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Introduction 
 This document describes OpenCores RV01 processor core available at 

http://opencores.org/project,RV01_core. The RV01 core implements RISC-V RV32I instruction set with 

“M” extension according to RISC-V ISA version V2.0 [1], and implements (with some exception) 

privileged architecture according to version V1.7 [2]. 

 Hopefully this work can be of use to somebody. 

License 
 In accordance with the existing version of the OpenCores RV01 processor core. This work is 

licensed under the GNU Lesser General Public License. The license can be obtained at 

http://www.gnu.org/licenses/lgpl.html . As such, the following applies to all source files added to the 

OpenCores RV01 processor core. 

 

Copyright (C) 2017 Stefano Tonello 

 

This source file may be used and distributed without restriction provided that this copyright statement is 

not removed from the file and that any derivative work contains 

the original copyright notice and the associated disclaimer This source file is free software; you can 

redistribute it and/or modify it under the terms of the GNU Lesser GeneralPublic License as published 

by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. 

 

This source is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without 

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  

See the GNU Lesser General Public License for more details. 

 

You should have received a copy of the GNU Lesser General Public License along with this source; if 

not, download it from http://www.gnu.org/licenses/lgpl.html. 

 

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
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Conventions 
The following conventions are used in this document: 

 Core: the RV01 processor core described in this document. 

 User logic: any circuitry connected to the core, and used to control it and/or exchanging data 

with it. 

 RAS (Return Address Stack): the data structure that stores function call returns addresses, used 

by jalr instructions prediction logic. 

 DMA (Direct Memory Access): DMA port is the main interface between the core and user logic, 

allowing user logic to read/write the core internal memories. 

 Run state: the functional condition in which instructions execution is ongoing. 

 Halt state: the functional condition in which instructions execution is suspended. 

 Instruction #0: when parallel instruction execution is enabled, instruction #0 is the older of the 

two instructions in a given stage of the core CPU pipeline. 

 Instruction #1: when parallel instruction execution is enabled, instruction #1 is the newer of the 

two instructions in a given stage of the core CPU pipeline. 

Main Features 
 Two-way in-order superscalar design (optionally configurable as scalar-only to reduce resource 

usage). The core can fetch, execute and complete up to two instructions per cycle. 

 Implements RISC-V RV32I instruction set with “M” extension according to RISC-V ISA 

version 2.0 [1].  

 Implements RISCV privileged architecture version 1.7 [2] (Mbare mode only), with some 

exception described later (most notably the use of physically separated instruction and data 

memories). 

 Dual 7-stage asymmetrical pipeline: one pipeline can execute all instructions, while the other one 

can execute only a subset of instructions chosen between most frequently executed ones. 

 Branch and Jump-PC (jal, but not jalr) instructions are predicted using 2-bit saturating 

counters. Prediction logic may be optionally removed to reduce resource usage. 

 Jump-Register (jalr) instructions are predicted using a return address stack (RAS). Prediction 

logic may be optionally removed to reduce resource usage. 

 Instructions and data are held in physically separated memory (of user-configurable size) in 

order to allow concurrent access to them from RV01 CPU. Instructions and data are accessible 

to user logic through a DMA-like port. 

 Single-threaded only. 

 No hardware support for misaligned load and store operations. 

 No support for cache memories or virtual memory (MMU). 

 Optional debug module, implemented according to spec. proposal version 0.9 [4]. 

 Optional PLIC module, implemented according to RISC-V ISA version 2.1 [3].  

 “Full optional” version delivers > 1.7 DMips/Mhz. 

Source code language 
 All source code files are written in synthesizable VHDL language. 
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Core architecture 

General description 

 The core consists of: 

 CPU module. 

 Instruction and data memories. 

 Interface logic managing the data transfers between the core and user logic.  

 PLIC module (optional). 

Data transfer between the core and user logic is implemented through the DMA port. The core 

must be in halt state (instruction execution is suspended) while DMA operations are in progress. 

Instruction and data memories are physically separated and implemented using embedded (on-

chip) dual port RAM blocks with a read/write port and a read-only port. For instruction memory, both 

ports are 64-bit wide, read-only port is used only for instruction fetching, while read-write one provides 

access to instruction memory as data memory (i.e. through regular load/instructions). For data memory, 

both ports are 32-bit wide and are used for load/store operations. Data memory can’t be used for 

instruction fetching. 

Two additional interfaces are available to exchange data between the core and user logic: 

 Control port provides user logic access to CPU CSR’s when the core is in Halt/Debug 

state. 

 MFROMHOST_i input (along with the associated write-enable signal) and MTOHOST_o 

output (along with the associated output-enable signal) provides user logic access to 

MTOHOST and MFROMHOST CSR’s even when the core in Run state. 

The core can optionally include a PLIC module implemented according to RISC-V ISA version 

V2.1. 

A simplified block diagram of the core (PLIC and Debug/Halt modules are not shown) is shown 

in Figure 1. 
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Block diagram 

 
Figure 1: RV01 core block diagram (simplified). 

Pipeline Organization 

 
Figure 2: RV01 CPU pipeline organization. 

 

The CPU module pipeline (see Figure 2) consists of seven stages: 

 IF1: instruction fetching address generation. 

 IF2: instruction fetching, branch and jump instructions prediction, instruction pre-decoding. 

 ID: instruction decoding and issuing, operands fetching. 

 IX1: Simple/Complex ALU instructions execution, load/store address generation, branch and 

jump processing and/or prediction verification (first part). 

 IX2: Complex ALU instructions execution, load data fetching (LW instruction results made 

available for forwarding). Branch and jump processing and/or prediction verification (second 

part). 

 IX3: half-word and byte load instructions result alignment, exceptions raising. 

 WB: Instruction results write-back to architectural register file. 
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Fetch pipeline consists of stages IF1-2, while execution pipeline consists of stages IX1-3. Stage ID 

includes a three-instruction queue that provides some degree of decoupling between fetch and execute 

pipelines.  

Fetch pipeline stalls in a given cycle if the number of empty entries in the ID stage instruction queue, 

minus the number of instructions released (to be executed) from the queue in that cycle is lower than 

two.  

The two oldest instructions in ID stage instruction queue are the ones checked for issuing, such 

instructions remain in the queue until the conditions to execute them are satisfied (the required operands 

are available from execution pipeline and any resource conflict is resolved). Because of in-order issue 

constraint, the newer instruction in the pair (named instruction #1) can be issues only if the older one 

(named instruction #0) is issued too. 

The execute pipelines never stalls, in the sense that, once an instruction is released from the ID stage 

instruction queue, it never stops in the execution pipeline, always reaching WB stage in three cycles. 

When no instruction can be issued from ID stage queue in a given cycle, a pair of null instructions is fed 

to the execute pipeline. 

Instruction results can be forwarded from stages IX1-3 to ID stage, but only high frequency instruction 

results (generated by simple ALU) can be forwarded, in order to reduce multiplexing logic complexity. 

All instructions complete execution in a maximum of three cycles, except for the division/reminder 

ones, which takes a variable amount of cycles (depending from the operands relative magnitude). Such 

instructions are handled using a mechanism called re-fetching: 

1. When a division/reminder instruction reaches stage IX1 for the first time, the divider is started 

and the instruction is marked for re-fetching.  

2. When an instruction marked for re-fetching reaches stage IX3, it is re-fetched (the net effect is 

equivalent to a jump to the instruction address). The instruction is not allowed to complete 

(divider result is usually not available at this point). 

3. When the re-fetched instruction reaches stage ID, it is held in the instruction queue until the 

divider completes the operation in progress and then it is released (this time being not marked for 

re-fetching). 

4. When the re-fetched instruction reaches stage IX2, the result is “picked-up” from divider and 

allowed to reach stage WB, completing its execution by writing the result to the target GPR. 

The re-fetch mechanism is also used in every circumstance where an instruction that has already been 

released from the instruction queue can’t complete regularly. This circumstance occurs, for instance, 

when a load instruction targets a memory location affected by a store which is held in the store buffer: 

the load instruction is re-fetched, giving time to store instruction to complete. 

The re-fetch mechanism is, however, not used when two load instructions accessing memory are 

released in the same cycle: the resulting conflict (only one read access on instruction memory per cycle 

is permitted) can be detected only when the effective address is calculated in stage IX1, but is handled 

by a conventional one-cycle pipeline slip. 

The re-fetch mechanism, basically, removes the need to handle multi-cycle stalls in the execution 

pipeline, simplifying its design. 

Core interface 
The core interface (with reference to RV01_TOP module, from file RV01_top.vhd) consists 

of the following signals: 

 CLK_i: clock input. 

 RST_i: synchronous reset input (reset completes in one cycle). 

 CHK_ENB_i: debug input. 
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 EI_REQ_i[EI_SRC_CNT-1:0]: external  interrupt request input. 

 MFROMHOST_WE_i: MFROMHOST CSR write-enable input. 

 MFROMHOST_i: MFROMHOST CSR data input. 

 DP_WE_i: DMA port write-enable input. 

 DP_ADR_i[32-1:0]: DMA port address input. 

 DP_DAT_i[32-1:0]: DMA port data input. 

 CP_RE_i: halt/debug port read-enable input. 

 CP_WE_i: halt/debug port write-enable input. 

 CP_ADR_i[17-1:0]: halt/debug port address input. 

 CP_DAT_i[32-1:0]: halt/debug port data input. 

 MTOHOST_OE_o: MTOMHOST CSR output-enable (read-ready) input. 

 MTOHOST_o: MTOHOST CSR data output. 

 DP_DO_o[32-1:0]: DMA port data output 

 CP_DO_o[32-1:0]: halt/debug port data output 

 
Table 1: Core interface signals description. 

Signal Description 

CLK_i Core single clock input, all core operations (including DMA ones) 

are clocked by this signal. 

RST_i Synchronous resets input. It must be asserted by user logic for 

>=1 cycle(s) 

CHK_ENB_i Verification purpose only, must always be left to inactive level 

(‘0’). 

EI_REQ_i[EI_SRC_CNT-1:0] External interrupt request input, if the PLIC core is present and 

properly configured, asserting these inputs triggers an external 

interrupt exception. The number of request lines (EI_SRC_CNT) 

is user-configurable. 

MFROMHOST_WE_i MFROMHOST CSR write-enable input, a data word loaded by user 

logic on MFROMHOST_i is considered valid, on the same cycle 

where MFROMHOST_WE_i signal is asserted. 

MFROMHOST_i[32-1:0] MFROMHOST CSR data input. 

DP_WE_i DMA port write-enable input. User logic asserts DP_WE_i for 

one cycle when a data word needs to be written to the core 

internal memory. 

DP_ADR_i[32-1:0] DMA port address input, An address loaded by user logic on 

DP_ADR_i is considered valid, on the same cycle where 

DP_WE_i signal is asserted 

DP_DAT_i[32-1:0] DMA port data input, a data word loaded by user logic on 

DP_DAT_i is considered valid, on the same cycle where 

DP_WE_i signal is asserted. 

CP_RE_i Debug/Halt port read-enable signal. User logic asserts CP_RE_i 

for one cycle when a data word needs to be read from the core 

CSR’s 

CP_WE_i Debug/Halt port write-enable signal. User logic asserts CP_WE_i 

for one cycle when a data word needs to be written to the core 
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CSR’s 

CP_ADR_i[17-1:0] Halt/Debug port address input. An address loaded by user logic 

on CP_ADR_i is considered valid, on the same cycle where 

CP_WE_i signal is asserted 

CP_DAT_i[32-1:0] Halt/Debug port data-in input. A data word loaded by user logic 

on CP_DAT _i is considered valid, on the same cycle where 

CP_WE_i signal is asserted 

MTOHOST_OE_o MTOHOST CSR output-enable output, it’s asserted by the core for 

one cycle, to flag that a valid data word has been loaded by the 

core on MTOHOST_o 

MTOHOST_o MTOHOST CSR data output. 

DP_DO_o[32-1:0] DMA port data output. A data word loaded by the core on 

DP_DAT_o is valid one cycle after the corresponding address has 

been loaded on DP_ADR_i. 

CP_DO_o[32-1:0] Halt/Debug port data output. A data word loaded by the core on 

CP_DAT_o is valid one cycle after the corresponding address has 

been loaded on CP_ADR_i 

  

 

All control signals are active-high: asserting a signal means driving it high, and de-

asserting a signal means driving it low. 

 

Core top-level module is named RV01_TOP and is located in source file RV01_top.vhd. 

 

The core provides the following configuration parameters (via VHDL generics): 

 ST_FILE, WB_FILE: used for verification purposes only. Please ignore them. 

 IMEM_SIZE: instruction memory size (in 32-bit words). 

 DMEM_SIZE: data memory size (in 32-bit words). 

 IOMEM_SIZE: I/O memory size (in 32-bit words, must be a power-of-2 value). 

 IMEM_SIZE_PO2: instruction memory size “power-of’2” flag, if this parameter is set to 

‘1’ when IMEM_SIZE is a power-of-2, a simpler (and hopefully faster) circuitry is used 

to check if instruction memory address is within valid bounds. Setting this parameter to 

‘1’ when IMEM_SIZE is NOT a power-of-2 has un-predictable results. 

 DMEM_SIZE_PO2: data memory size “power-of’2” flag, if this parameter is set to ‘1’ 

when DMEM_SIZE is a power-of-2, a simpler (and hopefully faster) circuitry is used to 

check if data memory address is within valid bounds. Setting this parameter to ‘1’ when 

DMEM_SIZE is NOT a power-of-2 has un-predictable results. 

 IMEM_LOWM: instruction memory “low-memory” flag, if this parameter is set to ‘1’, 

instruction memory address space is located in lower portion of the global address space. 

Leave this parameter always set to default value of ‘1’. 

 BHT_SIZE: Branch History Table size (number of entries), this parameter specifies the 

size of the BHT (only when branch prediction is implemented in the core). 

 EI_SRC_CNT: external interrupt source count, this parameter specified the number of 

external interrupt request lines (only when PLIC module is present). 



11 

 

 EI_TRIG_TYPE: external interrupt trigger type, this parameter selects the trigger type 

(LEVEL or EDGE) of the external interrupt sources (only when PLIC module is present). 

 EI_REQ_MAXCNT: external interrupt request maximum count, this parameter specifies 

the maximum number of pending interrupts when source trigger type is set to EDGE (only 

when PLIC module is present). 

 CFG_FLAGS[16-1:0]: configuration flags (see Table 2). These flags enable specific 

core functionalities (like, for instance, parallel execution), allowing user to balance 

performance and hardware resource usage. 

 SIMULATION_ONLY: used for verification purposes only. Leave this parameter always 

set to default value of ‘0’. 
 

Table 2: Configuration flags. 

Bit 

Index 

Mnemonic Purpose 

0 PARALLEL_EXECUTION_ENABLED 1 2-way superscalar CPU (0  scalar CPU) 

1 DELAYED EXECUTION ENABLED 1delayed execution enabled 

2 BRANCH PREDICTION ENABLED 1branch (and jal) instruction prediction enabled. 

3 JALR PREDICTION ENABLED 1 jalr instruction prediction enabled 

4 FPU_PRESENT 1Floating Point Unit present. 

5 DM_PRESENT 1 Debug Module present (0  Halt Module present) 

6 PLIC_PRESENT 1PLIC module present. 

7:15 N.A. Reserved for future use, leave to ‘0’. 
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Memory 

Instruction and data memories 

 
Figure 3: core memory architecture 

 

Instruction and data memories are implemented with independent dual-port RAM’s (see Figure 

3). 

Instruction RAM has a 64-bit read-only port used for instruction fetching and a 64-bit read/write 

port used to access it through load/store instructions (this port is shared between the two CPU load/store 

ports so that only one load/store access per cycle is allowed).  

Data RAM has a 32-bit read/write port and a 32-bit read-only port, both used to access it through 

load/store instructions. Being one port read-only, only one write access per cycle is allowed. 

A simple address translation is performed on load/store addresses mapped to data RAM, 

allowing load/store instructions to access the instruction and data RAM’s as a single memory block. As 

a consequence, load/store instructions can be used to read and write any memory location, but 

instruction fetching is restricted to instruction RAM (i.e. instructions can’t be fetched from data RAM). 

DMA port addresses are subject to the same address translation used for data ones. 

Current core memory design requires instruction RAM to be mapped on the lower portion of 

data address space (configuration parameter IMEM_LOWM can only be set to ‘1’). Future core releases 

may support mapping of instruction RAM on higher portion of data address space. 

Memory design supports up to two load or store operations per cycle, with the following 

restrictions: 

 Only one store per cycle is permitted (one of the data RAM port is read-only). 
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 Only one operation per cycle targeting instruction memory is permitted. 

Instruction fetching and load/store operations can run in parallel as the instruction RAM read-

only port is reserved for instruction fetching. 

Address space 

 
Figure 4: core address space. 

 

The core address space (see Figure 4), as seen by the user, consists of a continuous range of 

DMEM_SIZE + IMEM_SIZE words starting from address 0x00000000. 

In current core version, lower portion of valid address space is always mapped to instruction 

RAM, while higher portion is always mapped to data RAM. 

I/O memory, when present, is always located above data memory (e.g. starting from address 

DMEM_SIZE+IMEM_SIZE, see Figure 5) and is treated as an extension of it. User must take care of 

avoiding concurrent load/store operations on I/O memory locations if the corresponding I/O module 

doesn’t support them (parallel instruction execution can be temporarily disabled clearing 

MRV01CC[PXE] bit, see “Control and Status Registers” section under “Privileged architecture 

implementation” chapter for details). 
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Figure 5: core address space with I/O memory. 

 

Attempt to fetch an instruction from an address mapped to data RAM results in an instruction 

access fault exception. 

Attempt to access any location outside of valid address space (including I/O memory) results in 

an instruction, or data, access fault exception (from this point of view, I/O memory is treated as data 

one). 

Attempt to access any location belonging to I/O memory, but not mapped to an I/O module, can 

results in reading of garbage data or trashing of write data. No exception is, however, raised.   

Privileged architecture implementation 

General notes 

The core implements privileged architecture version 1.7 [3] with the following restrictions: 

 Only Mbare addressing environment is supported. 

 Only Machine and User modes are supported. 

 Due to the constraint that instruction RAM must be mapped on lower portion of data address 

space, MTVEC CSR can be set only to trap vector lower location (0x0000100) 

 The core is strictly single-threaded. 

 MRTS, MRTH, HRTS, WFI and SFENCE.VM instructions are implemented as NOP’s. 

Control and Status Registers 

CSR access from control port 

Control port uses a 17-bit address, rather than the standard CSR 12-bit one, to comply with Debug 

module specs (see [4]), even when Debug module is replaced by Halt module. 

A CSR’s 12-bit address (not related to the Debug module) can be translated to a control port (CP) 17-bit 

address by 

 Mapping the 12-bit address to CP address bits [13:2]. 
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 Setting CP address bits [1:0] to “00”. 

 Setting CP address bits [16:14] to “100”. 

So, for instance, MTVEC CSR (address 0x301) is accessed from control port using 17-bit address 

0x10c04 (100_0011_0000_0001_00) 

When Halt module is not present, CP address bits [16:14] and bits [1:0] can be hard-wired to “100” and 

“00”, respectively. 

 
Table 3: non-optional CSR's. 

Addr. Mnemonic Notes 

0xc00 UCYCLE Count cycles (lower 32-bit) 

0xc01 UTIME Count cycles (lower 32-bit) 

0xc02 UINSTRET Count retired instructions (lower 32-bit) 

0xc80 UCYCLEH Count cycles (upper 32-bit) 

0xc81 UTIMEH Count cycles (upper 32-bit) 

0xc82 UINSTRETH Count retired instructions (upper 32-bit) 

0x0c0 USTATS Can be read/written, but access has no side effect 

0xf00 MCPUID Hard-wired to 0x00001000 

0xf01 MIMPID Hard-wired to 0x00008000 

0xf10 MHARTID Hard-wired to 0x00000000 

0x300 MSTATUS Resets to 0x0000024e (FS, XS and DS fields hard-wired to 0) 

0x301 MTVEC Resets to 0x00000100 (trap vector lower location) 

0x302 MTDELEG Hard-wired to 0x00000000 

0x304 MIE Resets to 0x00000000, only bit #7 is writable 

0x321 MTIMECMP  

0x701 MTIME Count cycles (lower 32-bit) 

0x741 MTIMEH Count cycles (upper 32-bit) 

0x340 MSCRATCH  

0x341 MEPC  

0x342 MCAUSE  

0x343 MBADADDR  

0x344 MIP  

0x380 MBASE Can be read/written, but access has no side effect 

0x381 MBOUND Can be read/written, but access has no side effect 

0x382 MIBASE Can be read/written, but access has no side effect 

0x383 MIBOUND Can be read/written, but access has no side effect 

0x384 MDBASE Can be read/written, but access has no side effect 

0x385 MDBOUND Can be read/written, but access has no side effect 

0x780 MTOHOST  

0x781 MFROMHOST  

0x782 MRV01CC RV01 core control (implementation-specific) register 
 

Table 4: FPU CSR's (optional). 

Addr. Mnemonic Notes 

0x001 FFLAGS Floating point Flags register 

0x002 FRM Floating point Rounding Mode register 

0x003 FCSR Floating point Control and Status register 
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Table 5: Debug module CSR’s (optional, implementation-specific). 

Addr. Mnemonic Notes 

0x0000 CCS Component Control and Status register 

0x0010 DTMIA DTM Interrupt Address register 

0x0020 DCS Debug Control and Status register 

0x0030 PCS PC Sample Register 

0x0100 SI Stuff Instruction Register 

0x0110 DJ Debug Jump register 

0x0120 PC PC register 
 

Table 6: Halt module CSR’s (optional, implementation-specific). 

Addr. Mnemonic Notes 

0x783 MRV01HC RV01 halt control register 

0x784 MRV01HA RV01 halt address register 

0x785 MRV01RA RV01 resume address register 

 

Notes: 

1. Debug module CSR addresses are 17-bit long (rather than 12-bit long like the other CSR’s), 

these CRS’s are accessible only through the Debug/Halt port (which purposely has a 17-bit 

address input). 

2. Halt module CSR’s can be accessed like any other CSR, either using RISC-V ISA CSR’s 

manipulating instructions or directly through the Debug/Halt port. 

3. Either debug module CSR’s or halt module CSR’s must always be present, as these registers sets 

the fetch starting address and the condition controlling the transition from Run state to 

Debug/Halt state.  

Non-optional, implementation-specific, CSR’s description 

 
Table 7: MRV01CC CSR bit field description 

Bit(s) Mnemonic R/W Description 

0:31 PXE R/W Parallel Execution Enabled flag (1  parallel execution enabled, 0  

parallel execution disabled). Clearing this bit at the beginning of a code 

section and setting at its end insures all instructions inside the code 

section are executed in strict sequential fashion (no two instructions are 

executed in parallel). 

1:31 n.a.  Reserved for future use 

Debug Module CSR’s description 

Please make reference to spec. proposal version 0.9 [4]. 

Halt Module CSR’s description 

 
Table 8: MRV01HC CSR bit field description 

Bit(s) Mnemonic R/W Description 

0 HALTSTATE R Halt state flag (1  Halt state, 0  Run state) 

1 START W Start flag, writing it to ‘1’ causes a transition from Halt to Run state and 

starts instruction execution from ISA reset address. 
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2 RESUME W Resume flag, writing it and START bit to ‘1’ causes a transition from 

Halt to Run state and starts instruction execution from address stored in 

MRV01RA register. 

3 HALTU W Halt Unconditionally flag, writing it to ‘1’ causes an immediate 

transition from Run to Halt state and stops instruction execution. 

4 HALTOBRK R/W Halt-on-Break flag, when set to ‘1’, execution of a sbreak instruction 

causes an immediate transition from Run to Halt state and stops 

instruction execution.  

5 HALTOADR R/W Halt-on-Break flag, when set to ‘1’, execution of instruction located at 

address stored in MRV01HA register causes an immediate transition from 

Run to Halt state and stops instruction execution. 

6:31 n.a.  Reserved for future use 

 

 
Table 9: MRV01HA CSR bit field description 

Bit(s) R/W Description 

0:31 R/W This register stores the address where instruction execution halts when halt-on-address 

mode is enabled. The instruction at this address is not executed. 

 

 
Table 10: MRV01RA CSR bit field description 

Bit(s) R/W Description 

0:31 R/W This register stores the address where instruction execution resumes when ‘1’ is 

written to MRV01HC[START] and MRV01HC[RESUME] bits. This register allows 

instruction execution to be resumed from an arbitrary address. When instructions 

execution halts, this register stores the address of the last not executed instruction (i.e. 

MRV01RA content is coincident with MRV01HA one). 

If MRV01RA and MRV01HA registers hold the same address when instruction 

execution resumes and MRV01HC[HALTOADR]is set to ‘1’, the resume command 

takes precedence over the halt-on-address one, in this way, inside a loop, instruction 

execution can be halted/resumed at the same instruction. 

 

Core configuration options summary  

General notes 

The core design enables users to re-size or remove several features in order to achieve the desired 

tradeoff between performance and resource usage. All configuration options can be managed through 

VHDL generics available on top module RV01_TOP, allowing different core instances to be configured 

independently. 

Size options 

Instruction, data and I/O memories 

The size of instruction and data memories (expressed in 32-bit words) can be set using generics 

IMEM_SIZE and DMEM_SIZE. The size of instruction memory can be set independently of data one.  
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Size values don’t need to be a power-of two, but if instruction/data memory size is actually a power-of-

two, setting generic IMEM_SIZE_PO2/IMEM_SIZE_PO2 to ‘1’ permits to simplify circuitry 

performing address range checking.  

When generic PARALLEL_EXECUTION_ENABLED is set to ‘1’, there’s the additional constraint that 

instruction memory size must be a multiple of 64-bit. 

Because of the pipeline organization, instruction and data memories output directly feds the CPU 

internal logic, without a register to break the timing path, and therefore paths originating from 

instruction and data memory outputs tends to become more timing critical as their size increases (said in 

different words: larger instruction/data memory size tends to result in lower core max operating 

frequency). 

The size of I/O memory can be set using generic IOMEM_SIZE and must be a power-of two. I/O 

modules (like PLIC one) can be present only if IOMEM_SIZE > 0 (the result of an attempt of accessing 

an I/O module memory-mapped register when IOMEM_SIZE = 0 is unpredictable). 

Branch History Table (BHT) 

The size of the branch history table included in branch and jal instructions prediction logic can be set 

using generic BHT_SIZE. This generic is meaningful only if BRANCH_PREDICTION_ENABLED 

generic is set to ‘1’.  

The table is designed as a synchronous RAM module and can therefore be implemented using embedded 

RAM blocks. 

When generic PARALLEL_EXECUTION_ENABLED is set to ‘1’, the table is physically split in two 

RAM blocks, in order to support prediction on two instructions per cycle. 

Functional Options 

Parallel instruction execution 

Parallel instructions execution is enabled by setting generic PARALLEL_EXECUTION_ENABLED to 

‘1’. When this option is enabled up to two instructions can be fetched and executed in each cycle, in 

strict program order (in-order execution constraint). From a design standpoint, the execution pipeline 

contains two or three “physical” pipelines: one, or two, simple instructions pipelines (which can 

executed only a limited set of instructions that occurs with high frequency in typical code) and one 

complex instruction pipeline (which can execute all remaining instructions). Logical pipeline #0 consists 

of a simple instructions pipeline plus a complex instructions pipeline, while logical pipeline #1 (which is 

present only when parallel instructions execution is enabled) consists of a simple instruction pipeline 

only. In the pair of instructions candidate to be executed in parallel, the instruction #0 (the older one) is 

always assigned to pipeline #0, while instruction #1 (the newer one) is always assigned to pipeline #1. 

The set of instructions executed by the simple instructions pipeline includes: add, addi, sll, slli, 

srl, srli, sra, srai, and, andi, or, ori, xor, xori, plus load, stores, branches and jumps. All 

these instructions execute in one cycle, except for lw, which executes in two cycles and lh*/lb*, 

which execute in three cycles. 

In general two instructions can be executed if parallel if instruction #1 belongs to the simple instructions 

set (instruction #0 can be any instructions) and there’s no data dependency between them (if instruction 

#1 takes instruction #0 result as operand, instruction #1 can’t be released together with instruction #0). 

Stores can be treated as executing in parallel, in spite of the fact memory architecture doesn’t support 

two writes in the same cycle, thanks to a store buffer where stores are held until it is known if any 

previous instruction hasn’t raised an exception or requires being re-fetched. Being the store buffer 
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capable to accept two store instructions per cycle, stores can be released in parallel from the instruction 

queue until the buffer doesn’t fills up. 

When instruction #0 is an instruction manipulating CSR’s (and therefore potentially impacting the way 

following instructions are executed), instruction #1 is not issued, e no other instruction is issued until the 

instruction manipulating CSR’s complete its execution, this guarantees that any newer instruction “sees” 

the updated CSR’s content. 

When parallel instruction execution is enabled, sequential instructions execution can be enforced by 

clearing MRV01CC[PXE] bit. 

Delayed Instructions Execution 

Delayed instructions execution is enabled by setting generic DELAYED_EXECUTION_ENABLED to ‘1’. 

When this option is enabled, instructions belonging to a subset of high frequency instructions that 

execute in one cycle are allowed to be issued from the instructions queue even if one, at least, of their 

operand is not yet available. Such instructions are actually executed when the missing operand is 

produced by an older instruction (this is possible because the simple ALU required to execute these 

instruction is replicated in all stages of the execution pipeline). 

This option doesn’t break the in-order execution paradigm because it still guarantee than no instruction 

can be issue/executed/completed before an older one. 

Branch and Jump-PC instructions prediction 

Branch and Jump-PC (jal) instructions prediction is enabled by setting generic 

BRANCH_PREDICTION_ENABLED to ‘1’. Prediction is based on 2-bit saturating counters stored in a 

Branch History Table (BHT) along with the predicted target address. This simple prediction mechanism 

is used to predict jal instructions too.  

Prediction takes place when the instruction is in IF2 stage, while prediction verification occurs in IX2 

stage, leading to a mis-prediction penalty of three cycles (the penalty for a correct prediction is, instead, 

zero cycles). 

If parallel instructions execution is enabled, up to two branch or jal instructions can be predicted, or 

have their prediction checked, in each cycle. 

Jump-register instructions prediction 

Jump-register (jalr) instructions prediction is enabled by setting generic 

JALR_PREDICTION_ENABLED  to ‘1’. Prediction is based on a 4-entry Return Address Stack 

(RAS), supported by a 2-entry verification queue (which store prediction verification info while the 

jalr instruction moves along the pipeline). 

Prediction takes place when the instruction is in IF2 stage, while prediction verification occurs in IX2 

stage, leading to a mis-prediction penalty of three cycles (the penalty for a correct prediction is, instead, 

zero cycles). 

If parallel instructions execution is enabled, both instructions in IF2 stages are checked for jalr, but, if 

both are jumps only the older instruction (e.g. the one in pipeline #0) is predicted, the newer one being 

treated as it’s mis-predicted, resulting in a jump penalty of three cycles . 

It’s worth noting that only jalr instructions presumably used to return from a function call (e.g. those 

writing GPR r0 and having zero immediate) are predicted, the other jalr instructions are ignored when 

in stage IF2 and executed in stage IX2 (in other words they’re treated as they’re always mis-predicted, 

resulting in a constant jump penalty of three cycles). 
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FPU 

Current version of the core doesn’t support a Floating Point Unit, so FPU_PRESENT generic must be 

left set to ‘0’. 

Debug module 

 A Debug Module based on spec. proposal version 0.9 (see [4]) can be included in the core by setting 

generic DM_PRESENT to ‘1’, the Debug Module being replaced by the simpler Halt Module when the 

generic is, instead, set to ‘0’ (in this way one of the two modules is always present but the two are never 

present at the same time). 

The available Debug module implements only the portion of the debug interface covered by chapter #6 

(“RISC-V Debug Module”) of the specs document, except for authentication functionalities (not 

available), freeze mode (not available) and the capability to access GPR’s as CSR’s (not available). 

WARNING: being the Debug module based on a proposed spec (never officially approved), it must be 

treated as an “experimental” option. 

Halt module 

A Halt Module can be included in the core by setting generic DM_PRESENT to ‘0’, the Halt Module 

being replaced by the more complex Debug Module when the generic is, instead, set to ‘1’ (in this way 

one of the two modules is always present but the two are never present at the same time) 

The Halt module, when present, manages the transitions between Halt and Run states, allowing user to 

start/restart instruction execution from the ISA reset address or from any arbitrary address, and to stop 

instruction execution: 

 Unconditionally (i.e. on the first instruction entering the execution pipeline after 

MRV01HC[HALTU]) is set to ‘1’) , or  

 When the instruction at a target address (specified by MRV01HA CSR) is fetched, or  

 When a sbreak instruction is fetched. 

Halt module functionalities are controlled by CSR’s described in Tables 8-10. 

Although user logic can write Halt module CSR’s in any moment, it’s strongly suggested to not do it 

while core is in Run state, except for unconditionally halting instruction execution by setting 

MRV01CC[HALTU] bit to ‘1’ (after all, there’s little value in doing so while the core is already in Halt 

state). 

When the core is in Halt state, user logic can access the core instruction and data memories, loading a 

new program or reading/writing program data. 

PLIC 

A Programmable Local Interrupt Controller (PLIC) module implemented according to RISC-V ISA 

version V2.1 [2] is included in the core by setting generic PLIC_PRESENT to ‘1’. The PLIC module is 

placed (when present) inside the top-level module RV01_TOP and is managed through memory-mapped 

registers (located in I/O memory, which size must be > 0) accessible using load/store instructions. 

The PLIC module interacts with user logic via the core EI_REQ_i input(s), if the PLIC memory- 

mapped registers are properly set, when one of this inputs get asserted, an external interrupt exception is 

raised in the core CPU module, which manages the interrupt sources by reading/writing the PLIC 

registers by mean of load/store instructions (usually part of the interrupt service routine). 

In order to support the PLIC module, the core uses the slightly modified machine-level exception codes 

table reported below here. 
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Table 11: machine-level exception codes (interrupts only) 

Interrupt Exception Code Description 

1 0x0 Software Interrupt 

1 0x1 Timer Interrupt 

1 0x2 External Interrupt 

1 >0x2 Reserved 

 

In current core version PLIC memory-mapped register are located at address PLIC_ABASE, specified 

as a constant in core top-level module VHDL file RV01_TOP.vhd. 

 
Table 12:  PLIC module address space  

Address 

(32-bit word offset from 

PLIC_ABASE) 

Mnemonic Description 

0:EI_SRC_CNT-1 ISR[0:EI_SRC_CNT-1] Interrupt Source Register(s) 

EI_SRC_CNT IPTR Interrupt Priority Threshold Register 

EI_SRC_CNT+1 IEBR Interrupt Enable Bit Register 

EI_SRC_CNT+2 ICR Interrupt Control Register 

 
Table 13: ISR bit field description 

Bit(s) R/W Description 

0:7 R/W Interrupt Id. 

8:15 R/W Interrupt priority 

16:31 n.a. Reserved for future use 

 
Table 13: IPTR bit field description 

Bit(s) R/W Description 

0:7 n.a. Reserved for future use 

8:15 R/W Priority threshold 

16:31 n.a. Reserved for future use 

 
Table 14: IEBR bit field description 

Bit(s) R/W Description 

0:31 R/W Source individual enable bits (only bits 0:EI_SRC_CNT-1 are meaningful) 

 
Table 15: ICR bit field description 

Bit(s) R/W Description 

0:7 R Interrupt Id. 

8 W Interrupt Claim 

9 W Interrupt Complete 

10:31 n.a. Reserved for future use 

 

Flow of operations 

Using Debug module 

After reset signals RST_i has been de-asserted, the core is in Debug state (a condition similar to Halt 

state), as flagged by CCS[HALTED] bit value of ‘1’ (no instruction execution is in progress) and 



22 

 

therefore user logic can safely writes programs or data to the core internal memories through the DMA 

port. 

While the core is in Debug state, user logic can also access the Debug module CSR’s and set the 

program starting address and/or the program execution halting condition by writing CCS and DPC 

CSR’s 

When the DMA operations and CSR’s setup are complete, user logic can start program execution from 

address stored in DPC register by setting CCS[RESUME] bit to ‘1’. 

The core remains in Run state until the halting condition set in the Debug module CSR’s get satisfied, or 

forever, if no halting condition has been specified (in such case the core can still be halted setting 

CCS[HALT]bit to ‘1’). 

When the core returns to Debug state, user logic can: 

 Read program output data. 

 Write new program input data. 

 Restart or resume program execution. 

 Load a new program and the related data… 

The Debug module supports many other functionalities, beside the minimal ones used here, the curious 

reader may find them described in greater detail in the spec. proposal V0.9 [4]. 

Using Halt module 

After reset signals RST_i has been de-asserted, the core is in Halt state, as flagged by 

MRV01HC[HALTSTATE] bit value of ‘1’ (no instruction execution is in progress) and therefore user 

logic can safely writes programs and data to the core internal memories through the DMA port. 

While the core is in Halt state, user logic can also access the Halt module CSR’s and set the program 

starting address and/or the program execution halting condition by writing MRV01CC and MRV01HA 

CSR’s. 

When the DMA operations and CSR’s setup are complete, user logic can start program execution from 

ISA reset address by setting MRV01HC[START] bit to ‘1’. The core responds to this write operation by 

entering Run state and setting MRV01HC[HALTSTATE] bit to ‘0’ (user logic can monitor this bit to 

check the core state). If MRV01HC[RESUME] bit is set to ‘1’ at the same time of MRV01HC[START], 

program execution starts from the address stored in MRV01RA CSR. 

The core remains in Run state until the halting condition set in the Halt module CSR’s get satisfied, or 

forever, if no halting condition has been specified (in such case the core can still be halted setting 

MRV01HC[HALTU]bit to ‘1’). 

When the core returns to Halt state, user logic can: 

 Read the program output data. 

 Write new program input data. 

 Restart or resume program execution. 

 Load a new program and the related data… 

Performance 

Dhrystone benchmark 

The “full optional” version of the core (e.g. with parallel execution, delayed execution, branch/jal 

prediction and jalr prediction all enabled, and a 512-entry BHT) delivers a Dhrystone score of ~1.72 

Dmips/MHz, using the executable file dhrystone.riscv.exe compiled for Sodor processor (the only 
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changes applied to this executable file were needed to use hardware multiplication and division in place 

of software ones).  

The “bare bone” version of the core (e.g. without parallel execution, delayed execution, branch/jal 

prediction and jalr prediction) delivers a Dhrystone score of ~1.09 Dmips/MHz (-57%), using the 

same executable file of above. 

To the purpose of trading performance for resource usage, delayed execution and parallel execution 

should be disabled before branch/jump prediction, as parallel execution benefits get largely lost without 

the smoother flow of instructions provided by branch/jump prediction. Furthermore, delayed execution 

should be disabled before parallel execution, as the latter delivers a larger performance gain. 
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Sample timing diagrams 

Core reset 

 
Fig. 1: reset (with Debug module) timing diagram. After reset assertion, Debug module CCS register is read to check 

core is halted (CCS[HALTED] = ‘1’). 
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Fig. 2: reset (with Halt module) timing diagram. After reset assertion, Halt module MRV01HC register is read to check 

core is halted (MRV01HC[HALT] = ‘1’). 
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CSR’s access 

 
Fig. 3: CSR’s access (with Debug module) timing diagram. The core remains halted while reading/writing CSR’s, as 

shown by CCS[HALTED] = ‘1’ 
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Fig. 4: CSR’s access (with Halt module) timing diagram. The core remains halted while reading/writing CSR’s, as 

shown by MRV01HC[HALT] = ‘1’ 
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DMA access 

  
Fig. 5: DMA access (with Halt module) timing diagram. The core remains halted while reading/writing internal 

memory, as shown by MRV01HC[HALT] = ‘1’ 
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Fig. 6: DMA access (with Halt module) timing diagram. The core remains halted while reading/writing internal 

memory, as shown by MRV01HC[HALT] = ‘1’ 
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Starting/Resuming execution 

 
Fig. 7: Start/resume execution (with Debug module) timing diagram. After CSS CSR, the core starts/resumes 

execution, as shown by CSS[HALTED]level going from ‘1’ to ‘0’ 
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Fig. 8: Start/resume execution (with Halt module) timing diagram. After writing MRV01HC CSR, the core 

starts/resumes execution, as shown by MRV01HC[HALT]level going from ‘1’ to ‘0’ 
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Appendix A: Xilinx© Vivado 17.3 synthesis test 
Top-level module: RV01_TOP_SYN (synthesis test-bench) from file RV01_TOP_SYN.vhd. 

Configuration parameters:  

 IMEM_SIZE = 8192 (32KB). 

 DMEM_SIZE = 8192 (32KB). 

 IOMEM_SIZE = 0. 

 IMEM_SIZE_PO2 = ‘1’. 

 DMEM_SIZE_PO2 = ‘1’. 

 IMEM_LOWM = ‘1’. 

 BHT_SIZE = 512. 

 EI_SRC_CNT = 8 (*). 

 EI_TRIG_TYPE = LEVEL (*). 

 EI_REQ_MAXCNT = 16 (*). 

 PARALLEL_EXECUTION_ENABLED = ‘1’. 

 DELAYED EXECUTION ENABLED = ‘1’. 

 BRANCH PREDICTION ENABLED = ‘1’. 

 JALR PREDICTION ENABLED = ‘1’. 

 FPU_PRESENT = ‘0’. 

 DM_PRESENT = ‘0’. 

 PLIC_PRESENT = ‘0’. 
 

(*) = This value is un-relevant as PLIC module is not present. 

 

Target device: xc6vlx75t-2ff484. 

Target Fmax: 143MHz (default synthesis options).. 

Results: 

 Number of slice registers: 1574 (1%) 

 Number of slice LUTs: 4284 (9%) 

 Number of RAMB36: 18 (11%) 

 Number of DSP48E1s: 4 (1%) 

 

Appendix B: Simulation & Implementation Hints 
 The suggested starting point, after downloading the project from OpenCores site, is to run the 

self-test module simulation (related VHDL files are located in VHDL/SELF_TEST folder, the 

top-level file, including the test bench, being VHDL/RV01_selftest_TB.vhd). This 

simulation allows verifying that all design files are available and can be compiled correctly, and 

provides also an example of core top-level module instantiation and interfacing to user logic. The 

self-test module is of very simple use, including only four I/O signals: two input signals (CLK_i 

and RST_i) and two output ones (DONE_o and PASS_o), all active-high. 

 Once self-test module simulation runs successfully, a simple test on HW can be performed by 

implementing the self-test module itself on an FPGA board (so far the module has been 

successfully implemented on a Xilinx Artix-7 FPGA’s). The simplest approach is to connect 

self-test module CLK_i and RST_i inputs to the board FPGA clock and cpu/user reset pins, and 
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to connect self-test module DONE_o and PASS_o outputs to board LED’s (if available). Pay 

attention to polarity of input/output signals (self-test module signals are active-high, while some 

board signal may be active-low). A more sophisticated test may consist in adding a clock 

generator core (a PLL) and derive self-test module reset signal from the clock generator 

lock/stable signal. 

 Self-test module consists of a RV01 core with Halt module (and without PLIC module), plus 

some self-test control logic and ROM memories. After reset is de-asserted, the control logic 

loads a sample program (a Dhrystone test) into the core internal memories from ROM ones, 

configures the Halt module to stop at a specific address (located at the end of the Dhrystone test 

core loop) and then starts sample program execution. When the core stops execution at the 

address specified by the Halt module, the self-test control logic checks loop iteration results by 

inspecting core memory content through the DMA port, and then resumes program execution 

from last not-executed instruction,  leaving halt condition un-changed (in this way the core 

executes another Dhrystone loop iteration before stopping again). The Dhrystone loop is 

executed CNTR_MAX time (CNTR_MAX value being specified in RV01_selftest.vhd 

file). When core stops execution after last iteration, the self-test control logic configures the 

Halt module to stop execution at Dhrystone test last instruction and then resumes execution one 

last time, allowing the sample program to complete. When this event occurs, the self-test control 

logic assert the module outputs DONE_o and (if no error was reported during result checks) 

PASS_o.  

 When targeting Virtex-5 FPGA family (or older ones), add "-use_new_parser yes" to synthesis 

other options (the default parser used for such FPGA families doesn’t synthesize some portion of 

VHDL code correctly). Check synthesis report file to verify option has been properly specified. 
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