

Raptor CPU Core Reference

[image: image1]
Robert Finch
© 2007
This page intentionally blank

Revision History

	Rev.
	Date
	Author
	Description

	1.0
	2005-08-18
	Robert Finch
	First Draft

	1.1
	2007-06-28
	Robert Finch
	Switched to SETHI, SETLO, added data type field

	1.2
	
	Robert Finch
	

	Raptor CPU Core

	© 2007 Robert Finch

Home

Table of Contents

71
Overview

71.1
Design Objectives

81.2
Unique Features

81.3
Definitions

92
Programming Model

92.1
Execution Contexts

92.2
General Registers

102.2.1
Register Format

102.2.2
Floating Point Format

112.3
Program Counter (R45)

112.3.1
Instruction Packets

112.3.2
Program Counter Format

112.3.3
Program Counter Relative Addressing

122.4
Special Purpose Registers

132.4.1
Status Register (SR)

142.4.2
Core Number (COR)

152.4.3
Version Register

162.4.4
Random Number Register (RND)

172.4.5
#32 Vector Table Base Address Register (VBA)

182.4.6
#5 Tick Count Register (TIC)

192.4.7
Active Executive Context (AXC)

192.4.8
Execution Pattern Registers (EP0-3)

202.4.9
#30 Floating Point Status and Control Register (FPC)

223
Hyper-Threading

224
Interrupts

234.1
Interrupt Vector Table

245
Program Flow Control

245.1
Compare Operation

255.2
Branches

255.2.1
Overview

255.2.2
Targets

265.2.3
Branch Conditions

26Branch Conditions

275.3
Method Invocation (Jumps and Calls)

275.4
System Calls and Interrupts

286
Datapath Operations

286.1
Immediate Constants

286.2
Integer Operations

286.2.1
Addition / Subtraction / Multiply / Divide

286.2.2
Comparisons

286.2.3
Logical Operations

286.2.4
Shifts

286.2.5
BitField Operations

296.3
Floating Point Operations

296.3.1
Addition / Subtraction / Multiply / Divide

296.3.2
Absolute Value / Negation / Sign Determination / Fractional Extraction

296.3.3
Numeric Conversions

296.3.4
Comparisons

296.3.5
Other Instructions

307
Memory Operations

307.1
Endian

307.2
Operations

307.3
Alignment

307.4
Memory Map

318
Opcode Formats

318.1
Instruction Layout

328.2
Opcode Formats

338.3
Detailed Opcode Formats

348.4
Data Type

358.5
Opcode Maps

358.5.1
Major Instruction Group

368.5.2
Register Instruction Group

378.5.3
Miscellaneous Control

388.5.4
Floating Point Operations

409
Instruction Set Description

Documentation Notes
 This document refers to an eight bit quantity as a byte, a sixteen bit quantity as a character, a thirty-two bit quantity as a half-word, and a sixty-four bit quantity as a word.
1 Overview

The Raptor is a powerful multi-context 64 bit processor that represents a generational refinement of processor architecture. The processor contains 32, 32 bit general purpose registers which may be used for either integer or floating point operations. The Raptor uses a fixed 42 bit instruction and handles 8, 16, 32, and 64 bit data within a 64 bit address space. I/O is memory mapped.

1.1 Design Objectives

This processor is targeted towards high performance operation as a general purpose processor. Following are some of the criteria that were used on which to base the design.
	· Designed for Superscalar operation - the ability to execute more than one instruction at a time. To achieve high performance it is generally accepted that a processor must be able to execute more than a single instruction in any given clock cycle.

	· Simplicity - architectural simplicity leads to a design that is easy to implement resulting in reliability and assured correctness along with easy implementation of supporting tools such as compilers. Simplicity also makes it easier to obtain high performance and results in lower overall cost.

	· Extensibility - the design must be extensible so that features not present in the first release can easily be added at a later date.

	· Low Cost

This design meets the above objectives in the following ways. The instruction set has been designed to minimize the interactions between instructions, allowing instructions to be executed as independent units for superscalar operation. There are a sufficient number of registers to allow the compiler to schedule parallel processing of code. A reasonably large general purpose register set is available making the design reasonably compatible with many existing compilers and assemblers. Where needed, additional specialized instructions have been added to the processor to support a sophisticated operating system and interrupt management.

1.2 Unique Features

Forty-two bit wide opcodes. The wider opcode format accommodates more registers, more operations, and larger constants while allowing for future extensibility.

Combined compare and branch operations. This is a code compression technique that both reduces code size and increases performance.

Evaluation of logical operations during branch condition determination in addition to the usual relational operations. This is another code compression and thus performance enhancing feature.

The processor supports mystery logical operations where the exact operation to be performed is unknown until runtime, at which point the operation to be performed is determined by the value of a register. This is useful in applications such as raster graphics operations and ciphering.

1.3 Definitions

Instruction Packet:

An instruction packet is a sixteen byte aligned block of memory that contains three instructions.

Programming Model
1.4 Execution Contexts

Internally the Raptor uses multiple register contexts in order to support hyper-threading. However, only a single set of registers is visible for programming at one time. A register context consists of the general registers and a program counter.

1.5 General Registers

There are 32 sixty-four bit registers - r0 to r31. All registers are available in supervisor mode. In user mode only registers r0 to r47 are available. Twenty-eight of the registers are available for any use. The other registers have dedicated uses.

· R0 always reads as zero and can’t be updated.

· R45 reflects the address of the instruction and can’t be updated. It may be used to generate program counter relative addresses.

· R47 is automatically updated by hardware to store the current program counter when a subroutine call occurs.

· R63 is automatically used by hardware to store the current program counter when an interrupt occurs.

	 Code
(6 bits)
	Register Name
	Description / Suggested Usage Convention

	0
	R0 or 0
	This register always reads as zero

	1
	R1
	First return value / first argument

	2
	R2
	Second return value / second argument

	3 to 41
	R3-R41
	Application usage.

	42
	C0
	constant hold

	43
	C1
	constant hold

	44
	C2
	constant hold

	45
	PC
	Program counter. This is an alias for the instruction address. This register is read only.

	46
	SP
	Stack Pointer. Any hardware based stack operations will use this register.

	47
	RA
	Return Address register. This register is used to store the return address from a subroutine or method call.

	48 to 61
	R48-R61
	System usage

	62
	SSP
	System Stack Pointer. Any hardware based stack operations will use this register.

	63
	XRA
	Exception Return Address register. This register is automatically updated by hardware during interrupt processing.

	
	
	

Programming Model

	Special Registers
	
	General Purpose Registers

	
	
	
	
	

	
	
	63 23 22 0
	
	63 0
	
	63 0

	Program Counter
	
	PB
	PC
	
	R0/0
	
	R24

	Link Register
	
	PB
	PC
	
	R1
	
	R25

	Except. Address
	
	PB
	PC
	
	R2
	
	R26

	
	
	
	
	R3
	
	R27

	
	
	
	
	R4
	
	R28

	System Vec.
	
	SV
	
	R5
	
	R29

	
	
	
	
	R6
	
	R30

	
	
	R7
	
	R31

	
	
	
	
	R8
	
	R32

	
	
	
	
	R9
	
	R33

	
	
	
	
	R10
	
	R34

	
	
	
	
	R11
	
	R35

	
	
	63 0
	
	R12
	
	R36

	Loop Counter
	
	LC
	
	R13
	
	R37

	Tick
	
	TICK
	
	R14
	
	R38

	
	
	
	
	R15
	
	R39

	
	
	
	
	R16
	
	R40

	
	
	
	
	R17
	
	R41

	
	
	
	
	R18
	
	R42

	
	
	
	
	R19
	
	R43

	
	
	
	
	R20
	
	R44

	
	
	
	
	R21
	
	R45

	
	
	
	
	R22
	
	R46

	
	
	
	
	R23
	
	R47

	
	
	
	
	System Usage

	
	
	
	
	R48
	
	R56

	
	
	
	
	R49
	
	R57

	
	
	
	
	R50
	
	R58

	
	
	
	
	R51
	
	R59

	
	
	
	
	R52
	
	R60

	
	
	
	
	R53
	
	R61

	
	
	
	
	R54
	
	R62

	
	
	
	
	R55
	
	R63

General purpose register R0 always contains the value zero.

The Tick register increments with every clock cycle. It may be set using the ‘mtspr’ instruction.

1.5.1 Register Format

Integer values in registers are represented in twos complement format.

	63
	62 0

	Sign
	value

1.5.2 Floating Point Format

Floating point values are represented as IEEE-754 standard single precision values. This is a sign-magnitude format.
	Sign
	Exponent
	Mantissa

	31
	30 23
	22 0

1.6 Program Counter (R45)
1.6.1 Instruction Packets

An instruction packet is just a fancy name for an aligned sixteen byte block of memory that contains three instructions.

The processor uses forty-two bit instructions with opcodes packed three per 128 bits as shown in the format below. There are two unused bits which should be set to zero.

	127
	125 84
	83 42
	41 0

	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

Instruction addresses are composed of a packet number which indicates which sixteen byte memory area contains the instruction, and a slot number. The instruction slot number is one of zero, one, or two. The slot number indicates which opcode within the packet is active.

Any one of the opcodes within an instruction packet may be used as a target address. The program counter contains a packet address and slot number. As a program is executed the slot number increments from zero to one to two, then back to zero, while the packet number increments when the slot number changes from two to zero. The packet number matches with a sixteen-byte aligned data address. The slot number just indicates which opcode within the packet is active.

1.6.2 Program Counter Format

	63 2
	1 0

	Instruction Packet Number
	Slot Number

1.6.3 Program Counter Relative Addressing

R45 contains the value of the program counter for the instruction currently being executed. R45 may be used to form program counter relative addresses.

Special Purpose Registers

There are several special purpose registers within the processor. The processor model may be extended to support additional functionality at a later date.

	Code
	Register Name
	Description

	0
	SR
	Status Register

	1
	COR
	CORe number

	2
	THR
	{this register is reserved – thread number}

	3
	VER
	Processor Version / Features - major, minor, revision

	4
	RND
	random number register

	5
	TIC
	tick count register

	Execution Context Control

	8
	EP0
	Execution Pattern

	9
	EP1
	

	10
	EP2
	

	11
	EP3
	

	12
	AXC
	active execution context

	

	15
	PTA
	Page Table Address

	14…31
	
	{these register are reserved}

	30
	FPC
	floating point control

	32
	 VBA
	vector table base address

	33-47
	
	{reserved library registers}

These registers may be accessed using the TRS and TSR commands.
1.6.4 Status Register (SR)

This register contains bits that control the overall operation of the processor or reflect the processor’s state. Bits are included for interrupt masking, and system / application mode indicator. This register is split into two halves with both halves having the same format. The lower half of the register is what determines how the processor works. The upper half of the register maintains a backup copy of the lower half for interrupt processing. There are instructions provided for manipulating the interrupt mask. (EI, DI, and RIF).
	31..16
	15
	14
	13
	12
	11..0

	same format as 15..0
	Interrupt Mask
	Reserved
	System / Application Mode Indicator
	Float Except. Enable
	reserved

	
	IM
	~
	S
	FXE
	~

1.6.5 Core Number (COR)

This register is used to identify which core is active in a multi-core system.

	31 24
	23 20
	19 16
	15 0

	0
	~4
	Core4
	Thread16

1.6.6 Version Register

This register contains the major, minor, and revision numbers of the processor. This register is read only.
	31 24
	23 16
	15 8
	7 0

	Major
	Minor
	Revision
	{Reserved}

	1
	0
	0
	0

1.6.7 Random Number Register (RND)

This register contains a pseudo-random value based on a LCG (linear congruential generator). The value may be seeded by writing to the register. The register may contain either a random 32 bit integer or rand floating point value between 0.0 and 1.0. The GRAN instruction is used to generate a 32 bit integer value. The GRAF instruction is used to generate a floating point value.

LCG Parameters – 32 bit

next = (cur * a + c) mod M

a = 69069 decimal

c = 1

M = 2^32

	31 0

	random number

	63 0

	random number

1.6.8 #32 Vector Table Base Address Register (VBA)

This register establishes the base address of the interrupt vector table in memory. At reset it is set to zero, the first 4KB page of memory or $0000. The low order twelve bits of this register are always zero. The vector number from the system call instruction is combined with this register to form the address from which the vector should be taken. This register is read only unless the processor is supervisor mode.
64 Bit Implementation:

	63 12
	11 0

	FFFF_FFFF_FFFF_F
	000

32 Bit Implementation:
	31 12
	11 0

	FFFF_F
	000

1.6.9 #5 Tick Count Register (TIC)

This register contains a count of the number of clock cycles that have passed since the last time the register was written. It may be useful for performance monitoring. This register is read only unless the processor is supervisor mode.
	32 Bit Implementation:
	
	31 0

	
	
	clock cycle count

	
	
	

	64 Bit Implementation:
	63 0

	
	clock cycle count

1.6.10 Active Executive Context (AXC)

This register contains a number identifying the currently active executive context.
	31 4
	3 0

	0
	number

1.6.11 Execution Pattern Registers (EP0-3)

This set of four registers records the frequency of execution for each context. Each register is divided into eight buckets which record a four bit execution context number.
This set of registers is just a holding place for the pattern, in order to make the pattern active the execution pattern transfer register (EPT) must be updated.

Contexts are executed based on their frequency of appearance in the execution pattern registers.

	
	31 28
	27 24
	23 20
	19 16
	15 12
	11 8
	7 4
	3 0

	EP0
	CTX7
	CTX6
	CTX5
	CTX4
	CTX3
	CTX2
	CTX1
	CTX0

	EP1
	CTX15
	CTX14
	CTX13
	CTX12
	CTX11
	CTX10
	CTX9
	CTX8

	EP2
	CTX23
	CTX22
	CTX21
	CTX20
	CTX19
	CTX18
	CTX17
	CTX16

	EP3
	CTX31
	CTX30
	CTX29
	CTX28
	CTX27
	CTX26
	CTX25
	CTX24

1.6.12 #30 Floating Point Status and Control Register (FPC)

This register contains control values for floating point and floating point status bits.
	Bit
	
	Symbol
	Description

	31:30
	RM
	rm
	rounding mode

	29
	
	
	{reserved}

	28
	E5
	inexe
	- inexact exception enable

	27
	E4
	dbzxe
	- divide by zero exception enable

	26
	E3
	underxe
	- underflow exception enable

	25
	E2
	overxe
	- overflow exception enable

	24
	E1
	invopxe
	- invalid operation exception enable

	23
	NS
	ns
	- non standard floating point indicator

	Result Status

	22
	
	fractie
	- the last instruction (arithmetic or conversion) rounded intermediate result (or caused a disabled overflow exception)

	21
	RA
	rawayz
	rounded away from zero (fraction incremented)

	20
	SC
	C
	denormalized, negative zero, or quiet NaN

	19
	SL
	neg <
	the result is negative (and not zero)

	18
	SG
	pos >
	the result is positive (and not zero)

	17
	SE
	zero =
	the result is zero (negative or positive)

	16
	SI
	inf ?
	the result is infinite or quiet NaN

	Exception Occurrence

	15
	X6
	swt
	{reserved} - set this bit using software to trigger an invalid operation

	14
	X5
	inerx
	- inexact result exception occurred (sticky)

	13
	X4
	dbzx
	- divide by zero exception occurred

	12
	X3
	underx
	- underflow exception occurred

	11
	X2
	overx
	- overflow exception occurred

	10
	X1
	giopx
	- global invalid operation exception – set if any invalid operation exception has occurred

	9
	GX
	gx
	- global exception indicator – set if any enabled exception has happened

	8
	SX
	sumx
	- summary exception – set if any exception could occur if it was enabled

- can only be cleared by software

	Exception Type Resolution

	7
	X1T
	cvt
	- attempt to convert NaN or too large to integer

	6
	X1T
	sqrtx
	- square root of non-zero negative

	5
	X1T
	NaNCmp
	- comparison of NaN not using unordered comparison instructions

	4
	X1T
	infzero
	- multiply infinity by zero

	3
	X1T
	zerozero
	- division of zero by zero

	2
	X1T
	infdiv
	- division of infinities

	1
	X1T
	subinfx
	- subtraction of infinities

	0
	X1T
	snanx
	- signaling NaN

	RM
	Rounding Mode

	0
	round towards nearest even

	1
	round towards zero (truncate)

	2
	round towards positive infinity

	3
	round towards negative infinity

* add floating point invalid operation exception instruction
2 Hyper-Threading

The Raptor supports hyper-threading via the use of multiple contexts. The processor can switch in a controlled fashion between contexts on a cycle-by-cycle basis. Which context is active during any clock cycle depends on the list configured in the execution pattern registers (EPx). The core cycles through the entries in the execution registers using the context number (0-15) stored in the list register to determine the next context to use during execution. Execution context zero is reserved for processing hardware exceptions. When a hardware exception occurs, the processor automatically forces execution context zero to become active, overriding the contents of the execution pattern list.

3 Interrupts

Interrupts cause an automatic transfer of processor execution to context zero.

This processor supports interrupts and exceptions in the form of a system call instruction. When a hardware interrupt or program exception occurs the appropriate system call instruction is forced into the processor's internal instruction pipeline (this is accomplished by hardware internal to the processor). There are several pre-defined exception numbers for specific vectors in order to support hardware interrupts as listed in the table below. An exception vectors to the handler whose address is located by combining the exception number (a field in the system call instruction) with the base address stored in the vector base address register (VBA). The REX1 (return from exception) instruction is used to return from an exception routine.

Occurrence of an exception results in the status register being copied to the back up version, the maskable interrupt mask being set to disable further interrupts, and the exception return address being copied to XRA, so that these may be restored by the exception return operation. The processor is also switched to system mode, which enables registers and instructions available only to system mode.

3.1 Interrupt Vector Table

The interrupt vector table is a table of 512 entries containing the addresses of routines that may be called using the system call instruction (SYS). They may also be called during hardware interrupt processing. The location of the table in memory is controlled by the vector base address register (VBA) which on reset is set to $0000_0000_0000_0000, effectively placing the vector table in the first 4KiB of memory.
The reset vector and non-maskable interrupt vectors are not governed by the VBA and have fixed addresses in memory of $FFFF_FFFF_FFFF_FFF8 and $FFFFFFFF_FFFF_FFF0 respectively.

The last 64 entries in the table are reserved for interrupts that the processor might generate. The remaining entries are free for use as needed by the operating system.

	Entry #
	Description

	Operating System (reserved)

	0
	

	
	

	BIOS (32 reserved)

	416
	RTC

	417
	Keyboard

	
	Network

	
	Mass Storage

	447
	

	Processor Hardware Exceptions (64 reserved)

	448
	spurious interrupt

	449
	hardware interrupt level 1

	450
	hardware interrupt level 2

	...
	...

	479
	hardware interrupt level 31

	480-487
	{reserved}

	488
	division by zero

	489-493
	{reserved}

	494
	illegal instruction address

	495
	unimplemented instruction

	496-509
	{reserved}

	510
	reserved - Non-maskable interrupt vector

	511
	reserved - Reset Vector

 Program Flow Control

There are four basic flow control instructions (JAL, Bcc, RET, and SYS).
JAL is an unconditional program flow transfer instruction.

The Bcc instructions are conditional transfers.

The RET instruction is a return instruction that also performs an add operation,
and the SYS instruction is used to invoke exception handlers.

3.2 Compare Operation

Conditional program flow instructions are guided by comparisons. The comparisons may be performed directly by the branch instruction, or via one of the datapath comparison instructions such as a floating point comparison. The compare instruction compares either two registers or a register and an immediate value and writes the result of the comparison to the target register. The target register will be written with a one to represent a true value or a zero for false. There are six basic relational comparison operations than can be performed (equal, not equal, less than, less than or equal, greater than or greater than or equal).

There are six integer comparison instructions which cover the standard relational comparisons for signed values. (SLT, SGE, SLE, SGT, SEQ, SNE).
There are two additional comparison operations (CMP, CMPU) which perform a relational comparison between a register and either another register or immediate value; and place the result of the comparison to the target register. For these two instructions the target register is written with -1 to indicate the first operand is less than the second, 0 to indicate that both operands are the same, and +1 to indicate that the first operand is greater than the second. CMP performs a signed comparison, CMPU performs an unsigned comparison.

Branches

3.2.1 Overview

Branches are the most frequent form of program flow control operation and are usually performed in a conditional manner. Branches are integrated with compare operations allowing a comparison and a branch to be processed as one unit for improved code density and performance.
3.2.2 Targets

Branch target addresses are determined in one of two fashions; the branch target may be an absolute address stored in a register, or it may be a relative address specified by a field in the branch instruction itself. The processor allows a twelve bit target address field which covers virtually 100% of branch cases.
If the top four bits of target field have the value 8 then the lower six bits of the target field specify a register that contains the target address, otherwise the target address is determined as described below.

Packet-Relative Addresses

When the branch target is not coming from a register, the branch target field contains a packet relative address and an absolute instruction slot number. This mechanism allows for easy relocation of code on packet boundaries. The twelve bit target field is split into two subfields – a relative packet displacement and the instruction slot number. The relative packet displacement is used to determine which instruction packet is the target relative to the packet of the branch instruction. The slot number indicates which slot within the target packet is the target for the branch. The slot number must have a value of 0, 1, or 2.

Packet displacements may vary from -448 to +511 packets. (The symmetry in the range is due to the allowance for register targets.

Target Field Specifier (non-register targets)
	11 2
	1 0

	Packet Displacement
	Slot

Target Field Specifier (register targets)

	11 8
	7 6
	5 0

	84
	~2
	Reg6

3.2.3 Branch Conditions

A standard set of branch conditions is provided, outlined in the table below. The branch conditional is determined by comparing the two registers or a register and a small immediate value specified by the branch instruction. The branch architecture is such that it is possible to branch based directly on a value in a register. The ISA features logical tests in addition to the regular relational tests.
Branch Conditions

	Mnemonic
	Description
	Conditional Test

	BLT
	Branch if Less Than
	a < b

	BGE
	Branch if Greater than or Equal
	a >= b

	BLE
	Branch if Less than or Equal
	a <= b

	BGT
	Branch if Greater Than
	a > b

	BEQ / BXNOR
	Branch if Equal
	a == b

	BLTU
	Branch if Less Than
	a < b

	BGEU
	Branch if Greater than or Equal
	a >= b

	BLEU
	Branch if Less than or Equal
	a <= b

	BGTU
	Branch if Greater Than
	a > b

	BNE / BXOR
	Branch if Not Equal
	a <> b

	BAND
	Branch if both true
	a and b

	BOR
	Branch if either true
	a or b

Method Invocation (Jumps and Calls)

Methods may be invoked by the JAL. instruction. JAL automatically stores the method return address in the return address link register (R47). A method return instruction (RET) is used to return from a method by restoring the program counter from the return address register.
The JAL instruction is a simple powerful instruction common in many newer architectures that provides for most common program flow transfer operations that are not covered by branches. The JAL instruction is a generic unconditional program flow control instruction. This single instruction can perform regular jump, method call and return operations, interrupt call and return operations, using absolute or register indirect addresses. The default form of the JAL instruction where the return address is stored in the return address register (R47) may referred to as a CALL in assembly language. When a jump (JMP) is required, the register to store the return address in may be specified as R0 (R0 will not be updated). When R63 is used to store the return address, the JAL instruction is assumed to be an interrupt or system call. When R63 is used to indirectly specify the target address, the JAL instruction is assumed to be an interrupt or system call return. As an interrupt or system call or return, the control bits are exchanged with the backup versions in the processor control register.
The JAL instruction may be used to perform program counter relative calls with the use of the program counter alias register, or program offset based calls by loading a register with the address of the program. JAL may target absolute addresses in memory by setting the target register field to R0.

JAL forms a target address by adding a register and immediate value, or two registers. The address generated is treated as an instruction address (It’s not a byte address).
3.3 System Calls and Interrupts

Calls to the operating system or interrupt routines may be made using the system call (SYS) instruction. Returns from system routines may be made using the RTX instruction. Note that the system call (SYS) and exceptions return (RTX) instructions are really specialized forms of the JAL instruction mentioned above. System, interrupt calls and returns cause transfers between processor control bits and their alternates. The system call instruction automatically places the processor in system mode.

4 Datapath Operations

4.1 Immediate Constants

Large immediate values used in integer arithmetic operations may be loaded into registers with the SETLO and SETHI instructions. SETLO loads the register with a thirty-two bit value that’s sign extended to the width of the register. The SETHI instruction loads the upper half of a register with the specified thirty-two bit value. The low order half of the register is unaffected.

4.2 Integer Operations

Integers are represented using two’s complement notation.

4.2.1 Addition / Subtraction / Multiply / Divide

Basic addition (ADD) and subtraction (SUB) operations are supported. Addition and subtraction work with both signed and unsigned values.
Multiplication and division of signed numbers are supported by the ISA with the MUL, MULH and DIV instructions A remainder function (MOD) is also available. The MULH instruction returns the high order thirty-two bits of a signed multiply operation.
4.2.2 Comparisons

There are ten comparison instructions performing signed and unsigned comparisons between two registers or a register and an immediate value (SLT, SLE, SGT SGE, SLTU, SLEU, SGTU SGEU, SEQ, and SNE).

4.2.3 Logical Operations

The processor supports a standard set of logical operations including and (AND), or (inclusive)(OR), and exclusive or (XOR). An additional derived operation is NOT which is an alternate form of the XOR instruction. The primary logical operations support both register and immediate forms. There are three more additional secondary logical operations (NAND, NOR, and XNOR) which have only register formats.
4.2.4 Shifts

The ISA supports a full complement of shift instructions. Left shifts are supported via the SHL instruction. Right shifts are supported with arithmetic (ASR) and logical (SHR) shifts. Rotates are supported via the rotate left ROL and rotate right ROR instructions.
4.2.5 BitField Operations

The processor has support for bitfield operations via the BFINS (bitfield insert) and BFEXT (bitfield extract) instructions. An additional bitfield operation is the BFCLR (bitfield clear) instruction which is an extended mnemonic for the BFINS instruction.
4.3 Floating Point Operations

4.3.1 Addition / Subtraction / Multiply / Divide

Basic addition (FADD), subtraction (FSUB), multiplication (FMUL) and division (FDIV) operations are supported.

4.3.2 Absolute Value / Negation / Sign Determination / Fractional Extraction

Absolute value (FABS), negation (FNEG), sign determination (FSGN), fractional extraction (FMAN) are supported.

4.3.3 Numeric Conversions

Conversions between integer and floating point values are handled with the float-to-int (F2INT) and int-to-float instructions (INT2F).

4.3.4 Comparisons

There are five floating point comparison instructions; four are relational comparisons, the fifth tests for ordering of operands. (FCLT, FCLE, FCEQ, FCNE, FCOR). The floating point comparisons compare the values in two registers and set the target register to true if the comparison is true. Other comparisons may be synthesized from existing instructions; for example, by switching the operands around.

4.3.5 Other Instructions

A random floating point value may be obtained using the GRAF (Get RAndom Float) instruction.

Memory Operations

4.4 Endian

The Raptor is a little endian processor. The least significant byte is at the lowest address.
4.5 Operations

The Raptor is a load / store architecture; the only operations accessing memory are load and store operations. The processor supports byte (8 bit), character (16 bit), half-word (32 bit), and word (64 bit) loads and stores of data to memory.
The ISA supports address update forms of the load / store instructions, where the addressing register is updated with the calculated effective address after the load / store operation is complete. Indexed address mode is also supported. There are instructions which automatically unpack and pack floating point values for transfer to or from memory.
There are numerous load and store instructions (not all are shown) which support the following operations:
	operation
	suffix character
	Sample Mnemonics

	default / sign extension (loads)
	none
	LB LH LW SB SH SW

	zero extension (loads)
	Z
	LBZ LHZ

	indexed operation
	
	LB LH LW SB SH SW FLS FSS
LBZ LHZ

	floating point conversion
	
	LF SF

4.6 Data Alignment 32-bit

Memory is byte addressable; character, half-word and word accesses must be aligned on their respective address boundaries.

Bytes may be loaded from any memory address.
	3
	2
	1
	0

Characters may be loaded from any memory address, except an address where the least significant two bits are 11.
	2
	0

	
	1
	

CLB

If the address ends in 11, then the byte is loaded into register bits 9 to 15; otherwise the instruction is treated as NOP.

	0

	
	
	
	

	6
	4
	2
	0

	
	5
	3
	1
	

	
	0

	
	1
	

	
	
	2
	
	

	
	3
	
	
	

	4
	
	
	
	

	
	2
	
	

	3
	
	
	
	

	
	
	
	
	
	
	
	

	
	

4.7 Data Alignment

Memory is byte addressable; character, half-word and word accesses must be aligned on their respective address boundaries.
Bytes may be loaded from any memory address.
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	
	
	
	

Characters may be loaded from any memory address, except an address where the least significant three bits are 111.
When a character is loaded from an address ending in 111, the load is treated as if it were a byte load instruction. The lowest byte of the target register is loaded.

CLC

If the address ends in 11, then a byte is loaded into register bits 8 to 15; otherwise the instruction is treated as NOP.

	6
	4
	2
	0

	
	5
	3
	1
	

CLH

If the address ends in 101, then a byte is loaded into register bits 24 to 31;
If the address ends in 110, then a character is loaded into register bits 16 to 31;

If the address ends in 111, then a character is loaded into register bits 8 to 31;

otherwise the instruction is treated as NOP.

	
	0

	
	1
	

	
	
	2
	
	

	
	3
	
	
	

	4
	
	
	
	

	
	2
	
	

	3
	
	
	
	

	
	
	
	
	
	
	
	

	
	

LCA
LCZA

If the address ends in 111, then 8 bits are loaded into register bits 8 to 15; otherwise the instruction is treated as NOP.

LHA

LHZA

If the address ends in 101, then a byte is loaded into register bits 24 to 31;

If the address ends in 110, then a character is loaded into register bits 16 to 31;

If the address ends in 111, then a character is loaded into register bits 8 to 31;

otherwise the instruction is treated as NOP.

LWA
If the address ends in 001, then 56 bits are loaded into register bits 8 to 63;

If the address ends in 010, then 48 bits are loaded into register bits 16 to 63;

If the address ends in 011, then 40 bits are loaded into register bits 24 to 63;

If the address ends in 100, then 32 bits are loaded into register bits 32 to 63;

If the address ends in 101, then 24 bits are loaded into register bits 40 to 63;

If the address ends in 110, then 16 bits are loaded into register bits 48 to 63;

If the address ends in 111, then 8 bits is loaded into register bits 56 to 63;

otherwise the instruction is treated as NOP.

4.8 Memory Map

The processor supports a 64 bit (or 2^64 Bytes) address space.
Opcode Formats

Ideally from a compiler's perspective the ISA should be able to support three operand instructions (one destination, two sources) including cases where all three operands are registers in order to allow a compiler to allocate registers more efficiently. This is commensurate with current compiler technology. This ISA supports the ideal condition.
4.9 Instruction Layout

Opcodes are forty-two bits in size. Instructions are placed three per instruction packet which must be aligned on 16-byte (128 bit) addresses.
	
	127 126
	125 84
	83 42
	41 0

	0
	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

	1
	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

	2
	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

	…
	--
	…
	…
	…

	30
	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

	31
	--
	Opcode Slot 2
	Opcode Slot 1
	Opcode Slot 0

Opcode Formats

There are several different opcode formats, see the subsequent tables for specific formats. The major opcode formats are shown below. All instructions begin with a seven bit field in the most significant bits which determines the major opcode grouping or instruction.
S-Type

Usage: SETHI, SETLO

Set register,

	41 38
	37 32
	31 0

	Opcode4
	RegT6
	immediate32

I-Type

Usage: Register-immediate instructions,

loads and stores with displacements,

jump and link

	41 35
	34 29
	28 23
	22 0

	Opcode7
	RegA6
	RegT6
	immediate23

R-Type

Usage: Register-Register instructions and loads and stores using indexed addressing

	41 35
	34 29
	28 23
	22 17
	16 6
	5 0

	Opcode7
	RegA6
	RegT6
	RegC6
	Opcode11
	RegB6

B-Type
Usage: Branches
	41 35
	34 29
	28 17
	16 0

	Opcode7
	RegA6
	target12
	Immediate17

BF – Type

Usage: Bitfield operations
	41 35
	34 29
	28 23
	22 17
	16 12
	11 6
	5 0

	Opcode7
	RegA6
	RegT6
	RegC6
	Opcode5
	Width6
	Start6

4.10 Detailed Opcode Formats

	Op4
	Imm10
	Rt6
	Imm23
	SET

	Op6
	Typ2
	Ra6
	Rt6
	Imm22
	Imm

	Op6
	Typ2
	Ra6
	Rt6
	Rc6
	Op10
	Rb6
	Reg

	Op6
	Typ2
	Ra6
	Rt6
	Rc6
	Op4
	Wd6
	St6
	BFC

	Op6
	Typ2
	Ra6
	Rt6
	Rc6
	Op4
	Wd6
	Rb6
	BFR

	Op6
	Typ2
	Ra6
	target12
	Imm16
	Branch

	Op6
	Typ2
	Ra6
	326
	Rc6
	Imm16
	Branch

	Op6
	Typ2
	Ra6
	target12
	Op8
	Rb6
	Branch

	Op6
	Typ2
	Ra6
	326
	Rc6
	Op8
	Rb6
	Branch

	
	
	
	
	
	

BR-Type Branches

Usage: Register-Register comparison branches

	41 36
	35 32
	31 26
	25 14
	13 6
	5 0

	Opcode6
	Typ4
	RegA6
	target12
	~8
	RegB6

	41 36
	35 32
	31 26
	25 20
	19 14
	13 6
	5 0

	Opcode6
	Typ4
	RegA6
	1000006
	RegC6
	~8
	RegB6

BI-Type

Usage: Register-Immediate comparison branches

	41 36
	35 32
	31 26
	25 14
	13 0

	Opcode6
	Typ4
	RegA6
	target12
	Immediate14

	41 36
	35 32
	31 26
	25 20
	19 14
	13 0

	Opcode6
	Typ4
	RegA6
	1000006
	RegC6
	Immediate14

BFC – Type

Bitfield, constant field index

	41 36
	35 32
	31 26
	25 20
	19 14
	13 12
	11 6
	5 0

	Opcode6
	Opcode 4
	RegA6
	RegT6
	RegC6
	Opcode2
	Width6
	Start6

BFR – Type

Bitfield, register field index

	41 36
	35 32
	31 26
	25 20
	19 14
	13 12
	11 6
	5 0

	Opcode6
	Opcode 4
	RegA6
	RegT6
	RegC6
	Opcode2
	Width6
	RegB6

	Op7
	Ra5
	Rt5
	Imm25
	
	

	0
	
	
	
	Misc
	Miscellaneous

	1
	Ra5
	Rt5
	Rc6
	Op11
	Rb6
	{reg}
	register operate

	2
	Ra5
	Rb5
	Rt5
	Op13
	47
	ADD
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	57
	{reg}
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	67
	CMP
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	77
	CMPU
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	87
	AND
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	97
	OR
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	107
	XOR
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	117
	ANDC
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	127
	NAND
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	137
	NOR
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	147
	XNOR
	

	2
	Ra5
	Rb5
	Target18
	80
	BLT
	a < b

	2
	Ra5
	Rb5
	Target18
	81
	BGE
	a >= b

	2
	Ra5
	Rb5
	Target18
	82
	BLE
	a<=b

	2
	Ra5
	Rb5
	Target18
	83
	BGT
	a >b

	2
	Ra5
	Rb5
	Target18
	84
	BLTU
	a < b

	2
	Ra5
	Rb5
	Target18
	85
	BGEU
	a >=b

	2
	Ra5
	Rb5
	Target18
	86
	BLEU
	a <=b

	2
	Ra5
	Rb5
	Target18
	87
	BGTU
	a > b

	2
	Ra5
	Rb5
	Target18
	88
	BEQ
	a == b

	2
	Ra5
	Rb5
	Target18
	88
	BEQ
	a == b

	2
	Ra5
	Rb5
	Target18
	90
	BRA
	1

	2
	Ra5
	Rb5
	Target18
	91
	BRN
	0

	2
	Ra5
	Rb5
	Target18
	92
	BAND
	a && b

	2
	Ra5
	Rb5
	Target18
	93
	BOR
	a || b

	3
	
	
	
	
	
	
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	96
	SLT
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	96
	SLT
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	98
	SGT
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	99
	SGE
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	100
	SLTU
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	101
	SLTU
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	102
	SGTU
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	102
	SGTU
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	104
	SEQ
	

	2
	Ra5
	Rb5
	Rt5
	Op13
	105
	SNE
	

	3
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Basic Arithmetic

	4
	Ra5
	Rt5
	Imm25
	ADDI
	Add immediate

	5
	Ra5
	Rt5
	Imm25
	
	

	6
	Ra5
	Rt5
	Imm25
	CMPI
	Compare immediate

	7
	Ra5
	Rt5
	Imm25
	CMPUI
	Unsigned compare immediate

	8
	Ra5
	Rt5
	Imm25
	ANDI
	And

	9
	Ra5
	Rt5
	Imm25
	ORI
	Or

	10
	Ra5
	Rt5
	Imm25
	XORI
	Exclusive or

	11
	Ra5
	Rt5
	Imm25
	DIV
	divide

	12
	Ra5
	Rt5
	Imm25
	MULH
	multiply

	13
	Ra5
	Rt5
	Imm25
	MOD
	modulus

	14
	
	
	
	
	

	15
	
	
	
	
	

	16
	Rt6
	Ra6
	Imm23
	EOR
	bits 0-22

	17
	Rt6
	Ra6
	Imm23
	AND
	bits 0-22

	18
	Rt6
	Ra6
	Imm23
	OR
	bits 0-22

	31
	
	
	
	{bitfield}
	

	24
	Address35
	CALL
	call subroutine

	25
	Address35
	JMP
	jump

	26
	Ra5
	Rt5
	Address25
	JAL
	jump and link

	27
	Ra5
	Rt5
	Imm25
	RET
	return and add

	Memory Operations

	32
	Ra5
	Rt5
	disp25
	LB
	load byte, sign extend

	33
	Ra5
	Rt5
	disp25
	LC
	load character, sign extend

	34
	Ra5
	Rt5
	disp25
	LH
	load half-word, sign extend

	35
	Ra5
	Rt5
	disp25
	LW
	load word

	36
	Ra5
	Rt5
	disp25
	LP
	load pair

	37
	Ra5
	Rt5
	disp25
	LBU
	load byte, zero extend

	38
	Ra5
	Rt5
	disp25
	LCU
	load character, zero extend

	39
	Ra5
	Rt5
	disp25
	LHU
	load half-word, zero extend

	40
	Ra5
	Sprt5
	disp25
	LSH
	load special half-word

	41
	Ra5
	Sprt5
	disp25
	LSW
	load special word

	42
	Ra5
	Rt5
	disp25
	LF
	load float

	43
	Ra5
	Rt5
	disp25
	LFD
	load float double

	44
	Ra5
	Rt5
	disp25
	LFP
	load float pair

	45
	Ra5
	Rt5
	disp25
	LFDP
	load float double pair

	46
	Ra5
	Rt5
	disp25
	LWR
	load word, reserve address

	47
	
	
	
	
	

	48
	Ra5
	Rt5
	disp25
	SB
	store byte (zero)

	49
	Ra5
	Rt5
	disp25
	SC
	store character

	50
	Ra5
	Rt5
	disp25
	SH
	store half-word

	51
	Ra5
	Rt5
	disp25
	SW
	store word

	52
	Ra5
	Rt5
	disp25
	SP
	store pair

	53
	
	
	
	
	reserved

	54
	
	
	
	
	reserved

	55
	
	
	
	
	reserved

	56
	Ra5
	Sprs5
	disp25
	SSH
	store special half-word

	57
	Ra5
	Sprs5
	disp25
	SSW
	store special word

	58
	Ra5
	Rb5
	disp25
	SF
	store float

	59
	Ra5
	Rbt5
	disp25
	SFD
	store float double

	60
	Ra5
	Rb5
	disp25
	SFP
	store float pair

	61
	Ra5
	Rb5
	disp25
	SFDP
	store float double pair

	62
	Ra5
	Rb5
	disp25
	SWCR
	store word, clear address reservation

	63
	
	
	
	
	

	IO Operations

	64
	Ra5
	Rt5
	I/O Address25
	INB
	input byte, sign extend

	65
	Ra5
	Rt5
	I/O Address25
	INC
	input character, sign extend

	66
	Ra5
	Rt5
	I/O Address25
	INH
	input half-word, sign extend

	67
	Ra5
	Rt5
	I/O Address25
	INW
	input word

	68
	Ra5
	Rt5
	I/O Address25
	INBU
	input byte, zero extend

	69
	Ra5
	Rt5
	I/O Address25
	INCU
	input character, zero extend

	70
	Ra5
	Rt5
	I/O Address25
	INHU
	input half-word, zero extend

	71
	
	
	
	
	

	72
	Ra5
	Rt5
	I/O Address25
	OUTB
	output byte

	73
	Ra5
	Rt5
	I/O Address25
	OUTC
	output character

	74
	Ra5
	Rt5
	I/O Address25
	OUTH
	output half-word

	75
	Ra5
	Rt5
	I/O Address25
	OUTW
	output word

	76
	
	
	
	
	

	77
	
	
	
	
	

	78
	
	
	
	
	

	79
	
	
	
	
	

	Flow Control

	80
	Ra5
	Target12
	Imm18
	BLTI
	branch if less than

	81
	Ra5
	Target12
	Imm18
	BGEI
	branch if greater or equal

	82
	Ra5
	Target12
	Imm18
	BLEI
	branch if less or equal

	83
	Ra5
	Target12
	Imm18
	BGTI
	branch if greater than

	84
	Ra5
	Target12
	Imm18
	BLOI
	branch if lower

	85
	Ra5
	Target12
	Imm18
	BHSI
	branch if higher or same

	86
	Ra5
	Target12
	Imm18
	BLSI
	branch if lower or same

	87
	Ra5
	Target12
	Imm18
	BHII
	branch if higher

	88
	Ra5
	Target12
	Imm18
	BEQI
	branch if equal

	89
	Ra5
	Target12
	Imm18
	BNEI
	branch if not equal

	90
	Ra5
	Target12
	Imm18
	LEQI
	loop if equal

	91
	Ra5
	Target12
	Imm18
	LNEI
	loop if not equal

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	Relational Compares

	96
	Ra5
	Rt5
	Imm25
	SLTI
	a < b

	97
	Ra5
	Rt5
	Imm25
	SGEI
	a >= b

	98
	Ra5
	Rt5
	Imm25
	SLEI
	a <= b

	99
	Ra5
	Rt5
	Imm25
	SGTI
	a > b

	100
	Ra5
	Rt5
	Imm25
	SLTUI
	a < b

	101
	Ra5
	Rt5
	Imm25
	SGEUI
	a >= b

	102
	Ra5
	Rt5
	Imm25
	SLEUI
	a <= b

	103
	Ra5
	Rt5
	Imm25
	SGTUI
	a > b

	104
	Ra5
	Rt5
	Imm25
	SEQI
	a == b

	105
	Ra5
	Rt5
	Imm25
	SNEI
	a != b

	106
	
	
	
	
	

	107
	
	
	
	
	

	108
	
	
	
	
	

	109
	Ra5
	Rt5
	
	
	Funct7
	FPLOO
	Floating point

	109
	Ra5
	Rt5
	
	
	13
	I2F
	Integer to float

	109
	Ra5
	Rt5
	
	
	14
	F2I
	Float to integer

	110
	Ra5
	Rt5
	
	
	Funct7
	FPZL
	Floating point

	110
	Ra5
	Rt5
	
	
	0
	FABS
	Floating point absolute value

	110
	Ra5
	Rt5
	
	
	1
	FNABS
	Floating point neg. absolute

	110
	Ra5
	Rt5
	
	
	2
	FNEG
	Floating point negate

	110
	Ra5
	Rt5
	
	
	3
	FMOV
	Floating point move

	110
	Ra5
	Rt5
	
	
	4
	FSIGN
	Floating point get sign

	110
	Ra5
	Rt5
	
	
	5
	FMAN
	Floating point get mantissa

	110
	Ra5
	Rt5
	
	
	6
	
	

	110
	Ra5
	Rt5
	
	
	7
	
	

	110
	Ra5
	Rb5
	Rt5
	
	8
	FCLT
	a < b

	110
	Ra5
	Rb5
	Rt5
	
	9
	FCGE
	a >= b

	110
	Ra5
	Rb5
	Rt5
	
	10
	FCLE
	a <= b

	110
	Ra5
	Rb5
	Rt5
	
	11
	FCGT
	a > b

	110
	Ra5
	Rb5
	Rt5
	
	12
	FCEQ
	a == b

	110
	Ra5
	Rb5
	Rt5
	
	13
	FCNE
	a <> b

	110
	Ra5
	Rb5
	Rt5
	
	14
	FCUN
	Floating point unordered

	110
	Ra5
	Rb5
	Rt5
	
	15
	FCOR
	Floating point ordered

	111
	
	
	
	NOP
	

	73
	Imm39
	IMM
	Immediate prefix

4.11 Opcode Maps

4.11.1 Major Instruction Group

Bits 41-35
	Opcode7
	Opcode35

MSB is down, LSB is across

	
	0
	1
	2
	3
	4
	5
	6
	7

	0
	0
	1
	2
	3
	4
	5
	6
	7

	
	{misc}
	{reg}
	{float}
	
	ADDM #
	SUBM #
	ADDH #
	SUBH #

	1
	8
	9
	10
	11
	12
	13
	14
	15

	
	ADD #
	SUB #
	MUL #
	DIV #
	MULH #
	MOD #
	
	

	2
	16
	17
	18
	19
	20
	21
	22
	23

	
	XOR #
	AND #
	OR #
	MLO
	XORM #
	ANDM #
	ORM #
	

	3
	24
	25
	26
	27
	28
	29
	30
	31

	
	XORH #
	ANDH #
	ORH #
	
	{bitfield}
	
	
	

	4
	32
	33
	34
	35
	36
	37
	38
	39

	
	LB
	LC
	LH
	LW
	LP
	LBZ
	LCZ
	LHZ

	5
	40
	41
	42
	43
	44
	45
	46
	47

	
	LSH
	LSW
	LF
	LFD
	LFP
	LFDP
	{cache}
	{cacheu}

	6
	48
	49
	50
	51
	52
	53
	54
	55

	
	SB
	SC
	SH
	SW
	SP
	SBZ
	SCZ
	SHZ

	7
	56
	57
	58
	59
	60
	61
	62
	63

	
	SSH
	SSW
	SF
	SFD
	SFP
	SFDP
	
	

	8
	64
	65
	66
	67
	68
	69
	70
	71

	
	INB
	INC
	INH
	INW
	INBZ
	INCZ
	INHZ
	

	9
	72
	73
	74
	75
	76
	77
	78
	79

	
	OUTB
	OUTC
	OUTH
	OUTW
	
	
	
	

	10
	80
	81
	82
	83
	84
	85
	86
	87

	
	BLT #
	BLE #
	BGT #
	BGE #
	BLTU #
	BLEU #
	BGTU #
	BGEU #

	11
	88
	89
	90
	91
	92
	93
	94
	95

	
	BEQ #
	BNE #
	
	
	BAND #
	BNAND #
	BOR #
	BNOR #

	12
	96
	97
	98
	99
	100
	101
	102
	103

	
	JAL
	RET
	JMP
	CALL
	
	NOP
	
	

	13
	104
	105
	106
	107
	108
	109
	110
	111

	
	CLT #
	CLE #
	CGT #
	CGE #
	CLTU #
	CLEU #
	CGTU #
	CGEU #

	14
	112
	113
	114
	115
	116
	117
	118
	119

	
	CEQ #
	CNE #
	CMP #
	CMPU #
	
	
	
	

	15
	120
	121
	122
	123
	124
	125
	126
	127

	
	
	
	SETLO
	SETMID
	SETHI
	
	
	

4.11.2 Register Instruction Group

Bits 12-6, Bits 41-35 = 4
	17
	Ra6
	Rt6
	Rc6
	Opcode11
	Rb6

	
	0
	1
	2
	3
	4
	5
	6
	7

	0
	0
	1
	2
	3
	4
	5
	6
	7

	
	{misc}
	
	
	{bitfield}
	
	
	
	

	1
	8
	9
	10
	11
	12
	13
	14
	15

	
	ADD
	SUB
	MUL
	DIV
	MULH
	MOD
	
	

	2
	16
	17
	18
	19
	20
	21
	22
	23

	
	XOR
	AND
	OR
	
	
	
	
	

	3
	24
	25
	26
	27
	28
	29
	30
	31

	
	
	
	
	
	
	
	
	

	4
	32
	33
	34
	35
	36
	37
	38
	39

	
	LB
	LC
	LH
	LW
	LP
	LBZ
	LCZ
	LHZ

	5
	40
	41
	42
	43
	44
	45
	46
	47

	
	LSH
	LSW
	LF
	LFD
	LFP
	LFDP
	{cache}
	{cacheu}

	6
	48
	49
	50
	51
	52
	53
	54
	55

	
	SB
	SC
	SH
	SW
	SP
	
	
	

	7
	56
	57
	58
	59
	60
	61
	62
	63

	
	SSH
	SSW
	SF
	SFD
	SFP
	SFDP
	
	

	8
	64
	65
	66
	67
	68
	69
	70
	71

	
	INB
	INC
	INH
	INW
	INBZ
	INCZ
	INHZ
	

	9
	72
	73
	74
	75
	76
	77
	78
	79

	
	OUTB
	OUTC
	OUTH
	OUTW
	
	
	
	

	10
	80
	81
	82
	83
	84
	85
	86
	87

	
	BLT
	BLE
	BGT
	BGE
	BLTU
	BLEU
	BGTU
	BGEU

	11
	88
	89
	90
	91
	92
	93
	94
	95

	
	BEQ
	BNE
	
	
	BAND
	BNAND
	BOR
	BNOR

	12
	96
	97
	98
	99
	100
	101
	102
	103

	
	JAL
	RET
	
	
	
	NOP
	
	

	13
	104
	105
	106
	107
	108
	109
	110
	111

	
	CLT
	CLE
	CGT
	CGE
	CLTU
	CLEU
	CGTU
	CGEU

	14
	112
	113
	114
	115
	116
	117
	118
	119

	
	CEQ
	CNE
	CMP
	CMPU
	
	
	
	

	15
	120
	121
	122
	123
	124
	125
	126
	127

	
	
	
	SETLO
	SETMID
	SETHI
	
	
	

	
	0
	1
	2
	3
	4
	5
	6
	7

	16
	128
	129
	130
	131
	132
	133
	134
	135

	
	
	
	
	
	
	
	
	

	17
	136
	137
	138
	139
	140
	141
	142
	143

	
	
	
	
	
	
	
	
	

	18
	144
	145
	146
	147
	148
	149
	150
	151

	
	XNOR
	NAND
	NOR
	
	
	
	
	

	19
	152
	153
	154
	155
	156
	157
	158
	159

	
	
	
	
	
	
	
	
	

	20
	160
	161
	162
	163
	164
	165
	166
	167

	
	
	
	
	
	
	
	
	

	21
	168
	169
	170
	171
	172
	173
	174
	175

	
	
	
	
	
	
	
	
	

	22
	176
	177
	178
	179
	180
	181
	182
	183

	
	
	
	
	
	
	
	
	

	23
	184
	185
	186
	187
	188
	189
	190
	191

	
	
	
	
	
	
	
	
	

	24
	192
	193
	194
	195
	196
	197
	198
	199

	
	SHL #
	ROL #
	SHR #
	ASR #
	
	
	ROR #
	

	25
	200
	201
	202
	203
	204
	205
	206
	207

	
	SHL
	ROL
	SHR
	ASR
	
	
	ROR
	

	26
	208
	209
	210
	211
	212
	213
	214
	215

	
	SRAND
	GRS
	GRINT
	GRAF
	
	
	
	

	27
	216
	217
	218
	219
	220
	221
	222
	223

	
	CPOP
	CLZ
	CLO
	
	
	
	
	

	28
	224
	225
	226
	227
	228
	229
	230
	231

	
	
	
	
	
	
	
	
	

	29
	232
	233
	234
	235
	236
	237
	238
	239

	
	
	
	
	
	
	
	
	

	30
	240
	241
	242
	243
	244
	245
	246
	247

	
	
	
	
	
	
	
	
	

	31
	248
	249
	250
	251
	252
	253
	254
	255

	
	
	
	
	
	
	
	
	

 Miscellaneous Control
Bits 12-6, Bits 31-25 = 1

Bits 41-35
	Opcode7
	Opcode35

Bits 12-6, Bits 41-35 = 4

	07
	Ra6
	Rt6
	Rc6
	Opcode11
	Rb6

	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	
	
	
	
	
	

	0
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	DI
	EI
	RI
	
	FLUSH
	

	1
	8
	9
	10
	11
	12
	13
	14
	15

	
	STOP
	
	END
	
	WAI
	
	
	

	2
	16
	17
	18
	19
	20
	21
	22
	23

	
	END
	sim1
	sim2
	sim3
	sim4
	sim5
	sim6
	sim7

	3
	24
	25
	26
	27
	28
	29
	30
	31

	
	swe0
	swe1
	swe2
	swe3
	swe4
	swe5
	swe6
	swe7

	4
	32
	33
	34
	35
	36
	37
	38
	39

	
	
	
	
	
	
	
	
	

	5
	40
	41
	42
	43
	44
	45
	46
	47

	
	
	
	
	
	
	
	
	

	6
	48
	49
	50
	51
	52
	53
	54
	55

	
	
	
	
	
	
	
	
	

	7
	56
	57
	58
	59
	60
	61
	62
	63

	
	
	
	
	
	
	
	TRS
	TSR

	8
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	9
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	10
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	11
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	12
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	14
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	15
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

4.11.3 Floating Point Operations
Bits 12-6, Bits 41-35 = 4

	27
	Ra6
	Rt6
	Rc6
	Opcode11
	Rb6

	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	
	
	
	
	
	

	0
	0
	1
	2
	3
	4
	5
	6
	7

	
	FADD
	FSUB
	FMUL
	FDIV
	
	
	
	

	1
	8
	9
	10
	11
	12
	13
	14
	15

	
	FABS
	FNABS
	FNEG
	FSIGN
	FMOV
	FMAN
	FNOP
	

	2
	16
	17
	18
	19
	20
	21
	22
	23

	
	F2INT
	INT2F
	
	
	
	
	
	

	3
	24
	25
	26
	27
	28
	29
	30
	31

	
	FCLT
	FCGE
	FCLE
	FCGT
	FCEQ
	FCNE
	FCOR
	FCNO

	4
	32
	33
	34
	35
	36
	37
	38
	39

	
	
	
	
	
	
	
	
	

	5
	40
	41
	42
	43
	44
	45
	46
	47

	
	
	
	
	
	
	
	
	

	6
	48
	49
	50
	51
	52
	53
	54
	55

	
	
	
	
	
	
	
	
	

	7
	56
	57
	58
	59
	60
	61
	62
	63

	
	FSTAT
	
	
	FRM
	FTX
	FCX
	FEX
	FDX

	8
	64
	65
	66
	67
	68
	69
	70
	71

	
	FADDD
	FSUBD
	FMULD
	FDIVD
	
	
	
	

	9
	72
	73
	74
	75
	76
	77
	78
	79

	
	FABSD
	FNABSD
	FNEGD
	FSIGND
	FMOVD
	FMAND
	FNOPD
	

	10
	80
	81
	82
	83
	84
	85
	86
	87

	
	F2INTD
	INT2FD
	
	
	
	
	
	

	11
	88
	89
	90
	91
	92
	93
	94
	95

	
	FCLTD
	FCGED
	FCLED
	FCGTD
	FCEQD
	FCNED
	FCORD
	FCNOD

	12
	96
	97
	98
	99
	100
	101
	102
	103

	
	
	
	
	
	
	
	
	

	13
	104
	105
	106
	107
	108
	109
	110
	111

	
	
	
	
	
	
	
	
	

	14
	112
	113
	114
	115
	116
	117
	118
	119

	
	
	
	
	
	
	
	
	

	15
	120
	121
	122
	123
	124
	125
	126
	127

	
	
	
	
	
	
	
	
	

	5 Instruction Set Description

	ADD

	AND

	ASR

	BAND

	BEQ

	BFCHG

	BFCLR

	BFEXT

	BFINS

	BGE

	BGT

	BLE

	BLT

	BNAND

	BNE

	BNOR

	BOR

	BRK

	BXNOR

	BXOR

	CALL

	CEQ

	CGE

	CGT

	CLE

	CLT

	CNE

	DI

	DIV

	EI

	END

	F2INT

	FABS

	FADD

	FCEQ

	FCGE

	LB

	LBU

	LC

	LCU

	LH

	LHU

	LW

	LWC

	LWU

	MLO

	

	

	

	

	

	ROL

	ROR

	SB

	SBU

	SC

	SCU

	SGN

	SH

	

	SHL

	SHR

	SHU

	

	

	

	

	SUB

	SW

	SWU

	

	

	

	

	

	TRS

	TSR

	

	XNOR

	XOR

	

ADD Rt,Ra,Rb

ADD Rt,Ra,#n

Immediate Format:

	41 35
	34 29
	28 23
	22 0

	87
	Ra6
	Rt6
	immediate23

Register Format:

	41 35
	34 29
	28 23
	22 17
	16 6
	5 0

	17
	Ra6
	Rt6
	~6
	811
	Rb6

Synopsis
'Add' register with register or immediate.
Detail
Rt = Ra + Rb
Rt = Ra + #imm

AND Rt,Ra,Rb

AND Rt,Ra,#n

Synopsis
Logically 'and' register with register or immediate.
Detail
Detail
Rt = Ra & Rb
Rt = Ra & #imm
ASR Rt,Ra,#cnt

ASR Rt,Ra,Rb

Synopsis
Arithmetically shift register right.
Detail
Rd = Rd ^>> Rb
The sign bit of the register is preserved during the shift.

Rt = Ra ^>> #cnt

Bcc Ra,#,label

Bcc Ra,Rb,label

Synopsis
Branch to label if condition is true
Detail
if register – register compare

if Ra cond Rb is true then

if register form

pc = Rt

else
pc = pc + displacement

else
if Ra cond #n is true then

if register form

pc = Rt

else
pc = pc + displacement

Branch Conditions
	Mnemonic
	Description
	Conditional Test

	BLT
	Branch if Less Than
	a < b

	BGE
	Branch if Greater than or Equal
	a >= b

	BLE
	Branch if Less than or Equal
	a <= b

	BGT
	Branch if Greater Than
	a > b

	BEQ / BXNOR
	Branch if Equal
	a == b

	BNE / BXOR
	Branch if Not Equal
	a <> b

	BAND
	Branch if both true
	a and b

	BOR
	Branch if either true
	a or b

Instruction Format:
BR-Type Branches

Usage: Register-Register comparison branches

	41 36
	35 32
	31 26
	25 14
	13 6
	5 0

	Opcode6
	Typ4
	RegA6
	target12
	~8
	RegB6

	41 36
	35 32
	31 26
	25 20
	19 14
	13 6
	5 0

	Opcode6
	Typ4
	RegA6
	1000xx6
	RegC6
	~8
	RegB6

BI-Type

Usage: Register-Immediate comparison branches

	41 36
	35 32
	31 26
	25 14
	13 0

	Opcode6
	Typ4
	RegA6
	target12
	Immediate14

	41 36
	35 32
	31 26
	25 20
	19 14
	13 0

	Opcode6
	Typ4
	RegA6
	1000xx6
	RegC6
	Immediate14

BFCHG Rt,Ra,#bfb,#bfe
Synopsis
Insert into bitfield..
Detail
Rt[bfb:fbe] = Ra

Flip the bits between BFB (bit field begin) and BFE (bit field end) of Ra and transfer the result to Rt. (Ra is not altered).

BFCLR Rt,#bfb,#bfe

Synopsis
Clear bitfield..
Detail
Rt[bfb:fbe] = 0
Clear the bits between BFB (bit field begin) and BFE (bit field end) inclusive of Rt.
This is an extended mnemonic for the BFINS instruction.

BFEXT Rt,Ra,#bfb,#bfe

Synopsis
Extract bitfield..
Detail
Rt = Ra[bfb:fbe]

Extract the bits between BFB (bit field begin) and BFE (bit field end) inclusive and transfer to the low order bits of Rt. The result in Rt is zero extended.

BFINS Rt,Ra,#bfb,#bfe
Synopsis
Insert into bitfield..
Detail
Rt[bfb:fbe] = Ra

Insert the low order bits from Ra into the bits between BFB (bit field begin) and BFE (bit field end) inclusive of Rt.
BRK
Synopsis
Call break exception handler.
Detail
XRA = pc; pc = mem[FFFF_F000]; status.backup = status; status.im = 1
This instruction causes the processor to perform a software initiated 'break' interrupt routine. It is purposely defined as a zero word so the processor will execute the break routine in the event that code flows into a region of memory that has been nulled out. This helps promote reliable system operation.

BSR label

Synopsis
Branch to subroutine.
Detail
R31 = pc;

pc[31:8] = pc[31:8] + {target[25:6]};

pc[7:0] = {target[5:0],00}
Call subroutine using program counter page relative offset address form. The twenty-six bit displacement is shifted left twice and sign extended to 32 bits before being used. Note the branch is made in a similar fashion to conditional branches. The low order six bits of the target are copied directly to the pc, while the upper twenty bits represent a page relative address.
	desc:
	op
	target

	size:
	6
	26

	bits:
	31 26
	25 0

	bit pattern:
	45
	d25..0

CALL d[Ra]

CALL label

Synopsis
Call subroutine
Detail
R47 = pc; pc = disp + Ra;
Call subroutine using register indirect with displacement mode. This is an alternate form of the JAL instruction.
R47 = pc; pc = pc + displacement;
Call subroutine quick form. The twenty-five bit address field is shifted left twice and added to the program counter to form the target address. This allows an relative address call to a method within the same 64MB region of memory.
C<cond> Rt,Ra,Rb

C<cond> Rt,Ra,#n

Synopsis
'Compare' register with register or immediate.
Detail
Rt = Ra cond Rb
Rt = Ra cond #imm
This instruction performs a comparison of two values and stores the result (1 if condition is true, 0 otherwise) in the target register.
 Compare Conditions
CMP Rt,Ra,Rb

CMP<cond> Rt,Ra,#n

CMPU Rt,Ra,Rb

CMPU<cond> Rt,Ra,#n

Synopsis
CMP: 'Compare' register with register or immediate.

CMPU: Unsigned compare of register with register or immediate
Detail
Rt = Ra cond Rb
Rt = Ra cond #imm
This instruction performs a comparison of two values and stores the result in the target register. If the first value is less than the second one, -1 is written to the target register. If the two values are equal, zero is written to the target register. If the first value is greater than the second one +1 is written to the target register. This instruction may also be used to obtain the sign of a value by comparing the value to zero.

CP1 #imm

CP2 #imm
Synopsis
Constant prefix
The upper bits of the immediate constant are set for the next instruction, overriding sign extension of the immediate.
The constant prefix instruction (CP1) indicates the presence of an additional twenty-eight constant bits in the instruction stream intended to represent significant bits 9 to 36 for the immediate constant of next instruction. These bits will take precedence over sign extension of the constant for the next instruction. CP1 sign extends from bit 37 to 64 bits.

The constant prefix instruction (CP2) adds twenty-seven more bits to the immediate constant of the following instruction, overriding any sign extension and substituting for bits 57 to 63.

Constant prefix instructions do not require the presence of other constant prefix instructions. For example CP2 may be used without CP1. CP1 may be used without CP2.

When multiple prefix are present the constant prefix instructions should be issued in the order CP1 then CP2 to ensure a properly built constant.

Interrupts are prevented from occurring between this instruction and the next instruction. Normally this instruction is automatically inserted by the assembler wherever an extended constant value is required.

DI

Synopsis
Disable interrupts.
Detail
status.im = 1
This instruction disables maskable hardware interrupts by setting the interrupt mask in the processor control register. It also disables the IRQ instruction.

DIV Rt,Ra,Rb

DIV Rt,Ra,#n

Synopsis
Divide register by register or immediate.
Detail
Rt = Ra / Rb

Rt = Ra / #imm
This is a signed division operation. Division by zero will cause an exception.

EI
Synopsis
Enable interrupts.
Detail
status.im = 0

This instruction enables maskable hardware interrupts by clearing the interrupt mask in the status register. Enabling interrupts occurs after a minimum of one clock cycle delay.
END
Synopsis
No operation.
Detail

<none>

This instruction is provided for use in a software emulator of the processor. It indicates the end of a sequence of instructions to emulate. The processor will treat this instruction as a NOP instruction. This instruction is not meant to be used by actual hardware.
F2INT Rt,Ra

Synopsis
Floating point convert single precision to integer. Register to register.
Detail
Rt = int(Ra)
FABS Rt,Ra

Synopsis
Take floating point absolute value of register.
Detail
Rt = Ra;
Rt.sign = 0;

This instruction simply clears the sign bit of register.
FADD Rt,Ra,Rb

Synopsis
Floating point addition. Add register with register.
Detail
Rt = Ra + Rb
FCLT Rt,Ra,Rb

FCLE Rt,Ra,Rb

FCGT Rt,Ra,Rb

FCGE Rt,Ra,Rb

FCEQ Rt,Ra,Rb

FCNE Rt,Ra,Rb

FCOR Rt,Ra,Rb

Synopsis
Floating point single precision comparison, register with register.
Detail
Rt = Ra cond Rb
This instruction performs a comparison of two values and stores a one (true) or zero (false) to the target register depending on the whether the tested condition is true or false.
Compare Conditions

FDIV Rt,Ra,Rb

Synopsis
Floating point division. Divide register by register.
Detail
Rt = Ra / Rb
	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 6
	5 0

	bit pattern:
	3
	R4..0
	R4..0
	~
	3
	R4..0

This instruction may cause a division by zero exception.

FIP
Synopsis
Flush instruction pipeline.
Detail
flags.im = 0

	desc:
	opcode
	~
	opcode
	~

	size:
	6
	15
	6
	5

	bits:
	31 26
	25 11
	10 5
	4 0

	bit pattern:
	0
	~
	6
	~

This instruction flushes the processor’s instruction pipeline of all instructions following the FIP instruction.
Flags Affected
	I
	
	
	
	
	
	
	

	0
	-
	-
	-
	-
	-
	-
	-

FMUL Rt,Ra,Rb

Synopsis
Floating point multiplication. Multiply register by register.
Detail
Rt = Ra * Rb
	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	3
	R4..0
	R4..0
	~
	2
	R4..0

FNABS Rt,Ra

Synopsis
Take floating point negative absolute value of register.
Detail
Rt = Ra
Rt[31] = 1

	desc:
	op
	Ra
	Rt
	~
	op
	~

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	3
	R4..0
	R4..0
	~
	9
	~

This instruction simply sets the sign bit of register.
FNEG Rt,Ra

Synopsis
Negate floating point value in register.
Detail
Rt = Ra
Rt[31] = ~Ra[31]

	desc:
	op
	Ra
	Rt
	~
	op
	~

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	3
	R4..0
	R4..0
	~
	10
	~

This instruction simply complements the sign bit of register.
FSUB Rt,Ra,Rb

Synopsis
Floating point subtraction. Subtract register from register.
Detail
Rt = Ra - Rb
	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 20
	21 16
	15 11
	10 5
	4 0

	bit pattern:
	3
	R4..0
	R4..0
	~
	1
	R4..0

IRQ
Synopsis
Run irq routine.
Detail
R30 = pc; pc = FFFF_FFF4; flags.backup = flags; flags.im = 1
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	0
	30
	$FFFD15..0

This instruction causes the processor to perform a software initiated maskable interrupt routine. It has the same effect as an external hardware maskable interrupt. If the interrupt mask in the status register is set, then this instruction will be ignored. This is an alternate form of the JAL instruction.
Flags Affected
	I
	
	
	
	
	
	
	

	1
	-
	-
	-
	-
	-
	-
	-

JAL Rt,d[Ra]

Synopsis
Jump and link to subroutine
Detail
Rt = pc + 4; pc = disp + Ra;
Jump to subroutine using register indirect with displacement mode. The current value of the program counter is stored in the destination register. Normally this instruction will be used with a constant prefix.

	desc:
	op
	Ra
	Rt
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	R4..0
	R4..0
	n15..0

JMP d[Ra]

JMP address
Synopsis
Jump to address
Detail
pc = disp + Ra;
Jump using register indirect with displacement mode. This is an alternate form of the JAL instruction.
	desc:
	op
	Rt
	Ra
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	0
	R4..0
	d15..0

pc = {pc[31:28],address,00};
Jump to address quick form. The twenty-six bit address field is shifted left twice and concatenated to the upper 4 bits of the program counter to form the target address. This allows an absolute address jump to a target within the same 256MB region of memory.
	desc:
	op
	address

	size:
	6
	26

	bits:
	31 26
	25 0

	bit pattern:
	47
	address27..2

LB Rt,d[Ra]

LB Rt,[Ra + Rb]

Synopsis
Load register byte from memory
Detail
Rt = Memory8 [Ra + disp]
	desc:
	Op
	Ra
	Rt
	disp

	size:
	7
	6
	6
	23

	bits:
	41 35
	34 29
	28 23
	22 0

	bit pattern:
	48
	R5..0
	R5..0
	d22..0

Rt = Memory8 [Ra + Rb]
	desc:
	Op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	48
	R4..0

The byte loaded from memory is sign extended to the register width.
LBZ Rt,d[Ra]

LBZ Rt,[Ra+Rb]

Synopsis
Load register byte from memory
Detail
Rt = Memory8 [Ra + disp]
	desc:
	Op
	Ra
	Rt
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	49
	R4..0
	R4..0
	d15..0

Rt = Memory8 [Ra + Rb]
	desc:
	Op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	49
	R4..0

The byte loaded from memory is zero extended to the register width.

LEA Rt,d[Ra]

LEA Rt,[Ra+Rb]

Synopsis
Load effective address.
Detail
Rt = Ra + Rb
	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	10 6
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	4
	R4..0

Rt = Ra + #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	4
	R4..0
	R4..0
	n15..0

The effective address is loaded into the target register. This instruction is an alternate form of the ADD instruction.
LF Rt,d[Ra]

LF Rt,[Ra+Rb]

Synopsis
Load floating point register word from memory
Detail
Rt = funpack(memory32[Ra + disp])
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	56
	R4..0
	R4..0
	d15..0

Rt = funpack(memory32 [Ra + Rb])

	desc:
	Op
	Ra
	Rs
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	56
	R4..0

Load floating point value from memory and unpack the value into register Rt.
LH Rt,d[Ra]

LH Rt,[Ra+Rb]

Synopsis
Load register half-word from memory
Detail
Rt = Memory16 [Ra + disp]
	desc:
	Op
	Ra
	Rt
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	50
	R4..0
	R4..0
	d15..0

Note the format of the displacement field. D0 is forced to zero because half-word accesses must be half-word aligned.
Rt = Memory16 [Ra + Rb]
	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	50
	R4..0

The half-word loaded from memory is sign extended to the register width.
LHZ Rt,d[Ra]

LHZ Rt,[Ra+Rb]

Synopsis
Load register half-word from memory
Detail
Rt = Memory16 [Ra + disp]
	desc:
	Op
	Ra
	Rt
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	51
	R4..0
	R4..0
	d15..0

Note the format of the displacement field. D0 is forced to zero because half-word accesses must be half-word aligned.
Rt = Memory16 [Ra + Rb]
	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	51
	R4..0

The half-word loaded from memory is zero extended to the register width.
LW Rt,d[Ra]

LW Rt,[Ra+Rb]

Synopsis
Load register word from memory
Detail
Rt = Memory32 [Ra + disp]
	desc:
	Op
	Ra
	Rt
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	52
	R4..0
	R4..0
	d15..0

Note the format of the displacement field. D1..0 is forced to zero because word accesses must be word aligned.
Rt = Memory32 [Ra + Rb]
	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	52
	R4..0

MLO Rt,Ra,Rb,Rc
Synopsis
Mystery logical operation register with register.
Detail
Rt = Ra <Rc> Rb

Perform a logical operation between Ra and Rb and place result in target register Rt. The operation to be performed is determined by the low order three bits of register Rc. This instruction is used to avoid switch case statements (branches) where the logical operation to be performed may be determined at run time. There is no immediate form for this instruction.

Opcode:

R – Type

Register-Register Datapath

	31 25
	24 19
	18 13
	12
	11 6
	5 0

	Opcode7
	Ra6
	Rt6
	-1
	Rc6
	Rb6

	register value
	operation

	0
	exclusive or

	1
	and

	2
	inclusive or

	3
	{reserved}

	4
	exclusive nor

	5
	nand

	6
	nor

	7
	{reserved}

MOD Rt,Ra,Rb

MOD Rt,Ra,#n

Synopsis
Get remainder from divide of register by register or immediate.
Detail
Rt = Ra % Rb

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	15
	R4..0

Rt = Ra % #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	15
	R4..0
	R4..0
	n15..0

This is a signed division operation. The remainder of the division is placed in the target register Rt.

MUL Rt,Ra,Rb

MUL Rt,Ra,#n

Synopsis
Multiply register with register or immediate.
Detail
Rt = Ra * Rb

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	6
	R4..0

Rt = Ra * #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	6
	R4..0
	R4..0
	n15..0

This is a signed multiply operation. The low order 32 bits of the result are placed in the target register.

MULH Rt,Ra,Rb

MULH Rt,Ra,#n

Synopsis
Multiply register with register or immediate; return high order bits.
Detail
Rt = Ra * Rb

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	14
	R4..0

Rt = Ra * #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	14
	R4..0
	R4..0
	n15..0

This is a signed multiply operation. The high order 32 bits of the result are placed in the target register.

NAND Rt,Ra,Rb

Synopsis
Logically ''nand' register with register.
Detail
Rt = ~(Ra & Rb)

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	17
	R4..0

There is no immediate form for this instruction.
NMI

Synopsis
Run nmi routine.
Detail
R30 = pc; pc = FFFF_FFF8; flags.backup = flags; flags.im = 1
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	0
	30
	$FFFE15..0

This instruction causes the processor to perform a software initiated non-maskable interrupt routine. It has the same effect as an external hardware non-maskable interrupt. This is an alternate form of the JAL instruction.
Flags Affected
	I
	
	
	
	
	
	
	

	1
	-
	-
	-
	-
	-
	-
	-

NOP

Synopsis
No operation
Detail
	desc:
	op

	size:
	32

	bit pattern:
	0000_0009

This instruction acts merely as a placeholder. It performs no operation and has no effect on the processor. Many processors lack an explicit NOP operation resulting in different instructions being used for this purpose within the same processor. By providing an explicit NOP instruction some consistency in programs can be achieved. Without a NOP instruction many processors typically use instructions which have side effects in the form of affecting the processor status flags; this is not the case here.
NOR Rt,Ra,Rb

Synopsis
Logically inclusively 'nor' register with register.
Detail
Rt = ~(Ra | Rb)

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	18
	R4..0

There is no immediate form for this instruction.
NOT Rt,Ra

Synopsis
Take ones complement of register.
Detail
Rt = ~Ra

	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	8
	R4..0
	R4..0
	-115..0

This is really an alternate form of the XOR instruction.
OR Rt,Ra,Rb

OR Rt,Ra,#n

Synopsis
Logically inclusively 'or' register with register or immediate.
Detail
Rt = Ra | Rb

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	10
	R4..0

Rt = Ra | #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	10
	R4..0
	R4..0
	n15..0

RESET
Synopsis
Run reset routine.
Detail
R30 = pc; pc = FFFF_FFFC; flags.backup = flags; flags.im = 1
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	0
	30
	$FFFF15..0

This instruction causes the processor to perform a software initiated reset routine. This is an alternate form of the JAL instruction.
Flags Affected
	I
	
	
	
	
	
	
	

	1
	-
	-
	-
	-
	-
	-
	-

RET
Synopsis
Return from subroutine.
Detail
pc = R31
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	31
	0
	0

This instruction returns to the calling routine by loading the program counter with the contents of the return address. This is an alternate form of the jump-and-link (JAL) instruction. It is possible to return to a point in the program after the subroutine call by specifying a positive displacement instead of zero. This allows constant parameters to a subroutine call to be placed directly in code immediately after the calling instruction.
RI

Synopsis
Restore interrupt flag from backup copy.
Detail
flags.im = flags.backup im
	desc:
	op

	size:
	32

	bit pattern:
	0000_0004

This instruction restores the previous interrupt flag state from the backup copy of the processor control register. This allows restoring the interrupt state that was present when the backup of the status register was made. This is useful in operating system code where interrupts must be disabled to perform certain system functions (like updating system lists) and then restored to a previous state after performing the operation.
Flags Affected
	I
	
	
	
	
	
	
	

	X
	-
	-
	-
	-
	-
	-
	-

ROL Rt,Ra,#cnt
ROL Rt,Ra,Rb

Synopsis
Rotate register left.
Detail
Rd = Rd !<< Rb
The most significant bit is shifted into the least significant bit.

	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	9
	R4..0

Rt = Ra !<< #cnt

	desc:
	op
	Ra
	Rt
	X
	op
	cnt

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	1
	N4..0

ROR Rt,Ra,#cnt

ROR Rt,Ra,Rb

Synopsis
Rotate register right.
Detail
Rd = Rd !>> Rb
The most significant bit is shifted into the least significant bit.

	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	13
	R4..0

Rt = Ra !>> #cnt

	desc:
	op
	Ra
	Rt
	X
	op
	cnt

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	5
	N4..0

RTX
Synopsis
Return from subroutine.
Detail
pc = R30
	desc:
	op
	Ra
	Rt
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	44
	30
	0
	0

This instruction returns from an exception processing routine by restoring the flag register and jumping back to the code that was interrupted (who's address is stored in R30). This is an alternate form of the jump-and-link (JAL) instruction.
SB Rs,d[Ra]

SB Rs,[Ra + Rb]

Synopsis
Store byte from register to memory.
Detail
Memory8 [Ra + disp] = Rs
	desc:
	op
	Ra
	Rs
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	53
	R4..0
	R4..0
	d15..0

Memory8 [Ra + Rb] = Rs
	desc:
	Op
	Ra
	Rs
	~
	Op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	53
	R4..0

SETHI
S-Type

Usage: setting register to constant value

	41 38
	35 25
	25 20
	19 0

	154
	immediate12
	RegT6
	immediate20

The SETHI instruction sets the high order 32 bits of the target register to the immediate value specified in the opcode. The low order 32 bits of the register are unaffected. This instruction is typically used after the SETLO instruction in order to form a 64 bit constant.

SETLO

S-Type SETHI, SETLO

Usage: setting register to constant value

	41 38
	35 25
	25 20
	19 0

	144
	immediate12
	RegT6
	immediate20

The SETLO instruction sets the target register to the immediate value specified in the opcode. The low order 32 bits of the register are set as specified in the opcode, the high order 32 bits of the register are set to the sign extension of the low order bits.

SF Rt,d[Ra]
SF Rt,[Ra+Rb]

Synopsis
Store floating point register word to memory
Detail
memory32[Ra + disp] = fpack(Rs)
	desc:
	op
	Ra
	Rs
	disp.

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	28
	R4..0
	R4..0
	d15..0

memory32[Ra + Rb] = fpack(Rs)

	desc:
	op
	Ra
	Rs
	Rb
	X
	op

	size:
	6
	5
	5
	5
	5
	6

	bits:
	31 26
	27 24
	23 20
	15 11
	10 6
	5 0

	bit pattern:
	60
	R4..0
	R4..0
	R4..0
	~
	28

Store packed floating point single value from register Rs to memory.
SGN Rt,Ra

Synopsis
Obtain sign of number.

Detail
Rt = Ra cond 0
This instruction performs a comparison of a register to zero and stores the result in the target register. If the value is less than zero, -1 is written to the target register. If the value is equal to zero, zero is written to the target register. If the value is greater than zero, +1 is written to the target register. This instruction is an alternate form of the CMP instruction, where the register is compared to the value zero..
SH Rt,d[Ra]

SH Rt,[Ra+Rb]

Synopsis
Store half-word from register to memory
Detail
Memory16 [Ra + disp] = Rs[15:0]
	desc:
	op
	Ra
	Rs
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	54
	R4..0
	R4..0
	d15..0

Memory16 [Ra + Rb] = Rs[15:0]
	desc:
	Op
	Ra
	Rs
	~
	Op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	54
	R4..0

Note the format of the displacement field. D0 is forced to zero because half-word accesses must be half-word aligned.
SHL Rt,Ra,#cnt

SHL Rt,Ra,Rb

Synopsis
(Logically) shift register left.
Detail
Rd = Rd << Rb
Zeroes are shifted into the least significant bits.

	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	8
	R4..0

Rt = Ra << #cnt

	desc:
	op
	Ra
	Rt
	X
	op
	cnt

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	0
	N4..0

SHR Rt,Ra,#cnt

SHR Rt,Ra,Rb

Synopsis
(Logically) shift register right.
Detail
Rd = Rd >> Rb
A zero is shifted into the most significant bit.
	desc:
	op
	Ra
	Rt
	X
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	11
	R4..0

Rt = Ra >> #cnt

	desc:
	op
	Ra
	Rt
	X
	op
	cnt

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	12
	R4..0
	R4..0
	~
	3
	N4..0

STOP
Synopsis
Stop the processor from executing instructions and wait for the external hardware 'go' signal or a non-maskable interrupt.
Detail
	desc:
	op

	size:
	32

	bits:
	31 0

	bit pattern:
	0000_0008

This instruction can be used to synchronize the processor to an external event.

SUB Rt,Ra,Rb

SUB Rt,Ra,#n

Synopsis
'Subtract' register with register or immediate.
Detail
Rt = Ra - Rb

	desc:
	op
	Ra
	Rt
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	5
	R4..0

Rt = Ra - #imm
	desc:
	op
	Ra
	Rt
	imm

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	5
	R4..0
	R4..0
	n15..0

SW Rs,d[Ra]

SW Rs,[Ra + Rb]

Synopsis
Store word from register to memory
Detail
Memory32 [Ra + disp] = Rs
	desc:
	op
	Ra
	Rs
	disp

	size:
	6
	5
	5
	16

	bits:
	31 26
	25 21
	20 16
	15 0

	bit pattern:
	55
	R4..0
	R4..0
	d15..0

Note the format of the displacement field. D1..0 is forced to zero because word accesses must be word aligned.
Memory32 [Ra + Rb] = Rs
	desc:
	op
	Ra
	Rs
	~
	op
	Rb

	size:
	6
	5
	5
	5
	6
	5

	bits:
	31 26
	25 21
	20 16
	15 11
	10 5
	4 0

	bit pattern:
	2
	R4..0
	R4..0
	~
	55
	R4..0

SYS
Synopsis
Perform system call.
Detail
R62 = pc; pc = <ETA>+nnn; pcr.backup = pcr; pcr.im = 1
This instruction causes the processor to perform a system call. It is meant for operating system support. It is a specialized form of the JAL instruction.

Effects:

The processor control register is copied to it’s backup version. Then the interrupt mask is set, disabling further interrupts.

The program counter is stored in register 62.

The program counter is loaded with the sum of the exception table address register and the call number shifted left twice.
I - Type

Register-Immediate Datapath,

Jump and Link

	31 25
	24 19
	18 13
	12 10
	9 0

	27
	Ra6
	62
	0
	Call No10

TRS Ra,Spr

Synopsis
Transfer register to special purpose register.
Detail
Special Register = Ra
Special Registers
Currently there are only five special registers defined, the remaining codes are reserved for future use.

	Code
	Register Name
	Description

	0
	PCR
	Processor Control Register

	1
	
	{this register is reserved}

	2
	
	{this register is reserved}

	3
	VER
	Processor Version - major, minor, revision

	4
	RND
	random number register

	
	
	

TSR Rt,Spr

Synopsis
Transfer special purpose register to register.
Detail
Rt = Special Register
Special Registers
Currently there are only five special registers defined, the remaining codes are reserved for future use.

	Code
	Register Name
	Description

	0
	PCR
	Processor Control Register

	1
	
	{this register is reserved}

	2
	
	{this register is reserved}

	3
	VER
	Processor Version - major, minor, revision

	4
	RND
	random number register

	5
	TC
	Tick Count

WAI

Synopsis
Wait for interrupt.
Detail
If the processor is in the interrupt context, this instruction will cause the processor to exit the interrupt context; otherwise this instruction will be treated as a nop. When an interrupt occurs, the processor will begin execution immediately after the wai instruction, if the wai instruction was used to exit the interrupt context.
Normally this instruction would be used in an interrupt service routine at the point at which it is desired to begin interrupt processing.

XNOR Rt,Ra,Rb
Synopsis
Logically exclusively 'nor' register with register.
Detail
Rt = ~(Ra ^ Rb)

There is no immediate form for this instruction.

XOR Rt,Ra,Rb

XOR Rt,Ra,#n

Synopsis
Logically exclusively 'or' register with register or immediate.
Detail
Rt = Ra ^ Rb
Rt = Ra ^ #imm

2

