
XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 1

© Copyright 2001–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. All other trademarks are the property of their respective owners.

Summary With embedded systems becoming more popular, many designers want to reduce their
component count and increase flexibility. To accomplish both of these goals, a microprocessor
already available in the system can be used to configure an FPGA. This application note
provides a thorough discussion of FPGA configuration via a microprocessor, covering
Virtex® and Spartan® FPGA families. Also, this application note presents a system-level model
using a Xilinx® Complex Programmable Logic Device (CPLD) to implement an interface to the
FPGA configuration pins. C code is included to illustrate an example application using either
Slave Serial or SelectMAP mode. CPLD design files are also included to illustrate a possible
synchronous interface between the processor and the FPGA.

System
Overview

Today's systems demand greater functionality in less space and at reduced cost. In addition,
each generation of Xilinx FPGAs delivers higher performance and increased capabilities.
Although the Platform Flash PROMs provide an easy-to-use, pre-built configuration solution for
Xilinx FPGAs, an embedded processor-based configuration solution can allow for advanced
FPGA configuration applications and reduce board real estate requirements, assuming that an
external, embedded processor with sufficient memory is already a pre-requisite for the system.

This application note describes a technique for configuring an FPGA from an embedded
processor. Three common components are required: an embedded microprocessor, some
non-volatile memory, and a CPLD. Cost, as well as real estate, can be reduced if the function
of a dedicated configuration device, such as a PROM, can be integrated within these three
components. A system diagram is shown in Figure 1.

Note: Some systems might not require a CPLD if the microprocessor has a sufficient number of
general-purpose I/O (GPIO) pins available. For these systems, the Xilinx FPGA can be configured directly
by the microprocessor. For this type of configuration, this application note still applies. The overall
configuration flow remains the same, but the user must modify the source code so that the microprocessor
strobes its GPIO pins instead of its address and data bus.

Instead of using a dedicated PROM, the configuration bitstream can be loaded into unused
portions of non-volatile system memory. Furthermore, a microprocessor, whose primary
purpose is to perform other tasks, can also be used to coordinate the loading of configuration
data into a Xilinx FPGA device. Unused register bits of a CPLD accessible to the

Application Note: Virtex and Spartan FPGA Families

XAPP502 (v1.6.1) August 24, 2009

Using a Microprocessor to Configure Xilinx
FPGAs via Slave Serial or SelectMAP Mode
Author: Mike Peattie

R

X-Ref Target - Figure 1

Figure 1: System Diagram
x502_01_110102

 M
ic

ro
pr

oc
es

so
r CPLD

Non-Volatile
Memory

FPGA

Address

Data

http://www.xilinx.com

Configuration Background

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 2

R

microprocessor can then be used to monitor and instrument the FPGA’s control, data, and
status bits. Microprocessors typically have a limited number of control signals, and a simple
CPLD design can map a portion of the microprocessor’s address space to control FPGA
configuration. Using this method, the CPLD establishes a synchronous interface between the
microprocessor and the Xilinx FPGA. Such an interface can also allow the microprocessor to
do more advanced functions, such as partial reconfiguration and readback.

Configuration
Background

Microprocessor programming of Virtex and Spartan FPGA families can be accomplished in
either Slave Serial or SelectMAP mode. There are several similarities between Slave Serial and
SelectMAP modes. Most importantly, the overall configuration flow is identical for both modes
(Figure 2).

Note: Some Spartan FPGA families use the term parallel mode. Parallel mode is equivalent to the
SelectMAP mode in function. See the Spartan FPGA data sheets for details. The Spartan/XL FPGAs do
not support a parallel mode.

• Power-Up

Power-up is when power is first applied to the FPGA. Internal state machines are reset, and
the device begins to wake up. At this point, the PROGRAM and INIT pins are both driven
Low by the FPGA.

• Device Initialization

The device has properly powered up, but the internal configuration memory needs to be
reset. This portion of the configuration flow is signaled by PROGRAM going High and INIT
going High a short time later (see the appropriate data sheet for this delay). The device can
remain permanently in this state if the user holds either PROGRAM or INIT Low externally.

• Configuration Load

The start of the configuration load phase is signaled by the INIT signal going High. After
INIT goes High, the mode pins (M2:M0) are sampled (the mode pins indicate which
configuration mode is desired). Consult the data sheet for the mode-pin settings required
for the mode/device combination. In this phase, the device receives configuration data. All
configuration events occur on the rising edge of CCLK.

• Start-Up

After the device receives all the configuration data, it proceeds to the start-up sequence. This
sequence governs when the global reset signals (GTS, GWE, and for
Virtex/Virtex-E/Spartan-II/Spartan-IIE FPGAs, GSR) are toggled, and when the DONE pin
goes High. DONE going High does not signal completion of configuration—additional CCLK
cycles are needed to complete the start-up sequence. The number of CCLK cycles needed
after the delivery of a configuration bitstream depends on the selected BitGen options
affecting FPGA start-up (for example, DCM_lock or DCI_match) used for the FPGA
bitstream. When start-up extending options are not selected, the bitstream typically contains
enough data after the initiation of the start-up sequence to complete the sequence before the
end of the bitstream is reached. However, the best practice (to cover all possible bitstream
start-up options) is to load all the data from the configuration file, continue to apply CCLK
cycles (while the data bits are all ones) until DONE is asserted High, and finally, apply eight
additional CCLK cycles after DONE is asserted High to ensure completion of the FPGA
start-up sequence. Consult the FPGA family user guide and the BitGen section of the

X-Ref Target - Figure 2

Figure 2: Configuration Flow

Power-
Up

Device
Initialization

Configuration
Load

Start-
Up

X502_02_111507

http://www.xilinx.com

Configuration Background

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 3

R

Development Systems Reference Guide within the ISE® software manuals for additional
BitGen options and details.

Slave-Serial-Specific Topics
After INIT goes High, one bit of Slave Serial configuration data (presented on the DIN pin) is
loaded into the configuration logic on each rising CCLK edge (refer to the appropriate data
sheet for setup and hold-time specifications). Table 1 describes the pins used during Slave
Serial configuration.

Slave-SelectMAP-Specific Topics

Slave-SelectMAP configuration data is loaded one byte at a time when presented on the D[0:7] bus
on each rising CCLK edge, with the most significant bit (MSB) of each configuration byte on the D0
pin (see “Data Formatting and Byte-Swapping,” page 4 for more details). Table 2 lists the SelectMAP
pins.

Two extra control signals are present for SelectMAP: CS and WRITE. These signals must both
be asserted Low for a configuration byte to be transferred to the FPGA. A third signal, BUSY, is
an output from the FPGA. When SelectMAP configuration is run quickly (for example, greater
than 50 MHz for Virtex families), the BUSY line must be monitored to ensure that data is
transferred. BUSY going High indicates that the last data byte was not transferred and must
remain on the data bus.

Note: Check the appropriate FPGA family data sheet for the existence of a BUSY pin and the CCLK
frequency above which the BUSY pin becomes active. Also, refer to the appropriate data sheet for
setup-and-hold specifications for all signals. The SelectMAP configuration reference design for this
application note demonstrates configuration via only the 8-bit SelectMAP bus. A few FPGA families also
support 16- or 32-bit-wide SelectMAP buses. With appropriate modifications and attention to bit ordering,
the principles of this reference design can be extended for the 16- or 32-bit-wide SelectMAP bus. See the
configuration user guide specific to the target FPGA to determine the supported bus widths and bus bit
order.

Table 1: Slave Serial Pin Descriptions

Signal Name Direction Description

CCLK Input Configuration clock.

PROGRAM Input Asynchronous reset to configuration logic.

INIT Input/Output Input to delay configuration. Indicates when the device is
ready to receive configuration data; also indicates any
configuration errors.

DONE Input/Output Input to delay device start-up. Indicates when configuration is
in the start-up sequence.

M[2:0] Input Configuration mode selection.

DIN Input Serial configuration data input.

DOUT Output Data output for serial daisy chains.

Table 2: Slave-SelectMAP Pin Descriptions

Signal Name Direction Description

CCLK Input Configuration clock.

PROGRAM Input Asynchronous reset to configuration logic.

INIT Input/Output Input to delay configuration. Indicates when the device is
ready to receive configuration data; also indicates any
configuration errors.

DONE Input/Output Input to delay device start-up. Indicates when configuration is
in the startup sequence.

M[2:0] Input Configuration mode selection.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Configuration Background

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 4

R

Data Formatting and Byte-Swapping
Because the configuration bitstream is loaded into memory connected to the processor, it must
be formatted in a way that the processor (or whatever device programs the memory) can use.
To support various solutions, Xilinx tools can produce a number of different formats (Table 3).

Generally, either the .bin or .hex files are the most useful data source for programming non-
volatile memory. A Perl script (bitformat.pl) is included with this application note should
additional formatting be required. This script uses the .bit or .rbt file as a source and
produces a user-customizable ASCII file that can be helpful in programming the onboard
memory. Xilinx implementation software must be installed on the machine running this Perl
script because the PROMGen program is called from within the script (for details, see the
bitformat.readme file included).

In terms of data ordering, Slave Serial configuration is very simple. Loading begins with the first
bit in the bitstream and continues one bit at a time until the end of the file is reached.

In contrast, data ordering for SelectMAP configuration is slightly more complex. Configuration
data is loaded one byte at each rising CCLK edge, and the MSB of each byte is presented on
the D0 pin, not the D7 pin. Because of this non-conventional ordering, presenting the data as is
from the .bin file is generally incorrect. The reason is that most processors interpret D7 (not
D0) as the most significant bit in each byte. Connecting D7 on the processor to the D7 on the
FPGA SelectMAP data bus effectively loads the data backwards, resulting in unsuccessful
configuration. For this reason, the source data stream might need to be byte-swapped, with bits
in each byte in the data stream reversed. Figure 3 shows two bytes (0xABCD) being reversed.

D[0:7] Input Byte-wide configuration data input.

CS Input Active-Low chip-select input.

WRITE (or
RDWR_B)

Input Active-Low write select/read select.

BUSY Output Handshaking signal to indicate successful data transfer
(same pin as DOUT in Serial mode).

Table 3: Xilinx Tool Formats

File Extension Description

.bit Binary file containing header information that should not be downloaded
to the FPGA.

.rbt ASCII file containing a text header and ASCII 1s and 0s.

.bin Binary file containing no header information.

.mcs, .exo, .tek ASCII PROM formats containing address as well as checksum
information.

.hex ASCII PROM format only containing data.

Table 2: Slave-SelectMAP Pin Descriptions (Cont’d)

Signal Name Direction Description

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 5

R

Regardless of the orientation of the data, the MSB of each byte of the data must transmitted to
D0. However, in the byte-swapped version of the data, the bit that must be transmitted to D0 is
the rightmost bit and, in the non-byte-swapped data, the leftmost bit. The Perl script included in
this application note can be customized to produce byte-swapped files or not, as needed (see
the bitformat.readme file for details). With Xilinx software, the .mcs, .exo, and .tek files
are always byte-swapped, and the .bit, .rbt, and .bin files are never byte-swapped. Hex
files can be produced byte-swapped according to command-line options.

Note: Whether or not data is byte-swapped is entirely processor/application dependent and is generally only
applicable for SelectMAP applications. Non-byte-swapped data should be used for Slave Serial downloads.

Errors and Troubleshooting

If configuration is not successful, the DONE pin does not go High after all the data is loaded.
There are many different reasons why this situation can occur. Possible causes can be
discovered by searching the Xilinx Answers Database or using the Configuration Problem
Solver at: http://support.xilinx.com.

Hardware
Implementation

Microprocessor

The application reference design is based on a Motorola Dragonball MC68VZ328 processor.
This specific design uses a Handspring Visor handheld computer to configure a Virtex FPGA.
To complete the system, an Insight Springboard Development Kit provides 32 Mb of onboard
flash memory, as well as a 256-macrocell CoolRunner™ CPLD.

Figure 4 shows the memory map for the Dragonball processor used in this design. The
Handspring Visor Springboard expansion slot provides two chip select regions available to the
user, called Chip Select 0 and Chip Select 1. The flash memory is connected to the
Chip Select 0 region, defined as the address space between 0x28000000 and 0x28FFFFFF.
The CPLD is connected to the Chip Select 1 region, defined by the address space between
0x29000000 and 0x29FFFFFF. Each address location references eight bits of data. However,
the Dragonball processor does not support byte-wide addressing. As a consequence, the
microprocessor’s address line 0 is not used. Therefore, data can only be accessed on even
address locations (in other words, 0x28000000, 0x28000002, etc.). Each access reads or
writes 16 bits of data. Accessing address locations on odd boundaries is not allowed.

X-Ref Target - Figure 3

Figure 3: Byte-Swapping Example

X502_05_070809

Hex:

Binary:

Byte
Swapped
Binary:

Byte
Swapped
Hex:

SelectMAP
Data Pin:

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SelectMAP
Data Pin:

A B C D

D 5 B 3

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 6

R

The shaded area on the bottom of the memory map shown in Figure 4 represents portions of
memory used specifically by the processor for internal functions. This memory space is not
utilized in this reference design.

Note: Even though a Motorola Dragonball processor is used in this reference design, any
microprocessor can be used. In addition, the microprocessor code in this reference design can be easily
ported to different processors. However, remapping requires an understanding of how to retarget the
memory-mapped Dragonball I/O structure to match the memory map of another processor.

Flash Memory

In this design, the 16-bit-wide flash memory begins at address 0x28000000 and ends at
address 0x28FFFFFF. As shown in Figure 5, a Virtex XCV50 configuration bitstream consists
of 559,200 bits. Because each address location contains 16 bits of data, a total of 34,950
addresses are needed. The first 16 bits of configuration data reside at address 0x28000200
and the final 16 bits are located at address 0x2801130A. This design arbitrarily chose address
0x28000200 to be the starting address in order to simulate actual customer scenarios in which
flash memory is also used to hold other system data.

The data within the flash memory might need to be byte-swapped, depending upon the
application. For this design, byte-swapped data is used for SelectMAP configuration but not for
Slave-Serial configuration. Byte-swapping reformats the FPGA configuration data so that the
order of the bits within each byte is reversed. For a complete description of byte-swapping, refer
to the description in “Configuration Background,” page 2.

X-Ref Target - Figure 4

Figure 4: Microprocessor Memory Map

16 MB

0x28000000

0x29000000

0x29FFFFFF

16 MB

X502_06_111507

CPLD Memory Space
(Chip Select 1)

Flash Memory Space
(Chip Select 0)

Internal Memory Space

8 Bits

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 7

R

Slave-SelectMAP Hardware

This section discusses a reference design allowing a microprocessor to configure an FPGA
device via the SelectMAP mode (SelectMAP configuration mode is the fastest configuration
option). In order to accomplish SelectMAP configuration, this design uses a combination of a
microprocessor, CPLD, and flash memory (Figure 6).

A 16-bit wide flash memory device is used to store the FPGA configuration data. Because each
flash address stores 16-bits of data, the microprocessor reads each address to retrieve the 16-bit
wide data and delivers the data in a byte-wide fashion to the FPGA. During this process, the
microprocessor provides the FPGA with a configuration clock and monitors the DONE and BUSY
pins. A CPLD is used to form the glue logic between the microprocessor and the FPGA device.

X-Ref Target - Figure 5

Figure 5: Flash Memory Map

X-Ref Target - Figure 6

Figure 6: SelectMAP Configuration

69,898 Addresses
(559,200 bits)

0xFFFF

0xFFFF

0x????

.

.

.

.

DATA[15:0]

.

.

.

.

.

.

.

.

X502_07_111507

0x28000000

0x28000200

0x28FFFFFF

Flash Address 0
Begin Flash
Memory

End Flash
Memory

Begin Virtex
Bitstream

End Virtex
Bitstream

0x2801130A

Last Flash Address

Virtex Configuration
Bitstream

Microprocessor CPLD FPGA

Memory

ADDRESS

DATA

CS0
CS1
WE
OE

PROGRAM
CS
WRITE
CCLK
D[0:7]

INIT
DONE
BUSY

Program
Register

Config.
Register

Input
Register

Used for storage
of the configuration
bitstream

X502_16_111507

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 8

R

CoolRunner CPLD

A Xilinx CoolRunner CPLD is used for glue logic between the microprocessor and the Xilinx
Virtex FPGA. In the SelectMAP configuration mode, the CoolRunner device is responsible for
driving the Virtex FPGA configuration pins, namely PROGRAM, CS, WRITE, CCLK, and
D[0:7]. The Virtex FPGA’s INIT, DONE, and BUSY pins are also registered by the CPLD,
allowing the status of these pins to be monitored by the microprocessor.

The CoolRunner CPLD is used to establish a synchronous interface between the
microprocessor and the Xilinx FPGA. This interface is comprised of three registers: the
Configuration Register, Program Register, and Input Register. These registers store FPGA
configuration signals each time the processor does a read or write to the port, supporting the
set of signals required for SelectMAP mode (PROGRAM, CCLK, DATA[0:7], INIT, CS, WRITE,
DONE, and BUSY). The Configuration Register and Program Register are write-only registers,
while the Input Register is read-only.

A detailed block diagram of the CPLD is shown in Figure 7.
X-Ref Target - Figure 7

Figure 7: CPLD Block Diagram

DATA[15:0]

Address
Decode

ADDR[23:0]

WE

WE

OE

Program Register

Configuration Register

Input Register

CS, WRITE,
PROGRAM

D[7:0], CCLK

BUSY, DONE,
INIT

D Q

CE

D Q

CE

DQ

CE

X502_09_111507

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 9

R

The register address map is shown in Table 4.

SelectMAP.c

The C code discussed in this section allows a microprocessor to:

• Read FPGA configuration data from flash memory

• Generate a CCLK

• Deliver byte-wide data to the FPGA

• Check the status of the BUSY pin (optional)

Note: Different microprocessors have different memory-mapped I/O structures, depending upon the
system configuration. Therefore, while the majority of the C code listed here should be easily
transportable, the user must modify the sections of code that command the microprocessor to perform a
write operation on its data bus to match the memory map of the new microprocessor.

To allow for maximum readability, all C code shown in this reference design accesses the
microprocessor address and data bus uniformly using two functions: IOWrite() and IORead().
IOWrite() writes a 16-bit word to a specified address location; IORead() retrieves a 16-bit result
from a specified location. Refer to “Microprocessor,” page 5 for this reference design’s memory
map and to “Appendix: Processor Specific I/O Function Calls,” page 15 for the syntax of the
IOWrite() and IORead() functions.

The SelectMAP.c source file contains three important functions: SelectMAP(),
SelectMAP_output(), and Busy_Check(). The SelectMAP() function is called from within the main
function to begin configuration. SelectMAP() pulses the FPGA’s PROGRAM pin and checks for INIT
deassertion. After INIT is deasserted, the FPGA is ready to receive configuration data, and the
SelectMAP_output() function is called. A software flow diagram is shown in Figure 8, page 10.

First, the processor writes to the Program Register to assert the PROGRAM pin, resetting the
FPGA.

Note: A loop might be required to assert the FPGA’s PROGRAM pin for the minimum required time
(refer to the appropriate data sheet). If the FPGA just completed power-up or is reset through other
means, this loop is not necessary.

After the PROGRAM bit is asserted, the SelectMAP() function checks the CPLD Input Register
until INIT is High. Then, the function enters a for loop that cycles through the flash memory
address range containing the FPGA configuration data. In this example, using a XCV50 device,
the address range is between 0x28000200 and 0x2801130A. For each address location,
16-bit data is retrieved, and the SelectMAP_output() function is called to perform presentation
of byte-wide data to the FPGA.

Note: In the SelectMAP_output() function, two write cycles are needed for each byte in the configuration
file. One cycle is needed for driving CCLK Low and to present the next configuration byte. A second cycle
is needed to drive CCLK High. Immediately after driving the CCLK pin High, Busy_Check() is called to
ensure that the data is properly received by the FPGA.

If BUSY is asserted (High), the Busy_Check() function continues to provide additional CCLK
cycles until BUSY is deasserted. Monitoring the FPGA Busy pin via this function is optional.

Table 4: Register Address Map

Register
Address
A[23:0]

Register
Name

Register Data

D[15:9] D8 D7 D6 D5 D4 D3 D2 D1 D0

0x000000
Configuration

Register D[7:0] – – – – – – – – CCLK

0x000002
Program
Register – – – – – – – CS WRITE PROGRAM

0x000004
Input

Register – – – – – – – BUSY DONE INIT

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 10

R

Note: The maximum speed of SelectMAP configuration varies for different FPGA families. Check the
appropriate data sheet for this specification.

After all configuration data is loaded, the for loop is terminated, and the SelectMAP() function
checks the CPLD Input Register for DONE assertion.

Slave Serial Hardware

This section discusses a reference design allowing a Virtex FPGA to be configured in the Slave
Serial mode through a combination of a microprocessor and a CPLD. Slave Serial configuration
is accomplished by providing a Virtex FPGA with a serial clock and delivering a single data bit
at every rising edge of the clock until the final configuration bit is sent.

The design shown in Figure 9, page 11 uses a 16-bit flash memory to store the FPGA
configuration data. Because each flash address stores 16-bits of data, the microprocessor
reads each address, retrieves the 16-bit data, and serializes the data. This process continues
until the final 16 bits of configuration data is read and serialized. During this process, the
microprocessor is also responsible for providing the FPGA with a configuration clock. A CPLD

X-Ref Target - Figure 8

Figure 8: Select MAP Configuration Flow Diagram

Yes

No

Optional BUSY check

Check for DONE
High

No

Asssert CS,
WRITE, and
PROGRAM

Deassert
PROGRAM

after at least
300 ns

Check for
INIT
High

Is
INIT

High?

Send
byte of

data

Check for
BUSY
High

Is
BUSY
High?

Increment
Address
Counter

Final
Address?

Send
CCLK cycle

x502_04_103101

Yes

Yes

No

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 11

R

is used to decode both the serialized bitstream, as well as the configuration clock, and is
ultimately responsible for toggling the Virtex FPGA’s configuration pins.

CoolRunner CPLD

A Xilinx CoolRunner CPLD is used for glue logic between the microprocessor and the Xilinx
Virtex FPGA. In the Slave Serial mode of configuration, the CoolRunner device is responsible
for driving the Virtex FPGA configuration pins, namely PROGRAM, CCLK, and DIN. The Virtex
device’s INIT and DONE pins are also registered by the CPLD, allowing the status of these pins
can be read by the microprocessor.

The CoolRunner CPLD is used to establish a synchronous interface between the microprocessor
and the Xilinx FPGA. The interface is comprised of three registers: the Configuration Register,
Program Register, and Input Register. These registers store FPGA configuration signals each time
the processor does a read or write to the port, supporting the set of signals required for Slave Serial
mode (PROGRAM, DIN, CCLK, INIT and DONE). The Configuration Register and Program
Register are write-only registers, while the Input Register is read-only. A detailed block diagram of
the CPLD design is shown in Figure 10. The Register Address Map is shown in Table 5, page 12.

X-Ref Target - Figure 9

Figure 9: Slave Serial Configuration

Microprocessor CPLD FPGA

Memory

ADDRESS

DATA

CS0
CS1
WE
OE

PROGRAM

CCLK
DIN

INIT
DONE

Program
Register

Config.
Register

Input
Register

Used for storage
of the configuration
bitstream

X502_18_111507

http://www.xilinx.com

Hardware Implementation

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 12

R

SlaveSerial.c

The C code discussed in this section allows a microprocessor to:

• Read FPGA configuration data from flash memory

• Provide a CCLK

• Serialize the configuration bitstream
Note: Different microprocessors have different memory-mapped I/O structures, depending upon the
system configuration. Therefore, while the majority of the C code listed here should be easily
transportable, the user must modify the sections of code that command the microprocessor to perform a
write operation on its data bus to match the memory map of the new microprocessor.

To allow for maximum readability, all C code shown in this reference design accesses the
microprocessor address and data bus uniformly using two functions: IOWrite() and IORead().
IOWrite() writes a 16-bit word to a specified address location; IORead() retrieves a 16-bit result
from a specified location. Refer to “Microprocessor” for this reference design’s memory map
and to “Appendix: Processor Specific I/O Function Calls” for the syntax of these two functions.

Within the SlaveSerial.c source file, two functions, SlaveSerial() and ShiftDataOut()
accomplish configuration. To begin configuration, SlaveSerial() is called from within the main()
function and is responsible for pulsing the program pin, checking for INIT deassertion, then
calling the ShiftDataOut() function. A software flow diagram is shown in Figure 11.

X-Ref Target - Figure 10

Figure 10: CPLD Block Diagram

DATA[15:0]

Address
Decode

ADDR[23:0]

WE

WE

OE

Program Register

Configuration Register

Input Register

CCLK, DIN

PROGRAM

DONE, INIT

D Q

CE

D Q

CE

DQ

CE

X502_17_111507

Table 5: Register Address Map

Register Address
A[23:0] Register Name

Register Data

D7 D6 D5 D4 D3 D2 D1 D0

0x000000 Configuration Register – – – – – – CCLK DATA

0x000002 Program Register – – – – – – – PROGRAM

0x000004 Input Register – – – – – – DONE INIT

http://www.xilinx.com

Reference Design Files

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 13

R

First, the processor writes to the Program Register to assert the PROGRAM pin, resetting the
FPGA.

Note: A loop might be required to assert the FPGA’s PROGRAM pin for the minimum required time
(refer to the appropriate data sheet). If the FPGA just completed power-up or is reset through other
means, this loop is not necessary.

After the PROGRAM bit is asserted, the SlaveSerial() function checks the CPLD Input Register
until INIT is High. Then, the function enters a for loop that cycles through the flash memory
address range containing the FPGA configuration data. In this example, using a XCV50 device,
the flash address range is between 0x28000200 and 0x2801130A. For each address
location, the 16-bit data is retrieved, and the ShiftDataOut() function is called to perform
serialization and presentation of the data to the FPGA.

Note: The ShiftDataOut() function, two write cycles are needed each bit in the configuration file. One
cycle is needed for driving CCLK Low and to present the next configuration bit. A second cycle is needed
to drive CCLK High. After all configuration data is loaded, the for loop is terminated, and the SlaveSerial()
function checks the CPLD Input Register for DONE assertion.

Reference
Design Files

The latest version of this application note and reference design files can be downloaded from
the Xilinx website at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=139211

X-Ref Target - Figure 11

Figure 11: Slave Serial Configuration Flow Diagram

No

No

Deassert
PROGRAM
after at least

300 ns

Increment
Address
Counter

Check for
DONE
High

Send
bit of data

Assert
PROGRAM

Check for
INIT
High

x502_03_103101

Final
Address?

Is INIT High?

Yes

Yes

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=139211

Conclusion

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 14

R

Conclusion This application note provides a background on configuration as well as a description of two
complete sets of reference designs allowing a Xilinx FPGA device to be configured through
SelectMAP or Slave Serial mode. While the microprocessor C code targets a Motorola
68VZ328 Dragonball processor, it was written with portability in mind. Porting the code to
another processor requires some effort, but all the design files are documented extensively.
Also, complete design files for a Xilinx CPLD design are included to provide a synchronous
interface between the microprocessor and the target Xilinx FPGA.

http://www.xilinx.com

Appendix: Processor Specific I/O Function Calls

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 15

R

Appendix:
Processor
Specific I/O
Function Calls

IOWrite(int Addr, int Data)

To use IOWrite(), an address and data must be passed to the function. In this reference design,
the Configuration, Program, and Input Registers are located at 0x29000000, 0x29000002,
and 0x29000004, respectively. These are the only three address values ever written to.

I/O Write Usage Example

The timing diagram for a microprocessor write cycle is shown below in Figure 12.

IORead(int Addr)

To use IORead(), an address must be provided. The 16-bit data value at that address is then
returned. In this design, data is read from address ranges between 0x28000200 and
0x2801130A, as well as address location 0x29000004. The former is where the FPGA
Configuration bitstream is stored, and the latter is the location of the Input Register.

I/O Read Usage Example

Table 6: I/O Write Usage Example

IOWrite(0x29000000, 0x0011)
Write to CPLD Configuration Register:

“1” = CCLK
“1” = DATA

IOWrite(0x29000000, 0x0001)
Write to CPLD Configuration Register:

“0” = CCLK
“1” = DATA

IOWrite(0x29000002, 0x0001)
Write to CPLD Program Register:

“1” = Program

X-Ref Target - Figure 12

Figure 12: Write-Cycle Timing Diagram

Table 7: I/O Read Usage Example

IORead(0x28000200) Retrieve the first 16 bits of configuration data
from flash memory.

IORead(0x28000201) Retrieve the second 16 bits of configuration
data from flash memory.

IORead(0x2801130A) Retrieve the final 16 bits of configuration data
from flash memory.

IORead(0x29000004) Read from Input Register to determine values of
DONE and INIT.

ADDR

CS

WE

DATA

x502_15_103101

ADDR VALID

DATA VALID

http://www.xilinx.com

Revision History

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 16

R

The timing diagram for a microprocessor read cycle is shown below in Figure 13.

Revision
History

The following table shows the revision history for this document.

X-Ref Target - Figure 13

Figure 13: Read-Cycle Timing Diagram

ADDR

CS

OE

DATA DATA VALID

ADDR VALID

x502_19_103101

Date Version Revision

12/03/01 1.0 Initial Xilinx release.

01/08/02 1.1 Added Spartan-IIE to “Summary,” page 1.

06/10/02 1.2 Added "Virtex Series, Virtex-II Series Platform FPGAs, and
Spartan-II Series" to “Summary,” page 1.

11/06/02 1.3 Updated Figure 5, page 7 and Figure 7, page 8.

11/13/02 1.4 Updated Figure 10, page 12.

12/03/07 1.5 • Updated document template.
• Update URLs.
• Updated list of applicable FPGA families.
• Updated BUSY activation frequency in “SelectMAP-Specific Topics,”

page 3.
• Enhanced start-up CCLK requirements in “Configuration

Background,” page 2.
• Completed other edits and corrections.

07/08/09 1.6 • Updated appropriate SelectMAP references to distinguish between
Slave- and Master-SelectMAP mode.

• Table 1, page 3: Updated PROGRAM pin description.
• “Slave-SelectMAP-Specific Topics,” page 3: Updated note.
• Updated Table 3, page 4.

08/24/09 1.6.1 • Updated link to the reference design file in “Reference Design Files,”
page 13.

http://www.xilinx.com

Notice of Disclaimer

XAPP502 (v1.6.1) August 24, 2009 www.xilinx.com 17

R

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED,STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

http://www.xilinx.com

	Using a Microprocessor to Configure Xilinx FPGAs via Slave Serial or SelectMAP Mode
	Summary
	System Overview
	Configuration Background
	Slave-Serial-Specific Topics
	Slave-SelectMAP-Specific Topics
	Data Formatting and Byte-Swapping
	Errors and Troubleshooting

	Hardware Implementation
	Microprocessor
	Flash Memory
	Slave-SelectMAP Hardware
	CoolRunner CPLD
	SelectMAP.c

	Slave Serial Hardware
	CoolRunner CPLD
	SlaveSerial.c

	Reference Design Files
	Conclusion
	Appendix: Processor Specific I/O Function Calls
	IOWrite(int Addr, int Data)
	I/O Write Usage Example
	IORead(int Addr)
	I/O Read Usage Example

	Revision History
	Notice of Disclaimer

