See sheet 3 (Notes) for a more general description

Opcodes1

RO 00 : NOP
#ALU 2 2 10 [ALU < REG
2 £ Sheet 2 11: REG = #ALU
BRANCH £ R12 (L [— Opcodes2:
STALL x R13=LR = 00 : LR = NOP
R14 = PC 01:LR=#LR
R15 = SR 10: SR = #SR
PC Signals
R/W Port R14 ﬁEII_ES ...;’&T%o;arytw Bit Register
utpu
A DREG ... Destination Register
P #SR ... New $tatus Register
»T MUX r IF/ID ID/EX #LR ...New Link Register EX/MEM
'_
SR Fetch)
> 5o
—F zs
o
* N
$) o
- ADD + 2 P 2 > O
o —
OPCODE a <
- Extender > 2 <
m
o o
> Cond - §
Decode = 0]
M L
P MEMI[PC] *|_> 2 v - 2
Comb >
< ; Execyte > g
. > Unit 3+
x >
Register P X > D
g Decode + Fetch i3 o
SRAM
Instruction Memor
(y) Y L é
P MUX x
% 1 e
[] Memory Elements
. . . Immediate o —
[] Combinatorical Logic > Fetch - § >
[l Registers i
Note: Values of register rX is denoted by #rX RISE - Design Overview 1/2
g'LI'JAS\L[I?LIE']AR_IN’ CW, JL, HT, US
j 21. November 2006 1/2

MEM/WB Register WR Ports —

[ALU]

STALL_OUT

Y
ALU OP2

\J

Register WB

y

#REG | ALU OP1

\J
Y

#SR
!

EX/MEM
* If ALU Opcode reads from Memory then #REGis result
* If ALU Opcode is write [ALU] is #REG
* Memory output is written to #REG if wanted by ALU Opcode 1
a
O
o)
-
<
o
(@]
o)
Ee
> Comb | —P MUX
0]
o
. -
4>
= L P MEM[#ALU]
3 -
#
(O]
|
o
a
o
@)
*#
o
|
*

SRAM

(Data Memory)

BUS [CLEAR_IN, STALL_IN]

Register Lock Unit provides information about registers that
haven't been written yet and thus the decode stage shouldn't
read from these registers. The decode stage tells RLU to lock a
newly decoded destination register, the write-back stage
unlocks the corresponding register again.

Clear Lock Bit 0

_ RLU
Clear Lock Bit 1 p- (Register Lock Unit)

SR WB

#LR
!

LR WB

“ A

L BUS [CLEAR_IN]

Set Lock Bit 0/1 Lock Flag Register

RISE — Design Overview 2/2

CW, JL, HT, US

21. November 2006 2/4

RO

+ hud
— R12 O [— * Extendes 3/5 Bit Opcodes to common5 Bit
o R13 = LR o * Decodes Conditional Bits from IR
14 R14 = PC = » Decode + Fetch rX,rY,rZ numbers
R15 = SR * Sign extend 8-Bit and 4-Bit values
* Pass rX address (Used in WB)
* Check if status register (SR) is set from last instruction. If not, stall the pipeline
* Check if registers rX, rY and rZ are written back already. If not, stall the pipeline.
ID/EX
SR Fetch o Notes:
) The decode stage checks if all registers are valid and can be read. A register is
i valid if it is not in use by an already pending instruction in the pipeline. This is
indicated by a lock bit which is set by the instruction decode stage when the
o instruction enters the pipeline. If a register is not ready then the pipeline is stalled.
- % The lock bit is cleared again in the writeback stage.
8 Furthermore the decode stage checks if the status register is ready. It is ready
i 2 when the instruction before this instructions before has updated the status register.
IR(5:11] > OPCODE > g If the instructions before do not modify the SR no stall is necessary.
Extender =
m
O
IR[15]
IR[10:8] > Cond > Check g
IR[12:10] < Decode Lock Flag SR Ready o
b Register b 5
IRM5:13 STALL_OUT ™
IR[11:8] : X
IRI7.A1 P>Decode + Fetch L» x
x
IR[3:0] - ry P X
Decode + Fetch &
IR[9:8] rZ > >
>Decode + Fetch e
IR[15]
IR[7:0 < N
IR[3:0 E— Check -
IMM8 MUX Read-Ready /
Expand j ’7 Set lock bit ©
=
=
IMM4 | B ®
Expand
Lock Flag set Lock Bit 0/1 RISE — Decode Stage

BUS [CLEAR_IN, STALL_IN]

Register

STALL_OUT

BUS [CLEAR_IN, CW, JL, HT, US

S
TALN 21. November 2006 11

Notes:
The execution stage checks if there is a branch. If there is a branch it clears the
previous two pipeline stages and updates the programm counter in the register file.

BRANCH

CLEAR_OUT

ALU OP2

#REG | ALU OP1

DREG

#LR

ID/EX
4
{
—>
&) Branch
& Detection
4>
3
(595 Anal
= nalyze
ﬁ - Opcode
©
.
5
"’ > Check
Condition
2 >
X
H+
N -
£ —‘ - ALU
-
E >
o — A A
= 4>
=
+

Comb —P» MUX

4
#ALU

RISE — Execute Stage

CW, JL, HT, US

21. November 2006

11

Pipeline

* If a write to PC is detected then the branch signal is generated. In this case the content of the pipeline
in the IF/ID and ID/EX is cleared.

* If a operation is conditional it must be stalled until the previous SR is available in the register file.

RISE - Notes

Christian Walter

21. November 2006

1/2

MUX

RISE - Symbols

Christian Walter

21. November 2006

1/2

