

PlTbUtils
Specification

Author: Per Larsson

pela.opencores@gmail.com

Rev. 1.2

March 12, 2020

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2 ii

This page has been intentionally left blank.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2 iii

Revision History

Rev

.

Date Author Description

0.1 9/2/2013 Per Larsson First draft

0.2 11/10/2013 Per Larsson Added sections Acknowledgements and Language.

Added reference section on waitsig().

Updated reference section on print() and

pltbutils_clkgen.

0.3 1/5/2013 Per Larsson Added sections User Configuration, Configuring

Simulation Halt, Configuring Messages for

Integration Environments.

In reference section added starttest, endtest,

removed testname.

Updated figures and feature bullets.

0.4 1/9/2013 Per Larsson Updates for alpha0006: Text modified in

numerous places to reflect that PlTbUtils is now

using the variable pltbv and the signal pltbs for

control and status, instead of the previous shared

variable and global signals.

0.5 13/1/2014 Per Larsson Updates for alpha0007: added example testbench

where the testcase process is instansiated in the

testbench top (tb_example1). The old example

where the testcase process is located in a VHDL

component of its own, is now called example_tb2.

0.6 2/2/2015 Per Larsson Updates for beta0002: added description of

to_ascending(), to_descending(), hxstr(), functions

and procedures in txt_util.vhd.

0.7 23/11/2015 Per Larsson Updates for beta0003: added to VHDL versions

and simulators to feature list. Added check() for

iiioolean and for time with tolerance. In section

User Configuration, added info on

pltbutils_files.lst .

0.8 03/01/2016 Per Larsson Updates for beta0004: updated feature list, added

Skipping tests, updated figures.

1.0 26/01/2016 Per Larsson Updates for pltbutils v1.0: minor corrections.

1.2 12/04/2020 Per Larsson Updates for pltbutils v1.2:

Added waitsig() for unclocked signals.

Added check_binfile(), check_txtfile(),

check_datfile().

Added str(), str_equal().

Added pltbutils_time_measure,

pltbutils_diff_check.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 1 of 47

1

Introduction

Overview

PlTbUtils makes it easy to create automatic, self-checking simulation testbenches, and to

locate bugs during a simulation. It is a collection of functions, procedures and testbench

components that simplifies creation of stimuli and checking results of a device under test.

Features:

• Simulation status printed in transcript windows as well as in waveform window

(error count, checks count, number and name of current test, etc).

• Check procedures which output meaningful information when a check fails.

• Clear SUCCESS/FAIL message at end of simulation.

• Easy to locate point in time of bugs, by studying increments of the error counter

in the waveform window.

• User-defined information messages in the waveform window about what is

currently going on.

• Transcript outputs prepared for parsing by scripts, e.g. in regression tests.

• Configurable status messages for use in continuous integration environments, e.g.

TeamCity.

• Reduces amount of code in tests, which makes them faster to write and easier to

read.

• Tests can easily be included or skipped in a test run.

• Supports VHDL-93 and later.

• Supports most popular VHDL simulators, including ModelSim, ISim and XSim.

It is intended that PlTbUtils will constantly expand by adding more and more functions,

procedures and testbench components. Comments, feedback and suggestions are

welcome to pela.opencores@gmail.com .

Project web page: http://opencores.org/project,pltbutils .

Subversion repository URL: http://opencores.org/ocsvn/pltbutils/pltbutils/trunk

Subversion export command:
 svn export http://opencores.org/ocsvn/pltbutils/pltbutils/trunk pltbutils

http://www.opencores.org/
mailto:pela.opencores@gmail.com?subject=PlTbUtils
http://opencores.org/project,pltbutils
http://opencores.org/ocsvn/pltbutils/pltbutils/trunk

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 2 of 47

Acknowledgements

PlTbUtils contains the file txt_util.vhd by Stefan Doll and James F. Frenzel.

Thanks to Stefan Eriksson for suggestions and feedback.

Language

PlTbUtils complies with VHDL-1993 and later, so it works with most VHDL simulators.

It is possible to configure the way a simulation stops, by taking advantage of the

VHDL-2008 keywords stop and finish. If your simulator supports stop and/or

finish, see Configuring Simulation Halt on page 25.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 3 of 47

A quick look

During a simulation, the waveform window shows current test number, test name, user-

defined info, accumulated number of checks and errors. When the error counter

increments, a bug has been found in that point in time.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 4 of 47

The transcript window clearly shows points in time where the simulation starts, ends, and

where errors are detected. The simulation stops with a clear SUCCESS/FAIL message,

specifically formatted for parsing by scripts.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 5 of 47

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 6 of 47

The testcase code is compact and to the point, which results in less code to write, and

makes the code easier to read, as in the following example.

-- NOTE: The purpose of the following code is to demonstrate some of the

-- features in PlTbUtils, not to do a thorough verification.

 p_tc1 : process

 variable pltbv : pltbv_t := C_PLTBV_INIT;

 begin

 startsim("tc1", "", pltbv, pltbs);

 rst <= '1';

 carry_in <= '0';

 x <= (others => '0');

 y <= (others => '0');

 starttest(1, "Reset test", pltbv, pltbs);

 waitclks(2, clk, pltbv, pltbs);

 check("Sum during reset", sum, 0, pltbv, pltbs);

 check("Carry out during reset", carry_out, '0', pltbv, pltbs);

 rst <= '0';

 endtest(pltbv, pltbs);

 starttest(2, "Simple sum test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 3, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 endtest(pltbv, pltbs);

 starttest(3, "Simple carry in test", pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "Bug here somewhere");

 carry_in <= '1';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 4, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "");

 endtest(pltbv, pltbs);

 starttest(4, "Simple carry out test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(2**G_WIDTH-1, x'length));

 y <= std_logic_vector(to_unsigned(1, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 0, pltbv, pltbs);

 check("Carry out", carry_out, '1', pltbv, pltbs);

 endtest(pltbv, pltbs);

 endsim(pltbv, pltbs, true);

 wait;

 end process p_tc1;

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 7 of 47

2

Tutorial

Basics

We will demonstrate how to use PlTbUtils by showing an example. In this example, we

have a DUT (Device Under Test / Design Under Test) with the following entity.

entity dut_example is

 generic (

 G_WIDTH : integer := 8;

 G_DISABLE_BUGS : integer range 0 to 1 := 1

);

 port (

 clk_i : in std_logic;

 rst_i : in std_logic;

 carry_i : in std_logic;

 x_i : in std_logic_vector(G_WIDTH-1 downto 0);

 y_i : in std_logic_vector(G_WIDTH-1 downto 0);

 sum_o : out std_logic_vector(G_WIDTH-1 downto 0);

 carry_o : out std_logic

);

end entity dut_example;

As you can see, it has a clock- and a reset input port (clk_i and rst_i), three other input

ports (x_i, y_i, and carry_i), and two output ports (sum_o and carry_o). There is also a

generic, G_WIDTH, which sets the number of bits in x_i, y_i and sum_o. The second

generic, G_DISABLE_BUGS, is very unusual in real designs, but it is useful in this

example. We will reveal the purpose of this strange generic later, although some may

already be able to guess what it is for.

To verify this DUT, we want the testbench to apply different stimuli to the input ports,

and check the response of the output ports. The following code is an example of such a

testbench. We will first show all of the code, and then explain parts of it.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 8 of 47

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.txt_util.all;

use work.pltbutils_func_pkg.all;

use work.pltbutils_comp_pkg.all;

entity tb_example1 is

 generic (

 G_WIDTH : integer := 8;

 G_CLK_PERIOD : time := 10 ns;

 G_DISABLE_BUGS : integer range 0 to 1 := 0

);

end entity tb_example1;

architecture bhv of tb_example1 is

 -- Simulation status- and control signals

 -- for accessing .stop_sim and for viewing in waveform window

 signal pltbs : pltbs_t := C_PLTBS_INIT;

 -- DUT stimuli and response signals

 signal clk : std_logic;

 signal rst : std_logic;

 signal carry_in : std_logic;

 signal x : std_logic_vector(G_WIDTH-1 downto 0);

 signal y : std_logic_vector(G_WIDTH-1 downto 0);

 signal sum : std_logic_vector(G_WIDTH-1 downto 0);

 signal carry_out : std_logic;

begin

 dut0 : entity work.dut_example

 generic map (

 G_WIDTH => G_WIDTH,

 G_DISABLE_BUGS => G_DISABLE_BUGS

)

 port map (

 clk_i => clk,

 rst_i => rst,

 carry_i => carry_in,

 x_i => x,

 y_i => y,

 sum_o => sum,

 carry_o => carry_out

);

 clkgen0 : pltbutils_clkgen

 generic map(

 G_PERIOD => G_CLK_PERIOD

)

 port map(

 clk_o => clk,

 stop_sim_i => pltbs.stop_sim

);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 9 of 47

 -- Testcase process

 -- NOTE: The purpose of the following code is to demonstrate some of the

 -- features of PlTbUtils, not to do a thorough verification.

 p_tc1 : process

 variable pltbv : pltbv_t := C_PLTBV_INIT;

 begin

 startsim("tc1", "", pltbv, pltbs);

 rst <= '1';

 carry_in <= '0';

 x <= (others => '0');

 y <= (others => '0');

 starttest(1, "Reset test", pltbv, pltbs);

 waitclks(2, clk, pltbv, pltbs);

 check("Sum during reset", sum, 0, pltbv, pltbs);

 check("Carry out during reset", carry_out, '0', pltbv, pltbs);

 rst <= '0';

 endtest(pltbv, pltbs);

 starttest(2, "Simple sum test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 3, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 endtest(pltbv, pltbs);

 starttest(3, "Simple carry in test", pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "Bug here somewhere");

 carry_in <= '1';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 4, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "");

 endtest(pltbv, pltbs);

 starttest(4, "Simple carry out test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(2**G_WIDTH-1, x'length));

 y <= std_logic_vector(to_unsigned(1, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 0, pltbv, pltbs);

 check("Carry out", carry_out, '1', pltbv, pltbs);

 endtest(pltbv, pltbs);

 endsim(pltbv, pltbs, true);

 wait;

 end process p_tc1;

end architecture bhv;

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 10 of 47

As the testbench example shows, the following packages are needed (in addition to the

usual std_logic_1164, etc):

use work.txt_util.all;

use work.pltbutils_func_pkg.all;

use work.pltbutils_comp_pkg.all;

txt_util contains functions and procedures for handling strings.

pltbutils_func_pkg contains type definitions, functions and procedures for controlling

stimuli and checking response.

pltbutils_comp_pkg contains component declarations for testbench components.

PlTbUtils uses a variable called pltbv, and a signal called pltbs, for controlling the

simulation and keeping track of status. The pltbs signal is useful for viewing in the

simulator’s waveform window. pltbs is a record containing a number of members which

show various information. Expand pltbs in the simulator’s waveform window to expose

the members. To make it prettier, you can make use of ModelSim’s Combine Signals

feature. Each member of the pltbs record can be set to be its own Combined Signal, see

the waveform images in this document. Other simulators usually have similar features.

The DUT is instansiated in the testbench, as well as a clock generator component from

PlTbUtils.

There is also a testcase process, which feeds the DUT with stimuli, and checks the

results.

The testcase process starts with calling the procedure startsim(). This procedure initializes

pltbv and pltbs, and outputs a message to the transcript and to the waveform window to

inform that the simulation now starts. The first argument to startsim is the name of the

testcase. The second argument is an empty vector in this example. The purpose of this

argument will be explained later.

The last arguments of startsim(), and to many other procedures in PlTbUtils, are pltbv

and pltbs.

After initiating stimuli to the DUT, we call the procedure starttest() with the number and

name for the first test. starttest() prints the test number and test name to the transcript and

to the waveform window, and updates pltbv and pltbs.

Then we need to wait until the DUT has reacted to the stimuli. We do this by calling the

procedure waitclks(), which waits a specified number of cycles of the specified clock.

After this, we start checking the results, by examining the outputs from the DUT. To do

this, we use the check() procedure. The first argument is a text string that specifies what

we check, the second argument is the signal or variable that we want to examine, and the

third is the expected value of the signal or variable. If the examined signal holds the

expected value, nothing is printed. But if the value is incorrect, the string in the first

argument is printed, together with the actual and expected values of the signal. The

number and name of the test (as specified with starttest()) is also printed. PlTbUtils’

check counter is incremented for every check() procedure call, and the error counter is

incremented in case of error.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 11 of 47

After the test, we call endtest().

We make a number of different tests by calling starttest(), setting stimuli, waiting for the

DUT to react with waitclks() or some other means, and checking the outputs with the

check() procedure, and calling endtest().

Finally, we call the endsim() procedure, which prints an end-of-simulation message to the

transcript, and presents the results, including a SUCCESS or FAIL message.

The start-of-simulation message, end-of-simulation message, and SUCCESS/FAIL

messages have a unique formatting with three dashes or asterisks before and after the

message. This make them easy to search for by scripts, to simplify collection of

simulation status of regression tests with a lot of different simulations.

Try it out in your simulator! The pltbutils files that need to be compiled are located in

src/vhdl/, and they are listed in compile order in pltbutils_files.lst . The example DUT file

is located in examples/vhdl/rtl_example/, and the example testbench files are located in

examples/vhdl/example1/. The files are listed in compile order in example_dut.lst and

tb_example1_files.lst .

If you are a ModelSim user, there are .do files available in

sim/modelsim_tb_example1/run/ .

To use them, start Start ModelSim, and in the ModelSim Gui select the menu item File-

>Change directory... . Navigate to the PlTbUtils directory

sim/modelsim_tb_example1/run/ and click Ok. Then, in the transcript window, type
do run.do

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 12 of 47

The simulation will start, and the transcript from the simulation looks as follows.

The transcript says that one error has been found at 55 ns, in test 3; Simple carry in test.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 13 of 47

The waveform window looks like this.

Here we can see the error detected at the point in time where the error counter increments

from 0 to 1. Again, we can that the error is found in test 3, the Simple carry in test.

Have a look at the DUT code in examples/vhdl/rtl_example/dut_example.vhd . It looks as

follows.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 14 of 47

 x <= resize(unsigned(x_i), G_WIDTH+1);

 y <= resize(unsigned(y_i), G_WIDTH+1);

 c <= resize(unsigned(std_logic_vector'('0' & carry_i)), G_WIDTH+1);

 p_sum : process(clk_i)

 begin

 if rising_edge(clk_i) then

 if rst_i = '1' then

 sum <= (others => '0');

 else

 if G_DISABLE_BUGS = 1 then

 sum <= x + y + c;

 else

 sum <= x + y;

 end if;

 end if;

 end if;

 end process;

The code really looks suspicious. If the generic G_DISABLE_BUGS is not one, the carry

input is not added to the sum. But we need the carry input to be added to the sum!

A simple way to disable this bug, is to set the generic G_DISABLE_BUGS to one. In this

case, this can be done very easily, without any modifying of the code.

In the ModelSim transcript window, type

do run_bugfixed.do

This will run the test again, but now with the generic G_DISABLE_BUGS set to 1.

The transcript and waveform windows will now look like the following images.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 15 of 47

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 16 of 47

This tutorial has shown some of the available procedures and testbench components in

PlTbUtils. For a complete list, see the reference section.

When you want to make your own testbenches with PlTbUtils, have a look at the

template files in templates/vhdl/template1/ .

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 17 of 47

Different kinds of check()

There are a number of overloaded check() procedures for different VHDL types, e.g.

std_logic, std_logic_vector, unsigned, signed, integer, boolean, time, etc. See the

Reference section for a complete list. The check() procedures checks equality, i.e. that a

signal or variable has an expected value. They have the form

check(rpt, actual, expected, pltbv, pltbs)

where rpt is the string message with info on what is being checked, actual is the

signal or variable to check, and expected is the expected value. If the check fails, rpt

is printed togher with actual and expected valued. There is no need to include the

expected value in the rpt string, because it is printed anyway.

The is no support for comparisons other than equality, such as greater than, or not equal.

But there is one check procedure that can be used for composing your own expression:

check(rpt, expr, pltbv, pltbs)

Replace expr with your own expression.

check(“Counter after data burst”, cnt_o > 10, pltbv, pltbs);

Note that if the test fails, the actual and expected values will not be printed (because this

check() procedure does not get any information on actual and expected value. You may

include that information in the rpt message if you want to.

check(“Counter after data burst: ” & str(cnt_o) & “ expected > 10”,

 cnt_o > 10, pltbv, pltbs);

You can create specialized check procedures in a package file of your own. Your package

file should begin with

use work.txt_util.all;

use work.pltbutils_func_pkg.all;

and your own check procedure should call
check(rpt, expr, actual, expected, mask, pltbv, pltbs)

where actual, expected and mask are strings.

Example:

 -- check greater than, unsigned

 procedure check_gt(

 constant rpt : in string;

 constant actual : in unsigned;

 constant expected : in unsigned;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

) is

 begin

 check(rpt, actual > expected, str(actual), “>“ & str(expected), "", pltbv, pltbs);

 end procedure check_gt;

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 18 of 47

Testbench with multiple testcases

In some cases, it is more convenient to not include the testcase process in the testbench

top. Instead, we can put the testcase process in its own VHDL component. Then we can

have alternative architectures for this component, with different testcase processes.

This is practial for large testbenches with a lot of testbench components and other code,

with a requirement for multiple testcases. Then we don’t have to write a new testbench

for each testcase.

The following is an example of such a testbench.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 19 of 47

library ieee;

use ieee.std_logic_1164.all;

use work.pltbutils_func_pkg.all;

use work.pltbutils_comp_pkg.all;

entity tb_example2 is

 generic (

 G_WIDTH : integer := 8;

 G_CLK_PERIOD : time := 10 ns;

 G_DISABLE_BUGS : integer range 0 to 1 := 0

);

end entity tb_example2;

architecture bhv of tb_example2 is

 -- Simulation status- and control signals

 -- for accessing .stop_sim and for viewing in waveform window

 signal pltbs : pltbs_t := C_PLTBS_INIT;

 -- DUT stimuli and response signals

 signal clk : std_logic;

 signal rst : std_logic;

 signal carry_in : std_logic;

 signal x : std_logic_vector(G_WIDTH-1 downto 0);

 signal y : std_logic_vector(G_WIDTH-1 downto 0);

 signal sum : std_logic_vector(G_WIDTH-1 downto 0);

 signal carry_out : std_logic;

begin

 dut0 : entity work.dut_example

 generic map (

 G_WIDTH => G_WIDTH,

 G_DISABLE_BUGS => G_DISABLE_BUGS

)

 port map (

 clk_i => clk,

 rst_i => rst,

 carry_i => carry_in,

 x_i => x,

 y_i => y,

 sum_o => sum,

 carry_o => carry_out

);

 clkgen0 : pltbutils_clkgen

 generic map(

 G_PERIOD => G_CLK_PERIOD

)

 port map(

 clk_o => clk,

 stop_sim_i => pltbs.stop_sim

);

 tc0 : entity work.tc_example2

 generic map (

 G_WIDTH => G_WIDTH,

 G_DISABLE_BUGS => G_DISABLE_BUGS

)

 port map(

 pltbs => pltbs,

 clk => clk,

 rst => rst,

 carry_in => carry_in,

 x => x,

 y => y,

 sum => sum,

 carry_out => carry_out

);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 20 of 47

end architecture bhv;

Instead of a testcase process, we instansiate a testcase component (tc_example2). This

testcase component has an entity defined in one file, and the architecture defined in

another file. This makes it possible to have several different testcases for the same

testbench. Just compile the testcase architecture that you want to use for a specific

simulation run.

The entity declaration for the testcase looks as follows.

library ieee;

use ieee.std_logic_1164.all;

use work.pltbutils_func_pkg.all;

entity tc_example2 is

 generic (

 G_WIDTH : integer := 8;

 G_DISABLE_BUGS : integer range 0 to 1 := 0

);

 port (

 pltbs : out pltbs_t;

 clk : in std_logic;

 rst : out std_logic;

 carry_in : out std_logic;

 x : out std_logic_vector(G_WIDTH-1 downto 0);

 y : out std_logic_vector(G_WIDTH-1 downto 0);

 sum : in std_logic_vector(G_WIDTH-1 downto 0);

 carry_out : in std_logic

);

end entity tc_example2;

The ports of the testcase components are the same as for the DUT, but the mode

(direction) of the ports are the opposite, so the testcase component can drive the inputs of

the DUT, and detect the values of the output of the DUT. The only exception to this rule

is the clock, which is an input, just as for the DUT.

There is also an output port for pltbs, because pltbs is driven from the tc architecture.

The entity is stored in its’ own file.

The architecture contains the testcase process. There can be several different architecture

files. The architecture looks as follows.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 21 of 47

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.txt_util.all;

use work.pltbutils_func_pkg.all;

-- NOTE: The purpose of the following code is to demonstrate some of the

-- features in PlTbUtils, not to do a thorough verification.

architecture tc1 of tc_example2 is

begin

 p_tc1 : process

 variable pltbv : pltbv_t := C_PLTBV_INIT;

 begin

 startsim("tc1", "", pltbv, pltbs);

 rst <= '1';

 carry_in <= '0';

 x <= (others => '0');

 y <= (others => '0');

 starttest(1, "Reset test", pltbv, pltbs);

 waitclks(2, clk, pltbv, pltbs);

 check("Sum during reset", sum, 0, pltbv, pltbs);

 check("Carry out during reset", carry_out, '0', pltbv, pltbs);

 rst <= '0';

 endtest(pltbv, pltbs);

 starttest(2, "Simple sum test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 3, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 endtest(pltbv, pltbs);

 starttest(3, "Simple carry in test", pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "Bug here somewhere");

 carry_in <= '1';

 x <= std_logic_vector(to_unsigned(1, x'length));

 y <= std_logic_vector(to_unsigned(2, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 4, pltbv, pltbs);

 check("Carry out", carry_out, '0', pltbv, pltbs);

 print(G_DISABLE_BUGS=0, pltbv, pltbs, "");

 endtest(pltbv, pltbs);

 starttest(4, "Simple carry out test", pltbv, pltbs);

 carry_in <= '0';

 x <= std_logic_vector(to_unsigned(2**G_WIDTH-1, x'length));

 y <= std_logic_vector(to_unsigned(1, x'length));

 waitclks(2, clk, pltbv, pltbs);

 check("Sum", sum, 0, pltbv, pltbs);

 check("Carry out", carry_out, '1', pltbv, pltbs);

 endtest(pltbv, pltbs);

 endsim(pltbv, pltbs, true);

 wait;

 end process p_tc1;

end architecture tc12;

Try this too in your simulator. The example testbench files are located in

examples/vhdl/example2/. The files are listed in compile order in tb_example2_files.lst .

If you are a ModelSim user, there are .do files available in

sim/modelsim_tb_example2/run/ .

To use them, start Start ModelSim, and in the ModelSim Gui select the menu item

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 22 of 47

File->Change directory... . Navigate to the PlTbUtils directory

sim/modelsim_tb_example2/run/ and click Ok. Then, in the transcript window, type
do run_tc1.do

Also try

do run_tc1_bugfixed.do

Template files for this type of testbench is available in templates/vhdl/template2/ .

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 23 of 47

Skipping tests

PlTbUtils lets you skip tests, if you want to. This is useful while debugging a failure in a

test. You can save simulation time by skipping the tests before and after the failing test. It

is also useful while developing a test to skip the tests before.

To skip a test, add generic G_SKIPTESTS to the testbench of type std_logic_vector.

entity tb_example1_skip is

 generic (

 G_WIDTH : integer := 8;

 G_CLK_PERIOD : time := 10 ns;

 G_DISABLE_BUGS : integer range 0 to 1 := 0;

 G_SKIPTESTS : std_logic_vector := (

 '0', -- Dummy

 '0', -- Test 1

 '0' -- Test 2

 -- ... etc

)

end entity tb_example1_skip;

If a bit in the vector is ‘1’, the corresponding test is skipped. Bits are counted from 0 and

upwards. There is usually no test with number 0, so bit 0 is usually a dummy. The length

of the vector does not have to match the number of tests. If the vector is shorter, the

remaining tests will not be skipped. If the vector is longer, the excessive bits will be

ignored.

Feed this generic as the second argument of startsim().

startsim("tc1", G_SKIPTESTS, pltbv, pltbs);

For each test, add an if-clause that calls is_test_active(pltbv) and executes or skips the

test.

starttest(1, "Reset test", pltbv, pltbs);

if is_test_active(pltbv) then

 waitclks(2, clk, pltbv, pltbs);

 check("Sum during reset", sum, 0, pltbv, pltbs);

 check("Carry out during reset", carry_out, '0', pltbv, pltbs);

 rst <= '0';

end if; -- is_test_active()

endtest(pltbv, pltbs);

If is_test_active(pltbv) returns true, the test will be executed as usual. If it returns false,

PlTbUtils outputs a message like the following, and skips the test.

Skipping Test 1: Reset test

Note that if you forget the if-clause, the “skipping test message” will be displayed, but the

test will be executed anyway. If a check() procedure is called within a skipped test (if

there is no if-clause), an error message will be displayed, and the error counter will be

incremented.

The skip functionality is included in the templates in templates/vhdl/template1/ and

templates/vhdl/template2/ .

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 24 of 47

It is of course also possible to define the generic in the following form:

 G_SKIPTESTS : std_logic_vector := ”001”;

This is more compact as it uses only a single line, but it is not possible to add individual

comments for each test.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 25 of 47

User Configuration

It is possible to configure some aspects of PlTbUtils’s behaviour, by modifying the

package file pltbutils_user_cfg.pkg.

It is recommended NOT to modify the file directly. Instead, copy it to another directory

and modify the copy. Make the simulator read the modified copy instead of the original.

This makes it easier to update pltbutils to a later version without destroying the

modifications. After updating, check if anything has changed in the file, and change your

modified copy accordingly.

If your simulation environment (scripts, etc) uses the file pltbutils_files.lst , then

copy it too, to the other directory. Modify the contents of the file, by modifying the

relative paths to point to the files from the new location.

Configuring Simulation Halt

When calling endsim(), the signal stop_sim is set to ‘1’. When set, all clock generators

etc in the testbench and the DUT should stop, so there will be no further events in the

simulation. The simulator will detect that nothing more will happen, and stops the

simulation.

In some cases, it is not possible to stop clock generators, PLL models etc. In that case,

endsim() can force a simulaton halt, by setting the force argument to true.

The declaration of endsim() is

 procedure endsim(

 signal pltbutils_sc : out pltbutils_sc_t;

 constant show_success_fail : in boolean := false;

 constant force : in boolean := false

);

so to force a simulation halt, call endsim with

 endsim(pltbutils_sc, true, true);

This stops the simulation using an assert-failure. This works in all versions of VHDL, but

it is an ugly way of doing it, since it outputs a failure message for something which isn’t a

failure.

You can change the way the simulation stops when the force flag is set in your copy of

pltbutils_user_cfg.vhd.

Change the constant C_PLTBUTILS_USE_CUSTOM_STOPSIM to true, and modify the behavior of

the procedure custom_stopsim(). In VHDL-2008 the new keywords stop and finish

was introduced. Try one of them, if your simulator supports them.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 26 of 47

Configuring Messages for Integration Environments

It is possible adapt the status messages to suit various continous integration

environments, e.g. TeamCity, by specifying what the messages should look like.

You can create your own messages printed when starting and stopping a simulation,

starting and stopping a test, for checking, etc.

In your copy of pltbutils_user_cfg_pkg.vhd, set one or more of the message constants to

true, and modify the associated procedure.

The constants are

 C_PLTBUTILS_USE_CUSTOM_STARTSIM_MSG

 C_PLTBUTILS_USE_CUSTOM_ENDSIM_MSG

 C_PLTBUTILS_USE_CUSTOM_STARTTEST_MSG

 C_PLTBUTILS_USE_CUSTOM_ENDTEST_MSG

 C_PLTBUTILS_USE_CUSTOM_CHECK_MSG

 C_PLTBUTILS_USE_CUSTOM_ERROR_MSG

The corresponding procedures already contain examples for TeamCity. Modify if you use

another environment.

You can disable the standard messages by setting the standard constants to false

(C_PLTBUTILS_USE_STD_STARTSIM_MSG etc).

Differences between simulators

Text strings (TestName and Info text) in the waveform window look different in different

simulators. In ModelSim strings look like this: Example text. In ISim it looks like

this: ‘E’,’x’,’a’,’m’,’p’,’l’,’e’,’ ’,’t’,’e’,’x’,’t’.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 27 of 47

3

Reference

PlTbUtils files

The PlTbUtils files are located in src/vhdl/ .

The files needed to be compiled are listed in compile order in pltbutils_files.lst .

See example testbenches using PlTbUtils in examples/vhdl/ .

This code can be simulated from sim/modelsim_tb_example1/run/ and

sim/modelsim_tb_example2/run/ .

Template code is available in templates/vhdl/ .

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 28 of 47

Functions and procedures

startsim

procedure startsim(

 constant testcase_name : in string;

 constant skiptests : in std_logic_vector;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

Displays a message at start of simulation message, and initializes PlTbUtils' status and

control variable and -signal. Call startsim() only once.

Arguments:

testcase_name Name of the test case, e.g. "tc1".

skiptests std_logic_vector for marking tests that should be skipped.

The leftmost bit has position 0, and position numbers increment to

the right. A '1' indicates that the test with the same number as the

position should be skipped.

Note that there is usually no test which has number 0, so bit zero in

the vector is usually ignored. This argument is normally fed by a

generic. If no tests should be skipped, a zero-length vector is

allowed, ("").

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

The start-of-simulation message is not only intended to be informative for humans. It is

also intended to be searched for by scripts, e.g. for collecting results from a large number

of regression tests.

Examples:

startsim("tc1", "", pltbv, pltbs);

startsim("tc2", G_SKIPTESTS, pltbv, pltbs); -- G_SKIPTESTS is a generic

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 29 of 47

endsim

procedure endsim(

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant show_success_fail : in boolean := false;

 constant force : in boolean := false

)

Displays a message at end of simulation message, presents the simulation results, and

stops the simulation. Call endsim() it only once.

Arguments:

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

show_success_fail If true, endsim() shows "*** SUCCESS ***", "*** FAIL ***",

 or "*** NO CHECKS ***". Optional, default is false.

force If true, forces the simulation to stop using an assert failure

 statement. Use this option only if the normal way of stopping the

 simulation doesn't work (see below). Optional, default is false.

The testbench should be designed so that all clocks stop when endsim() sets the signal

stop_sim to '1'. This should stop the simulator.

In some cases, that doesn't work, then set the force argument to true, which causes a false

assert failure, which should stop the simulator.

The end-of-simulation messages and success/fail messages are not only intended to be

informative for humans. They are also intended to be searched for by scripts, e.g. for

collecting results from a large number of regression tests.

Examples:

endsim(pltbv, pltbs);

endsim(pltbv, pltbs, true);

endsim(pltbv, pltbs, true, true);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 30 of 47

starttest

procedure starttest(

 constant num : in integer := -1;

 constant name : in string;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

Sets a number (optional) and a name for a test. The number and name will be printed to

the screen, and displayed in the simulator's waveform window.

The test number and name is also included if there errors reported by the check()

procedure calls.

Arguments:

num Test number. Optional, default is to increment the current test

 number.

name Test name.

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

If the test number is omitted, a new test number is automatically computed by

incrementing the current test number. Manually setting the test number may make it

easier to find the test code in the testbench code, though.

Examples:

starttest("Reset test", pltbv, pltbs);

starttest(1, "Reset test", pltbv, pltbs);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 31 of 47

is_test_active

function is_test_active(

 constant pltbv : in pltbv_t

) return boolean

Returns true if a test is active (not skipped), otherwise false.

Arguments:

pltbv PlTbUtils' status- and control variable.

Example:

starttest(3, "Example test", pltbv, pltbs);

if is_test_active(pltbv) then

 ... test code ...

end if;

endtest(pltbv, pltbs);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 32 of 47

endtest

procedure endtest(

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

Prints an end-of-test message to the screen.

Arguments:

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

Example:
endtest(pltbv, pltbs);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 33 of 47

print printv print2

Defined in txt_util.vhd:

procedure print(

 constant txt : in string

)

procedure print(

 constant active : in boolean;

 constant txt : in string

)

Defined in pltbutils_func_pkg.vhd:

procedure print(

 signal s : out string;

 constant txt : in string

)

procedure print(

 constant active : in boolean;

 signal s : out string;

 constant txt : in string

)

procedure print(

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant txt : in string

)

procedure print(

 constant active : in boolean;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant txt : in string

)

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 34 of 47

procedure printv(

 variable s : out string;

 constant txt : in string

)

procedure printv(

 constant active : in boolean;

 variable s : out string;

 constant txt : in string

)

procedure print2(

 signal s : out string;

 constant txt : in string

)

procedure print2(

 constant active : in boolean;

 signal s : out string;

 constant txt : in string

)

procedure print2(

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant txt : in string

)

procedure print2(

 constant active : in boolean;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

 constant txt : in string

)

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 35 of 47

print() without a signal as argument prints text messages to the transcript window.

print() with a signal as argument prints text messages to that signal for viewing in the

simulator's waveform window.

printv() does the same thing, but to a variable instead.

print2() prints both to a signal and to the transcript window.

The type of the output can be string or pltbv+pltbs.

Arguments:

s Signal or variable of type string to be printed to.

txt The text.

active The text is only printed if active is true. Useful for debug switches,

 etc.

pltbv, pltbs PlTbUtils' status- and control variable and -signal. The text will be

 printed to “info” in the waveform window.

If the string txt is longer than the signal s, the text will be truncated. If txt is shorter, s will

be padded with spaces.

Examples:

print("Hello, world"); -- Prints to transcript window

print(msg, "Hello, world"); -- Prints to signal msg

print(G_DEBUG, msg, "Hello, world"); -- Prints to signal msg if

 -- generic G_DEBUG is true

printv(v_msg, “Hello, world”); -- Prints to variable msg

print(pltbv, pltbs, “Hello, world”); -- Prints to “info” in waveform

 -- window

print2(msg, “Hello, world”); -- Prints to signal and transcript window

print(pltbv, pltbs, “Hello, world”); -- Prints to “info” in waveform and

 -- transcript windows

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 36 of 47

waitclks

procedure waitclks(

 constant n : in natural;

 signal clk : in std_logic;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant falling : in boolean := false;

 constant timeout : in time := C_PLTBUTILS_TIMEOUT

)

Waits specified amount of clock cycles of the specified clock. Or, to be more precise, a

specified number of specified clock edges of the specified clock.

Arguments:

n Number of rising or falling clock edges to wait.

clk The clock to wait for.

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

falling If true, waits for falling edges, otherwise rising edges.

 Optional, default is false.

timeout Timeout time, in case the clock is not working.

 Optional, default is C_PLTBUTILS_TIMEOUT.

Examples:

waitclks(5, sys_clk, pltbv, pltbs);

waitclks(5, sys_clk, pltbv, pltbs, true);

waitclks(5, sys_clk, pltbv, pltbs, true, 1 ms);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 37 of 47

waitsig

procedure waitsig(

 signal s : in

 integer|std_logic|std_logic_vector|unsigned|signed;

 constant value : in

 integer|std_logic|std_logic_vector|unsigned|signed;

 signal clk : in std_logic;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t;

 constant falling : in boolean := false;

 constant timeout : in time := C_PLTBUTILS_TIMEOUT)

Waits until a signal has reached a specified value. In clocked variants of waitsig, the

signal is checked after specified clock edge (rising or falling).

Unclocked variants are currently only available for types std_logic and std_logic_vector.

Arguments:

 s The signal to test.

 Supported types: integer, std_logic, std_logic_vector, unsigned,

 signed.

value Value to wait for.

 Same type as data or integer.

clk The clock, only present in clocked variants of waitsig.

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

falling If true, waits for falling edges, otherwise rising edges.

 Optional, default is false.

timeout Timeout time, in case the clock is not working.

 Optional, default is C_PLTBUTILS_TIMEOUT.

Examples:

waitsig(wr_en, '1', sys_clk, pltbv, pltbs);

waitsig(rd_en, 1, sys_clk, pltbv, pltbs, true);

waitclks(full, '1', sys_clk, pltbv, pltbs, true, 1 ms);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 38 of 47

check

procedure check(

 constant rpt : in string;

 constant data : in integer |

 std_logic | std_logic_vector |

 unsigned | signed | boolean | time |

 string;

 constant expected : in integer |

 std_logic | std_logic_vector |

 unsigned | signed | boolean | time |

 string;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

procedure check(

 constant rpt : in string;

 constant data : in std_logic_vector;

 constant expected : in std_logic_vector;

 constant mask : in std_logic_vector;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

procedure check(

 constant rpt : in string;

 constant data : in time;

 constant expected : in time;

 constant tolerance : in time;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

procedure check(

 constant rpt : in string;

 constant expr : in boolean;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 39 of 47

Checks that the value of a signal or variable is equal to expected. If not equal, displays an

error message and increments the error counter.

Arguments:

rpt Report message to be displayed in case of mismatch.

 It is recommended that the message is unique and that it contains

 the name of the signal or variable being checked. The message

 should NOT contain the expected value, because check() prints

 that automatically.

data The signal or variable to be checked.

 Supported types: integer, std_logic, std_logic_vector, unsigned,

 signed.

expected Expected value. Same type as data, or integer.

mask Bit mask and:ed to data and expected before comparison.

 Optional if data is std_logic_vector. Not allowed for other types.

tolerance Allowed tolerance. Checks that

 expected - tolerance ≤ actual ≤ expected + tolerance

 is true.

expr boolean expression for checking.

 This makes it possible to check any kind of expresion,

 not just equality.

pltbv, pltbs PlTbUtils' status- and control variable and -signal.

Examples:

check(“dat_o after reset”, dat_o, 0, pltbv, pltbs);

-- With mask:

check(“Status field in reg_o after start”, reg_o, x”01”, x”03”,

 pltbv, pltbs);

-- Boolean expresson:

check(“Counter after data burst”, cnt_o > 10, pltbv, pltbs);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 40 of 47

check_binfile | check_txtfile | check_datfile

procedure check_binfile | check_txtfile | check_datfile(

 constant rpt : in string;

 constant filename1 : in string;

 constant filename2 : in string;

 constant verbosity : in integer;

 variable pltbv : inout pltbv_t;

 signal pltbs : out pltbs_t

)

Checks that the contents of a file is equal to expected contents, by comparing with a

reference file. If not equal, displays an error message and increments the error counter.

This is useful for examining different types of files generated by testbench components

during a simulation against reference files. It can be different kinds of data sequences,

video image data, etc.

check_binfile compares two binary files. It uses "file of character" to read bytes from the

files. The VHDL LRM does not define how a "file of character" should be written or

to/read from disk. In theory, there is a risk that a VHDL file of character is not

compatible with a normal binary file, but practical tests done with some popular

simulators have shown that they are compatible. This does not guarantee that this

procedure works with ALL simulators, and with ALL future versions of the tested

simulators. Use your own judgement.

check_txtfile compares two text files.

check_datfile compares two files with data formatted as follows. The files contain a

sequence of data items separated by whitespace (spaces, tabs, newlines). The files can

contain comments starting with a hash sign (#), and ending at next newline.

Only the data items are compared. The types of whitespace and comments are ignored.

This is useful for different kinds of data dumps, including some image file formats such

as

 Plain PBM (Portable Bit Map - P1, http://netpbm.sourceforge.net/doc/pbm.html)

 Plain PGM (Portable Gray Map - P2, http://netpbm.sourceforge.net/doc/pgm.html)

 Plain PPM (Portable Pixel Map - P3, http://netpbm.sourceforge.net/doc/ppm.html)

Arguments:

rpt Report message to be displayed in case of mismatch.

It is recommended that the message is unique and that it contains

the name of the signal or variable being checked.

filename1 Name of first file to be compared, including relative path from the

simulator's working directory.

filename2 Name of second file to be compared, including relative path from

the simulator's working directory.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 41 of 47

verbosity Controls amount of individual error reports when differences

between files are found, to make it possible to prevent flooding

with error messages.

0: no individual differences reported

1: the first ten differences reported

2: all differences reported

 pltbv, pltbs PlTbUtils' status- and control variable and -signal.

Examples:

check_binfile("Data output file", "out_file.bin", "ref_file.bin", 0,

pltbv, pltbs);

check_txtfile("Result file", G_RESULT_FILE, G_REF_FILE,

G_CHECKFILE_VEROBOSITY, pltbv, pltbs);

check_datfile("Resulting image", "result_img.ppm", "ref_img.ppm", 2,

pltbv, pltbs);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 42 of 47

to_ascending

function to_ascending(

 constant s : std_logic_vector | unsigned | signed

) return std_logic_vector | unsigned | signed;

Converts a vector to ascending range ("to-range").

The argument s can have ascending or descending range.

E.g. an argument defined as a std_logic_vector(3 downto 1)

will be returned as a std_logic_vector(1 to 3).

Arguments:

 s Constant, signal or variable to convert

Return value: Converted value

Examples:

ascending_sig <= to_ascending(descending_sig);

ascending_var := to_ascending(descending_var);

to_descending

function to_descending(

 constant s : std_logic_vector | unsigned | signed

) return std_logic_vector | unsigned | signed;

Converts a vector to descending range ("downto-range").

The argument s can have ascending or descending range.

E.g. an argument defined as a std_logic_vector(1 to 3)

will be returned as a std_logic_vector(3 downto 1).

Arguments:

 s Constant, signal or variable to convert

Return value: Converted value

Examples:

descending_sig <= to_descending(ascending_sig);

descending_var := to_descending(ascending_var);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 43 of 47

hxstr

function hxstr(

 constant s : std_logic_vector | unsigned | signed;

 constant prefix : string := "";

 constant postfix : string := ""

) return string;

Converts a vector to a string in hexadecimal format.

An optional prefix can be specified, e.g. "0x", as well as a suffix.

The input argument can have ascending range ("to-range") or descending range

("downto-range"). There is no vector length limitation.

Arguments:

 s Constant, signal or variable to convert

Return value: Converted value

Examples:

print("value=" & hxstr(s));

print("value=" & hxstr(s, "0x"));

print("value=" & hxstr(s, "16#", "#"));

str

function str(

 constant n : integer;

 constant len : integer;

 constant fillchar : character := ' '

) return string;

Converts integer n to a string with fixed length len and leading fillchar.

str_equal

function str_equal (

 constant s1 : STRING;

 constant s2 : STRING

) return boolean;

Returns true if strings s1 and s2 are equal, otherwise false.

 The normal VHDL string comparison s1 = s2 only works correctly if the length of the

strings are equal. str_equal works even if the lengths differ.

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 44 of 47

More functions and procedures in txt_util.vhd

 -- converts std_logic into a character

 function chr(sl: std_logic) return character;

 -- converts std_logic into a string (1 to 1)

 function str(sl: std_logic) return string;

 -- converts std_logic_vector into a string (binary base)

 function str(slv: std_logic_vector) return string;

 -- converts boolean into a string

 function str(b: boolean) return string;

 -- converts an integer into a single character

 -- (can also be used for hex conversion and other bases)

 function chr(int: integer) return character;

 -- converts integer into string using specified base

 function str(int: integer; base: integer) return string;

 -- converts integer to string, using base 10

 function str(int: integer) return string;

 -- convert std_logic_vector into a string in hex format

 -- NOTE: Argument limited to 32 bits. Consider hxstr(), see p 43.

 function hstr(slv: std_logic_vector) return string;

 -- functions to manipulate strings

 -- convert a character to upper case

 function to_upper(c: character) return character;

 -- convert a character to lower case

 function to_lower(c: character) return character;

 -- convert a string to upper case

 function to_upper(s: string) return string;

 -- convert a string to lower case

 function to_lower(s: string) return string;

 -- checks if whitespace (JFF)

 function is_whitespace(c: character) return boolean;

 -- remove leading whitespace (JFF)

 function strip_whitespace(s: string) return string;

 -- return first nonwhitespace substring (JFF)

 function first_string(s: string) return string;

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 45 of 47

 -- finds the first non-whitespace substring in a string and (JFF)

 -- returns both the substring and the original with the substring

 -- removed

 procedure chomp(variable s: inout string; variable shead:

 out string);

 -- functions to convert strings into other formats

 --

 -- converts a character into std_logic

 function to_std_logic(c: character) return std_logic;

 -- converts a hex character into std_logic_vector (JFF)

 function chr_to_slv(c: character) return std_logic_vector;

 -- converts a character into int (JFF)

 function chr_to_int(c: character) return integer;

 -- converts a binary string into std_logic_vector

 function to_std_logic_vector(s: string) return std_logic_vector;

 -- converts a hex string into std_logic_vector (JFF)

 function hstr_to_slv(s: string) return std_logic_vector;

 -- converts a decimal string into an integer (JFF)

 function str_to_int(s: string) return integer;

 -- file I/O

 -- read variable length string from input file

 procedure str_read(file in_file: TEXT;

 res_string: out string);

 -- print string to a file and start new line

 procedure print(file out_file: TEXT;

 new_string: in string);

 -- print character to a file and start new line

 procedure print(file out_file: TEXT;

 char: in character);

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 46 of 47

Testbench components

pltbutils_clkgen

Creates a clock signal for use in a testbench. The clock stops when input port stop_sim

goes ‘1’. This makes the simulator stop (unless there are other infinite processes running

in the simulation).

Generic Type

Width

Description

G_PERIOD time Clock period.

G_INITVALUE std_logic Initial value of the non-inverted clock output.

Port Type

Width

Dir Description

clk_o std_logic Out Non-inverted clock output.

Use this output for single ended or differential

clocks.

clk_n_o std_logic Out Inverted clock output.

Use if a differential clock is needed, leave open

if single-ended clock is needed.

stop_sim_i std_logic In When ‘1’, stops the clock. This will normally

stop the simulation.

pltbutils_time_measure

Measures high-time, low-time and period of a signal, usually a clock. Setting

G_VERBOSITY to at least 20 reports measures times. Set G_RPT_LABEL to a prefix

used in reports, typically the name of the signal being measured.

Generic Type

Width

Description

G_VERBOSITY integer Controls amount of reports

G_RPT_LABEL string Prefix used in reports

Port Type

Width

Dir Description

t_hi_o time Out High time

t_lo_o time Out Low time

t_per_o time Out Period time

s_i std_logic In Signal to measure

http://www.opencores.org/

 OpenCores PlTbUtils Specification 4/12/2020

www.opencores.org Rev 1.2

 47 of 47

pltbutils_diff_check

Checks that the negative half of a diff pair is the always the complement of the positive

half. Setting G_VERBOSITY to at least 100 reports number of diff errors. Set

G_RPT_LABEL to a prefix used in reports, typically the name of the signal being

measured.

Generic Type

Width

Description

G_VERBOSITY integer Controls amount of reports

G_RPT_LABEL string Prefix used in reports

Port TypeWi

dth

Dir Description

diff_error_o std_logic Out High when diff error detected

diff_errors_o integer Out Number of diff errors detected

s_i std_logic In Pos half of diff pair to check

s_n_i std_logic In Neg half of diff pair to check

rst_errors_i std_logic In High resets diff error counter

http://www.opencores.org/

