

Present Cipher Encryption IP Core

 Author: Reza Ameli

 Digital Systems Lab

 Ferdowsi University of Mashhad, Iran

 http://commeng.um.ac.ir/dslab

1. Introduction

Present is a lightweight block cipher designed for hardware constrained applications

such as RFID tags and Smart Cards.

This cipher is a true example of SPN ciphers. The block size is 64 bits, key size can

be either 80 or 128 bits and the number of rounds is 31.

The S-Box used in Present is a 4-bit to 4-bit S-Box which is invoked both in the

substitution layer and in the key scheduling routine.

This project entails an encryption-only implementation of Present cipher with key

size equal to 80 bits.

Although an encryption-only implementation of a cipher may seem insufficient for

devising a complete security scheme but that is not the case. Many modes of

incorporating block ciphers depend only on the encryption algorithm. Examples of

such modes of operation are CBF, OFB, CTR, SCFB and … .

The presented design is iterative that is the same module of one encryption round

will be used 31 times. This resource reuse also applies to the key scheduling

routine.

In each round of encryption, all 64 bits of state are passed through 16 S-Boxes

(each having a width of 4). Implementation of these 16 S-Boxes can either direct

(instantiating all 16 S-Boxes in parallel) or iterative (instantiating less than 16 S-

Boxes and using them taking turns).

This design directly instantiates all of the 16 S-Boxes and another single S-Box for

the key scheduling section.

2. Architecture & IOs

Inputs and Outputs of the design are:

Name Direction Width (bits) Description
data_o Output 64 Ciphertext will appear here

data_i Input 80 Key and plaintext must be applied here

data_load Input 1 ‘1’ when loading the key

key_load Input 1 ‘1’ when loading the plaintext

clk_i Input 1 Clock signal (operates at rising edge)

Internal signals and registers of design top (present_encryptor_top):

Name Width (bits) Type Description
State 64 Register Current state of cipher

round_counter 5 Register 5-bit counter (from 1 to 31)

Key 80 Register
Register that holds the 80-bit key and

later its updates

round_key 64 Signal

Round key that is 64 leftmost bits of

key register and will be XORed by the

state

sub_per_input 64 Signal
Input to Substitution-Permutation

network

sub_per_output 64 Signal
Output of Substitution-Permutation

network

key_update_output 80 Signal
Value that will replace the content of

key register

This figure shows the architecture of design (inputs are blue, outputs are purple

and internals are orange):

data_o data_i

XOR

State SPN

Key
Key

Update

key_load

data_load

3. Operation

This design has two control inputs namely key_load and data_load. When either

of these inputs is high, at the rising edge of the clock signal (clk_i) the (required

number of) bits present at data_i are copied to the corresponding register.

In case of key_load all bits of data_i (which is 80 bits wide) are copied to key

register (which is also 80 bits wide).

In case of data_load, 64 rightmost bits (data_i[63:0]) of data_i are copied to

state register.

One other event that happens when data is loaded (i.e. data_load = ‘1’) is that

round_counter is set to ‘1’ (0b00001) i.e. loading a new plaintext into the state

register also resets the state machine, that is why this design does not have a

reset signal.

After loading the key and the plaintext, both key_load and data_load must be

‘0’. After setting the control inputs to ‘0’, 30 clocks must be applied in order to

data_o contain a valid ciphertext. That is after the rising edge of the 30th clock

signal, data_o has the correct ciphertext.

So the complete encryption of plaintext requires 32 clocks.

After encrypting one plaintext and in order to encrypt another, all of the steps

explained above must be done again.

Following steps briefly summarize the operation of this design:

1) Load the key (key_load = ‘1’, data_load = ‘0’)

2) Load the plaintext (key_load = ‘0’, data_load = ‘1’)

3) Set control inputs to ‘0’ (key_load = ‘0’, data_load = ‘0’)

4) Apply 30 clocks

4. Design Hierarchy

This figure shows the design hierarchy:

present_encryptor_top

sub_per

substitution

sbox

permutation

key_update

sbox

