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 1 Introduction

The IP cores described in this document can be used to build both end points and 
switches. The chapters below describes the IP cores in more detail. 

The function will be dependent on how the cores are assembled and connected to 
each other. To build a switch for example, a RioSwitch IP core is needed. It will 
need packet FIFOs connected on all of its ports. 
If the port has a transmission channel to another device and it should be a reliable 
channel you would use a RioPacketBuffeWindow and attach a RioSerial module 
to it.
If the port is connected to an internal end point you would use RioPacketBuffer 
and attach a custom written module.

 2 RioSwitch IP core

 2.1 Overview

The main task of this component is to relay packets from an inbound port to one 
of its outbound ports based on the destination deviceId of the packet. The 
mapping from destination deviceId to destination port is done using a lookup table 
where the device identifier is used as an address into the table. The content of the 
lookup table is the port to send the packet to.

The switch itself can be configured using maintenance packets. Using these, it is 
possible to dynamically set and change routes and to do other network 
administrational tasks like enumeration and routing table setup.

A decomposition of the RioSwitch into sub components looks like this:

SwitchPortInterconnect
A Wishbone compliant interconnect that makes it possible to transfer data 
between ports.

RouteTableInterconnect
A Wishbone compliant interconnect that makes it possible to do deviceId 
to portNumber lookups in a shared routing table.

SwitchPort
This subcomponent acts as a Wishbone master to transfer a packet to a 
destination port using the SwitchPortInterconnect. It contains both a 
master that handles the inbound packet and a slave that receives an 
outbound packet from a master of another SwitchPort.

SwitchPortMaintenance
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This is a special port that receives all inbound maintenance packets from 
all ports to determine if the packet is targeted to this switch instance.

See later chapters for more details about the sub components.

 2.2 Entity description

Generics
SWITCH_PORTS The number of ports to instantiate 

on the switch.
DEVICE_IDENTITY The value to return as 

DeviceIdentity when a maintenance 
request is received on offset 
0x000000 (DeviceIdentityCAR).

DEVICE_VENDOR_IDENTITY The value to return as 
DeviceVendorIdentity when a 
maintenance request is received on 
offset 0x000000 
(DeviceIdentityCAR).

DEVICE_REV The value to return when a 
maintenance request is received on 
offset 0x000004 
(DeviceInformationCAR).

ASSY_IDENTITY The value to return as AssyIdentity 
when a maintenance request is 
received on offset 0x000008 
(AssemblyIdentityCAR).

ASSY_VENDOR_IDENTITY The value to return as 
AssyVendorIdentity when a 
maintenance request is received on 
offset 0x000008 
(AssemblyIdentityCAR).

ASSY_REV The value to return as AssyRev 
when a maintenance request is 
received on offset 0x00000c 
(AssemblyInformationCAR).

Signal interface
clk System clock.
areset_t Asynchronous reset, active low.
portLinkTimeout_o The value written to 

portLinkTimeoutControlCSR.
linkInitialized_i Input value showing if the link 

connected to this port is initialized, 
i.e. if there is a link partner present.

outputPortEnable_o Indicates if non-maintenance 
packets are accepted in the 
outbound direction.

inputPortEnable_o Indicates if non-maintenance 
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packets are accepted in the inbound 
direction.

localAckIdWrite_o Indicates if an ackId write access is 
active. 

clrOutstandingAckId_o Indicate if the outstanding ackId 
should be cleared. Read when 
localAckIdWrite_o is asserted.

inboundAckId_o Indicate the value to set the inbound 
ackId to. Read when 
localAckIdWrite_o is asserted.

outstandingAckId_o Indicate the value to set the 
outstanding ackId to. Read when 
localAckIdWrite_o is asserted.

outboundAckId_o Indicate the value to set the 
outbound ackId to. Read when 
localAckIdWrite_o is asserted.

inboundAckId_i The current inbound ackId of a port.
outstandingAckId_i The current outstanding ackId of a 

port.
outboundAckId_i The current outbound ackId of a 

port.
RioPacketBuffer interface - See RioPacketBuffer description.
configStb_o Indicate that an access to the 

implementation defined config 
space is active.

configWe_o Indicate if an implementation 
defined config space access is a 
write access or a read access.

configAddr_o Indicate the address of an 
implementation defined config 
space access.

configData_o If the access is a write, this signal 
contains the data to write.

configData_i If the access is a read, this signal 
should contain what to return as a 
response on the access. It will be 
sampled one tick after the 
configStb_o has been asserted.

 2.3 Sub components

 2.3.1 SwitchPortInterconnect

The SwitchPortInterconnect is a Wishbone based interconnect. All ports are 
attached to it and issues bus transactions to access other ports.
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The interconnect is hard coded to support 256 ports to simplify the VHDL code 
and all accesses are 32-bit. It is up to the synthesizer tool to optimize the design if 
the switch contains fewer ports. 

Following the Wishbone standard makes it transparent to the user if the 
interconnect is a shared bus (only one master active at the same time) or a 
crossbar (multiple masters active at the same time). The current implementation is  
a shared bus to minimize the resources used in the design but it can be replaced 
with a more resource intensive crossbar whenever needed. 

The total switching capacity of a shared bus implementation could roughly be 
calculated as (system clock frequency * the interconnect data bus width) which in 
our case equates to 25E6*32=800Mbit/s. Arbitration between ports is done using a 
Round-Robin scheduler. To avoid deadlocks it is not recommended to do a cut-
through switch unless the interconnect is a crossbar.

The SwitchPort entities access one another by doing bus transactions. Packets are 
transferred from one port to another by addressing the destination port according 
to the address map found in the table below.
A port will send maintenance packets to its corresponding address and by setting 
the most significant bit in the address. Since each port has its own address space 
to write maintenance packets to, the maintenance switch port can return a 
response to the same port as the request was received on.

The below table shows the static address map that is hard wired to 256 ports.

Name Address [9:0] Write Content
Port 0 status 0 00000000 0 bit 0: writeFrame

bit 1: writeFrameAbort
Port 0 data 0 00000000 1 bit 31-0: writeFrameContent
Port 1 status 0 00000001 0 …
Port 1 data 0 00000001 1 …

… … … …
Port 255 status 0 11111111 0 …
Port 255 data 0 11111111 1 …
Port 0 maintenance 
status

1 00000000 0 bit 0: writeFrame
bit 1: writeFrameAbort

Port 0 maintenance 
data

1 00000000 1 bit 31-0: writeFrameContent

Port 1 maintenance 
status

1 00000001 0 …

Port 1 maintenance 
data

1 00000001 1 …

… … … … …
Port 255 maintenance 
status

1 11111111 0 …

Port 255 maintenance 
data

1 11111111 1 …

Table: Internal address mapping between switch ports.
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 2.3.2 RouteTableInterconnect

The RouteTableInterconnect is a Wishbone based interconnect used to share a 
common routing table between multiple switch ports. A priority scheduler has 
been used to minimize resources. A port requests an access by raising its stb_o-
signal and places the destination deviceId as addr_o. It then waits for the port 
index to be valid when ack_i is asserted.
A lookup takes only one tick to perform so there should be no need to duplicate 
the routing table for each port.

 2.3.3 SwitchPort

A switch port is divided into two parts, a master and a slave. The master part is 
responsible for reading a packet that is available and to transfer it to its destination 
port. It does this in the following sequence:
1. Wait for a new packet.
2. Check if the packet is a maintenance packet. If it is transfer it to this ports’ 

address in the maintenance port. Otherwise, read the destination deviceId of 
the packet and lookup its destination port by accessing the routing table.

3. Wait for the destination port to be ready to accept the packet. This is done by 
reading the PortStatus and checking that writeFrameFull is deasserted. If 
writeFrameFull is asserted, the transfer is aborted and the bus cycle is 
terminated to let other ports use the interconnect. The a new cycle to transfer 
the frame is initiated.

4. Once the writeFrameFull has been found to be deasserted the packet is 
transferred to its destination port.

5. The packet is removed from the inbound queue. It has now been moved from 
an inbound packet queue to an outbound packet queue.

 2.3.4 SwitchPortMaintenance

A switch port maintenance is divided into four parts, a slave, a master, a config 
space handler and the routing lookup table. The slave is responsible for receiving 
new packets from other ports and the master generates responses to these. The 
config space handler responds to read and write accesses into the switch’ 
maintenance space and the result from this is returned by the master.
The SwitchPortMaintenance module executes according to the steps below:
1. A packet is received by the slave from the SwitchPortInterconnect. The 

interface towards it is the same as an ordinary SwitchPort.
2. The slave parses the incoming packet and stores its content. When the packet is 

fully received, it is indicated to the master. The slave will now be locked until 
the master has completed its processing of the new packet. If another 
maintenance packet is received by a port it will remain in the inbound packet 
queue until the master has processed the current packet.

3. The master checks the content of the packet and determines if the packet is for 
this switch instance. If not, it decrements the hop-field, recalculates the CRC, 
lookup the destination deviceId to get the destination port and forwards the 
packet to that port. If the packet is aimed at this switch instance, it is converted 
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into an access into the internal configuration space and a response is sent back 
to the source port of the packet.

4. The master unlocks the slave to allow it to receive a new packet.
This module also maintains the routing lookup table since this is accessed through 
maintenance packets. The lookup table interface is connected to the routing table 
interconnect to be able to share it between all the ports in the system.
The routing table currently supports routing of 2048 deviceIds. It could be 
increased if it is hard-wired to less than 8-bit port numbers. The routing table is 
designed to fit into one block RAM in a Xilinx Spartan 6.

 2.4 Limitations

There are some limitations on the implementation:
• Only 16-bit deviceIds are supported.
• Currently, only the store-and-forward switch philosophy is supported. It is 

however a minor task to make it support a cut-though implementation.
• The SwitchPortInterconnect is a shared bus which means that only one 

port can transfer packets to another port at a time. This decision has been 
made to lower the amount of used resources. It is however a simple task to 
replace the shared-bus interconnect with a crossbar interconnect without 
changing any interfaces.

• Only 32-bit maintenance accesses are supported. That also applies to 
packets that are only routed though.

• No packet priority is supported.
• No parity is added to packets internally. This may result in a hanging port 

if an error occurs internally when a packet is transferred between the 
internal block memories or while stored in an internal block memory.

• No maximum switch survival time is implemented. A packet can survive 
inside the switch forever until it is transmitted.

• Only the standard route table configuration is supported.

 3 RioPacketBuffer IP core

The RioPacketBuffer contains logic to store a configurable number of packets in a 
memory. It can be configured to have a maximum memory size and a maximum 
number of packets stored in that memory size. It has a signal interface that allows 
a packet to be aborted and to detect this at the other side. It is also possible to start 
reading a packet before it is completely written into the memory.

The normal usage is to write a packet using writeContent and writeContentData. 
The signal writeFrame is asserted for one tick to indicate that the packet is 
completely written. When a packet is available for reading the signal 
readFrameEmpty is deasserted. The content at the read side is updated by 
asserting readContent and reading readContentData. The signal readContentEnd is 
asserted when there is no more packet content to read. Note that when this 
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happens, readContentData is not valid anymore. See figure below for signal 
timing.

Figure: The above figure shows a frame where the content is one word equal to  
0xdeadbeef.

To support the RioSerialTransmitter transmission window there is a special 
version of this component called RioPacketBufferWindow. This component has 
three additional signals called readWindowEmpty, readWindowReset and 
readWindowNext. Using these signals it is possible to read new packets without 
removing them from the memory. The packet can be removed later once a packet-
accepted control symbol has been received.

If writeFrameFull is deasserted, it is always possible to write a full sized packet. 
This is to guarantee that a packet transfer will always be successful once it has 
started. That means that at most 68 words (the maximum size of a RapidIO 
packet) can be unavailable to be used in a worst-case scenario.

The packets are stored in a continuous memory (that could be block RAM) using 
four pointers. One pointer points to the first available memory position, one 
pointer to the first unavailable position, one pointer the current read position and 
one the current write position. An additional memory (not block RAM) stores the 
position of the packets stored in the packet memory. This information is used to 
know when the end of a packet has been reached.

 4 RioSerial IP core

RioSerial implements the hardware independent protocol parts of the LP-serial 
physical layer described in RapidIO 2.2 part 6 chapters 2, 3, 5 and parts of chapter 
6. Note that the other chapters are not implemented in this module. It is 
implemented in the hardware dependent PCS layer.

The interface between the PCS layer and this module handle an abstract object 
here called a symbol. A symbol is defined as a 34 bit long array of bits where the 2 
MSB bits sets it as one of four flavors, IDLE=00, CONTROL=01, DATA=11 and 
ERROR=10. The other 32 bits are data bits associated to the symbol. 
An IDLE symbol is transmitted when there is nothing else to transmit. A PCS 
layer can send this to indicate that the link is up and running but there is nothing 
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to process. It does not have any associated symbol data so the data bits are not 
used for this type.
A CONTROL symbol is 24 bits and follows the description of a short control 
symbol described in the standard. The 24 bits are left adjusted in the 32 bit of 
symbol data.
A DATA symbol contains a 32-bit fragment of a RapidIO packet.
An ERROR symbol is used to indicate that the PCS layer encountered data on the 
physical transmission channel that could not be mapped to a valid symbol. It is 
never transmitted, only received by RioSerialReceiver. It does not have any 
associated symbol data so the data bits are not used for this type.

The symbol concept is not clear in the standard but it is not that hard to see that is 
is there. It was however necessary to clearly define it when the PCS functionality 
was moved out from the channel independent parts.

RioSerial is divided into RioSerialTransmitter and RioSerialReceiver and two 
control-symbol FIFOs in between.
RioSerialTransmitter splits packets into data-symbols, inserts control-symbols to 
delimit them and keeps track of packet-accepted control symbols received from its 
link partner. Idle-symbols are transmitted when no packet is available to send.
The RioSerialReceiver reassembles the data-symbols into packets at the other side 
and checks the checksum. Errors are reported to its link partner using packet-not-
accepted control-symbols. The protocol will thereby provide a "secure" 
transmission path to its link partner. Any error results in a retransmission.

The RapidIO specification allows for a transmission window to increase the 
performance of the link. That means that up to 32 packets can be transmitted 
without receiving a packet-accepted. The RioSerialTransmitter has support to 
handle the full size of a transmission window.

There are two ways of dealing with link flow control in the standard. This module 
implements the receiver controlled flow control mechanism. All packets are 
accepted until the reception buffer is full. Then a packet-retry is issued and all 
packets are discarded until the retry situation is acknowledged. The packets may 
then be retransmitted and hopefully be accepted.

Link initialization follows the procedure described in the standard. It waits for the 
successful reception of eight status control-symbols without errors in between. 
Once received, the link is considered initialized and packets may be transferred. 
The transmitter has to send at least 16 status control symbols before it can start 
sending packets. To speed up the initialization, the number of idle symbols in 
between the status control symbols is reduced to 16 instead of 256 at startup.

The timeout value waiting for a packet-accepted control-symbol in the transmitter 
is input using the portLinkTimeout_i.
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 4.1 Limitations

• Handles short control symbols only.
• No STYPE0 and STYPE1 merging.
• Not all bits in the port control registers described in the standard are 

supported.
• All inbound packets are checked for errors but if an error occurs internally, 

inside the device, a packet will be retransmitted forever A mechanism to 
protect against this should be implemented.

• The embedded in-frame CRC placed in bytes 80 and 81 are not checked.
• Cut-through switching is not supported but could quite easily be 

implemented.
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