See sheet 3 (Notes) for a more general description
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Register Lock Unit provides information about registers that
haven't been written yet and thus the decode stage shouldn't
read from these registers. The decode stage tells RLU to lock a
newly decoded destination register, the write-back stage
unlocks the corresponding register again.
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— R12 O [— * Extendes 3/5 Bit Opcodes to common5 Bit
o R13 = LR o * Decodes Conditional Bits from IR
14 R14 = PC = » Decode + Fetch rX,rY,rZ numbers
R15 = SR * Sign extend 8-Bit and 4-Bit values
* Pass rX address (Used in WB)
* Check if status register (SR) is set from last instruction. If not, stall the pipeline
* Check if registers rX, rY and rZ are written back already. If not, stall the pipeline.
ID/EX
SR Fetch o Notes:
) The decode stage checks if all registers are valid and can be read. A register is
i valid if it is not in use by an already pending instruction in the pipeline. This is
indicated by a lock bit which is set by the instruction decode stage when the
o instruction enters the pipeline. If a register is not ready then the pipeline is stalled.
- % The lock bit is cleared again in the writeback stage.
8 Furthermore the decode stage checks if the status register is ready. It is ready
i 2 when the instruction before this instructions before has updated the status register.
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Notes:
The execution stage checks if there is a branch. If there is a branch it clears the
previous two pipeline stages and updates the programm counter in the register file.
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Pipeline

* If a write to PC is detected then the branch signal is generated. In this case the content of the pipeline
in the IF/ID and ID/EX is cleared.

* If a operation is conditional it must be stalled until the previous SR is available in the register file.
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