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1 Introduction

Modern software contains bugs, and to help find these bugs it’s critical to have
good debugging tools. Unless you have a robust OS running on a core, and
convenient access to it (eg. over a network interface), hardware support is
required to provide visibility into what’s going on in that core. This document
outlines how that support should be provided on RISC-V cores.

1.1 Terminology

A platform is a single integrated circuit consisting of one or more components.
Some components may be RISC-V cores, while others may have a different
function. Typically they will all be connected to a single system bus.
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1.2 Background

There are two forms of external debugging. The first is halt/freeze mode debug-
ging, where an external debugger will halt some or all components of a platform
and inspect them while everything is in stasis. Then the debugger can either let
the hardware perform a single step or let it run freely. The second is run mode
debugging. In this mode there is some debug agent running on a component
(eg. triggered by a timer interrupt on a RISC-V core) which communicates with
a debugger without halting the component. This is essential if the component
is controlling some real-time system (like a hard drive) where halting the com-
ponent might lead to physical damage. It requires more software support (both
on the chip as well as on the debug client). For this use case the debug interface
may include simple serial ports.

There’s a third use for the external debug interface, which is to use it as a
general transport for a component to communicate with the outside world. For
instance, it could be used to implement a serial interface that firmware could use
to provide a simple CLI. This can use the same serial ports used for run-mode
debugging.

1.3 Supported Features

The debug interface laid out here supports the following features:

1. Any component in the platform can be independently debugged.

2. Any core can be debugged just by using the system bus (unless a dedicated
debug bus is used).

3. It’s not necessary for a debugger to poll a component’s state to see whether
it has halted/has completed something.

4. More than one debug transport can be used. They all use a common
system bus protocol to communicate with components being debugged.

5. Arbitrary instructions can be executed on a halted RISC-V core.

6. Data can be transferred between a RISC-V core and the debugger without
relying on shared RAM.

7. The debug transport may implement serial ports which can be used for
communication between debugger and monitor, or as a general protocol
between debugger and application.

8. Code can be downloaded efficiently.

9. Each core can be debugged from very first instruction executed.

10. A RISC-V core can be halted when a software breakpoint instruction is
executed.
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Figure 1: RISC-V Debug System Overview

11. A RISC-V core can be halted when a hardware breakpoint matches PC,
or read/write address/data.

12. A RISC-V core can store an execution trace to on- or off-chip RAM.

13. The core can execute code while remaining in Debug Mode.

14. It’s always possible to halt a RISC-V core, even if some other component
is writing all over the system bus.

2 System Overview

Figure 1 shows the main components of External Debug Support. Blocks shown
in dotted lines are optional.

The user interacts with the Debug Host, which is running a debugger. The
debugger communicates with a Debug Translator (which may include a hard-
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ware driver) to communicate with Debug Transport Hardware that’s connected
to the host. That hardware is also connected to the Platform, which contains a
Debug Transport Module.

The Debug Transport Module provides bus access, keeps track of simple
interrupts, and may implement serial ports to facilitate communication between
code running on the core and the debugger. This bus could be the system bus
as depicted, or a dedicated debug bus. Any component that supports some
basic features may be debugged over that bus. For RISC-V cores, the Debug
Module controls most debug features. Additionally there may be a Hardware
Breakpoint Module and a Trace Module that can write trace information to the
System Bus or an off-chip trace port.

The platform may contain a Debug RAM to be used when debugging RISC-
V cores.

3 Debug Transport Module

Debug Transport Modules provide access to the system bus over one or more
transports (eg. JTAG or USB). They also implement a simple interrupt tracking
feature that helps notify debuggers of component updates without them having
to poll over the system bus. Finally they may implement some serial ports.

There may be multiple DTMs in a single platform. Ideally every component
that communicates with the outside world includes a DTM, allowing a platform
to be debugged through every transport it supports. For instance a USB com-
ponent would include a Debug Transport Module. This would trivially allow
any platform where the system bus is used as the debug bus to be debugged
over USB.

3.1 System Bus Access

While the details are left completely to the transport-specific Debug Transport
Module, every DTM must support all accesses from the following list that the
system bus supports: 8-bit read/write, 16-bit read/write, 32-bit read/write,
64-bit read/write, and 128-bit read/write to arbitrary addresses on the system
bus.

In addition, DTM designers should keep the following common use cases in
mind:

1. XLEN-bit reads from consecutive addresses.

2. XLEN-bit writes to consecutive addresses.

3. Repeatedly read and write XLEN bits at addresses that are adjacent or
very close.

Some implementations may decide they don’t want debug accesses to use
the system bus. Instead they may run a dedicated debug bus through the
platform. This has the benefit that debugging does not interfere at all with
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other execution, and there is no need to make RISC-V cores system bus slaves.
The downsides are that an extra bus needs to be run, and it’s not possible to
debug a component from anything but the DTM. On a small platform with a
single RISC-V core it makes sense to have a dedicated debug bus (which can
be very simple if there is just a single DTM and a single component to be
debugged). For more complex platforms, implementers will likely choose to use
the system bus.

The existence of a dedicated debug bus is transparent to the debugger. The
DTM simply designates part of the address space (only when accessed by the
DTM) as debug bus space. This address space should not mask a device that a
debugger might conceivably want to access. If there is no address space available
to fit the debug bus in, the DTM must add another address bit which is used
to select the debug bus (when 1) or the system bus (when 0).

3.2 Interrupt Tracking

To avoid a debugger constantly polling the components it’s interested in (clut-
tering up the system bus), very simple interrupt mechanism is supported. It
consists of a single register where components can set bits by writing the bit’s
index to a register in the DTM. The width of this register is implementation-
specific. It must be at least 1 bit wide. Sensible widths are the number of
debuggable components in the platform, and the width of the data bus. When
a bit becomes set, the DTM should communicate that to the debugger as soon
as possible.

This mechanism exists so components can let the debugger know they are
now halted (eg. because a breakpoint was hit), but may have other uses. Which
interrupt each component uses is configurable by the debugger by writing the
component’s interrupt in ccsr.

3.3 Serial Ports

Each DTM may implement up to 8 serial ports. They support basic flow control
and full duplex data transfer between a component and the debugger. They’re
intended to be used for the equivalent of printf debugging, or to provide a simple
CLI without requiring any extra peripherals.

3.4 Security

It may be necessary to prevent just anyone from accessing the debug interface.
One option could be to add a fuse bit to the DTM that can be used to be
permanently disable it. Since this is transport and technology specific, it is not
further addressed in this spec.

Another option is to allow the DTM to be unlocked only by people who have
the key. A simple mechanism is documented in Section 3.5. When authenticated
is clear, the DTM must not perform any System Bus accesses, as well as prevent
all external access to the serial ports and interrupt state.
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3.5 Debug Transport Module Registers

Table 1: Debug Transport Module Registers
Address Name

0x0 Interrupt
0x4 Control
0x8 Authentication Data

0x10 Serial Info
0x20 Serial Send 0
0x30 Serial Receive 0
0x40 Serial Status 0
0x50 Serial Send 1
0x60 Serial Receive 1
0x70 Serial Status 1
0x80 Serial Send 2
0x90 Serial Receive 2
0xa0 Serial Status 2
0xb0 Serial Send 3
0xc0 Serial Receive 3
0xd0 Serial Status 3
0xf0 Serial Send 4

0x100 Serial Receive 4
0x110 Serial Status 4
0x120 Serial Send 5
0x130 Serial Receive 5
0x140 Serial Status 5
0x150 Serial Send 6
0x160 Serial Receive 6
0x170 Serial Status 6
0x180 Serial Send 7
0x190 Serial Receive 7
0x1a0 Serial Status 7

3.5.1 Interrupt (dtminterrupt, at 0x0)

Writes to this register set bits in the internal interrupt state.

31 width width-1 0

0 value
-width + 32 width
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Field Description Access Reset
value A write of value N sets bit N. The width

of this register depends on the width of
the internal interrupt register. (Eg. it’s
5 bits wide if the internal internal regis-
ter is 32 bits wide.)

W 0

3.5.2 Control (dtmcontrol, at 0x4)

31 24 23 21 20 19 18 17 16

abussize 0 access128 access64 access32 access16 access8
8 3 1 1 1 1 1

15 8 7 6 5 4 3 2 1 0

intbits 0 authenticated authbusy authtype ndreset fullreset
8 2 1 1 2 1 1

Field Description Access Reset
abussize Width of the address bus in bits. (This

includes the extra address bit if it’s re-
quired to access the debug bus.)

R Preset

access128 1 when 128-bit bus accesses are sup-
ported.

R Preset

access64 1 when 64-bit bus accesses are sup-
ported.

R Preset

access32 1 when 32-bit bus accesses are sup-
ported.

R Preset

access16 1 when 16-bit bus accesses are sup-
ported.

R Preset

access8 1 when 8-bit bus accesses are supported. R Preset
intbits The width of the internal interrupt state

is intbits + 1.
R Preset

authenticated 0 when authentication is required before
using the DTM. 1 when the authenti-
cation check has passed. On compo-
nents that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

Continued on next page
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authbusy While 1, writes to authdata may be
ignored or may result in authentica-
tion failing. Authentication mecha-
nisms that are slow (or intentionally de-
layed) must set this bit when they’re not
ready to process another write.

R 0

authtype Defines the kind of authentication re-
quired to use this DTM. 0 means no au-
thentication is required. 1 means a pass-
word is required. 2 means a challenge-
response mechanism is in place. 3 is re-
served for future use.

R Preset

ndreset Every time this bit is written as 1, it
triggers a full reset of the non-debug
logic on the platform. This bit exists
so that, for debugging purposes, reset
behavior can be different from the stan-
dard behavior. For instance, a core
could be forced into Debug Mode right
out of reset.

W 0

fullreset Every time this bit is written as 1, it
triggers a full reset of the platform, in-
cluding every component in it and the
debug logic for each component. It also
resets the DTM itself.

W 0

3.5.3 Authentication Data (authdata, at 0x8)

If authtype is 0, this register is not present.
If authtype is 1, writing a correct password to this register enables the DTM.

The DTM is disabled either by writing an invalid password, or by resetting it.
0 must not be used as a password. Reading from the register returns 0.

If authtype is 2, things are a bit more complicated. Reading from the reg-
ister reads the last challenge generated. Writing the correct response enables
the DTM. The DTM is disabled either by writing an incorrect response, or by
resetting it. Writing an incorrect response causes a new challenge to be gen-
erated. Depending on the implementation, there may not be a valid challenge
until the first write to this register.

63 0

data
64
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3.5.4 Serial Info (serinfo, at 0x10)

31 16 15 14 13 12 11 10 9 8

0 serial7 serial6 serial5 serial4
16 2 2 2 2

7 6 5 4 3 2 1 0

serial3 serial2 serial1 serial0
2 2 2 2

Field Description Access Reset
serial7 Like serial0. R Preset
serial6 Like serial0. R Preset
serial5 Like serial0. R Preset
serial4 Like serial0. R Preset
serial3 Like serial0. R Preset
serial2 Like serial0. R Preset
serial1 Like serial0. R Preset
serial0 0 means serial interface 0 is not sup-

ported. 1 means serial interface 0 is
supported and 32 bits wide. 2 means se-
rial interface 0 is supported and 64 bits
wide. 3 means serial interface 0 is sup-
ported and 128 bits wide.

R Preset

3.5.5 Serial Send 0 (sersend0, at 0x20)

Values written to this address are added to the send queue, unless the queue is
already full.

width-1 0

data
width

3.5.6 Serial Receive 0 (serrecv0, at 0x30)

This register contains the oldest value in the receive queue. Reading the register
removes that value from the queue. If the queue is empty, reading this register
returns an undefined value.

width-1 0

data
width

3.5.7 Serial Status 0 (serstat0, at 0x40)

31 2 1 0

0 sendr recvr
30 1 1
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Field Description Access Reset
sendr Send ready. 1 when the send queue is

not full. 0 otherwise.
R 1

recvr Receive ready. 1 when the receive queue
is not empty. 0 otherwise.

R 1

4 Device Tree Additions

The device tree is a data structure in ROM that all RISC-V platforms should
have. It contains a variety of information about every component in the plat-
form. (As of January 16, 2016 it is not yet part of any RISC-V spec.)

Every debuggable component should implement any applicable properties
listed in Table 2 in the device tree.

Table 2: Component Device Tree Properties
riscv,debug-address Address of this component’s ccsr

register.
Required

riscv,auth-type Defines the kind of authentication
required to use the debug logic on this
component. 0 means no
authentication is required. 1 means a
password is required. 2 means a
challenge-response mechanism is in
place. Other values are reserved for
future use.

Optional

If a Debug RAM is implemented, it must be listed in the device tree with
its start address and size.

Each DTM must be listed in the device tree including its base address (ad-
dress of dtminterrupt).

TODO: Update this section once there is a more general RISC-V device tree
spec.

5 Component Debugging

Every component can expose arbitrary functionality as registers visible to the
Debug Transport Module on the debug/system bus. This document only spec-
ifies in detail what RISC-V cores must expose.

There are a few generic features specified that any component can imple-
ment, and that even a debugger that knows nothing else about that component
can use. The simplest is to freeze a component. Freezing is the simplest form
of halting, effectively the same as gating the clock to a component. It should
also be possible to just let the component run for a single clock cycle. Freez-
ing a RISC-V core might allow a debugger to inspect the state of the pipeline.
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Figure 2: Component Run States

Components that support freezing must implement freeze and freezeresume in
ccsr.

A more complicated alternative to freezing is halting. Halting usually hap-
pens on a boundary that is meaningful (eg. an instruction being fetched or
completely executed), and may even put the component into a special Debug
Mode. When a RISC-V core is halted, it’s possible to let the core execute
arbitrary instructions. It should also be possible to let the component take a
meaningful step (eg. execute a single instruction). Components that support
halting must implement halt and resume in ccsr. Their use is summarized in
Figure 2.

Freezing and halting are orthogonal to each other, so a component may be
both frozen and halted. In this case freezing could be used to debug halting.

In addition to freezing and halting, there are also 2 kinds of reset supported:
The first is a traditional reset that resets the entire component. The second is
a non-debug reset, which only resets that part of the component that are not
part of the debug logic. The second is used so you can reset a component but
remain halted/frozen.
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5.1 Interrupt Tracking

When cdisable is clear, a component can send an interrupt to the DTM by
writing interrupt to dtminterrupt as described in Section 3.2.

5.2 Security

Some components may contain intellectrual property that should not be dis-
closed, even to people who may debug other parts of the system. To help with
this there are registers specified to support a simple authentication scheme that
enables an authorized debugger to unlock the debug logic on a component.

This mechanism does not affect accesses over the system bus at all. It’s
up to the component designer to ensure that no IP is leaked over the system
bus. This could be done by carefully designing the interface, or by only granting
components that really need it the relevant system bus access. The latter option
depends on the system bus to support that kind of functionality, and additionally
requires that the components that have access be similarly secured.

5.3 Component Debug Registers

Table 3: Component Debug Registers
Address Name

0x0 Component Control and Status
0x8 Authentication Data

0x10 DTM Interrupt Address

5.3.1 Component Control and Status (ccsr, at 0x0)

See Figure 2 for more information about how freeze, halt, and reset bits interact.

31 30 29 28 27 26 25

authenticated authbusy 0 ndreset fullreset stopcycle
1 1 2 1 1 1

24 23 22 21 20 19

stoptime frozen freezesup freeze freezeresume halted
1 1 1 1 1 1

18 17 16 15 8 7 0

haltsup halt resume 0 interrupt
1 1 1 8 8
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Field Description Access Reset
authenticated 0 when authentication is required before

talking to the debug interface on this
component. 1 when the authentication
check has passed. On components that
don’t implement authentication, this bit
must be preset as 1.

R Preset

authbusy While 1, writes to authdata may be
ignored or may result in authentica-
tion failing. Authentication mecha-
nisms that are slow (or intentionally de-
layed) must set this bit when they’re not
ready to process another write.

R 0

ndreset Every time this bit is written as 1, it
triggers a reset of the non-debug logic
in this component.

W 0

fullreset Every time this bit is written as 1, it
triggers a reset of the component includ-
ing the debug logic.

W 0

stopcycle Controls the behavior of any counters
while the component is halted. When
1, counters are stopped when the com-
ponent is halted/frozen. Otherwise, the
counters continue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 1

Continued on next page
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stoptime Controls the behavior of any timers
while the component is halted. When 1,
timers are stopped when the component
is halted/frozen. Otherwise, the timers
continue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 0

frozen 1 when the component is currently
frozen.

R 0

freezesup 1 when freeze and freezeresume are sup-
ported.

R Preset

freeze When this bit is 1 and the component
is not frozen, it becomes frozen.
If this bit is 1 when the component is
reset, the component should be frozen
before it has performed any operations.
If this bit is 1 when the freezeresume is
written as 1, the component will only
execute a single cycle before becoming
frozen again.
Setting this bit to 0 does not have an
immediate effect.

R/W 0

freezeresume If this bit is written as 1 while the
component is frozen, the component be-
comes unfrozen.

W1 0

halted 1 when the component is currently
halted.

R 0

haltsup 1 when halt and resume are supported. R Preset
halt When this bit is 1 and the component

is not halted, the component will enter
Debug Mode.
If this bit is 1 when the component is
reset, the component must go directly
to Debug Mode.
If this bit is 1 when the component
leaves Debug Mode, the component will
perform one operation (eg. execute a
single instruction, or perform a single
cycle in a state machine) before re-
entering Debug Mode.
Setting this bit to 0 does not have an
immediate effect.

R/W 0

Continued on next page
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resume If this bit is written as 1 while the com-
ponent is in Debug Mode, the compo-
nent leaves Debug Mode.

W1 0

interrupt The value this component should use
when writing to dtminterrupt.
Depending on intbits in the DTM, the
top bits of this field may be hardwired
to 0.
This value may be hardcoded if there
are few components in the system. The
debugger must read this value back af-
ter writing it to confirm whether it was
written or not.

R/W Preset

5.3.2 Authentication Data (authdata, at 0x8)

If authtype is 0, this register is ignored.
If authtype is 1, writing a correct password to this register enables the debug

functionality. The functionality is disabled either by writing an invalid password,
or by resetting it. 0 should not be used as a password. Reading from the register
returns 0.

If authtype is 2, things are a bit more complicated. Reading from the register
reads the last challenge generated. Writing the correct response enables the
debug functionality. The functionality is disabled either by writing an incorrect
response, or by resetting it. Writing an incorrect response causes a new challenge
to be generated. Depending on the implementation, there may not be a valid
challenge until the first write to this register.

63 0

data
64

5.3.3 DTM Interrupt Address (cdtmaddress, at 0x10)

On platforms with only a single DTM, this register may be read-only, pointed
at that DTM.

abussize-1 1 0

dtmaddress cdisable
abussize - 1 1
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Field Description Access Reset
dtmaddress Bits abussize-1:1 of the address of

dtminterrupt. On some components
this register will be less wide than
abussize. In order for those components
to send messages to the DTM, the DTM
needs to be accessible to them using
however many address bits (often 32)
that actually fit in the register.

R/W Preset

cdisable When 1, the component won’t write
anything to the DTM. Set to 0 to enable
the component writing to the DTM.

R/W Preset

6 RISC-V Debug Module

6.1 Bus Interface

Each RISC-V debug module uses 17 bits of address space on the debug/system
bus to provide access to debug features. The address space is divided up as
show in Table 4.

6.2 Debug Mode

Debug Mode is a special processor mode used only when the core is halted for
external debugging.

When entering Debug Mode:
1. The core should write its interrupt number to the DTM’s dtminterrupt.

While in Debug Mode:
1. Regular program execution is suspended.
2. The contents of general purpose registers are accessible over the debug

interface.
3. All operations happen in machine mode.
4. All interrupts are masked.
5. No hardware breakpoints are triggered.
6. Trace is disabled.

When leaving Debug Mode:
1. Regular program execution resumes at the address in dpc.

6.3 Debug Registers

6.3.1 Component Control and Status (ccsr, at 0x0)

This is the exact same register as is described in Section 5.3.1, but the descrip-
tion here is slightly more specific to RISC-V cores.
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Table 4: Debug Bus Memory Space
Address Value
0x0000 – 0x0100 Debug registers described in Section 6.3. These are

always accessible.
0x0100 – 0x01c3 Debug registers described in Section 6.3. These are only

be accessible when the core is halted.
0x01c4 – 0x01ff Supported register map. This indicates which registers

are directly accessible to a debugger. Each register gets
a single bit, so each 32-bit word maps to 256 bytes of
address space starting at 0x100. The LSB in each word
maps to the first 128-bit word in its 256-byte space.
Since the general purpose registers must always be
supported, the word at 0xc4 always contains 0xffffffff.
These may only be accessible if the core is halted.

0x0200 – 0x03ff General purpose registers (x0–x31), each 16 bytes in
size.
These may only be accessible if the core is halted.

0x0400 – 0x05ff Floating point registers (f0–f31), each 16 bytes in size.
(Optional, even when floating point is supported by the
core.)
These may only be accessible if the core is halted.

0x0600 – 0x3fff Reserved for future official extensions.
0x4000 – 0x7fff Reserved for future debug standards.
0x8000 – 0xffff Reserved for custom use to support platform-specific

functions.
0x10000 – 0x1ffff CSR registers. Each CSR register gets 16 bytes of

space, to make it look like the registers are just laid out
in a contiguous memory section (assuming they’re all
128 bits in size).
While halted, all registers must be accessible. When
not halted, some or all registers may not be accessible.

Table 5: Debug Bus Registers
Address Name

0x0 Component Control and Status
0x10 DTM Interrupt Address
0x20 Debug Control and Status
0x30 PC Sample

0x100 Stuff Instruction
0x110 Debug Jump
0x120 PC
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31 30 29 28 27 26 25

authenticated authbusy 0 ndreset fullreset stopcycle
1 1 2 1 1 1

24 23 22 21 20 19

stoptime frozen freezesup freeze freezeresume halted
1 1 1 1 1 1

18 17 16 15 8 7 0

haltsup halt resume 0 interrupt
1 1 1 8 8

Field Description Access Reset
authenticated See Section 5.3.1. R Preset
authbusy See Section 5.3.1. R 0
ndreset See Section 5.3.1. W 0
fullreset See Section 5.3.1. W 0
stopcycle Controls the behavior of any counters

while the component is halted. This in-
cludes the counters read with rdcycle

and rdinstret. When 1, counters are
stopped when the component is halt-
ed/frozen. Otherwise, the counters con-
tinue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 1

stoptime Controls the behavior of any timers
while the component is halted. This
includes the timer read with rdcycle.
When 1, timers are stopped when the
component is halted/frozen. Otherwise,
the timers continue to run.
An implementation may choose not to
support writing to this bit. The debug-
ger must read back the value it writes to
check whether the feature is supported.

R/W 0

Continued on next page
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frozen See Section 5.3.1. R 0
freezesup See Section 5.3.1. R Preset
freeze See Section 5.3.1. R/W 0
freezeresume See Section 5.3.1. W1 0
halted See Section 5.3.1. R 0
haltsup See Section 5.3.1. R Preset
halt When this bit is 1 and the core is run-

ning, the core will enter Debug Mode,
setting dpc to the address of the next
instruction to be executed.
If this bit is 1 when the core is reset, the
core must go directly to Debug Mode.
Do not execute any instructions. Do
not collect $200. When entering Debug
Mode, dpc is set to the reset vector.
If this bit is 1 when the core leaves De-
bug Mode, the core will keep interrupts
disabled and execute one instruction be-
fore re-entering Debug Mode. dpc is set
to the address of the next instruction to
be executed.
Setting this bit to 0 does not have an
immediate effect.

R/W 0

Continued on next page
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resume If this bit is written as 1 while the core is
in Debug Mode, the core leaves Debug
Mode and resumes execution at dpc.

W1 0

interrupt See Section 5.3.1. R/W Preset

6.3.2 DTM Interrupt Address (cdtmaddress, at 0x10)

See Section 5.3.3.

6.3.3 Debug Control and Status (dcsr, at 0x20)

31 30 29 28 27 16 15 8 7

pcsample haltinterrupt xdebugver hwbpcount 0 debug
1 1 2 12 8 1

6 4 3 2 1 0

cause ebreakm ebreakh ebreaks ebreaku
3 1 1 1 1

Field Description Access Reset
pcsample 1 when the pcsample is implemented. 0

otherwise.
R Preset

haltinterrupt 1 when the core will write interrupt to
dtminterrupt when it halts. 0 other-
wise.

R Preset

xdebugver 0 means there is no external hardware
debug support. 1 means hardware de-
bug support exists as it is described in
this document. Other values are re-
served for future standards.

R Preset

hwbpcount Number of hardware breakpoints this
core supports.

R Preset

debug 1 when the core is in Debug Mode. 0
otherwise.

R 0

cause Explains why Debug Mode was entered.
0 means the core is not in Debug Mode.
1 means a software breakpoint was hit.
2 means a hardware breakpoint was hit.
3 means halt in ccsr was set. 4 means
the core single stepped.

R 0

Continued on next page
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ebreakm When 1, ebreak instructions in Ma-
chine Mode enter Debug Mode.

R/W 0

ebreakh When 1, ebreak instructions in Hyper-
visor Mode enter Debug Mode.

R/W 0

ebreaks When 1, ebreak instructions in Super-
visor Mode enter Debug Mode.

R/W 0

ebreaku When 1, ebreak instructions in
User/Application Mode enter Debug
Mode.

R/W 0

6.3.4 PC Sample (pcsample, at 0x30)

This optional register contains a recent value of pc. It can be repeatedly polled
by a debugger to get some idea of where execution spends most of its time.

XLEN-1 0

pc
XLEN

6.3.5 Stuff Instruction (dstuff, at 0x100)

While halted, a write to this register will result in the 32-bit instruction written
being executed exactly once. (If the debugger needs to execute instructions that
aren’t 32 bits wide, it should use djump.) Stuffing instructions that change the
PC (eg. branch and jump) leads to undefined behavior.

This may interfere with the value in dpc, so the debugger should save it first.
The instruction executed must not read or write s8– s11. They are reserved

for debug logic in the core.

31 0

instruction
32

6.3.6 Debug Jump (djump, at 0x110)

While halted, a write to this register will result in a jump to the address written.
The core remains in Debug Mode, but is no longer halted. When the core
encounters an ebreak instruction it halts again. If haltinterrupt is set, the core
must write interrupt to dtminterrupt when it halts again.

This may interfere with the value in dpc, so the debugger should save it first.
If the code executed wants to use s8– s11, it has to save and restore them.

They are reserved for debug logic in the core.

XLEN-1 0

address
XLEN

23



6.3.7 PC (dpc, at 0x120)

After entering Debug Mode, this register contains the PC of the next instruction
to be executed when Debug Mode is left.

XLEN-1 0

dpc
XLEN

7 Hardware Breakpoint Module

Hardware breakpoints can cause a debug exception, entry into Debug Mode, or
a trace action without having to execute a special instruction. This makes them
invaluable when debugging code from ROM. They can trigger on execution of
instructions at a given memory address, or on the address/data in loads/stores.
These are all features that can be useful without having the hardware debug
module present, so the Hardware Breakpoint Module is broken out as a separate
piece that can be implemented separately.

A core may support up to 4095 hardware breakpoints, although 4 is a more
typical number. Each hardware breakpoint may support a variety of features.
A debugger can build a list of all hardware breakpoints and their features by
selecting each one in turn using bpselect, and then querying bpcontrol.

TODO: Clearly spec behavior when both M mode and Debug Mode want
to use the same hardware breakpoint.

7.1 Hardware Breakpoint Registers

TODO: Is it worth specifying some kind of state machine for triggering, to get
functionality more on par with a logic analyzer? Would you implement that?

These breakpoint registers are only accessible in machine mode, to prevent
untrusted user code from causing entry into Debug Mode without the OS’s
permission.

Table 6: Hardware Breakpoint Registers
Address Name

0x780 Breakpoint Select
0x781 Breakpoint Control
0x782 Breakpoint Low Address
0x783 Breakpoint High Address
0x784 Breakpoint Low Data
0x785 Breakpoint High Data
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7.1.1 Breakpoint Select (bpselect, at 0x780)

Since CSR space is limited, and each hardware breakpoint may have a lot of
configuration options, this register determines which hardware breakpoint is
accessible through the other breakpoint registers.

31 12 11 0

0 bp
20 12

Field Description Access Reset
bp Select this hardware breakpoint. R/W 0

7.1.2 Breakpoint Control (bpcontrol, at 0x781)

This register contains information about what the selected breakpoint supports,
and allows any of its features to be enabled.

Breakpoint match logic is as follows:

amatch = (aen ∧ arangeen ∧ amask)∨
(aen ∧ address = bploaddr)∨
(arangeen ∧ address ≥ bploaddr ∧ address < bphiaddr)∨
(amask ∧ (address&bphiaddr) = bploaddr)

dmatch = (den ∧ drangeen ∧ dmask)∨
(den ∧ data = bplodata)∨
(drangeen ∧ data ≥ bplodata ∧ data < bphidata)∨
(dmask ∧ (data&bphidata) = bplodata)

omatch = (loaden ∧ access is load)∨
(storeen ∧ access is store)∨
(execen ∧ access is exec)

match = amatch ∧ dmatch ∧ omatch

31 27 26 25 24 23 22 21 20 19

0 loadsup storesup execsup asup arangesup amasksup 0 dsup
5 1 1 1 1 1 1 1 1

18 17 16 15 14 12 11 10 9 8

drangesup dmasksup 0 matched action 0 loaden storeen execen
1 1 1 1 3 1 1 1 1

7 6 5 4 3 2 1 0

aen arangeen amasken 0 den drangeen dmasken 0
1 1 1 1 1 1 1 1
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Field Description Access Reset
loadsup This breakpoint supports matching on

data load.
R Preset

storesup This breakpoint supports matching on
data store.

R Preset

execsup This breakpoint supports matching on
instruction execution.

R Preset

asup This breakpoint supports exact address
matches. (It would be a strange break-
point that doesn’t.)

R Preset

arangesup This breakpoint supports range address
matches.

R Preset

amasksup This breakpoint supports masked ad-
dress matches.

R Preset

dsup This breakpoint supports exact data
matches.

R Preset

drangesup This breakpoint supports range data
matches.

R Preset

dmasksup This breakpoint supports masked data
matches.

R Preset

matched Set to 1 when this hardware breakpoint
matched. The debugger is responsible
for clearing this bit once it has seen it’s
set.

R/W 0

action Determines what happens when this
breakpoint matches. 0 means nothing
happens. 1 means cause a debug excep-
tion. 2 means enter Debug Mode. 3
means start tracing. 4 means stop trac-
ing. 5 means emit trace data for this
match. (If it’s a data access match, emit
appropriate Load/Store Address/Data.
If it’s an instruction execution, emit its
PC.) Other values are reserved for fu-
ture use.

R/W 0

Continued on next page
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loaden Set to enable this breakpoint for data
loads.

R/W 0

storeen Set to enable this breakpoint for data
stores.

R/W 0

execen Set to enable this breakpoint for in-
struction execution. When an execution
breakpoint is hit on an address match,
the core enters Debug Mode immedi-
ately before the instruction is executed.

R/W 0

aen Set to cause this breakpoint to match
when address equals bploaddr.

R/W 0

arangeen Set to cause this breakpoint to match
when bploaddr <= address <
bphiaddr.

R/W 0

amasken Set to cause this breakpoint to match
when address&bphiaddr = bploaddr.

R/W 0

den Set to cause this breakpoint to match
when data equals bplodata.

R/W 0

drangeen Set to cause this breakpoint to match
when bplodata <= data < bphidata.

R/W 0

dmasken Set to cause this breakpoint to match
when data&bphidata = bplodata.

R/W 0

7.1.3 Breakpoint Low Address (bploaddr, at 0x782)

Used for exact match or lower bound (inclusive) of the address match for this
breakpoint.

XLEN-1 0

loaddress
XLEN

7.1.4 Breakpoint High Address (bphiaddr, at 0x783)

Used for upper bound (inclusive) of the address match for this breakpoint, or
as address mask.

XLEN-1 0

hiaddress
XLEN

7.1.5 Breakpoint Low Data (bplodata, at 0x784)

Used for exact match or lower bound (inclusive) of the data match for this
breakpoint.

XLEN-1 0

lodata
XLEN
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7.1.6 Breakpoint High Data (bphidata, at 0x785)

Used for upper bound (inclusive) of the data match for this breakpoint, or as
data mask.

XLEN-1 0

hidata
XLEN

8 Trace Module

Aside from viewing the current state of a core, knowing what happened in the
past can be incredibly helpful. Capturing an execution trace can give a user
that view. Unfortunately processors run so fast that they generate trace data
at a very large rate. To help deal with this, the trace data format allows for
some simple compression.

The trace functionality described here aims to support 3 different use cases:

1. Full reconstruction of all processor state, including register values etc.
To achieve this goal the decoder will have to know what code is being
executed, and know the exact behavior of every RISC-V instruction.

2. Reconstruct just the instruction stream. Get enough data from the trace
stream that it is possible to make a list of every instruction executed. This
is possible without knowing anything about the code or the core executing
it.

3. Watch memory accesses for a certain memory region.

This part of the spec is functional, but could certainly be improved a
lot.

8.1 Trace Data Format

Trace data should be both compact and easy to generate. Ideally it’s also easy
to decode, but since decoding doesn’t have to happen in real time and will
usually have a powerful workstation to do the work, this is the least important
concern.

Trace data consists of a stream of 4-bit packets, which are stored in memory
in 32-bit words by putting the first packet in bits 3:0 of the 32-bit word, the
second packet into bits 7:4, and so on. Trace packets and their encoding are
listed in Table 7.

Is it an improvement to add a count after Branch Taken/Not Taken
headers?
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Table 7: Trace Sequence Header Packets
0000 Nop Packet that indicates no data. The trace

source must use these to ensure that there are
8 synchronization points in each buffer.

0001 PC Followed by a Value Sequence containing bits
XLEN-1:1 of the PC if the compressed ISA is
supported, or bits XLEN-1:2 of the PC if the
compressed ISA is not supported. Missing
bits must be filled in with the last PC value.

0010 Branch Taken
0011 Branch Not Taken
0100 Trace Enabled Followed by a single packet indicating the

version of the trace data (currently 0).
0101 Trace Disabled Indicates that trace was purposefully

disabled, or that some sequences were
dropped because the trace buffer overflowed.

0110 Privilege Level Followed by a packet containing whether the
cause of the change was an interrupt (1) or
something else (0) in bit 3, PRV[1:0] in bits
2:1, and IE in bit 0.

0111 Reserved Reserved for future standards.
1000 Load Address Followed by a Value Sequence containing the

address. Missing bits must be filled in with
the last Load Address value.

1001 Store Address Followed by a Value Sequence containing the
address. Missing bits must be filled in with
the last Store Address value.

1010 Load Data Followed by a Value Sequence containing the
data. Missing bits must be filled in by sign
extending the value.

1011 Store Data Followed by a Value Sequence containing the
data. Missing bits must be filled in by sign
extending the value.

1100 Timestamp Followed by a Value Sequence containing the
timestamp. Missing bits should be filled in
with the last Timestamp value.

1101 Reserved Reserved for future standards.
1110 Custom Reserved for custom trace data.
1111 Custom Reserved for custom trace data.
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Several header packets are followed by a Value Sequence, which can encode
values between 4 and 64 bits. The sequence consists first of a 4-bit size packet
which contains a single number N. It is followed by N+1 4-bit packets which
contain the value. The first packet contains bits 3:0 of the value. The next
packet contains bits 7:4, and so on.

8.2 Trace Events

Trace events are events that occur when a core is running that result in trace
packets being emitted. They are listed in Table 8.

Table 8: Trace Data Events
Opcode Action
jal If emitbranch is disabled but emitpc is enabled, emit 2

PC values: first the address of the instruction, then the
address being jumped to.

jalr If emitbranch is disabled but emitpc is enabled, emit 2
PC values: first the address of the instruction, then the
address being jumped to. Otherwise, if emitstoredata is
enabled emit just the destination PC.

BRANCH If emitbranch is enabled, emit either Branch Taken or
Branch Not Taken. Otherwise if emitpc is enabled and
the branch is taken, emit 2 PC values: first the address
of the branch, then the address being branched to.

LOAD If emitloadaddr is enabled, emit the address. If
emitloaddata is enabled, emit the data that was loaded.

STORE If emitstoreaddr is enabled, emit the address. If
emitstoredata is enabled, emit the data that is stored.

Traps scall, sbreak, ecall, ebreak, and eret emit the same
as if they were jal instructions. In addition they also
emit a Privilege Level sequence.

Interrupts Emit PC (if enabled) of the last instruction executed.
Emit Privilege Level (if enabled). Finally emit the new
PC (if enabled).

CSR instructions For reads emit Load Data (if enabled). For writes emit
Store Data (if enabled).

Data Dropped After packet sequences are dropped because data is
generated too quickly, Trace Disabled must be emitted.
It’s not necessary to follow that up with a Trace
Enabled sequence.
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8.3 Synchronization

If a trace buffer wraps, it is no longer clear what in the buffer is a header
and what isn’t. To guarantee that a trace decoder can sync up easily, each
trace buffer must have 8 synchronization points, spaced evenly throughout the
buffer, with the first one at the very start of the buffer. A synchronization point
is simply an address where there is guaranteed to be a sequence header. To
make this happen, the trace source can insert a number of Nop headers into the
sequence just before writing to the synchronization point.

Aside from synchronizing a place in the data stream, it’s also necessary to
send a full PC, Read Address, Write Address, and Timestamp in order for those
to be fully decoded. Ideally that happens the first time after every synchroniza-
tion point, but bandwidth might prevent that. A trace source must attempt to
send one full value for each of these (assuming they’re enabled) soon after each
synchronization point.

8.4 Trace Registers

Table 9: Trace Registers
Address Name

0x788 Trace
0x789 Trace Buffer Start
0x78a Trace Buffer End
0x78b Trace Buffer Write

8.4.1 Trace (trace, at 0x788)

31 25 24 23 22 21 20

0 wrapped emittimestamp emitstoredata emitloaddata emitstoreaddr
7 1 1 1 1 1

19 18 17 16 15 10 9 8

emitloadaddr emitpriv emitbranch emitpc 0 fullaction
1 1 1 1 6 2

7 6 5 4 3 2 1 0

0 destination 0 stall discard supported
2 2 1 1 1 1

Field Description Access Reset
Continued on next page

31



wrapped 1 if the trace buffer has wrapped since
the last time discard was written. 0 oth-
erwise.

R 0

emittimestamp Emit Timestamp trace sequences. R/W 0
emitstoredata Emit Store Data trace sequences. R/W 0
emitloaddata Emit Load Data trace sequences. R/W 0
emitstoreaddr Emit Store Address trace sequences. R/W 0
emitloadaddr Emit Load Address trace sequences. R/W 0
emitpriv Emit Privilege Level trace sequences. R/W 0
emitbranch Emit Branch Taken and Branch Not

Taken trace sequences.
R/W 0

emitpc Emit PC trace sequences. R/W 0
fullaction Determine what happens when the trace

buffer is full. 0 means wrap and over-
write. 1 means turn off trace until
discard is written as 1. 2 means cause
a trace full exception. 3 is reserved for
future use.

R/W 0

destination 0 to trace to a dedicated on-core RAM
(which is not further defined in this
spec). 1 to trace to RAM on the sys-
tem bus. Both those options may slow
down execution (eg. because of system
bus contention). 2 to send trace data to
a dedicated off-chip interface (which is
not defined in this spec). This does not
affect execution speed. 3 is reserved for
future use.

R/W Preset

stall When 1, the trace logic may stall pro-
cessor execution to ensure it can emit
all the trace sequences required. When
0 individual trace sequences may be
dropped.

R/W 1

discard Writing 1 to this bit tells the trace logic
that any trace collected is no longer re-
quired. When tracing to RAM, it resets
the trace write pointer to the start of
the memory, as well as wrapped.

W1 0

8.4.2 Trace Buffer Start (tbufstart, at 0x789)

If destination is 1, this register contains the start address of block of RAM
reserved for trace data.
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XLEN-1 0

address
XLEN

8.4.3 Trace Buffer End (tbufend, at 0x78a)

If destination is 1, this register contains the end address (exclusive) of block of
RAM reserved for trace data.

XLEN-1 0

address
XLEN

8.4.4 Trace Buffer Write (tbufwrite, at 0x78b)

If destination is 1, this read-only register contains the address that the next trace
packet will be written to.

XLEN-1 0

address
XLEN

9 JTAG Debug Transport Agent

This Debug Transport Agent is based around a normal JTAG Test Access Port
(TAP). The JTAG TAP allows access to arbitrary JTAG registers by first select-
ing one using the JTAG instruction register (IR), and then accessing it through
the JTAG data register (DR).

9.1 Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic
that can be included in an integrated circuit to test the interconnections between
integrated circuits, test the integrated circuit itself, and observe or modify circuit
activity during the components normal operation. It is the third case that we’re
primarily concerned with here. The standard defines a Test Access Port (TAP)
that can be used to read and write a few custom registers, which can be used
to communicate with debug hardware in a component.

9.2 JTAG Registers

JTAG DTMs should use a 5-bit JTAG IR. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG regis-
ters along with their encoding is in Table 10. The only regular JTAG registers
a debugger might use are BYPASS and IDCODE, but the JTAG standard rec-
ommends a lot of other instructions so we leave IR space for them. If they are
not implemented, then they must select the BYPASS register.
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Table 10: JTAG TAP Registers

Address Name Description
00000 BYPASS JTAG recommends this encoding
00001 IDCODE JTAG recommends this encoding
00010 SAMPLE JTAG requires this instruction
00011 PRELOAD JTAG requires this instruction
00100 EXTEST JTAG requires this instruction
00100 INIT SETUP CLAMP JTAG recommends this instruction
00101 CLAMP JTAG recommends this instruction
00110 CLAMP HOLD JTAG recommends this instruction
00111 CLAMP RELEASE JTAG recommends this instruction
01000 HIGHZ JTAG recommends this instruction
01001 IC RESET JTAG recommends this instruction
01010 TMP STATUS JTAG recommends this instruction
01011 INIT SETUP JTAG recommends this instruction
01100 INIT RUN JTAG recommends this instruction
01110 Unused (BYPASS) Reserved for future JTAG
01111 Unused (BYPASS) Reserved for future JTAG
10000 DTM Control DTM Control
10001 DTM Authentication Data DTM Authentication
10010 JTAG Bus Control For bus access
10011 JTAG Bus Address For bus access
10100 JTAG Bus Data For bus access
10101 JTAG Status For interrupts/serial
10110 JTAG Status Control For interrupts/serial
10111 JTAG Serial Data For serial
11000 Reserved (BYPASS) Reserved for future RISC-V debugging
11001 Reserved (BYPASS) Reserved for future RISC-V debugging
11010 Reserved (BYPASS) Reserved for future RISC-V debugging
11011 Unused (BYPASS) Reserved for customization
11100 Unused (BYPASS) Reserved for customization
11101 Unused (BYPASS) Reserved for customization
11110 Unused (BYPASS) Reserved for customization
11111 BYPASS JTAG requires this encoding
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9.2.1 IDCODE (00001)

This register is selected (in IR) when the TAP state machine is reset. Its
definition is exactly as defined in IEEE Std 1149.1-2013.

31 28 27 12 11 1 0

Version PartNumber ManufId 1
4 16 11 1

Field Description Access Reset
Version Identifies the release version of this part. R Preset
PartNumber Identifies the designer’s part number of

this part.
R Preset

ManufId Identifies the designer/manufacturer of
this part. Bits 6:0 must be bits 6:0 of
the designer/manufacturer’s Identifica-
tion Code as assigned by JEDEC Stan-
dard JEP106. Bits 10:7 contain the
modulo-16 count of the number of con-
tinuation characters (0x7f) in that same
Identification Code.

R Preset

9.2.2 DTM Control (dtmcontrol, at 10000)

48 32 31 0

serinfo dtmcontrol
17 32

Field Description Access Reset
serinfo Contains the lower 16 bits of serinfo

as described in Section 3.5.4.
R Preset

dtmcontrol Contains dtmcontrol as described in
Section 3.5.2.

R/W Preset

9.2.3 DTM Authentication Data (authdata, at 10001)

This register is the JTAG view of the DTM register described in Section 3.5.3.
It only exists if authtype isn’t 0.

9.2.4 JTAG Bus Control (jbusc, at 10010)

Unlike the other registers, it’s possible to write this one while the JTAG bus
master is busy. If the debugger chooses to do so, it should write error as 1 so it
won’t disable an error that occurs during the scan.

12 11 10 6 5 3 2 0

error dbits abits size
2 5 3 3
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Table 11: JTAG Access Size
Encoding size loabits

0 8 0
1 16 1
2 32 2
3 64 3
4 128 4

other reserved reserved

Table 12: JTAG Address Bits
Encoding hiabits

0 min(7, abussize− 1)
1 min(11, abussize− 1)
2 min(15, abussize− 1)
3 min(23, abussize− 1)
4 min(31, abussize− 1)
5 min(63, abussize− 1)
6 min(127, abussize− 1)

other reserved

Table 13: Serial Ports in jstatus

Encoding hiabits
0 min(7, abussize− 1)
1 min(11, abussize− 1)
2 min(15, abussize− 1)
3 min(23, abussize− 1)
4 min(31, abussize− 1)
5 min(63, abussize− 1)
6 min(127, abussize− 1)

other reserved
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Field Description Access Reset
error 0 means no error has been seen. 1 means

a timeout error has been seen. 2 means
some other bus error has been seen. The
DTM updates this field with an error
when one occurs. It is cleared when the
debugger writes 0.

R/W0 0

dbits Set hidbits to (dbits+1)∗4−1. If hidbits
is set to be larger than size, the extra
bits scanned into data will be ignored.

R/W 7

abits Set hiabits per Table 13. R/W 5
size Set size and loabits per Table 11. R/W 2

9.2.5 JTAG Bus Address (jaddress, at 10011)

hiabits-loabits+2 2 1 0

update autoincrement read/busy
hiabits - loabits + 1 1 1

Field Description Access Reset
update Update address[hiabits:loabits] with the

value in update.
R/W 0

autoincrement When set, increment address by size/8
after every scan of jdata.

R/W 0

read/busy Set this bit to perform a read at the up-
dated address.
Read this bit to determine whether the
JTAG bus master is busy. If this bit
reads as 1 then writes to this register
are ignored.

R/W 0

9.2.6 JTAG Bus Data (jdata, at 10100)

hidbits+2 2 1 0

data write/valid read/busy
hidbits + 1 1 1

37



Field Description Access Reset
data If write/valid reads as 1, this contains

the data from the successful read. Data
written to this register will be written
to address if write/valid is written as 1.
If size is larger than hidbits−1 then data
will be sign extended before being writ-
ten. If size is smaller than hidbits − 1
then the extra data bits are ignored.

R/W 0

write/valid Set this bit to write data to the current
address.
Read this bit to determine whether the
register contains data from a successful
read.

R/W 0

read/busy Set this bit to perform a read at the
(possibly post-incremented) address.
Read this bit to determine whether the
JTAG bus master is busy. If this bit
reads as 1 then writes to this register
are ignored.

R/W 0

9.2.7 JTAG Status (jstatus, at 10101)

serbits+intbits-1 intbits intbits-1 0

serial interrupt
serbits intbits

Field Description Access Reset
serial Bit 0 is 1 when serial port 0 is ready for

the debugger to send data to it. Bit 1
is 1 when serial port 0 has data in the
queue for the debugger to read. Bits 2
and 3 do the same for serial port 1, and
so on.

R . . . 01

interrupt Contains the intbits lower bits of the
internal interrupt state. Scanning this
register clears the entire internal inter-
rupt state.

R 0

Continued on next page
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9.2.8 JTAG Status Control (jstatc, at 10110)

6 5 4 3 2 0

serscan intscan serselect
2 2 3

Field Description Access Reset
serscan Select the number of serial ports that

show up in jstatus. serbits is 4 ∗
serscan + 4. (There are 2 bits per serial
port.)

R/W 0

intscan Select the number of interrupt status
bits that show up in jstatus. intbits

is 4 ∗ 2intscan.

R/W 0

serselect Select which serial port jserial ac-
cesses.

R/W 0

9.2.9 JTAG Serial Data (jserial, at 10111)

width+1 2 1 0

data write/valid busy
width 1 1

Field Description Access Reset
data If write/valid reads as 1, this contains

the oldest value in the core-to-debugger
queue. After this scan that value will
be removed from the queue. Data writ-
ten to this field will be written to the
debugger-to-core queue if write/valid is
written as 1.
The width of this field depends on the
width of the underlying serial port. It
can be discovered by reading serinfo in
dtmcontrol.

R/W 0

Continued on next page
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write/valid Set this bit to write data to the
debugger-to-core queue.
Read this bit to determine whether the
register contains valid data from the
core-to-debugger queue.

R/W 0

busy Read this bit to determine whether the
core-to-debugger queue is full. If this bit
reads as 1 then writes to this register are
ignored.

R/W 0

9.2.10 BYPASS (11111)

1-bit register that has no effect. It’s used when a debugger wants to talk to a
different TAP in the same scan chain as this one.

0

0
1
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A Debugger Implementation

This section details how an external debugger might use the described debug
interface to perform some common operations on RISC-V cores using the JTAG
DTM.

To keep the text readable, these examples assume that the debugger is slower
than the core/DTM so never has to wait. A real implementation should always
check read/busy, write/valid, etc.

A.1 Setup

The first thing a debugger should do when connecting to a RISC-V platform is
to read and parse the device tree. The device tree should be located at a known
address. If not, then the user will have to tell the debugger where it is located.

Next the debugger should identify each component it wants to debug. Each
of those components need to be pointed at the DTM the debugger is using
by writing cdtmaddress, and then assigned an interrupt by writing interrupt
in ccsr. Components that won’t be debugged could all be put on a single
interrupt, leaving the remaining interrupts for components that are debugged.
If that’s not enough, interrupts will have to be shared.

A.2 Reading Memory

To read memory, first set up the memory access size (with corresponding hidbits)
and abits. (If they already contain the correct value, this scan can be skipped.)

Next, scan jaddress filling out the address to be read, and setting read/busy.
If read/busy is already set then the DTM is busy and this scan will have to be
repeated until it’s no longer busy. The memory access will start when the TAP
is in the Update-DR state.

Finally scan jdata, which will contain the data that was read, assuming
write/valid is set. If it is not set the scan will have to be repeated. If write/valid
is clear and read/busy is also clear, that indicates there was some kind of error.
The debugger should scan jbusc to find out what the error was.

To immediately read the same address again, set read/busy in the jdata

scan.
To immediately read the next address, set autoincrement in the jaddress

scan and read/busy in the jdata scan.

A.3 Writing Memory

To write memory, first set up the memory access size (with corresponding
hidbits) and abits. (If they already contain the correct value, this scan can
be skipped.)

Next, scan jaddress filling out the address to be written. If read/busy is
set then the DTM is busy and this scan will have to be repeated until it’s no
longer busy.
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Finally scan jdata with the data that should be written, and set write/valid.
read/busy should not be set at this point since it was already cleared in the
previous step. The memory access will start when the TAP is in the Update-
DR state.

The debugger could poll either jdata or jaddress for read/busy to become
0 but typically the debugger will just call the write complete without waiting
for that. If it’s really paranoid it could check error in jbusc after discovering
that the DTM is no longer busy.

To immediately write the same address again, simply scan jdata again.
To immediately write the next address, set autoincrement in the original

jaddress scan and scan jdata again.

A.4 Halt

To halt a core, the debugger sets halt in ccsr. It can then check halted in ccsr

to discover when the core actually halts.

A.5 Reading Registers

When halted and not running code through use of djump, x0– x31 can be read
directly from the Debug Bus Interface. Other registers are directly accessible if
their corresponding bit is set in the supported register map.

For registers that are not directly accessible, an instruction will have to be
executed to read it. Eg. to read f1 first write fmv.x.s x8, f1 to dstuff and
then read the value of x8 directly.

A.6 Writing Registers

When halted and not running code through use of djump, x0– x31 can be written
directly from the Debug Bus Interface. Other registers are directly accessible if
their corresponding bit is set in the supported register map.

For registers that are not directly accessible writing is a 2-step process. First
directly write the new value to a general purpose register (eg. x8). Then stuff
an instruction to move the value to the appropriate register, eg. fmv.s.x f1,

x8 to read f1.

A.7 Custom Debug Programs

Some operations can benefit a lot from executing a small program instead of
feeding instructions one at a time. Zeroing memory is a good example of this.
(Depending on what a program expects, certain blocks of RAM may need to be
zeroed before it is executed.)

To do this efficiently, the debugger needs a bit of RAM. This RAM can be
dedicated in the platform and documented in the Device Tree, or be simply
something that the user told the debugger. The debugger can write a simple
program to this RAM. Eg.:
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loop:

sw zero, 0(x9)

addi x9, x9, 4

bne x9, x8, loop

ebreak

Then it saves the contents of x8 and x9 before writing the start address
to x9, the end address to x8. To start execution it writes the address of the
program to djump. The core will stay in Debug Mode but jump to the start of
the code. When it encounters the ebreak instruction it halts again. Before the
core is resumed, the debugger must restore x8 and x9.

Depending on the implementation, dpc may be changed by doing this. The
debugger must save it before writing to djump and restore it later.

A.8 Accessing Memory Through the Core

Typically to access memory you’d use the DTM’s feature to do so directly, but
sometimes some memory is only accessible from the processor itself and not
available on the system bus. In that case it’s necessary for the core to perform
the bus access.

A.8.1 Read

Write the address to a0, then stuff lw a0, 0(a0). Now read a0.
Like writing, reading a block could be done more efficiently by using a Debug

Program. For instance:

# a0 contains the address of the serial send register.

# a1 contains the first address to read from.

# a2 contains the last address to read from.

loop:

lw t0, 0x10(a0) # Load status.

andi t0, t0, SERSTAT_SENDR_MASK

beqz t0, loop

lw t0, 0(a1) # Read word from RAM.

sw t0, 8(a0) # Send word to serial interface.

addi a1, a1, 4 # Increment write pointer.

bne a1, a2, loop

ebreak

A.8.2 Write

Write the address to a0, the value to a1, then stuff sw a1, 0(a0).
If more than a few writes are needed, a more efficient option would be to

write a small Debug Program and use a DTM serial port to feed it data. For
instance to write a block of memory:
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# a0 contains the address of the serial send register.

# a1 contains the first address to write to.

# a2 contains the last address to write to.

loop:

lw t0, 0x10(a0) # Load status.

andi t0, t0, SERSTAT_RECVR_MASK

beqz t0, loop

lw t0, 8(a0) # Read word from serial interface.

sw t0, 0(a1) # Write word to RAM.

addi a1, a1, 4 # Increment write pointer.

bne a1, a2, loop

ebreak

The debugger needs to save and set up the appropriate registers before exe-
cuting this loop. Then it can write djump and start writing data to the chosen
serial port.

A.9 Running

To let the core run once it’s halted, the debugger should restore any registers it
has modified, and then clear halt while setting resume in ccsr.

A.10 Single Step

A debugger can single step the core by setting a breakpoint on the next instruc-
tion and letting the core run, or by asking the hardware to perform a single
step. The biggest difference to the user is that in the former case it is likely
that a pending interrupt will be completely serviced during the “single” step
(unless the debugger takes additional action to disable interrupts), and there’s
a chance that something goes wrong (eg. memory is changed by another core
or the debugger incorrectly predicts the next PC).

Using the hardware single step feature is almost the same as regular running.
The debugger just sets both halt and resume in ccsr. The core behaves exactly
as in the running case, except that interrupts are left off and it only fetches and
executes a single instruction before re-entering debug mode.

B Debug ROM Implementation

One unorthodox implementation of the RISC-V debug module is to add a bare
minimum of hardware to each core, and jump to a debug ROM when the core
is ”halted.” In this implementation Debug Mode is simply another privileged
mode, like M mode. This has the benefits that a debug exception is similar to
other exceptions, and that the state machine logic (which is now encoded in the
ROM) is shared among all cores in the system.

44



B.1 Hardware Changes

Hardware needs to implement bus accesses from 0x0 – 0x7f. Everything else
can be handled by ROM. (Hardware may choose to implement 0x8000–0xffff as
well so CSRs can be accessed while the core is running.)

When ebreak causes a debug exception, the PC jumps to entry in Debug
ROM. When ebreak is executed when already in debug mode (but not halted),
the PC jumps to reentry in Debug ROM.

When eret is executed in Debug Mode, it restores pc from dpc and causes
the core to leave Debug Mode.

To leave Debug Mode when resume is set, the hardware changes the PC to
exit in Debug ROM.

halt in ccsr is set whenever the PC is in Debug ROM.

B.2 Debug ROM Registers

These are extra CSRs required for this sample Debug ROM implementation.

Table 14: Control and Status Registers
Address Name

0x770 Bus State
0x771 Bus Address
0x772 Bus Data
0x773 Debug PC
0x774 Debug Scratch 0
0x775 Debug Scratch 1
0x776 Debug Scratch 2
0x777 Debug RAM Address
0x778 Component Control and Status
0x779 DTM Interrupt Address

B.2.1 Bus State (busstate, at 0x770)

Allows code running on the core to handle debug/system bus accesses to the
core.

31 3 2 1 0

0 complete write read
29 1 1 1

Field Description Access Reset
Continued on next page
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complete Write 1 to this register to complete the
currently pending access.

W1 0

write 1 when a write access is pending. 0 oth-
erwise.

R 0

read 1 when a read access is pending. 0 oth-
erwise.

R 0

B.2.2 Bus Address (busaddress, at 0x771)

31 16 15 0

0 address
16 16

Field Description Access Reset
address When an access is pending, contains the

address of that access.
R 0

B.2.3 Bus Data (busdata, at 0x772)

When a write access is pending, contains the data being written. When a read
access is pending, the core should write the result of that read to this register
before setting complete in busstate.

XLEN-1 0

data
XLEN

B.2.4 Debug PC (dpc, at 0x773)

When entering Debug Mode, the current PC is copied to this register. When
leaving Debug Mode, execution resumes at the value in this register.

XLEN-1 0

pc
XLEN

B.2.5 Debug Scratch 0 (dscratch0, at 0x774)

Scratch register where Debug ROM can save state while in Debug Mode.

XLEN-1 0

data
XLEN
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B.2.6 Debug Scratch 1 (dscratch1, at 0x775)

Scratch register where Debug ROM can save state while in Debug Mode.

XLEN-1 0

data
XLEN

B.2.7 Debug Scratch 2 (dscratch2, at 0x776)

Scratch register where Debug ROM can save state while in Debug Mode.
TODO: Think about how to save state to the debugger instead of to scratch

registers.

XLEN-1 0

data
XLEN

B.2.8 Debug RAM Address (dramaddr, at 0x777)

This register contains the address where there are 8 bytes of RAM for the Debug
ROM to write to when it needs to execute an arbitrary instruction. These 8
bytes will be clobbered. They can be shared among multiple cores because the
ROM code will only use the RAM during a bus access.

XLEN-1 0

address
XLEN

B.2.9 Component Control and Status (ccsr, at 0x778)

CSR view of ccsr defined in Section 5.3.1.

B.2.10 DTM Interrupt Address (cdtmaddress, at 0x779)

CSR view of cdtmaddress defined in Section 5.3.3.

B.3 Debug ROM Source

# This code should be functional. Doesn’t have to be optimal.

# I’m writing it to prove that it can be done.

# TODO: Update these constants once they’re finalized in the doc.

#define BUSSTATE 0x770

#define BUSSTATE_READ 0x1

#define BUSSTATE_WRITE 0x2

#define BUSSTATE_COMPLETE 0x4
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#define BUSADDRESS 0x771

#define BUSDATA 0x772

#define DPC 0x773

#define SCRATCH0 0x774

#define SCRATCH1 0x775

#define SCRATCH2 0x776

#define DRAMADDR 0x777

#define CCSR 0x778

#define CCSR_INTERRUPT_MASK 0xff

#define CDTMADDRESS 0x779

# TODO: Once address translation is specced, this code might need to be

# updated.

.section .debug_rom

.balign 0x1000

entry: j _entry

reentry:

j _reentry

exit: j _exit

_entry:

csrw SCRATCH0, s8

csrw SCRATCH1, s9

csrw SCRATCH2, s10

_reentry:

# Send an interrupt.

csrr s8, CCSR

andi s8, s8, CCSR_INTERRUPT_MASK

csrr s9, CDTMADDRESS

sw s8, 0(s9)

main:

csrr s9, BUSSTATE

andi s9, s9, BUSSTATE_READ | BUSSTATE_WRITE

beqz s9, main

# Either read or write is happening.

csrr s8, BUSADDRESS # Read 16 bits of address.
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andi s9, s9, BUSSTATE_READ

beqz s9, write

# Handle a bus read.

read:

li s10, 0x90

bne s8, s10, rskip0

# Read PC

csrr s9, DPC

j access_done

rskip0:

li s10, 0xc4

bne s8, s10, rskip1

# Read whether GPRs are accessible. (Of course they are.)

li s9, 0xffffffff

j access_done

rskip1:

li s10, 0x1c0

bne s8, s10, rskip2

# Read s8

csrr s9, SCRATCH0

j access_done

rskip2:

li s10, 0x1c8

bne s8, s10, rskip3

# Read s9

csrr s9, SCRATCH1

j access_done

rskip3:

li s10, 0x1d0

bne s8, s10, rskip5

# Read s10

csrr s9, SCRATCH2

j access_done

rskip5:

li s10, 0x200

bge s10, s8, rskip6

li s10, 0x100

blt s8, s10, rskip6

# Read from GPR (but not s8--s10).

# Generate "mv s9, <from>"
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# GPR number is in bits 7:3 of s8, and needs to be in bits 19:15 of

# the instruction.

andi s8, s8, 0xf8

sll s10, s8, 19-7

li s8, 0xc93

or s8, s8, s10

j execute_instruction

rskip6:

li s10, 0x8000

blt s8, s10, rskip7

# Read from CSR.

# Generate "csrr s9, <from>"

# CSR number is in bits 14:3 of s8, and needs to be in bits 31:20 of

# the instruction.

sll s10, s8, 31-14

li s8, 0x2c73

or s8, s8, s10

j execute_instruction

rskip7:

li s9, 0 # default to read 0

j access_done

# Handle a bus write.

write:

csrr s9, BUSDATA

li s10, 0x80

bne s8, s10, wskip1

# stuff instruction

mv s8, s9

j execute_instruction

wskip1:

li s10, 0x88

bne s8, s10, wskip2

# jump to address

li s8, BUSSTATE_COMPLETE

csrw BUSSTATE, s8

jr s9

# At the end of the code we jump to must be an ebreak, which gets us

# back to reentry.

wskip2:

li s10, 0x90
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bne s8, s10, wskip3

# Write PC

csrw DPC, s9

j access_done

wskip3:

li s10, 0x1c0

bne s8, s10, wskip4

# Write s8

csrw SCRATCH0, s9

j access_done

wskip4:

li s10, 0x1c8

bne s8, s10, wskip5

# Write s9

csrw SCRATCH1, s9

j access_done

wskip5:

li s10, 0x1d0

bne s8, s10, wskip7

# Write s10

csrw SCRATCH2, s9

j access_done

wskip7:

li s10, 0x200

bge s10, s8, wskip8

li s10, 0x100

blt s8, s10, wskip8

# Write to GPR (but not s8--s10).

# Generate "mv <to>, s9"

# GPR number is in bits 7:3 of s8, and needs to be in bits 11:7 of

# the instruction.

andi s8, s8, 0xf8

sll s10, s8, 11-7

li s8, 0xc8013

or s8, s8, s10

j execute_instruction

wskip8:

li s10, 0x8000

blt s8, s10, wskip9

# Write to CSR.

# Generate "csrw <to>, s9"
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# CSR number is in bits 14:3 of s8, and needs to be in bits 31:20 of

# the instruction.

sll s10, s8, 31-14

li s8, 0xc9073

or s8, s8, s10

j execute_instruction

wskip9:

access_done:

# Always write BUSDATA. We need it for reads. Doesn’t hurt for

# writes.

csrw BUSDATA, s9

li s9, BUSSTATE_COMPLETE

csrw BUSSTATE, s9

j main

execute_instruction:

# Take the instruction in s8.

# Take the value the instruction may operate on in s9.

# Clobber s8 and s10.

# Jump to access_done once the instruction is executed.

csrr s10, DRAMADDR

sw s8, 0(s10)

li s8, 0x000c0067 # jr s8

sw s8, 4(s10)

la s8, access_done

fence.i

jr s10

_exit:

csrr s8, SCRATCH0

csrr s9, SCRATCH1

csrr s10, SCRATCH2

eret # TODO: dret?
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