rtfSimpleUart

Table of Contents

2Table of Contents

3Overview

4Register Description

6Baud Rate Generation

6Core Parameters

6pClkFreq

6pBaud

6pRts

6pDtr

7System Interface

7Signal Description

9SAMPLE SOFTWARE USAGE:

Overview

A UART component (Universal Asynchronous Transmitter / Reciever) is used for the asynchronous transmission and reception of data. Asynchronous referring to the lack of a clock signal during transmission or reception.

rtfSimpleUart is a simplified UART component organized to be compatible with a more advanced UART component. Simplifications for the rtfSimpleUart include support for only a single transmission / reception format which is 1 start bit, 1 stop bit, 8 data bits without parity. The rtfSimpleUart is also contains only a single transmit / receive buffer, the fifo present in the more advanced UART is missing.

Register Description
	Reg
	Name
	
	
	

	
	
	
	
	

	0
	TRB
	RW
	Transmit receive buffer

· write to transmit buffer

· read from receive buffer
	

	1
	LS
	RO
	Line Status register

Bit

0

= receiver not empty, this bit is set if there is any data available in the receiver

1

overrun, this bit is set if receiver overrun occurs

3

Framing error, this bit is set if there was a framing error with the current byte in the receiver

5

Transmitter not full, this bit is set if the transmitter can accept more data

6

Transmitter empty, this bit is set if the transmitter is completely empty

	

	2
	MS
	RO
	Modem Status register

Writing to the modem status register clears the change indicators and also clears a modem status interrupt

Bit

3

Change on dcd signal

4

Cts signal level

5

Dsr signal level

6

Ri signal level

7

Dcd signal level

	

	3
	IS
	RO
	Interrupt Status register

Bit
0-4
Mailbox number
0-1
Contain the value “00”
2-4
Encoded interrupt level
5-6
Not used
7
1 = interrupt pending, 0 = no interrupt

	

	4
	IE
	RW
	Interrupt Enable register
Bit

0

Receiver interrupt – interrupt on data present

1

Transmitter interrupt- interrupt on buffer empty

3

Modem status interrupt – dcd changed

5-7

Unused, reserved

	

	5
	FF
	RW
	Frame Format register
This register is reserved for compatibility with the advanced UART
	

	6
	MC
	RW
	Modem Control register
Bit

0

DTR signal level output

1

RTS signal level output

	

	7
	
	
	Control Register
Bit

0

Hardware flow control, when this bit is set, the transmitter output is controlled by the CTS signal automatically

	

	8
	CM0
	RW
	Clock multiplier LSB - unimplemented
	

	9
	CM1
	RW
	Clock multiplier
	

	10
	CM2
	RW
	Clock Multiplier
	

	11
	CM3
	RW
	Clock Multiplier MSB
	

	12
	FC
	RW
	Fifo control register – this register is reserved for compatibility with the advanced UART
	

	13
	RES1
	
	This is a reserved register
	

	14
	RES2
	
	This is a reserved register
	

	15
	SPR
	RW
	Scratchpad register
	

Baud Rate Generation

In a small SOC (system on chip) there may not be many options as to the clock frequencies available. rtfSimpleUart contains baud rate generation circuit based on a harmonic frequency synthesizer that can work with a wide variety of clock frequencies.

The harmonic synthesizer acts like a device that multiplies a low frequency clock up to the desired operating frequency.
In this case the input bus clock is used as a frequency source. The baud rate clock is generated as a multiple of the input clock divided by 2 ^ 32. A 32 bit multiplier value is placed into register CM3(MSB) to CM0 (LSB).

For example, assume a SOC uses the standard VGA frequency 25.175 MHz as a master clock. Assume a 9600 baud RS232 connection is desired. A 153.6 kHz clock is required as the 16x clock for 9600 baud. The harmonic synthesizer acts as if the 25.175 MHz clock were divided by 2 ^ 32, giving a bottom frequency clock of 5.86 milli-hertz. In order to get 153.6 kHz from this clock we need to multiply by : 153.6 kHz / 5.86 mHz =

26204845.15. This is 018FDAAD in hexadecimal. So the value is placed into the clock multiplier registers as follow: 01 >= CM3, 8F >= CM2 and DA =>CM1, the least significant clock multiplier register, CM0, is not set, because it is not implemented. If it were implemented, it would be set to AD.
Core Parameters
pClkFreq – This is the frequency of the input clock in Hertz. 25.175MHz would be specified as 25175000. This parameter must be specified or the core won’t produce proper baud rate.

pBaud – This parameter specifies the desired baud rate. The default value is 19200 baud. This is a convenience parameter that attempts to automatically calculate the required clock multiplier values. Note that this parameter does not work correctly for all baud rates. It invokes an automatic calculation of clock multiplier values which is subject to numeric overflow in some circumstances. It’s best to set the rate with the clock multiplier registers.

pRts – This is the default reset value of the RTS signal. It set to active (1) by default.

pDtr – This is the default reset value for the DTR signal. It is set to active (1) by default.

System Interface

The core interfaces to the system through a WISHBONE compatible bus. Note that the sel_i input is missing, since the core is byte wide only.

The core uses internal address decoding that place it at the address $FFDC_0A0x.

Signal Description
	Name
	Bits
	Description

	WISHBONE Bus Signals

	rst_i
	1
	Reset signal, active high

	clk_i
	1
	Bus clock signal

	cyc_i
	1
	Cycle valid

	stb_i
	1
	data strobe

	we_i
	1
	write enable

	adr_i
	32
	32 bit address bus input

	dat_i
	8
	input data bus

	dat_o
	8
	output data bus

	ack_o
	1
	acknowledge back to bus master

	Other bus Signals

	vol_o
	1
	volatile register is being accessed

	irq_o
	1
	interrupt request

	Modem Control

	cts_ni
	1
	clear to send input, active low

	rts_no
	1
	request to send output, active low

	dsr_ni
	1
	data set ready input, active low

	dcd_ni
	1
	data carrier detect input, active low

	dtr_no
	1
	data terminal ready, output active low

	rxd_i
	1
	receive data in

	txd_o
	1
	transmit data out

	data_present
	1
	data present in receiver output

	
	
	

	
	
	

	
	Please refer to the WISHBONE spec available at OpenCores.org for a more complete description of the WISHBONE compatible signals.

	
	

	rst_i
	This is the synchronous reset active high reset signal. Registers are reset to their default values, and transmitter and receiver state machines are reset.

	
	

	clk_i
	This is the bus clock for timing bus transactions, it is the only clock input. The baud rate clock is generated from this clock via harmonic synthesis.

	
	

	vol_o
	This signal indicates to the system that the registers being accessed during a read cycle are ‘volatile’ registers whose state may be changed by hardware. This signal may be used to disable I/O register shadowing.

	
	

	cts_ni
	This input signal is ignored unless hardware flow control is turned on. By default hardware flow control is turned off. When used, CTS (clear to send) indicates that the other device is ready to receive data. This signal should be connected to ground if not used.

	
	

	rts_no
	This signal is active by default. The default setting may be specified with the pRts parameter

	
	

	dtr_no
	This signal is active by default. The default setting may be specified with the pDtr parameter.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

SAMPLE SOFTWARE USAGE:

This is an extract of code from Tiny Basic 68000. The UART is in use as the auxilliary

port for tiny basic. The sample is in 68000 assembly language. The sample uses default

settings of the UART, which is 19.2k baud, so there is no initialization required.

;==

;==

UART

EQU

0xFFDC0A00

UART_LS

EQU

UART+1

UART_CTRL
EQU

UART+7

;*

;* ===== Output character to the host (Port 2) from register D0

;*
(Preserves all registers.)

;*

AUXOUT:

BTST
#5,UART_LS
;is port ready for a character?

BEQ

AUXOUT

;if not, wait for it

MOVE.B
D0,UART

;out it goes.

RTS

;*

;* ===== Input a character from the host into register D0 (or

;*
return Zero status if there's no character available).

;*

AUXIN:

BTST
#0,UART_LS
;is character ready?

BEQ

AXIRET

;if not, return Zero status

MOVE.B
UART,D0

;else get the character

AND.B
#0x7F,D0
;zero out the high bit

AXIRET:

RTS

;==

;==

PAGE
8

