernate are as follows: 

1. Pull the PROG_B pin Low to force all user-I/O pins and Input-only pins into a high-
impedance state. 

2. The FPGA drives the INIT_B and DONE pins Low. 

3. External switches turn off the VCCINT and VCCAUX supply rails to the FPGA. 
Depending on the FPGA product family and the application, it might also be possible 
to turn off power to the VCCO supply rail.

♦ See “Extended Spartan-3A Family FPGA: Turn Off VCCO,” page 505

♦ See “Spartan-3E and Spartan-3 FPGAs: Maintain VCCO on I/O Banks Connected 
to Powered External Devices,” page 505

4. The FPGA is now in Hibernate. While the FPGA is kept in this state, power 
consumption rests at the lowest possible level. 

Exiting Hibernate
The steps for exiting Hibernate are as follows.

Figure 19-10: Hibernate Waveform
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1. Reapply power to all rails that were switched off. Apply power in any sequence. 

2. Before FPGA initialization can begin, deassert PROG_B to a High logic level. The 
rising transition on PROG_B must occur after turning all three power supplies back on. 

3. After logic initialization, the FPGA releases the open-drain INIT_B signal. With 
INIT_B High, the FPGA starts its configuration process. 

4. When configuration is complete, the FPGA enters the Startup phase, asserts DONE, 
and enables the I/Os, according to how the BitGen options are set. 

5. The FPGA is now ready for user operation. 

Design Considerations
Be aware of how various pins are powered in the application. Most user-I/O pins, 
including the Dual-Purpose configuration pins, are powered by a specific VCCO supply 
input. The Dedicated configuration pins are powered by the VCCAUX supply. If 
disconnecting power to any of these supplies, consider how that will affect FPGA 
configuration when power is re-applied.

For specific information on configuration pins and their associated power rails, refer to the 
“Configuration Pins and Behavior during Configuration” chapter in UG332: Spartan-3 
Generation Configuration User Guide.

If disconnecting power to VCCO or VCCAUX supplies on Spartan-3 or Spartan-3E FPGAs 
during Hibernate, do not apply voltages on the pins in excess of 0.5 V to ensure that the 
power diodes are kept off. This restriction does not apply to Extended Spartan-3A family 
FPGAs, which have a floating N-well structure for improved hot-swap performance. For 
more information, see XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-
Swing Single-Ended Signals to User I/O Pins on Spartan-3 Generation FPGAs.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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Chapter 20

Using IBIS Models

Summary
Input/Output Buffer Information Specification (IBIS) models are industry-standard 
descriptions used to simulate I/O characteristics in board-level design simulation. IBIS 
models for Spartan®-3 generation devices are available at 
http://www.xilinx.com/support/download/index.htm. Each family has its own IBIS 
models because there are differences in I/O standards and device characteristics. The 
models can be used with third-party simulation tools to verify proper signal integrity 
characteristics in board designs.

Introduction
As I/O switching frequencies have increased and voltage levels have decreased, accurate 
analog simulation of I/Os has become an essential part of modern high-speed digital 
system design. By accurately simulating the I/O buffers, termination, and circuit board 
traces, designers can significantly shorten their time-to-market of new designs. Identifying 
signal integrity related issues at the beginning of the design cycle decreases the required 
number of board fixes and increases quality. 

The device data sheets provide basic information about guaranteed DC and switching 
characteristics of the I/Os. However, the data sheet does not include all the information 
required to determine the best board implementation for a particular application, such as 
slew rates and drive strength, which are included in the IBIS model. Designers can use IBIS 
models for system-level analysis of signal integrity issues, such as ringing, crosstalk, and 
RFI/EMI. Complete designs can be simulated and evaluated before going through the 
expensive and time consuming process of producing prototype PCBs. This type of pre-
layout simulation can reduce considerably the development cost and time to market, while 
increasing the reliability of the I/O operation.

IBIS Advantages over SPICE
Traditionally SPICE analysis has been used extensively in areas like IC design, where a 
high level of accuracy is required. However in the PCB and systems domain, there are 
several disadvantages to the SPICE method, both for the device vendor and the user. 

Since SPICE simulations model a circuit at transistor level, it is necessary for the SPICE 
models to contain detailed information about the circuit and process parameters. For most 
IC vendors, this type of information is regarded as proprietary. 

Although SPICE simulation accuracy is typically very good, a significant limitation with 
any simulation method is simulation speed. Simulation speeds are particularly slow for 
transient simulation analysis, which is most often used when evaluating signal integrity 

http://www.xilinx.com/support/download/index.htm
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performance. SPICE simulation has a further disadvantage in that not all SPICE simulators 
are fully compatible. Often, default simulator options are not the same in different SPICE 
simulators. As there are some very powerful options that control accuracy, convergence 
and the algorithm type, any options that are not consistent might give rise to poor 
correlation in simulation results across different simulators. Also, because of the different 
variants of SPICE, these models are often incompatible between simulators, thus models 
must be extracted for a specific simulator. 

IBIS Background
IBIS, originally developed by Intel, is an alternative to SPICE simulation. The IBIS 
specification now is maintained by the EIA/IBIS Open Forum, which has members from a 
large number of IC and EDA vendors. IBIS is the ANSI/EIA-656 and IEC 62014-1 standard. 
For more information about the IBIS specification, see 
http://www.eigroup.org/ibis/ibis.htm. 

The core of the IBIS model consists of a table of current versus voltage and timing 
information. This is very attractive to the IC vendor as the I/O internal circuit is treated as 
a black box. This way, transistor-level information about the circuit and process details is 
not revealed. 

IBIS models can be used to model best-case and worst-case conditions (best-case = strong 
transistors, low temperature, high voltage; worst-case = weak transistors, high 
temperature, low voltage). The “fast/strong” model represents best-case conditions, while 
the "slow/weak" model represents worst-case conditions. The "typical" model represents 
typical behavior.

IBIS cannot be used for internal timing information (propagation delays and skew); the 
timing models instead provide that information. IBIS also does not model power and 
ground structures or pin-to-pin coupling. The implications are that ground bounce, power 
supply droop, and simultaneous switching output (SSO) noise cannot be simulated with 
IBIS models. Instead, Xilinx provides device/package-dependent SSO guidelines once 
extensive lab measurements are completed. IBIS models also do not provide detailed 
package parasitic information. Package parasitics usually are provided in the form of 
lumped RLC data, which loses its accuracy at higher speeds. To model the package 
parasitics accurately, include a transmission line with a delay of 25 ps to 100 ps and an 
impedance of 65Ω. 

Using IBIS models has a great advantage to the user in that simulation speed is 
significantly increased over SPICE, while accuracy is only slightly decreased. Non-
convergence, which can be a problem with SPICE models and simulators, is eliminated in 
IBIS simulation. Virtually all EDA vendors presently support IBIS models, and ease of use 
of these IBIS simulators is generally very good. IBIS models for most devices are freely 
available over the Internet making it easy to simulate several different manufacturers’ 
devices on the same board. Several different IBIS simulators are available today, and each 
simulator provides different results. An overshoot or undershoot of ±10% of the measured 
result is tolerable. Differences between the model and measurements occur because not all 
parameters are modeled. Simulators for IBIS models are provided by Cadence, Hyperlynx, 
Mentor, and Intusoft. 

http://www.eigroup.org/ibis/ibis.htm
http://www.xilinx.com
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Xilinx Support of IBIS
Xilinx provides IBIS models for all current products; they are downloaded easily from our 
website at http://www.xilinx.com/support/download/index.htm. The models also are 
made available in the development system. The Preliminary models are based initially on 
simulation and then verified against the silicon.

An IBIS file contains two sections, the header and the model data for each component. One 
IBIS file can describe several devices. The following is the content list in a typical IBIS file:

• IBIS Version

• File Name

• File Revision

• Component

• Package R/L/C

• Pin name, model, R/L/C

• Model (for example, 3-state)

• Temperature Range (typical, minimum, and maximum)

• Voltage Range (typical, minimum, and maximum)

• Pull-Up Reference

• Pull-Down Reference

• Power Clamp Reference

• Ground Clamp Reference

• I/V Tables for:

♦ Pull-Up

♦ Pull-Down

♦ Power Clamp

♦ Ground Clamp

• Rise and Fall dV/dt for minimum, typical, and maximum conditions (driving 50Ω) 

Spartan-3AN IBIS models are identical to those for the Spartan-3A FPGA platform.

IBIS I/V and dV/dt Curves
A digital buffer can be measured in receive (3-state) mode and drive mode. IBIS I/V curves 
are based on the data of both these modes. The transition between modes is achieved by 
phasing in/out the difference between the driver and the receiver models, while keeping 
the receiver model constantly in the circuit.

The I/V curve range required by the IBIS specification is –VCC to (2x VCC). This wide 
voltage range exists because the theoretical maximum overshoot due to a full reflection is 
twice the signal swing. The ground clamp I/V curve must be specified over the range 
– VCC to VCC, and the power clamp I/V curve must be specified from VCC to (2x VCC).

The three supported conditions for the IBIS buffer models are typical values (required), 
minimum values (optional), and maximum values (optional). For CMOS buffers, the 
minimum condition is defined as high temperature and low supply voltage, and the 
maximum condition is defined as low temperature and high supply voltage.

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com
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An IBIS model of a digital buffer has four I/V curves:

• The pull-down I/V curve contains the mode data for the driver driving low. The 
origin of the curve is at 0V for CMOS buffers.

• The pull-up I/V curve contains the mode data for the driver driving high. The origin 
of the curve is at the supply voltage (VCC).

• The ground clamp I/V curve contains receive (3-state) mode data. The origin of the 
curve is at 0V for CMOS buffers.

• The power clamp I/V curve contains receive (3-state) mode data. The origin of the 
curve is at the supply voltage (VCC).

Ramp and dV/dt Curves
The Ramp keyword contains information on how fast the pull-up and pull-down 
transistors turn on/off. The dV/dt curves give the same information, while including the 
effects of die capacitance (C_comp). C_comp is the total die capacitance as seen at the die 
pad, excluding the package capacitance.

dV/dt curves describe the transient characteristics of a buffer more accurately than ramps. 
A minimum of four dV/dt curves are required to describe a CMOS buffer: pull-down ON, 
pull-up OFF, pull-down OFF, and pull-up ON. dV/dt curves incorporate the clock-to-out 
delay, and the length of the dV/dt curve corresponds to the clock speed at which the buffer 
is used. Each dV/dt curve has t = 0, where the pulse crosses the input threshold.

IBISWriter
A Xilinx IBIS file downloaded from the Web contains a collection of IBIS models for all I/O 
standards available in the targeted device. The ISE® tool can generate IBIS models specific 
to your design via the IBISWriter tool, simplifying design export into signal integrity 
analysis tools. IBISWriter associates IBIS buffer models to each pin of the customer design 
according to the design specification for each I/O buffer. IBISWriter outputs an IBS file that 
can be used directly as an input file to your signal integrity analysis tool.

Generating design-specific IBIS files requires only three easy steps:

1. Implement your design in Project Navigator.

2. In the Processes window, under Implement Design/Place & Route, select Generate 
IBIS Model and click Run. A design-specific file is generated where all input/output 
pins are associated with an IBIS model.

3. Incorporate this file onto your favorite signal integrity analysis tool to perform the 
desired simulations.

References
IBIS files are available at the Xilinx Download Center:
http://www.xilinx.com/support/download/index.htm

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com
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Chapter 21

Using Boundary-Scan and BSDL Files

Summary
Boundary Scan Description Language (BSDL) files are provided for every part and 
package combination of IEEE 1149.1 (JTAG) compatible devices produced by Xilinx, 
including all the Spartan®-3 generation FPGAs. Third-party Boundary-Scan tools use 
these files to generate test vectors and perform the tests. Xilinx programming software also 
uses BSDL files when configuring devices through Boundary-Scan.

This chapter applies to all Spartan-3 generation FPGA families: Spartan-3, Spartan-3E, 
Spartan-3A, Spartan-3AN, and Spartan-3A DSP platforms.

Boundary-Scan Overview
Boundary-Scan testing is used to identify faulty board-level connections, such as 
unconnected or shorted pins. Boundary-Scan tests allow designers to quickly identify 
manufacturing or layout problems, which otherwise could be nearly impossible to isolate, 
especially with high-count ball-grid packages. More recently, PLD vendors such as Xilinx 
have made use of Boundary Scan as a convenient way of configuring devices, including 
the Spartan-3 generation FPGA families. For details on configuration through Boundary-
Scan, see UG332, Spartan-3 Generation Configuration User Guide.

IEEE Standards
Joint Test Action Group (JTAG) is the commonly used name for IEEE standard 1149.1, 
which defines a method for Boundary-Scan. JTAG compliant devices have dedicated 
hardware that comprises a state machine and several registers to allow Boundary-Scan 
operations. This dedicated hardware interprets instructions and data provided by four 
dedicated signals: TDI (Test Data In), TDO (Test Data Out), TMS (Test Mode Select), and 
TCK (Test Clock). The JTAG hardware interprets instructions and data on the TDI and TMS 
signals, and drives data out on the TDO signal. The TCK signal is used to clock the process 
(see Figure 21-1). 

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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In the Spartan-3 generation FPGAs, the four JTAG signals TDI, TDO, TMS, and TCK are on 
dedicated pins powered by VCCAUX. Each can be configured with a pullup (default), 
pulldown, or neither, through bitstream options. IEEE 1532 is a superset of the IEEE 1149.1 
JTAG standard. IEEE 1532 provides additional flexibility for configuring programmable 
logic devices. IEEE Std 1532 enables designers to concurrently program multiple devices, 
minimize programming times with enhanced silicon features, and produce robust systems 
that are more easily maintained. This standard defines the three additional items required 
to configure in-system programmable logic devices:

• Device architectural components for configuration 

• Algorithm description framework 

• Configuration data file 

General information on the IEEE 1532 JTAG standard is available at: 
http://www.xilinx.com/products/design_resources/config_sol/isp_standards_specs.htm

Boundary-Scan Functions
Spartan-3 generation devices support the mandatory IEEE 1149.1 commands, as well as 
several Xilinx vendor-specific commands. The EXTEST, INTEST, SAMPLE/PRELOAD, 
BYPASS, IDCODE, USERCODE, and HIGHZ instructions are all included. The TAP also 
supports internal user-defined registers (USER1, USER2) and configuration/readback of 
the device. 

Figure 21-1: Typical JTAG Architecture
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The Spartan-3 generation Boundary-Scan operations are independent of mode selection. 
The Boundary-Scan mode in Spartan-3 generation devices overrides other mode 
selections. For this reason, Boundary-Scan instructions using the Boundary-Scan register 
(SAMPLE/PRELOAD, INTEST, and EXTEST) must not be performed during 
configuration. All instructions except the user-defined instructions are available before a 
device is configured. After configuration, all instructions are available. 

Each Spartan-3 generation FPGA array type has a 32-bit device-specific device identifier 
readable through the Boundary-Scan logic. The Boundary-Scan interface also provides the 
option to store a 32-bit User ID, loaded during configuration and specified via the UserID 
configuration bitstream option.

For details on the standard Boundary-Scan instructions EXTEST, INTEST, and BYPASS, 
refer to the IEEE Standard.

Boundary-Scan Tools
Boundary-Scan testing requires specialized test equipment and software. The Boundary-
Scan test software is used to generate test vectors, which are typically delivered to the 
Boundary-Scan chain using a test pod connected to a PC. 

To develop vectors for Boundary-Scan testing, the test software must be provided with 
information about the scan chain: 

1. The composition of the scan chain - how many devices, what type, and so forth. 

The chain composition can be either specified by the user or automatically detected by 
the Boundary-Scan software. 

2. The Boundary-Scan architecture of each device - the Instruction Register length, 
opcodes, number of I/Os, and how each of those I/Os behaves. 

The Boundary-Scan architecture of each device is defined in a Boundary Scan 
Description Language (BSDL) file. 

3. How the device I/Os are connected to each other. 

This information typically is extracted from a board-level netlist. 

BSDL Files
Any manufacturer of a JTAG-compliant device must provide a BSDL file for that device. 
The BSDL file contains information on the function of each of the pins on the device - 
which are used as I/Os, which are power or ground, and so forth. All Xilinx BSDL files 
have file extensions of .bsd.

BSDL files for Xilinx devices are available in the development system and on the Xilinx 
website at http://www.xilinx.com/support/download/index.htm. BSDL files for other 
manufacturers typically can be found on the manufacturer's website.

Files for the IEEE 1532 extension to the BSDL files are also available for Xilinx products. 
They are included with the other BSDL files.

IEEE 1149.1 BSDL files appear as: <device_name>.bsd 

For example: xc3s50.bsd 

These BSDL files are the only ones needed for programming. For JTAG testing, the 
package-specific files are used.

For example: xc3s50_pq208.bsd 

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com
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IEEE 1532 BSDL files appear as: <device_name>_1532.bsd 

For example: xc3s50_pq208_1532.bsd 

IEEE Std 1532 BSDL files should not be used in place of or alongside 1149.1 BSDL files.

BSDL File Composition
BSDL files describe the Boundary-Scan architecture of a JTAG-compliant device, and are 
written in VHDL. There are eight main parts of a BSDL file: 

1. Entity Declaration 

The entity declaration is a VHDL construct used to identify the name of the device that 
is described by the BSDL file. 

Example (from the xc3s50_pq208.bsd file): 

entity XC3S50_PQ208 is

2. Generic Parameter 

The Generic parameter specifies which package the BSDL file describes. 

Example (from the xc3s50_pq208.bsd file): 

generic (PHYSICAL_PIN_MAP : string := "PQ208" );

3. Logical Port Description 

The Logical Port Description lists all of the pads on a device, and states whether that 
pin is an input (in bit;), output (out bit;), bidirectional (inout bit;) or 
unavailable for Boundary Scan (linkage bit;). 

Example (from the xc3s50_pq208.bsd file): 

port (
GND: linkage bit_vector (1 to 28);
CCLK_P104: inout bit;
DONE_P103: inout bit;
HSWAP_EN_P206: in bit;
M0_P55: in bit;
M1_P54: in bit;
M2_P56: in bit;
PROG_B: in bit;
TCK: in bit;
TDI: in bit;
TDO: out bit;
TMS: in bit;
VCCAUX: linkage bit_vector (1 to 8);
VCCINT: linkage bit_vector (1 to 4);
VCCO0: linkage bit_vector (1 to 2);
IO_P2: inout bit; --  PAD124
IO_P3: inout bit; --  PAD123

4. Package Pin Mapping 

The Package Pin Mapping shows how the pads on the device die are wired to the pins 
on the device package. 

Example (from the xc3s50_pq208.bsd file): 

constant PQ208: PIN_MAP_STRING:=
"GND:(P1,P8,P14,P25,P30,P41,P47,P53,P59,P66," &
"P75,P82,P91,P99,P105,P112,P118,P129,P134,P145," &
"P151,P157,P163,P170,P179,P186,P195,P202)," &

http://www.xilinx.com
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"CCLK_P104:P104," &
"DONE_P103:P103," &
"HSWAP_EN_P206:P206," &
"M0_P55:P55," &
"M1_P54:P54," &
"M2_P56:P56," &
"PROG_B:P207," &
"TCK:P159," &
"TDI:P208," &
"TDO:P158," &
"TMS:P160," &
"VCCAUX:(P17,P38,P69,P89,P121,P142,P173,P193)," &
"VCCINT:(P70,P88,P174,P192)," &
"VCCO0:(P188,P201)," &
"IO_P2:P2," &
"IO_P3:P3," &

5. use statements 

The use statement calls VHDL packages that contain attributes, types, constants, and 
others that are referenced in the BSDL File. 

Example (from the xc3s50_pq208.bsd file): 

use STD_1149_1_1994.all;

6. Scan Port Identification 

The Scan Port Identification identifies the JTAG pins: TDI, TDO, TMS, TCK, and TRST 
(if used). TRST is an optional JTAG pin that is not used by Xilinx devices. 

Example (from the xc3s50_pq208.bsd file): 

attribute TAP_SCAN_IN    of TDI : signal is true;
attribute TAP_SCAN_MODE  of TMS : signal is true;
attribute TAP_SCAN_OUT   of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (33.0e6, BOTH);

7. TAP description 

The TAP description provides additional information on the device’s JTAG logic. Some 
of this information includes the Instruction Register length, Instruction Opcodes, and 
device IDCODE. These characteristics are device specific, and can vary widely from 
device to device. 

Examples (from the xc3s50_pq208.bsd file): 

attribute COMPLIANCE_PATTERNS of XC3S50_PQ208 : entity is
        "(PROG_B) (1)";
attribute INSTRUCTION_LENGTH of XC3S50_PQ208 : entity is 6;
attribute INSTRUCTION_OPCODE of XC3S50_PQ208 : entity is

        "EXTEST    (000000)," &
attribute INSTRUCTION_CAPTURE of XC3S50_PQ208 : entity is

        "XXXX01";
attribute IDCODE_REGISTER of XC3S50_PQ208 : entity is
"XXXX" & -- version
"0001010" & -- family
"000001101" & -- array size
"00001001001" & -- manufacturer
"1"; -- required by 1149.1

8. Boundary Register description 

The Boundary Register description gives the structure of the Boundary-Scan cells on 
the device. Each pin on a device can have up to three Boundary-Scan cells, each cell 

http://www.xilinx.com
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consisting of a register and a latch. Boundary-Scan test vectors are loaded into or 
scanned from these registers. 

Example (from the xc3s50_pq208.bsd file): 

attribute BOUNDARY_REGISTER of XC3S50_PQ208 : entity is
"   0 (BC_2, *, controlr, 1)," &
"   1 (BC_2, IO_P161, output3, X, 0, 1, PULL0)," & --  PAD30
"   2 (BC_2, IO_P161, input, X)," & --  PAD30

BSDL File Verification
Xilinx verification of the supplied BSDL files has two levels. Preliminary files are generated 
using an automated, Xilinx-standard, BSDL generation process. The process is script-based 
and extracts information directly from the device design files, which fully describe the 
architecture and pinout. The quality of "Preliminary" BSDL files is very high, and the 
syntax is always tested. Files marked "Final" have undergone all the tests for syntax and 
hardware verification. To guarantee that the BSDL files exactly describe the operation of 
each pin, Xilinx uses an independent third-party Boundary-Scan tool vendor — Intellitech 
— to verify the actual silicon against the BSDL. 

Xilinx BSDL files are checked for 1149.1 compliance with the Intellitech Eclipse product 
using 'strict' BSDL syntax checking. Every semantic check described in the IEEE 1149.1b-
1994 (the standard for BSDL syntax) is performed using strict parsing. Test patterns then 
are generated from the BSDL file that include unique tests for every I/O pin. Each Xilinx 
device/package combination is tested on the Intellitech Reduced Contact Tester (RCT). 
The test patterns include verification of Test-Logic-Reset and TAP controller operation, 
BYPASS/IDCODE/USERCODE instructions and registers, and pin mapping of the 
boundary register to every input/output/bidirectional/clock pin and control cell. Finally, 
each device is tested for 1149.1 compliance after the device is programmed by 
downloading a design and using the RCT tester to verify post configuration compliance.

For more information on BSDL files and their verification, see 
http://www.xilinx.com/isp/bsdl/bsdl.htm.

Using BSDLAnno for Post-Configuration Boundary-Scan Behavior 
Whenever possible, Boundary-Scan tests should be performed on an unconfigured 
Spartan-3 generation device. Unconfigured devices allow for better test coverage, since all 
I/Os are available for bidirectional scan vectors. Boundary-Scan tests should be performed 
after configuration when configuration cannot be prevented and when differential 
signaling standards are used. If the differential signals are located between Xilinx devices, 
both devices can be tested pre-configuration. Each side of the differential pair will behave 
as a single-ended signal.

The BSDL files provided by Xilinx reflect the Boundary-Scan behavior of an unconfigured 
device. After configuration, the Boundary-Scan behavior of a device changes. I/O pins that 
were bidirectional before configuration might now be input-only, output-only, 
bidirectional, or unavailable. Boundary-Scan test vectors typically are derived from BSDL 
files, so if Boundary-Scan tests are going to be performed on a configured Xilinx device, the 
BSDL file must be modified to reflect the device's configured Boundary-Scan behavior. 

The Boundary-Scan architecture changes after the device is configured because the 
Boundary-Scan registers sit behind the I/O buffer and sense amplifier. The hardware is 
arranged in this way so that the Boundary-Scan logic operates at the I/O standard 
specified by the design. This allows Boundary-Scan testing across the entire range of 
available I/O standards. 

http://www.xilinx.com/isp/bsdl/bsdl.htm
http://www.xilinx.com
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Because certain connections between the Boundary-Scan registers and pad might change, 
the Boundary-Scan architecture is effectively changed when the device is configured. 
These changes often need to be communicated to the Boundary-Scan tester through a post-
configuration BSDL file. If the changes to the Boundary-Scan architecture are not reflected 
in the BSDL file, Boundary-Scan tests might fail. 

Xilinx offers the BSDLAnno utility to automatically modify the BSDL file for post-
configuration testing. BSDLAnno obtains the necessary design information from the 
routed .ncd file and generates a BSDL file that reflects the post-configuration Boundary-
Scan architecture of the device. 

Use the following syntax to generate a post-configuration BSDL file with BSDLAnno: 

bsdlanno [options] infile[.ncd] outfile[.bsd] 

The infile is the routed (post-PAR) NCD design source file for the specified design. The 
outfile[.bsd] is the destination for the design-specific BSDL file. The .bsd extension 
is optional. For more details on BSDLanno including suggested user modifications to the 
output file, see the Development System Reference Guide at 
http://www.xilinx.com/support/software_manuals.htm. 

Software Support
Xilinx offers several tools for generating device files and for device programming. 
Boundary-Scan test functionality is available from several third-party vendors, as noted at 
http://www.xilinx.com/products/design_resources/config_sol/resource/isp_ate.htm.

iMPACT
iMPACT is a full featured software tool used for configuration and programming of all 
Xilinx FPGAs, CPLDs, and PROMs. It features a series of "wizard" dialogs that easily guide 
the user through the every step of the configuration process. iMPACT supports a host of 
output file types including SVF. iMPACT configuration software enables users to easily 
configure Xilinx FPGAs using different modes: slave serial, SPI, SelectMAP (Slave 
Parallel), and JTAG IEEE 1149.1. iMPACT supports the Parallel Cable IV and Platform 
Cable USB.

iMPACT features a special function in the JTAG mode to test both the operation of the cable 
and the robustness of the JTAG chain. The user can test chain operation by instructing 
iMPACT to write to and read back from the user code location multiple thousands of times. 
It then counts the number of errors that occur in this operation. This gives the user the 
opportunity to evaluate the relative robustness of the JTAG chain and the susceptibility to 
noise and other influences like board layout. 

For more information on iMPACT see the iMPACT help at 
http://www.xilinx.com/support/software_manuals.htm.

SVF Files
Serial Vector Format (SVF) is an industry-standard file format that is used to describe JTAG 
chain operations in a compact, portable fashion. SVF files capture all of the device specific 
programming information within the SVF instructions. SVF files are useful because 
intricate knowledge of the device is not needed. The capability to create SVF files is 
included in the iMPACT tool. For more information on SVF files see XAPP503 at 
http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/products/design_resources/config_sol/resource/isp_ate.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
http://www.xilinx.com
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J Drive Engine for IEEE 1532 Programming
Xilinx has developed and introduced the world's first IEEE Std 1532 Programming Engine: 
J Drive Engine. Using this engine and a simple cable connected to the parallel port of any 
PC, users can easily configure Xilinx IEEE Std 1532 compatible PLDs. The designer 
provides J Drive Engine with the data and 1532 BSDL files for the device(s) to be 
programmed using a command line interface to configure the PLDs in the JTAG chain. For 
more information, see http://www.xilinx.com/products/design_resources/config_sol/ 
and XAPP500 at 
http://www.xilinx.com/support/documentation/application_notes/xapp500.pdf. 

Using the BSCAN_SPARTAN3A Macro
BSCAN_SPARTAN3A provides access to the BSCAN sites on a Spartan-3A, Spartan-3AN, 
or Spartan-3A DSP platform device (see Figure 21-2). The BSCAN_SPARTAN3 macro 
provides similar functionality for the Spartan-3 and Spartan-3E families, but does not 
include the TCK and TMS pins. The component is primarily used to create internal 
Boundary-Scan chains. The four-pin JTAG interface (TDI, TDO, TCK, and TMS) contains 
dedicated pins in Spartan-3 generation FPGAs. To use normal JTAG for Boundary-Scan 
purposes, just hook up the JTAG pins to the port and go. The pins on the 
BSCAN_SPARTAN3A symbol do not need to be connected unless those special functions 
are needed to drive an internal scan chain.

Spartan-3 generation FPGAs provide hooks for two user-definable scan chains through the 
USER1 and USER2 instructions. These instructions can be used to provide access to the 
user design through the JTAG interface. To take advantage of the optional USER1 and 
USER2 instructions, the designer must instantiate the BSCAN_SPARTAN3A macro in the 
source code, and wire it to the user-defined scan chain. Only one BSCAN_SPARTAN3A 
component can be used in any single design.

The BSCAN_SPARTAN3A component is generally used with IP, such as the ChipScope™ 
PRO analyzer, for communications via the JTAG pins of the FPGA to the internal device 
logic. When used with this IP, this component is generally instantiated as a part of the IP 
and nothing more is needed by the user to ensure it is properly used. If, however, custom 
access is desired, the BSCAN_SPARTAN3A component can be instantiated and connected 
to the design to get this functionality. All appropriate pins should be connected to the 
internal logic. For details on using boundary scan in Spartan-3 generation FPGAs, see 
Chapter 9, JTAG Configuration Mode and Boundary-Scan, in UG332.

Figure 21-2: BSCAN_SPARTAN3A Symbol
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Related Materials and References
• BSDL File Download: 

http://www.xilinx.com/support/download/index.htm 

• ISP Standards and Specifications: 
http://www.xilinx.com/products/design_resources/config_sol/isp_standards_specs.htm

• Xilinx Software Manuals and Help: 
http://www.xilinx.com/support/software_manuals.htm

• Boundary-Scan and JTAG Application Notes: 
http://www.xilinx.com/support/documentation/boundary_scan_and_jtag.htm

• Spartan-3 Generation FPGAs Configuration User Guide: 
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

• Xilinx data sheets: 
http://www.xilinx.com/support/documentation/data_sheets.htm

• Intellitech Boundary-Scan tools and tutorials: 
http://www.intellitech.com

http://www.xilinx.com
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