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Preface

This is version 2.1 of the document describing the RISC-V user-level architecture. Note the frozen
user-level ISA base and extensions IMAFDQ version 2.0 have not changed from the previous version
of this document [30], but some specification holes have been fixed and the documentation has been
improved. Some changes have been made to the software conventions.

• Numerous additions and improvements to the commentary sections.

• Separate version numbers for each chapter.

• Modification to long instruction encodings >64 bits to avoid moving the rd specifier in very
long instruction formats.

• CSR instructions are now described in the base integer format where the counter registers
are introduced, as opposed to only being introduced later in the floating-point section (and
the companion privileged architecture manual).

• The SCALL and SBREAK instructions have been renamed to ECALL and EBREAK, re-
spectively. Their encoding and functionality are unchanged.

• Clarification of floating-point NaN handling, and a new canonical NaN value.

• Clarification of values returned by floating-point to integer conversions that overflow.

• Clarification of LR/SC allowed successes and required failures, including use of compressed
instructions in the sequence.

• A new RV32E base ISA proposal for reduced integer register counts.

• A revised calling convention.

• Relaxed stack alignment for soft-float calling convention, and description of the RV32E calling
convention.

• A revised proposal for the C compressed extension, version 1.9.

Preface to Version 2.0

This is the second release of the user ISA specification, and we intend the specification of the
base user ISA plus general extensions (i.e., IMAFD) to remain fixed for future development. The
following changes have been made since Version 1.0 [29] of this ISA specification.

• The ISA has been divided into an integer base with several standard extensions.

• The instruction formats have been rearranged to make immediate encoding more efficient.

• The base ISA has been defined to have a little-endian memory system, with big-endian or
bi-endian as non-standard variants.

i



ii Volume I: RISC-V User-Level ISA V2.1

• Load-Reserved/Store-Conditional (LR/SC) instructions have been added in the atomic in-
struction extension.

• AMOs and LR/SC can support the release consistency model.

• The FENCE instruction provides finer-grain memory and I/O orderings.

• An AMO for fetch-and-XOR (AMOXOR) has been added, and the encoding for AMOSWAP
has been changed to make room.

• The AUIPC instruction, which adds a 20-bit upper immediate to the PC, replaces the RDNPC
instruction, which only read the current PC value. This results in significant savings for
position-independent code.

• The JAL instruction has now moved to the U-Type format with an explicit destination
register, and the J instruction has been dropped being replaced by JAL with rd=x0. This
removes the only instruction with an implicit destination register and removes the J-Type
instruction format from the base ISA. There is an accompanying reduction in JAL reach, but
a significant reduction in base ISA complexity.

• The static hints on the JALR instruction have been dropped. The hints are redundant with
the rd and rs1 register specifiers for code compliant with the standard calling convention.

• The JALR instruction now clears the lowest bit of the calculated target address, to simplify
hardware and to allow auxiliary information to be stored in function pointers.

• The MFTX.S and MFTX.D instructions have been renamed to FMV.X.S and FMV.X.D,
respectively. Similarly, MXTF.S and MXTF.D instructions have been renamed to FMV.S.X
and FMV.D.X, respectively.

• The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respec-
tively. FRRM, FSRM, FRFLAGS, and FSFLAGS instructions have been added to individu-
ally access the rounding mode and exception flags subfields of the fcsr.

• The FMV.X.S and FMV.X.D instructions now source their operands from rs1, instead of rs2.
This change simplifies datapath design.

• FCLASS.S and FCLASS.D floating-point classify instructions have been added.

• A simpler NaN generation and propagation scheme has been adopted.

• For RV32I, the system performance counters have been extended to 64-bits wide, with separate
read access to the upper and lower 32 bits.

• Canonical NOP and MV encodings have been defined.

• Standard instruction-length encodings have been defined for 48-bit, 64-bit, and >64-bit in-
structions.

• Description of a 128-bit address space variant, RV128, has been added.

• Major opcodes in the 32-bit base instruction format have been allocated for user-defined
custom extensions.

• A typographical error that suggested that stores source their data from rd has been corrected
to refer to rs2.
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Chapter 1

Introduction

RISC-V (pronounced “risk-five”) is a new instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, but which we now hope will
also become a standard free and open architecture for industry implementations. Our goals in
defining RISC-V include:

• A completely open ISA that is freely available to academia and industry.

• A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

• An ISA that avoids “over-architecting” for a particular microarchitecture style (e.g., mi-
crocoded, in-order, decoupled, out-of-order) or implementation technology (e.g., full-custom,
ASIC, FPGA), but which allows efficient implementation in any of these.

• An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

• Support for the revised 2008 IEEE-754 floating-point standard [10].

• An ISA supporting extensive user-level ISA extensions and specialized variants.

• Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

• An ISA with support for highly-parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

• Optional variable-length instructions to both expand available instruction encoding space and
to support an optional dense instruction encoding for improved performance, static code size,
and energy efficiency.

• A fully virtualizable ISA to ease hypervisor development.

• An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA de-
signs.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

The name RISC-V was chosen to represent the fifth major RISC ISA design from UC Berkeley
(RISC-I [18], RISC-II [11], SOAR [27], and SPUR [14] were the first four). We also pun on the

1



2 Volume I: RISC-V User-Level ISA V2.1

use of the Roman numeral “V” to signify “variations” and “vectors”, as support for a range of
architecture research, including various data-parallel accelerators, is an explicit goal of the ISA
design.

We developed RISC-V to support our own needs in research and education, where our group is
particularly interested in actual hardware implementations of research ideas (we have completed
eleven different silicon fabrications of RISC-V since the first edition of this specification), and
in providing real implementations for students to explore in classes (RISC-V processor RTL de-
signs have been used in multiple undergraduate and graduate classes at Berkeley). In our current
research, we are especially interested in the move towards specialized and heterogeneous accel-
erators, driven by the power constraints imposed by the end of conventional transistor scaling.
We wanted a highly flexible and extensible base ISA around which to build our research effort.

A question we have been repeatedly asked is “Why develop a new ISA?” The biggest obvious
benefit of using an existing commercial ISA is the large and widely supported software ecosystem,
both development tools and ported applications, which can be leveraged in research and teaching.
Other benefits include the existence of large amounts of documentation and tutorial examples.
However, our experience of using commercial instruction sets for research and teaching is that
these benefits are smaller in practice, and do not outweigh the disadvantages:

• Commercial ISAs are proprietary. Except for SPARC V8, which is an open IEEE
standard [1], most owners of commercial ISAs carefully guard their intellectual property
and do not welcome freely available competitive implementations. This is much less of an
issue for academic research and teaching using only software simulators, but has been a
major concern for groups wishing to share actual RTL implementations. It is also a major
concern for entities who do not want to trust the few sources of commercial ISA imple-
mentations, but who are prohibited from creating their own clean room implementations.
We cannot guarantee that all RISC-V implementations will be free of third-party patent
infringements, but we can guarantee we will not attempt to sue a RISC-V implementor.

• Commercial ISAs are only popular in certain market domains. The most obvious
examples at time of writing are that the ARM architecture is not well supported in the server
space, and the Intel x86 architecture (or for that matter, almost every other architecture)
is not well supported in the mobile space, though both Intel and ARM are attempting to
enter each other’s market segments. Another example is ARC and Tensilica, which provide
extensible cores but are focused on the embedded space. This market segmentation dilutes
the benefit of supporting a particular commercial ISA as in practice the software ecosystem
only exists for certain domains, and has to be built for others.

• Commercial ISAs come and go. Previous research infrastructures have been built
around commercial ISAs that are no longer popular (SPARC, MIPS) or even no longer
in production (Alpha). These lose the benefit of an active software ecosystem, and the
lingering intellectual property issues around the ISA and supporting tools interfere with the
ability of interested third parties to continue supporting the ISA. An open ISA might also
lose popularity, but any interested party can continue using and developing the ecosystem.

• Popular commercial ISAs are complex. The dominant commercial ISAs (x86 and
ARM) are both very complex to implement in hardware to the level of supporting common
software stacks and operating systems. Worse, nearly all the complexity is due to bad, or
at least outdated, ISA design decisions rather than features that truly improve efficiency.

• Commercial ISAs alone are not enough to bring up applications. Even if we
expend the effort to implement a commercial ISA, this is not enough to run existing appli-
cations for that ISA. Most applications need a complete ABI (application binary interface)
to run, not just the user-level ISA. Most ABIs rely on libraries, which in turn rely on
operating system support. To run an existing operating system requires implementing the
supervisor-level ISA and device interfaces expected by the OS. These are usually much less
well-specified and considerably more complex to implement than the user-level ISA.
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• Popular commercial ISAs were not designed for extensibility. The dominant
commercial ISAs were not particularly designed for extensibility, and as a consequence have
added considerable instruction encoding complexity as their instruction sets have grown.
Companies such as Tensilica (acquired by Cadence) and ARC (acquired by Synopsys) have
built ISAs and toolchains around extensibility, but have focused on embedded applications
rather than general-purpose computing systems.

• A modified commercial ISA is a new ISA. One of our main goals is to support ar-
chitecture research, including major ISA extensions. Even small extensions diminish the
benefit of using a standard ISA, as compilers have to be modified and applications rebuilt
from source code to use the extension. Larger extensions that introduce new architectural
state also require modifications to the operating system. Ultimately, the modified commer-
cial ISA becomes a new ISA, but carries along all the legacy baggage of the base ISA.

Our position is that the ISA is perhaps the most important interface in a computing system,
and there is no reason that such an important interface should be proprietary. The dominant
commercial ISAs are based on instruction set concepts that were already well known over 30
years ago. Software developers should be able to target an open standard hardware target, and
commercial processor designers should compete on implementation quality.

We are far from the first to contemplate an open ISA design suitable for hardware imple-
mentation. We also considered other existing open ISA designs, of which the closest to our
goals was the OpenRISC architecture [17]. We decided against adopting the OpenRISC ISA for
several technical reasons:

• OpenRISC has condition codes and branch delay slots, which complicate higher performance
implementations.

• OpenRISC uses a fixed 32-bit encoding and 16-bit immediates, which precludes a denser
instruction encoding and limits space for later expansion of the ISA.

• OpenRISC does not support the 2008 revision to the IEEE 754 floating-point standard.

• The OpenRISC 64-bit design had not been completed when we began.

By starting from a clean slate, we could design an ISA that met all of our goals, though of
course, this took far more effort than we had planned at the outset. We have now invested con-
siderable effort in building up the RISC-V ISA infrastructure, including documentation, compiler
tool chains, operating system ports, reference ISA simulators, FPGA implementations, efficient
ASIC implementations, architecture test suites, and teaching materials. Since the last edition of
this manual, there has been considerable uptake of the RISC-V ISA in both academia and indus-
try, and we have created the non-profit RISC-V Foundation to protect and promote the standard.
The RISC-V Foundation website at http: // riscv. org contains the latest information on the
Foundation membership and various open-source projects using RISC-V.

The RISC-V manual is structured in two volumes. This volume covers the user-level ISA design,
including optional ISA extensions. The second volume provides the privileged architecture.

In this user-level manual, we aim to remove any dependence on particular microarchitectural
features or on privileged architecture details. This is both for clarity and to allow maximum
flexibility for alternative implementations.

1.1 RISC-V ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in any implementation,
plus optional extensions to the base ISA. The base integer ISA is very similar to that of the early

http://riscv.org
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RISC processors except with no branch delay slots and with support for optional variable-length
instruction encodings. The base is carefully restricted to a minimal set of instructions sufficient
to provide a reasonable target for compilers, assemblers, linkers, and operating systems (with
additional supervisor-level operations), and so provides a convenient ISA and software toolchain
“skeleton” around which more customized processor ISAs can be built.

Each base integer instruction set is characterized by the width of the integer registers and the
corresponding size of the user address space. There are two primary base integer variants, RV32I
and RV64I, described in Chapters 2 and 4, which provide 32-bit or 64-bit user-level address spaces
respectively. Hardware implementations and operating systems might provide only one or both of
RV32I and RV64I for user programs. Chapter 3 describes the RV32E subset variant of the RV32I
base instruction set, which has been added to support small microcontrollers. Chapter 19 describes
a future RV128I variant of the base integer instruction set supporting a flat 128-bit user address
space.

Although 64-bit address spaces are a requirement for larger systems, we believe 32-bit address
spaces will remain adequate for many embedded and client devices for decades to come and will
be desirable to lower memory traffic and energy consumption. In addition, 32-bit address spaces
are sufficient for educational purposes. A larger flat 128-bit address space might eventually be
required, so we ensured this could be accommodated within the RISC-V ISA framework.

The base integer ISA may be subset by a hardware implementation, but opcode traps and software
emulation by a more privileged layer must then be used to implement functionality not provided
by hardware.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the base has been
defined such that there should be little incentive to subset a real hardware implementation beyond
omitting support for misaligned memory accesses and treating all SYSTEM instructions as a
single trap.

RISC-V has been designed to support extensive customization and specialization. The base integer
ISA can be extended with one or more optional instruction-set extensions, but the base integer
instructions cannot be redefined. We divide RISC-V instruction-set extensions into standard and
non-standard extensions. Standard extensions should be generally useful and should not conflict
with other standard extensions. Non-standard extensions may be highly specialized, or may conflict
with other standard or non-standard extensions. Instruction-set extensions may provide slightly
different functionality depending on the width of the base integer instruction set. Chapter 10
describes various ways of extending the RISC-V ISA. We have also developed a naming convention
for RISC-V base instructions and instruction-set extensions, described in detail in Chapter 11.

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arith-
metic. The base integer ISA is named “I” (prefixed by RV32 or RV64 depending on integer reg-
ister width), and contains integer computational instructions, integer loads, integer stores, and
control-flow instructions, and is mandatory for all RISC-V implementations. The standard integer
multiplication and division extension is named “M”, and adds instructions to multiply and divide
values held in the integer registers. The standard atomic instruction extension, denoted by “A”,
adds instructions that atomically read, modify, and write memory for inter-processor synchroniza-
tion. The standard single-precision floating-point extension, denoted by “F”, adds floating-point
registers, single-precision computational instructions, and single-precision loads and stores. The
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standard double-precision floating-point extension, denoted by “D”, expands the floating-point
registers, and adds double-precision computational instructions, loads, and stores. An integer base
plus these four standard extensions (“IMAFD”) is given the abbreviation “G” and provides a
general-purpose scalar instruction set. RV32G and RV64G are currently the default target of our
compiler toolchains. Later chapters describe these and other planned standard RISC-V extensions.

Beyond the base integer ISA and the standard extensions, it is rare that a new instruction will
provide a significant benefit for all applications, although it may be very beneficial for a certain
domain. As energy efficiency concerns are forcing greater specialization, we believe it is important to
simplify the required portion of an ISA specification. Whereas other architectures usually treat their
ISA as a single entity, which changes to a new version as instructions are added over time, RISC-V
will endeavor to keep the base and each standard extension constant over time, and instead layer
new instructions as further optional extensions. For example, the base integer ISAs will continue
as fully supported standalone ISAs, regardless of any subsequent extensions.

With the 2.0 release of the user ISA specification, we intend the “RV32IMAFD” and
“RV64IMAFD”base and standard extensions (aka. “RV32G” and “RV64G”) to remain con-
stant for future development.

1.2 Instruction Length Encoding

The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed
ISA extension described in Chapter 14 reduces code size by providing compressed 16-bit instructions
and relaxes the alignment constraints to allow all instructions (16 bit and 32 bit) to be aligned on
any 16-bit boundary to improve code density.

Figure 1.1 illustrates the standard RISC-V instruction-length encoding convention. All the 32-bit
instructions in the base ISA have their lowest two bits set to 11. The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to 00, 01, or 10. Standard instruction-
set extensions encoded with more than 32 bits have additional low-order bits set to 1, with the
conventions for 48-bit and 64-bit lengths shown in Figure 1.1. Instruction lengths between 80 bits
and 176 bits are encoded using a 3-bit field in bits [14:12] giving the number of 16-bit words in
addition to the first 5×16-bit words. The encoding with bits [14:12] set to 111 is reserved for future
longer instruction encodings.

Given the code size and energy savings of a compressed format, we wanted to build in support
for a compressed format to the ISA encoding scheme rather than adding this as an afterthought,
but to allow simpler implementations we didn’t want to make the compressed format mandatory.
We also wanted to optionally allow longer instructions to support experimentation and larger
instruction-set extensions. Although our encoding convention required a tighter encoding of the
core RISC-V ISA, this has several beneficial effects.

An implementation of the standard G ISA need only hold the most-significant 30 bits in
instruction caches (a 6.25% saving). On instruction cache refills, any instructions encountered
with either low bit clear should be recoded into illegal 30-bit instructions before storing in the
cache to preserve illegal instruction exception behavior.
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Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit instruc-
tion word, we leave more space available for custom extensions. In particular, the base RV32I
ISA uses less than 1/8 of the encoding space in the 32-bit instruction word. As described in
Chapter 10, an implementation that does not require support for the standard compressed in-
struction extension can map 3 additional 30-bit instruction spaces into the 32-bit fixed-width
format, while preserving support for standard >=32-bit instruction-set extensions. Further, if
the implementation also does not need instructions >32-bits in length, it can recover a further
four major opcodes.

We consider it a feature that any length of instruction containing all zero bits is not legal, as
this quickly traps erroneous jumps into zeroed memory regions. Similarly, we also reserve the
instruction encoding containing all ones to be an illegal instruction, to catch the other common
pattern observed with disconnected memory buses, or broken memory devices.

The base RISC-V ISA has a little-endian memory system, but non-standard variants can provide
a big-endian or bi-endian memory system. Instructions are stored in memory with each 16-bit
parcel stored in a memory halfword according to the implementation’s natural endianness. Parcels
comprising one instruction are stored at increasing halfword addresses, with the lowest addressed
parcel holding the lowest numbered bits in the instruction specification, i.e., instructions are always
stored in a little-endian sequence of parcels regardless of the memory system endianness. The code
sequence in Figure 1.2 will store a 32-bit instruction to memory correctly regardless of memory
system endianness.

We chose little-endian byte ordering for the RISC-V memory system because little-endian sys-
tems are currently dominant commercially (all x86 systems; iOS, Android, and Windows for
ARM). A minor point is that we have also found little-endian memory systems to be more nat-
ural for hardware designers. However, certain application areas, such as IP networking, operate
on big-endian data structures, and so we leave open the possibility of non-standard big-endian
or bi-endian systems.

We have to fix the order in which instruction parcels are stored in memory, independent
of memory system endianness, to ensure that the length-encoding bits always appear first in
halfword address order. This allows the length of a variable-length instruction to be quickly
determined by an instruction fetch unit by examining only the first few bits of the first 16-bit
instruction parcel. Once we had decided to fix on a little-endian memory system and instruction
parcel ordering, this naturally led to placing the length-encoding bits in the LSB positions of the
instruction format to avoid breaking up opcode fields.

1.3 Exceptions, Traps, and Interrupts

We use the term exception to refer to an unusual condition occurring at run time associated with
an instruction in the current RISC-V thread. We use the term trap to refer to the synchronous
transfer of control to a trap handler caused by an exceptional condition occurring within a RISC-V
thread. Trap handlers usually execute in a more privileged environment.

We use the term interrupt to refer to an external event that occurs asynchronously to the current
RISC-V thread. When an interrupt that must be serviced occurs, some instruction is selected to
receive an interrupt exception and subsequently experiences a trap.

The instruction descriptions in following chapters describe conditions that raise an exception dur-
ing execution. Whether and how these are converted into traps is dependent on the execution
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environment, though the expectation is that most environments will take a precise trap when an
exception is signaled (except for floating-point exceptions, which, in the standard floating-point
extensions, do not cause traps).

Our use of “exception” and “trap” matches that in the IEEE-754 floating-point standard.
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xxxxxxxxxxxxxxaa 16-bit (aa 6= 11)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (bbb 6= 111)

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

· · ·xxxx xxxxxxxxxxxxxxxx xnnnxxxxx1111111 (80+16*nnn)-bit, nnn 6=111

· · ·xxxx xxxxxxxxxxxxxxxx x111xxxxx1111111 Reserved for ≥192-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding.

// Store 32-bit instruction in x2 register to location pointed to by x3.

sh x2, 0(x3) // Store low bits of instruction in first parcel.

srli x2, x2, 16 // Move high bits down to low bits, overwriting x2.

sh x2, 2(x3) // Store high bits in second parcel.

Figure 1.2: Recommended code sequence to store 32-bit instruction from register to memory.
Operates correctly on both big- and little-endian memory systems and avoids misaligned accesses
when used with variable-length instruction-set extensions.



Chapter 2

RV32I Base Integer Instruction Set,
Version 2.0

This chapter describes version 2.0 of the RV32I base integer instruction set. Much of the commen-
tary also applies to the RV64I variant.

RV32I was designed to be sufficient to form a compiler target and to support modern operating
system environments. The ISA was also designed to reduce the hardware required in a mini-
mal implementation. RV32I contains 47 unique instructions, though a simple implementation
might cover the eight SCALL/SBREAK/CSRR* instructions with a single SYSTEM hardware
instruction that always traps and might be able to implement the FENCE and FENCE.I in-
structions as NOPs, reducing hardware instruction count to 38 total. RV32I can emulate almost
any other ISA extension (except the A extension, which requires additional hardware support for
atomicity).

2.1 Programmers’ Model for Base Integer Subset

Figure 2.1 shows the user-visible state for the base integer subset. There are 31 general-purpose
registers x1–x31, which hold integer values. Register x0 is hardwired to the constant 0. There is
no hardwired subroutine return address link register, but the standard software calling convention
uses register x1 to hold the return address on a call. For RV32, the x registers are 32 bits wide,
and for RV64, they are 64 bits wide. This document uses the term XLEN to refer to the current
width of an x register in bits (either 32 or 64).

There is one additional user-visible register: the program counter pc holds the address of the current
instruction.

The number of available architectural registers can have large impacts on code size, performance,
and energy consumption. Although 16 registers would arguably be sufficient for an integer ISA
running compiled code, it is impossible to encode a complete ISA with 16 registers in 16-bit
instructions using a 3-address format. Although a 2-address format would be possible, it would
increase instruction count and lower efficiency. We wanted to avoid intermediate instruction
sizes (such as Xtensa’s 24-bit instructions) to simplify base hardware implementations, and once

9
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a 32-bit instruction size was adopted, it was straightforward to support 32 integer registers. A
larger number of integer registers also helps performance on high-performance code, where there
can be extensive use of loop unrolling, software pipelining, and cache tiling.

For these reasons, we chose a conventional size of 32 integer registers for the base ISA. Dy-
namic register usage tends to be dominated by a few frequently accessed registers, and regfile im-
plementations can be optimized to reduce access energy for the frequently accessed registers [26].
The optional compressed 16-bit instruction format mostly only accesses 8 registers and hence can
provide a dense instruction encoding, while additional instruction-set extensions could support
a much larger register space (either flat or hierarchical) if desired.

For resource-constrained embedded applications, we have defined the RV32E subset, which
only has 16 registers (Chapter 3).

XLEN-1 0

x0 / zero

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29
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x31

XLEN
XLEN-1 0

pc

XLEN

Figure 2.1: RISC-V user-level base integer register state.



Copyright © 2010–2016, The Regents of the University of California. All rights reserved. 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated on a taken branch or unconditional jump if the target
address is not four-byte aligned. No instruction fetch misaligned exception is generated for a
conditional branch that is not taken.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Immediates are packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [14]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions. In addition,
these immediates are all sign-extended. We did not observe a benefit to using zero-extension for
some immediates and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (SB/UJ) based on the handling of
immediates, as shown in Figure 2.3.

In Figure 2.3 each immediate subfield is labeled with the bit position (imm[x ]) in the immediate
value being produced, rather than the bit position within the instruction’s immediate field as is
usually done. Figure 2.4 shows the immediates produced by each of the base instruction formats,
and is labeled to show which instruction bit (inst[y ]) produces each bit of the immediate value.

The only difference between the S and SB formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the SB format. Instead of shifting all bits in the instruction-
encoded immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1])
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode SB-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode UJ-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

and sign bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order
bit in SB format.

Similarly, the only difference between the U and UJ formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and UJ format immediates is chosen to maximize overlap with the other formats and
with each other.

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across
types of instruction, we wanted to reduce the hardware cost of the simplest implementations. By
rotating bits in the instruction encoding of B and J immediates instead of using dynamic hard-
ware muxes to multiply the immediate by 2, we reduce instruction signal fanout and immediate
mux costs by around a factor of 2. The scrambled immediate encoding will add negligible time
to static or ahead-of-time compilation. For dynamic generation of instructions, there is some
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small additional overhead, but the most common short forward branches have straightforward
immediate encodings.

2.4 Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register
file. Integer computational instructions are either encoded as register-immediate operations using
the I-type format or as register-register operations using the R-type format. The destination is
register rd for both register-immediate and register-register instructions. No integer computational
instructions cause arithmetic exceptions.

We did not include special instruction set support for overflow checks on integer arithmetic
operations, as many overflow checks can be cheaply implemented using RISC-V branches. Over-
flow checking for unsigned addition requires only a single additional branch instruction after
the addition. Similarly, signed array bounds checking requires only a single branch instruction.
Overflow checks for signed addition require several instructions depending on whether the ad-
dend is an immediate or a variable. We considered adding branches that test if the sum of their
signed register operands would overflow, but ultimately chose to omit these from the base ISA.

Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and
the result is simply the low XLEN bits of the result. ADDI rd, rs1, 0 is used to implement the MV
rd, rs1 assembler pseudo-instruction.

SLTI (set less than immediate) places the value 1 in register rd if register rs1 is less than the sign-
extended immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU is
similar but compares the values as unsigned numbers (i.e., the immediate is first sign-extended to
XLEN bits then treated as an unsigned number). Note, SLTIU rd, rs1, 1 sets rd to 1 if rs1 equals
zero, otherwise sets rd to 0 (assembler pseudo-op SEQZ rd, rs).

ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR on register rs1
and the sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs1, -1 performs
a bitwise logical inversion of register rs1 (assembler pseudo-instruction NOT rd, rs).

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] imm[4:0] rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 shamt[4:0] src SLLI dest OP-IMM
0000000 shamt[4:0] src SRLI dest OP-IMM
0100000 shamt[4:0] src SRAI dest OP-IMM
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Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted
is in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field. The right
shift type is encoded in a high bit of the I-immediate. SLLI is a logical left shift (zeros are shifted
into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper bits); and SRAI
is an arithmetic right shift (the original sign bit is copied into the vacated upper bits).

31 12 11 7 6 0

imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI
places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest
12 bits with zeros.

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with
zeros, adds this offset to the pc, then places the result in register rd.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets from the
PC for both control-flow transfers and data accesses. The combination of an AUIPC and the
12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address, while an
AUIPC plus the 12-bit immediate offset in regular load or store instructions can access any
32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to 0. Although a JAL +4
instruction could also be used to obtain the PC, it might cause pipeline breaks in simpler mi-
croarchitectures or pollute the BTB structures in more complex microarchitectures.

Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers
as source operands and write the result into register rd. The funct7 and funct3 fields select the
type of operation.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 src2 src1 ADD/SLT/SLTU dest OP
0000000 src2 src1 AND/OR/XOR dest OP
0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SUB/SRA dest OP

ADD and SUB perform addition and subtraction respectively. Overflows are ignored and the low
XLEN bits of results are written to the destination. SLT and SLTU perform signed and unsigned
compares respectively, writing 1 to rd if rs1 < rs2, 0 otherwise. Note, SLTU rd, x0, rs2 sets rd to 1
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if rs2 is not equal to zero, otherwise sets rd to zero (assembler pseudo-op SNEZ rd, rs). AND, OR,
and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in
register rs1 by the shift amount held in the lower 5 bits of register rs2.

NOP Instruction

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
0 0 ADDI 0 OP-IMM

The NOP instruction does not change any user-visible state, except for advancing the pc. NOP is
encoded as ADDI x0, x0, 0.

NOPs can be used to align code segments to microarchitecturally significant address boundaries,
or to leave space for inline code modifications. Although there are many possible ways to encode
a NOP, we define a canonical NOP encoding to allow microarchitectural optimizations as well
as for more readable disassembly output.

2.5 Control Transfer Instructions

RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

Unconditional Jumps

The jump and link (JAL) instruction uses the UJ-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the pc to form the
jump target address. Jumps can therefore target a ±1 MiB range. JAL stores the address of the
instruction following the jump (pc+4) into register rd. The standard software calling convention
uses x1 as the return address register.

Plain unconditional jumps (assembler pseudo-op J) are encoded as a JAL with rd=x0.

31 30 21 20 19 12 11 7 6 0

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

1 10 1 8 5 7
offset[20:1] dest JAL

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the 12-bit signed I-immediate to the register rs1, then setting the
least-significant bit of the result to zero. The address of the instruction following the jump (pc+4)
is written to register rd. Register x0 can be used as the destination if the result is not required.
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31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base 0 dest JALR

The JAL and JALR instructions can generate a misaligned instruction fetch exception if the target
address is not aligned to a four-byte boundary.

The unconditional jump instructions all use PC-relative addressing to help support position-
independent code. The JALR instruction was defined to enable a two-instruction sequence to
jump anywhere in a 32-bit absolute address range. A LUI instruction can first load rs1 with the
upper 20 bits of a target address, then JALR can add in the lower bits. Similarly, AUIPC then
JALR can jump anywhere in a 32-bit pc-relative address range.

Note that the JALR instruction does not treat the 12-bit immediate as multiples of 2 bytes,
unlike the conditional branch instructions. This avoids one more immediate format in hardware.
In practice, most uses of JALR will have either a zero immediate or be paired with a LUI or
AUIPC, so the slight reduction in range is not significant.

The JALR instruction ignores the lowest bit of the calculated target address. This both
simplifies the hardware slightly and allows the low bit of function pointers to be used to store
auxiliary information. Although there is potentially a slight loss of error checking in this case,
in practice jumps to an incorrect instruction address will usually quickly raise an exception.

Instruction fetch misaligned exceptions are not possible on machines that support extensions
with 16-bit aligned instructions, such as the compressed instruction set extension, C.

Return-address prediction stacks are a common feature of high-performance instruction-fetch
units. We note that rd and rs1 can be used to guide an implementation’s instruction-fetch pre-
diction logic, indicating whether JALR instructions should push (rd=x1), pop (rd=x0, rs1=x1),
or not touch (otherwise) a return-address stack. Similarly, a JAL instruction should push the
return address onto the return-address stack only when rd=x1.

When used with a base rs1=x0, JALR can be used to implement a single instruction sub-
routine call to the lowest 2 KiB or highest 2 KiB address region from anywhere in the address
space, which could be used to implement fast calls to a small runtime library.

Conditional Branches

All branch instructions use the SB-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2, and is added to the current pc to give the target address. The conditional
branch range is ±4 KiB.

31 30 25 24 20 19 15 14 12 11 8 7 6 0

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

1 6 5 5 3 4 1 7
offset[12,10:5] src2 src1 BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 src1 BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 src1 BGE[U] offset[11,4:1] BRANCH

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs1 and rs2
are equal or unequal respectively. BLT and BLTU take the branch if rs1 is less than rs2, using
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signed and unsigned comparison respectively. BGE and BGEU take the branch if rs1 is greater
than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU,
BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU,
respectively.

Software should be optimized such that the sequential code path is the most common path, with
less-frequently taken code paths placed out of line. Software should also assume that backward
branches will be predicted taken and forward branches as not taken, at least the first time they are
encountered. Dynamic predictors should quickly learn any predictable branch behavior.

Unlike some other architectures, the RISC-V jump (JAL with rd=x0) instruction should always
be used for unconditional branches instead of a conditional branch instruction with an always-
true condition. RISC-V jumps are also PC-relative and support a much wider offset range than
branches, and will not pressure conditional branch prediction tables.

The conditional branches were designed to include arithmetic comparison operations between
two registers (as also done in PA-RISC and Xtensa ISA), rather than use condition codes (x86,
ARM, SPARC, PowerPC), or to only compare one register against zero (Alpha, MIPS), or
two registers only for equality (MIPS). This design was motivated by the observation that a
combined compare-and-branch instruction fits into a regular pipeline, avoids additional condition
code state or use of a temporary register, and reduces static code size and dynamic instruction
fetch traffic. Another point is that comparisons against zero require non-trivial circuit delay
(especially after the move to static logic in advanced processes) and so are almost as expensive as
arithmetic magnitude compares. Another advantage of a fused compare-and-branch instruction
is that branches are observed earlier in the front-end instruction stream, and so can be predicted
earlier. There is perhaps an advantage to a design with condition codes in the case where multiple
branches can be taken based on the same condition codes, but we believe this case to be relatively
rare.

We considered but did not include static branch hints in the instruction encoding. These
can reduce the pressure on dynamic predictors, but require more instruction encoding space and
software profiling for best results, and can result in poor performance if production runs do not
match profiling runs.

We considered but did not include conditional moves or predicated instructions, which can
effectively replace unpredictable short forward branches. Conditional moves are the simpler of
the two, but are difficult to use with conditional code that might cause exceptions (memory
accesses and floating-point operations). Predication adds additional flag state to a system, addi-
tional instructions to set and clear flags, and additional encoding overhead on every instruction.
Both conditional move and predicated instructions add complexity to out-of-order microarchitec-
tures, adding an implicit third source operand due to the need to copy the original value of the
destination architectural register into the renamed destination physical register if the predicate
is false. Also, static compile-time decisions to use predication instead of branches can result
in lower performance on inputs not included in the compiler training set, especially given that
unpredictable branches are rare, and becoming rarer as branch prediction techniques improve.

We note that various microarchitectural techniques exist to dynamically convert unpredictable
short forward branches into internally predicated code to avoid the cost of flushing pipelines
on a branch mispredict [9, 13, 12] and have been implemented in commercial processors [22].
The simplest techniques just reduce the penalty of recovering from a mispredicted short forward
branch by only flushing instructions in the branch shadow instead of the entire fetch pipeline,
or by fetching instructions from both sides using wide instruction fetch or idle instruction fetch
slots. More complex techniques for out-of-order cores add internal predicates on instructions in
the branch shadow, with the internal predicate value written by the branch instruction, allowing
the branch and following instructions to be executed speculatively and out-of-order with respect
to other code [22].
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2.6 Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit user address space
that is byte-addressed and little-endian. The execution environment will define what portions of
the address space are legal to access.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

Load and store instructions transfer a value between the registers and memory. Loads are encoded
in the I-type format and stores are S-type. The effective byte address is obtained by adding register
rs1 to the sign-extended 12-bit offset. Loads copy a value from memory to register rd. Stores copy
the value in register rs2 to memory.

The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit value from memory,
then sign-extends to 32-bits before storing in rd. LHU loads a 16-bit value from memory but then
zero extends to 32-bits before storing in rd. LB and LBU are defined analogously for 8-bit values.
The SW, SH, and SB instructions store 32-bit, 16-bit, and 8-bit values from the low bits of register
rs2 to memory.

For best performance, the effective address for all loads and stores should be naturally aligned
for each data type (i.e., on a four-byte boundary for 32-bit accesses, and a two-byte boundary for
16-bit accesses). The base ISA supports misaligned accesses, but these might run extremely slowly
depending on the implementation. Furthermore, naturally aligned loads and stores are guaranteed
to execute atomically, whereas misaligned loads and stores might not, and hence require additional
synchronization to ensure atomicity.

Misaligned accesses are occasionally required when porting legacy code, and are essential for good
performance on many applications when using any form of packed-SIMD extension. Our ratio-
nale for supporting misaligned accesses via the regular load and store instructions is to simplify
the addition of misaligned hardware support. One option would have been to disallow misaligned
accesses in the base ISA and then provide some separate ISA support for misaligned accesses,
either special instructions to help software handle misaligned accesses or a new hardware address-
ing mode for misaligned accesses. Special instructions are difficult to use, complicate the ISA,
and often add new processor state (e.g., SPARC VIS align address offset register) or complicate
access to existing processor state (e.g., MIPS LWL/LWR partial register writes). In addition,
for loop-oriented packed-SIMD code, the extra overhead when operands are misaligned motivates
software to provide multiple forms of loop depending on operand alignment, which complicates
code generation and adds to loop startup overhead. New misaligned hardware addressing modes
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take considerable space in the instruction encoding or require very simplified addressing modes
(e.g., register indirect only).

We do not mandate atomicity for misaligned accesses so simple implementations can just
use a machine trap and software handler to handle misaligned accesses. If hardware misaligned
support is provided, software can exploit this by simply using regular load and store instructions.
Hardware can then automatically optimize accesses depending on whether runtime addresses are
aligned.

2.7 Memory Model

The base RISC-V ISA supports multiple concurrent threads of execution within a single user address
space. Each RISC-V thread has its own user register state and program counter, and executes an
independent sequential instruction stream. The execution environment will define how RISC-V
threads are created and managed. RISC-V threads can communicate and synchronize with other
threads either via calls to the execution environment, which are documented separately in the
specification for each execution environment, or directly via the shared memory system. RISC-V
threads can also interact with I/O devices, and indirectly with each other, via loads and stores to
portions of the address space assigned to I/O.

In the base RISC-V ISA, each RISC-V thread observes its own memory operations as if they
executed sequentially in program order. RISC-V has a relaxed memory model between threads,
requiring an explicit FENCE instruction to guarantee any specific ordering between memory oper-
ations from different RISC-V threads. Chapter 6 describes the optional atomic memory instruction
extensions “A”, which provide additional synchronization operations.

31 28 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0

0 PI PO PR PW SI SO SR SW rs1 funct3 rd opcode

4 1 1 1 1 1 1 1 1 5 3 5 7
0 predecessor successor 0 FENCE 0 MISC-MEM

The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-
V threads and external devices or coprocessors. Any combination of device input (I), device output
(O), memory reads (R), and memory writes (W) may be ordered with respect to any combination
of the same. Informally, no other RISC-V thread or external device can observe any operation
in the successor set following a FENCE before any operation in the predecessor set preceding the
FENCE. The execution environment will define what I/O operations are possible, and in particular,
which load and store instructions might be treated and ordered as device input and device output
operations respectively rather than memory reads and writes. For example, memory-mapped I/O
devices will typically be accessed with uncached loads and stores that are ordered using the I and O
bits rather than the R and W bits. Instruction-set extensions might also describe new coprocessor
I/O instructions that will also be ordered using the I and O bits in a FENCE.

The unused fields in the FENCE instruction, imm[11:8], rs1, and rd, are reserved for finer-grain
fences in future extensions. For forward compatibility, base implementations shall ignore these
fields, and standard software shall zero these fields.
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We chose a relaxed memory model to allow high performance from simple machine implementa-
tions. A relaxed memory model is also most compatible with likely future coprocessor or accelera-
tor extensions. We separate out I/O ordering from memory R/W ordering to avoid unnecessary
serialization within a device-driver thread and also to support alternative non-memory paths to
control added coprocessors or I/O devices. Simple implementations may additionally ignore the
predecessor and successor fields and always execute a conservative fence on all operations.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
0 0 FENCE.I 0 MISC-MEM

The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does
not guarantee that stores to instruction memory will be made visible to instruction fetches on
the same RISC-V thread until a FENCE.I instruction is executed. A FENCE.I instruction only
ensures that a subsequent instruction fetch on a RISC-V thread will see any previous data stores
already visible to the same RISC-V thread. FENCE.I does not ensure that other RISC-V threads’
instruction fetches will observe the local thread’s stores in a multiprocessor system. To make a
store to instruction memory visible to all RISC-V threads, the writing thread has to execute a data
FENCE before requesting that all remote RISC-V threads execute a FENCE.I.

The unused fields in the FENCE.I instruction, imm[11:0], rs1, and rd, are reserved for finer-grain
fences in future extensions. For forward compatibility, base implementations shall ignore these
fields, and standard software shall zero these fields.

The FENCE.I instruction was designed to support a wide variety of implementations. A sim-
ple implementation can flush the local instruction cache and the instruction pipeline when the
FENCE.I is executed. A more complex implementation might snoop the instruction (data) cache
on every data (instruction) cache miss, or use an inclusive unified private L2 cache to invalidate
lines from the primary instruction cache when they are being written by a local store instruction.
If instruction and data caches are kept coherent in this way, then only the pipeline needs to be
flushed at a FENCE.I.

We considered but did not include a “store instruction word” instruction (as in MAJC [25]).
JIT compilers may generate a large trace of instructions before a single FENCE.I, and amor-
tize any instruction cache snooping/invalidation overhead by writing translated instructions to
memory regions that are known not to reside in the I-cache.

2.8 Control and Status Register Instructions

SYSTEM instructions are used to access system functionality that might require privileged access
and are encoded using the I-type instruction format. These can be divided into two main classes:
those that atomically read-modify-write control and status registers (CSRs), and all other poten-
tially privileged instructions. CSR instructions are described in this section, with the two other
user-level SYSTEM instructions described in the following section.

The SYSTEM instructions are defined to allow simpler implementations to always trap to a
single software trap handler. More sophisticated implementations might execute more of each
system instruction in hardware.
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CSR Instructions

We define the full set of CSR instructions here, although in the standard user-level base ISA, only
a handful of read-only counter CSRs are accessible.

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source/dest zimm[4:0] CSRRCI dest SYSTEM

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and
integer registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits,
then writes it to integer register rd. The initial value in rs1 is written to the CSR. If rd=x0, then
the instruction shall not read the CSR and shall not cause any of the side-effects that might occur
on a CSR read.

The CSRRS (Atomic Read and Set Bits in CSR) instruction reads the value of the CSR, zero-
extends the value to XLEN bits, and writes it to integer register rd. The initial value in integer
register rs1 is treated as a bit mask that specifies bit positions to be set in the CSR. Any bit that
is high in rs1 will cause the corresponding bit to be set in the CSR, if that CSR bit is writable.
Other bits in the CSR are unaffected (though CSRs might have side effects when written).

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-
extends the value to XLEN bits, and writes it to integer register rd. The initial value in integer
register rs1 is treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit
that is high in rs1 will cause the corresponding bit to be cleared in the CSR, if that CSR bit is
writable. Other bits in the CSR are unaffected.

For both CSRRS and CSRRC, if rs1=x0, then the instruction will not write to the CSR at all, and
so shall not cause any of the side effects that might otherwise occur on a CSR write, such as raising
illegal instruction exceptions on accesses to read-only CSRs. Note that if rs1 specifies a register
holding a zero value other than x0, the instruction will still attempt to write the unmodified value
back to the CSR and will cause any attendant side effects.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC re-
spectively, except they update the CSR using an XLEN-bit value obtained by zero-extending a 5-bit
immediate (zimm[4:0]) field encoded in the rs1 field instead of a value from an integer register. For
CSRRSI and CSRRCI, if the zimm[4:0] field is zero, then these instructions will not write to the
CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write. For
CSRRWI, if rd=x0, then the instruction shall not read the CSR and shall not cause any of the
side-effects that might occur on a CSR read.
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Some CSRs, such as the instructions retired counter, instret, may be modified as side effects
of instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the
value prior to the execution of the instruction. If a CSR access instruction writes a CSR, the
update occurs after the execution of the instruction. In particular, a value written to instret by
one instruction will be the value read by the following instruction (i.e., the increment of instret
caused by the first instruction retiring happens before the write of the new value).

The assembler pseudo-instruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0.
The assembler pseudo-instruction to write a CSR, CSRW csr, rs1, is encoded as CSRRW x0, csr,
rs1, while CSRWI csr, zimm, is encoded as CSRRWI x0, csr, zimm.

Further assembler pseudo-instructions are defined to set and clear bits in the CSR when the old
value is not required: CSRS/CSRC csr, rs1; CSRSI/CSRCI csr, zimm.

Timers and Counters

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM

RDINSTRET[H] 0 CSRRS dest SYSTEM

RV32I provides a number of 64-bit read-only user-level counters, which are mapped into the 12-bit
CSR address space and accessed in 32-bit pieces using CSRRS instructions.

The RDCYCLE pseudo-instruction reads the low XLEN bits of the cycle CSR which holds a count
of the number of clock cycles executed by the processor on which the hardware thread is running
from an arbitrary start time in the past. RDCYCLEH is an RV32I-only instruction that reads bits
63–32 of the same cycle counter. The underlying 64-bit counter should never overflow in practice.
The rate at which the cycle counter advances will depend on the implementation and operating
environment. The execution environment should provide a means to determine the current rate
(cycles/second) at which the cycle counter is incrementing.

The RDTIME pseudo-instruction reads the low XLEN bits of the time CSR, which counts wall-clock
real time that has passed from an arbitrary start time in the past. RDTIMEH is an RV32I-only in-
struction that reads bits 63–32 of the same real-time counter. The underlying 64-bit counter should
never overflow in practice. The execution environment should provide a means of determining the
period of the real-time counter (seconds/tick). The period must be constant. The real-time clocks
of all hardware threads in a single user application should be synchronized to within one tick of the
real-time clock. The environment should provide a means to determine the accuracy of the clock.

The RDINSTRET pseudo-instruction reads the low XLEN bits of the instret CSR, which counts
the number of instructions retired by this hardware thread from some arbitrary start point in the
past. RDINSTRETH is an RV32I-only instruction that reads bits 63–32 of the same instruction
counter. The underlying 64-bit counter that should never overflow in practice.
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The following code sequence will read a valid 64-bit cycle counter value into x3:x2, even if the
counter overflows between reading its upper and lower halves.

again:

rdcycleh x3

rdcycle x2

rdcycleh x4

bne x3, x4, again

Figure 2.5: Sample code for reading the 64-bit cycle counter in RV32.

We mandate these basic counters be provided in all implementations as they are essential for
basic performance analysis, adaptive and dynamic optimization, and to allow an application to
work with real-time streams. Additional counters should be provided to help diagnose performance
problems and these should be made accessible from user-level application code with low overhead.

We required the counters be 64 bits wide, even on RV32, as otherwise it is very difficult for
software to determine if values have overflowed. For a low-end implementation, the upper 32
bits of each counter can be implemented using software counters incremented by a trap handler
triggered by overflow of the lower 32 bits. The sample code described above shows how the full
64-bit width value can be safely read using the individual 32-bit instructions.

In some applications, it is important to be able to read multiple counters at the same instant
in time. When run under a multitasking environment, a user thread can suffer a context switch
while attempting to read the counters. One solution is for the user thread to read the real-time
counter before and after reading the other counters to determine if a context switch occurred in
the middle of the sequence, in which case the reads can be retried. We considered adding output
latches to allow a user thread to snapshot the counter values atomically, but this would increase
the size of the user context, especially for implementations with a richer set of counters.

2.9 Environment Call and Breakpoints

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
ECALL 0 PRIV 0 SYSTEM

EBREAK 0 PRIV 0 SYSTEM

The ECALL instruction is used to make a request to the supporting execution environment, which is
usually an operating system. The ABI for the system will define how parameters for the environment
request are passed, but usually these will be in defined locations in the integer register file.

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debug-
ging environment.

ECALL and EBREAK were previously named SCALL and SBREAK. The instructions have
the same functionality and encoding, but were renamed to reflect that they can be used more
generally than to call a supervisor-level operating system or debugger.
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Chapter 3

RV32E Base Integer Instruction Set,
Version 1.9

This chapter describes the RV32E base integer instruction set, which is a reduced version of RV32I
designed for embedded systems. The main change is to reduce the number of integer registers to 16,
and to remove the counters that are mandatory in RV32I. This chapter only outlines the differences
between RV32E and RV32I, and so should be read after Chapter 2.

RV32E was designed to provide an even smaller base core for embedded microcontrollers. Al-
though we had mentioned this possibility in version 2.0 of this document, we initially resisted
defining this subset. However, given the demand for the smallest possible 32-bit microcontroller,
and in the interests of preempting fragmentation in this space, we have now defined RV32E as
a fourth standard base ISA in addition to RV32I, RV64I, and RV128I. The E variant is only
standardized for the 32-bit address space width.

3.1 RV32E Programmers’ Model

RV32E reduces the integer register count to 16 general-purpose registers, (x0–x15), where x0 is a
dedicated zero register.

We have found that in the small RV32I core designs, the upper 16 registers consume around one
quarter of the total area of the core excluding memories, thus their removal saves around 25%
core area with a corresponding core power reduction.

This change requires a different calling convention and ABI. In particular, RV32E is only used
with a soft-float calling convention. Systems with hardware floating-point must use an I base.

3.2 RV32E Instruction Set

RV32E uses the same instruction set encoding as RV32I, except that use of register specifiers
x16–x31 in an instruction will result in an illegal instruction exception being raised.

25
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Any future standard extensions will not make use of the instruction bits freed up by the reduced
register-specifier fields and so these are available for non-standard extensions.

A further simplification is that the counter instructions (rdcycle[h],rdtime[h], rdinstret[h])
are no longer mandatory.

The mandatory counters require additional registers and logic, and can be replaced with more
application-specific facilities.

3.3 RV32E Extensions

RV32E can be extended with the M and C user-level standard extensions.

We do not intend to support hardware floating-point with the RV32E subset. The savings from
reduced register count become negligible in the context of a hardware floating-point unit, and we
wish to reduce the proliferation of ABIs.

The privileged architecture of an RV32E system can include user mode as well as machine mode,
and the Mbare, Mbb, and Mbbid memory management schemes described in Volume II.

We do not intend to support full Unix-style operating systems with the RV32E subset. The
savings from reduced register count become negligible in the context of an OS-capable core, and
we wish to avoid OS fragmentation.



Chapter 4

RV64I Base Integer Instruction Set,
Version 2.0

This chapter describes the RV64I base integer instruction set, which builds upon the RV32I variant
described in Chapter 2. This chapter presents only the differences with RV32I, so should be read
in conjunction with the earlier chapter.

4.1 Register State

RV64I widens the integer registers and supported user address space to 64 bits (XLEN=64 in
Figure 2.1).

4.2 Integer Computational Instructions

Additional instruction variants are provided to manipulate 32-bit values in RV64I, indicated by a
‘W’ suffix to the opcode. These “*W” instructions ignore the upper 32 bits of their inputs and
always produce 32-bit signed values, i.e. bits XLEN-1 through 31 are equal. They cause an illegal
instruction exception in RV32I.

The compiler and calling convention maintain an invariant that all 32-bit values are held in a
sign-extended format in 64-bit registers. Even 32-bit unsigned integers extend bit 31 into bits 63
through 32. Consequently, conversion between unsigned and signed 32-bit integers is a no-op,
as is conversion from a signed 32-bit integer to a signed 64-bit integer. Existing 64-bit wide
SLTU and unsigned branch compares still operate correctly on unsigned 32-bit integers under
this invariant. Similarly, existing 64-bit wide logical operations on 32-bit sign-extended integers
preserve the sign-extension property. A few new instructions (ADD[I]W/SUBW/SxxW) are
required for addition and shifts to ensure reasonable performance for 32-bit values.

27
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Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src ADDIW dest OP-IMM-32

ADDIW is an RV64I-only instruction that adds the sign-extended 12-bit immediate to register rs1
and produces the proper sign-extension of a 32-bit result in rd. Overflows are ignored and the
result is the low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rs1, 0 writes the
sign-extension of the lower 32 bits of register rs1 into register rd (assembler pseudo-op SEXT.W).

31 26 25 24 20 19 15 14 12 11 7 6 0

imm[11:6] imm[5] imm[4:0] rs1 funct3 rd opcode

6 1 5 5 3 5 7
000000 shamt[5] shamt[4:0] src SLLI dest OP-IMM
000000 shamt[5] shamt[4:0] src SRLI dest OP-IMM
010000 shamt[5] shamt[4:0] src SRAI dest OP-IMM
000000 0 shamt[4:0] src SLLIW dest OP-IMM-32
000000 0 shamt[4:0] src SRLIW dest OP-IMM-32
010000 0 shamt[4:0] src SRAIW dest OP-IMM-32

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rs1, and the shift amount is encoded in the lower
6 bits of the I-immediate field for RV64I. The right shift type is encoded in bit 30. SLLI is a
logical left shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted
into the upper bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the
vacated upper bits). For RV32I, SLLI, SRLI, and SRAI generate an illegal instruction exception if
imm[5] 6= 0.

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. SLLIW, SRLIW, and SRAIW generate an illegal
instruction exception if imm[5] 6= 0.

31 12 11 7 6 0

imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 20-bit U-immediate
into bits 31–12 of register rd and places zero in the lowest 12 bits. The 32-bit result is sign-extended
to 64 bits.

AUIPC (add upper immediate to pc) uses the same opcode as RV32I. AUIPC (add upper immediate
to pc) is used to build pc-relative addresses and uses the U-type format. AUIPC appends 12 low-
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order zero bits to the 20-bit U-immediate, sign-extends the result to 64 bits, then adds it to the pc

and places the result in register rd.

Integer Register-Register Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SRA dest OP
0000000 src2 src1 ADDW dest OP-32
0000000 src2 src1 SLLW/SRLW dest OP-32
0100000 src2 src1 SUBW/SRAW dest OP-32

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB
but operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low
32-bits of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value
in register rs1 by the shift amount held in register rs2. In RV64I, only the low 6 bits of rs2 are
considered for the shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. The shift amount is given by rs2[4:0].

4.3 Load and Store Instructions

RV64I extends the address space to 64 bits. The execution environment will define what portions
of the address space are legal to access.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

The LD instruction loads a 64-bit value from memory into register rd for RV64I.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before storing
it in register rd for RV64I. The LWU instruction, on the other hand, zero-extends the 32-bit value
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from memory for RV64I. LH and LHU are defined analogously for 16-bit values, as are LB and
LBU for 8-bit values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit
values from the low bits of register rs2 to memory respectively.

4.4 System Instructions

In RV64I, the CSR instructions can manipulate 64-bit CSRs. In particular, the RDCYCLE, RD-
TIME, and RDINSTRET pseudo-instructions read the full 64 bits of the cycle, time, and instret

counters. Hence, the RDCYCLEH, RDTIMEH, and RDINSTRETH instructions are not necessary
and are illegal in RV64I.



Chapter 5

“M” Standard Extension for Integer
Multiplication and Division, Version
2.0

This chapter describes the standard integer multiplication and division instruction extension, which
is named “M” and contains instructions that multiply or divide values held in two integer registers.

We separate integer multiply and divide out from the base to simplify low-end implementations,
or for applications where integer multiply and divide operations are either infrequent or better
handled in attached accelerators.

5.1 Multiplication Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
MULDIV multiplier multiplicand MUL/MULH[[S]U] dest OP
MULDIV multiplier multiplicand MULW dest OP-32

MUL performs an XLEN-bit×XLEN-bit multiplication and places the lower XLEN bits in the
destination register. MULH, MULHU, and MULHSU perform the same multiplication but return
the upper XLEN bits of the full 2×XLEN-bit product, for signed×signed, unsigned×unsigned, and
signed×unsigned multiplication respectively. If both the high and low bits of the same product
are required, then the recommended code sequence is: MULH[[S]U] rdh, rs1, rs2; MUL rdl, rs1,
rs2 (source register specifiers must be in same order and rdh cannot be the same as rs1 or rs2).
Microarchitectures can then fuse these into a single multiply operation instead of performing two
separate multiplies.

MULW is only valid for RV64, and multiplies the lower 32 bits of the source registers, placing the
sign-extension of the lower 32 bits of the result into the destination register. MUL can be used to
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obtain the upper 32 bits of the 64-bit product, but signed arguments must be proper 32-bit signed
values, whereas unsigned arguments must have their upper 32 bits clear.

5.2 Division Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
MULDIV divisor dividend DIV[U]/REM[U] dest OP
MULDIV divisor dividend DIV[U]W/REM[U]W dest OP-32

DIV and DIVU perform signed and unsigned integer division of XLEN bits by XLEN bits. REM
and REMU provide the remainder of the corresponding division operation. If both the quotient
and remainder are required from the same division, the recommended code sequence is: DIV[U]
rdq, rs1, rs2; REM[U] rdr, rs1, rs2 (rdq cannot be the same as rs1 or rs2). Microarchitectures can
then fuse these into a single divide operation instead of performing two separate divides.

DIVW and DIVUW instructions are only valid for RV64, and divide the lower 32 bits of rs1 by
the lower 32 bits of rs2, treating them as signed and unsigned integers respectively, placing the
32-bit quotient in rd, sign-extended to 64 bits. REMW and REMUW instructions are only valid
for RV64, and provide the corresponding signed and unsigned remainder operations respectively.
Both REMW and REMUW sign-extend the 32-bit result to 64 bits.

The semantics for division by zero and division overflow are summarized in Table 5.1. The quotient
of division by zero has all bits set, i.e. 2XLEN − 1 for unsigned division or −1 for signed division.
The remainder of division by zero equals the dividend. Signed division overflow occurs only when
the most-negative integer, −2XLEN−1, is divided by −1. The quotient of signed division overflow
is equal to the dividend, and the remainder is zero. Unsigned division overflow cannot occur.

Condition Dividend Divisor DIVU REMU DIV REM

Division by zero x 0 2XLEN − 1 x −1 x
Overflow (signed only) −2XLEN−1 −1 – – −2XLEN−1 0

Table 5.1: Semantics for division by zero and division overflow.

We considered raising exceptions on integer divide by zero, with these exceptions causing a trap in
most execution environments. However, this would be the only arithmetic trap in the standard
ISA (floating-point exceptions set flags and write default values, but do not cause traps) and
would require language implementors to interact with the execution environment’s trap handlers
for this case. Further, where language standards mandate that a divide-by-zero exception must
cause an immediate control flow change, only a single branch instruction needs to be added to
each divide operation, and this branch instruction can be inserted after the divide and should
normally be very predictably not taken, adding little runtime overhead.



Chapter 6

“A” Standard Extension for Atomic
Instructions, Version 2.0

The standard atomic instruction extension is denoted by instruction subset name “A”, and con-
tains instructions that atomically read-modify-write memory to support synchronization between
multiple RISC-V threads running in the same memory space. The two forms of atomic instruction
provided are load-reserved/store-conditional instructions and atomic fetch-and-op memory instruc-
tions. Both types of atomic instruction support various memory consistency orderings including
unordered, acquire, release, and sequentially consistent semantics. These instructions allow RISC-V
to support the RCsc memory consistency model [6].

After much debate, the language community and architecture community appear to have finally
settled on release consistency as the standard memory consistency model and so the RISC-V
atomic support is built around this model.

6.1 Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. The address space is divided by the execution environment into
memory and I/O domains, and the FENCE instruction provides options to order accesses to one
or both of these two address domains.

To provide more efficient support for release consistency [6], each atomic instruction has two bits, aq
and rl, used to specify additional memory ordering constraints as viewed by other RISC-V threads.
The bits order accesses to one of the two address domains, memory or I/O, depending on which
address domain the atomic instruction is accessing. No ordering constraint is implied to accesses
to the other domain, and a FENCE instruction should be used to order across both domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory oper-
ation. If only the aq bit is set, the atomic memory operation is treated as an acquire access, i.e.,
no following memory operations on this RISC-V thread can be observed to take place before the
acquire memory operation. If only the rl bit is set, the atomic memory operation is treated as
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a release access, i.e., the release memory operation can not be observed to take place before any
earlier memory operations on this RISC-V thread. If both the aq and rl bits are set, the atomic
memory operation is sequentially consistent and cannot be observed to happen before any earlier
memory operations or after any later memory operations in the same RISC-V thread, and can
only be observed by any other thread in the same global order of all sequentially consistent atomic
memory operations to the same address domain.

Theoretically, the definition of the aq and rl bits allows for implementations without global store
atomicity. When both aq and rl bits are set, however, we require full sequential consistency for
the atomic operation which implies global store atomicity in addition to both acquire and release
semantics. In practice, hardware systems are usually implemented with global store atomicity,
embodied in local processor ordering rules together with single-writer cache coherence protocols.

6.2 Load-Reserved/Store-Conditional Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 rs1 funct3 rd opcode

5 1 1 5 5 3 5 7
LR ordering 0 addr width dest AMO
SC ordering src addr width dest AMO

Complex atomic memory operations on a single memory word are performed with the load-reserved
(LR) and store-conditional (SC) instructions. LR loads a word from the address in rs1, places the
sign-extended value in rd, and registers a reservation on the memory address. SC writes a word in
rs2 to the address in rs1, provided a valid reservation still exists on that address. SC writes zero
to rd on success or a nonzero code on failure.

Both compare-and-swap (CAS) and LR/SC can be used to build lock-free data structures. After
extensive discussion, we opted for LR/SC for several reasons: 1) CAS suffers from the ABA
problem, which LR/SC avoids because it monitors all accesses to the address rather than only
checking for changes in the data value; 2) CAS would also require a new integer instruction for-
mat to support three source operands (address, compare value, swap value) as well as a different
memory system message format, which would complicate microarchitectures; 3) Furthermore,
to avoid the ABA problem, other systems provide a double-wide CAS (DW-CAS) to allow a
counter to be tested and incremented along with a data word. This requires reading five regis-
ters and writing two in one instruction, and also a new larger memory system message type,
further complicating implementations; 4) LR/SC provides a more efficient implementation of
many primitives as it only requires one load as opposed to two with CAS (one load before the
CAS instruction to obtain a value for speculative computation, then a second load as part of the
CAS instruction to check if value is unchanged before updating).

The main disadvantage of LR/SC over CAS is livelock, which we avoid with an architected
guarantee of eventual forward progress as described below. Another concern is whether the influ-
ence of the current x86 architecture, with its DW-CAS, will complicate porting of synchronization
libraries and other software that assumes DW-CAS is the basic machine primitive. A possible
mitigating factor is the recent addition of transactional memory instructions to x86, which might
cause a move away from DW-CAS.

The failure code with value 1 is reserved to encode an unspecified failure. Other failure codes are
reserved at this time, and portable software should only assume the failure code will be non-zero.
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LR and SC operate on naturally-aligned 64-bit (RV64 only) or 32-bit words in memory. Misaligned
addresses will generate misaligned address exceptions.

We reserve a failure code of 1 to mean “unspecified” so that simple implementations may return
this value using the existing mux required for the SLT/SLTU instructions. More specific failure
codes might be defined in future versions or extensions to the ISA.

In the standard A extension, certain constrained LR/SC sequences are guaranteed to succeed
eventually. The static code for the LR/SC sequence plus the code to retry the sequence in case
of failure must comprise at most 16 integer instructions placed sequentially in memory. For the
sequence to be guaranteed to eventually succeed, the dynamic code executed between the LR and
SC instructions can only contain other instructions from the base “I” subset, excluding loads,
stores, backward jumps or taken backward branches, FENCE, or SYSTEM instructions. The code
to retry a failing LR/SC sequence can contain backward jumps and/or branches to repeat the
LR/SC sequence, but otherwise has the same constraints. The SC must be to the same address as
the latest LR executed. LR/SC sequences that do not meet these constraints might complete on
some attempts on some implementations, but there is no guarantee of eventual success.

One advantage of CAS is that it guarantees that some thread eventually makes progress, whereas
an LR/SC atomic sequence could livelock indefinitely on some systems. To avoid this concern,
we added an architectural guarantee of forward progress to LR/SC atomic sequences. The re-
strictions on LR/SC sequence contents allows an implementation to capture a cache line on the
LR and complete the LR/SC sequence by holding off remote cache interventions for a bounded
short time. Interrupts and TLB misses might cause the reservation to be lost, but eventually
the atomic sequence can complete. We restricted the length of LR/SC sequences to fit within
64 contiguous instruction bytes in the base ISA to avoid undue restrictions on instruction cache
and TLB size and associativity. Similarly, we disallowed other loads and stores within the se-
quences to avoid restrictions on data cache associativity. The restrictions on branches and jumps
limits the time that can be spent in the sequence. Floating-point operations and integer multi-
ply/divide were disallowed to simplify the operating system’s emulation of these instructions on
implementations lacking appropriate hardware support.

An implementation can reserve an arbitrary subset of the memory space on each LR and multiple
LR reservations might be active simultaneously for a single hart. An SC can succeed if no accesses
from other harts to the address can be observed to have occurred between the SC and the last LR
in this hart to reserve the address. Note this LR might have had a different address argument, but
reserved the SC’s address as part of the memory subset. Following this model, in systems with
memory translation, an SC is allowed to succeed if the earlier LR reserved the same location using
an alias with a different virtual address, but is also allowed to fail if the virtual address is different.
The SC must fail if there is an observable memory access from another hart to the address, or
if there is an intervening context switch on this hart, or if in the meantime the hart executed a
privileged exception-return instruction.

The specification explicitly allows implementations to support more powerful implementations
with wider guarantees, provided they do not void the atomicity guarantees for the constrained
sequences.

LR/SC can be used to construct lock-free data structures. An example using LR/SC to implement
a compare-and-swap function is shown in Figure 6.1. If inlined, compare-and-swap functionality
need only take three instructions.
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# a0 holds address of memory location

# a1 holds expected value

# a2 holds desired value

# a0 holds return value, 0 if successful, !0 otherwise

cas:

lr.w t0, (a0) # Load original value.

bne t0, a1, fail # Doesn’t match, so fail.

sc.w a0, a2, (a0) # Try to update.

jr ra # Return.

fail:

li a0, 1 # Set return to failure.

jr ra # Return.

Figure 6.1: Sample code for compare-and-swap function using LR/SC.

An SC instruction can never be observed by another RISC-V thread before the immediately preced-
ing LR. Due to the atomic nature of the LR/SC sequence, no memory operations from any thread
can be observed to have occurred between the LR and a successful SC. The LR/SC sequence can
be given acquire semantics by setting the aq bit on the SC instruction. The LR/SC sequence can
be given release semantics by setting the rl bit on the LR instruction. Setting both aq and rl bits
on the LR instruction, and setting the aq bit on the SC instruction makes the LR/SC sequence
sequentially consistent with respect to other sequentially consistent atomic operations.

If neither bit is set on both LR and SC, the LR/SC sequence can be observed to occur before or
after surrounding memory operations from the same RISC-V thread. This can be appropriate when
the LR/SC sequence is used to implement a parallel reduction operation.

In general, a multi-word atomic primitive is desirable but there is still considerable debate about
what form this should take, and guaranteeing forward progress adds complexity to a system. Our
current thoughts are to include a small limited-capacity transactional memory buffer along the
lines of the original transactional memory proposals as an optional standard extension “T”.

6.3 Atomic Memory Operations

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 rs1 funct3 rd opcode

5 1 1 5 5 3 5 7
AMOSWAP.W/D ordering src addr width dest AMO
AMOADD.W/D ordering src addr width dest AMO
AMOAND.W/D ordering src addr width dest AMO
AMOOR.W/D ordering src addr width dest AMO

AMOXOR.W/D ordering src addr width dest AMO
AMOMAX[U].W/D ordering src addr width dest AMO
AMOMIN[U].W/D ordering src addr width dest AMO

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-
tiprocessor synchronization and are encoded with an R-type instruction format. These AMO in-
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structions atomically load a data value from the address in rs1, place the value into register rd,
apply a binary operator to the loaded value and the original value in rs2, then store the result back
to the address in rs1. AMOs can either operate on 64-bit (RV64 only) or 32-bit words in memory.
For RV64, 32-bit AMOs always sign-extend the value placed in rd. The address held in rs1 must be
naturally aligned to the size of the operand (i.e., eight-byte aligned for 64-bit words and four-byte
aligned for 32-bit words). If the address is not naturally aligned, a misaligned address exception
will be generated.

The operations supported are swap, integer add, logical AND, logical OR, logical XOR, and signed
and unsigned integer maximum and minimum. Without ordering constraints, these AMOs can
be used to implement parallel reduction operations, where typically the return value would be
discarded by writing to x0.

We provided fetch-and-op style atomic primitives as they scale to highly parallel systems better
than LR/SC or CAS. A simple microarchitecture can implement AMOs using the LR/SC prim-
itives. More complex implementations might also implement AMOs at memory controllers, and
can optimize away fetching the original value when the destination is x0.

To help implement multiprocessor synchronization, the AMOs optionally provide release consis-
tency semantics. If the aq bit is set, then no later memory operations in this RISC-V thread can be
observed to take place before the AMO. Conversely, if the rl bit is set, then other RISC-V threads
will not observe the AMO before memory accesses preceding the AMO in this RISC-V thread.

The AMOs were designed to implement the C11 and C++11 memory models efficiently. Al-
though the FENCE R, RW instruction suffices to implement the acquire operation and FENCE
RW, W suffices to implement release, both imply additional unnecessary ordering as compared
to AMOs with the corresponding aq or rl bit set.

AMOs can also be used to provide sequentially consistent loads and stores. A sequentially consistent
load can be implemented as an AMOADD of x0 with both aq and rl set. A sequentially consistent
store can be implemented as an AMOSWAP that writes the old value to x0 and has both aq and
rl set.

An example code sequence for a critical section guarded by a test-and-set spinlock is shown in
Figure 6.2. Note the first AMO is marked aq to order the lock acquisition before the critical section,
and the second AMO is marked rl to order the critical section before the lock relinquishment.

li t0, 1 # Initialize swap value.

again:

amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.

bnez t0, again # Retry if held.

# ...

# Critical section.

# ...

amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.

Figure 6.2: Sample code for mutual exclusion. a0 contains the address of the lock.

We recommend the use of the AMO Swap idiom shown above for both lock acquire and release
to simplify the implementation of speculative lock elision [20].
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At the risk of complicating the implementation of atomic operations, microarchitectures can
elide the store within the acquire swap if the lock value matches the swap value, to avoid dirtying
a cache line held in a shared or exclusive clean state. The effect is similar to a test-and-test-
and-set lock but with shorter code paths.



Chapter 7

“F” Standard Extension for
Single-Precision Floating-Point,
Version 2.0

This chapter describes the standard instruction-set extension for single-precision floating-point,
which is named “F” and adds single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard [10].

7.1 F Register State

The F extension adds 32 floating-point registers, f0–f31, each 32 bits wide, and a floating-point
control and status register fcsr, which contains the operating mode and exception status of the
floating-point unit. This additional state is shown in Figure 7.1. We use the term FLEN to
describe the width of the floating-point registers in the RISC-V ISA, and FLEN=32 for the F
single-precision floating-point extension. Most floating-point instructions operate on values in the
floating-point register file. Floating-point load and store instructions transfer floating-point values
between registers and memory. Instructions to transfer values to and from the integer register file
are also provided.

We considered a unified register file for both integer and floating-point values as this simplifies
software register allocation and calling conventions, and reduces total user state. However,
a split organization increases the total number of registers accessible with a given instruction
width, simplifies provision of enough regfile ports for wide superscalar issue, supports decoupled
floating-point-unit architectures, and simplifies use of internal floating-point encoding techniques.
Compiler support and calling conventions for split register file architectures are well understood,
and using dirty bits on floating-point register file state can reduce context-switch overhead.
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Figure 7.1: RISC-V standard F extension single-precision floating-point state.
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31 8 7 5 4 3 2 1 0

0 Rounding Mode (frm) Accrued Exceptions (fflags)

NV DZ OF UF NX
24 3 1 1 1 1 1

Figure 7.2: Floating-point control and status register.

7.2 Floating-Point Control and Status Register

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR).
It is a 32-bit read/write register that selects the dynamic rounding mode for floating-point arith-
metic operations and holds the accrued exception flags, as shown in Figure 7.2.

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are
assembler pseudo-ops built on the underlying CSR access instructions. FRCSR reads fcsr by
copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value
into integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudo-ops are defined for these accesses. The FRRM instruction reads the
Rounding Mode field frm and copies it into the least-significant three bits of integer register rd,
with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer
register rd, and then writing a new value obtained from the three least-significant bits of integer
register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception
Flags field fflags. Additional pseudo-instructions FSRMI and FSFLAGSI swap values using an
immediate value instead of register rs1.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in Table 7.1. A value of 111 in
the instruction’s rm field selects the dynamic rounding mode held in frm. If frm is set to an invalid
value (101–111), any subsequent attempt to execute a floating-point operation with a dynamic
rounding mode will cause an illegal instruction trap. Some instructions that have the rm field are
nevertheless unaffected by the rounding mode; they should have their rm field set to RNE (000).

The C99 language standard effectively mandates the provision of a dynamic rounding mode
register.
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Rounding Mode Mnemonic Meaning
000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down (towards −∞)
011 RUP Round Up (towards +∞)
100 RMM Round to Nearest, ties to Max Magnitude
101 Invalid. Reserved for future use.
110 Invalid. Reserved for future use.
111 In instruction’s rm field, selects dynamic rounding mode;

In Rounding Mode register, Invalid.

Table 7.1: Rounding mode encoding.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software, as shown in Table 7.2.

Flag Mnemonic Flag Meaning
NV Invalid Operation
DZ Divide by Zero
OF Overflow
UF Underflow
NX Inexact

Table 7.2: Accrued exception flag encoding.

As allowed by the standard, we do not support traps on floating-point exceptions in the base
ISA, but instead require explicit checks of the flags in software. We considered adding branches
controlled directly by the contents of the floating-point accrued exception flags, but ultimately
chose to omit these instructions to keep the ISA simple.

7.3 NaN Generation and Propagation

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical
NaN. The canonical NaN has a positive sign and all significand bits clear except the MSB, a.k.a.
the quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7fc00000.

For FMIN and FMAX, if at least one input is a signaling NaN, or if both inputs are quiet NaNs,
the result is the canonical NaN. If one operand is a quiet NaN and the other is not a NaN, the
result is the non-NaN operand.

The sign-injection instructions (FSGNJ, FSGNJN, FSGNJX) do not canonicalize NaNs; they ma-
nipulate the underlying bit patterns directly.

We considered propagating NaN payloads, as is recommended by the standard, but this decision
would have increased hardware cost. Moreover, since this feature is optional in the standard, it
cannot be used in portable code.

Implementors are free to provide a NaN payload propagation scheme as a nonstandard exten-
sion enabled by a nonstandard operating mode. However, the canonical NaN scheme described
above must always be supported and should be the default mode.
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We require implementations to return the standard-mandated default values in the case of ex-
ceptional conditions, without any further intervention on the part of user-level software (unlike
the Alpha ISA floating-point trap barriers). We believe full hardware handling of exceptional
cases will become more common, and so wish to avoid complicating the user-level ISA to opti-
mize other approaches. Implementations can always trap to machine-mode software handlers to
provide exceptional default values.

7.4 Subnormal Arithmetic

Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding—that is, the underflow
exception is raised only if the rounded result is subnormal, even if the unrounded result would have
been subnormal.

Detecting tininess after rounding results in fewer spurious underflow signals.

7.5 Single-Precision Load and Store Instructions

Floating-point loads and stores use the same base+offset addressing mode as the integer base ISA,
with a base address in register rs1 and a 12-bit signed byte offset. The FLW instruction loads
a single-precision floating-point value from memory into floating-point register rd. FSW stores a
single-precision value from floating-point register rs2 to memory.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base W dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base W offset[4:0] STORE-FP

FLW and FSW are only guaranteed to execute atomically if the effective address is naturally
aligned.

7.6 Single-Precision Floating-Point Computational Instructions

Floating-point arithmetic instructions with one or two source operands use the R-type format
with the OP-FP major opcode. FADD.S, FSUB.S, FMUL.S, and FDIV.S perform single-precision
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floating-point addition, subtraction, multiplication, and division, respectively, between rs1 and rs2,
writing the result to rd. FMIN.S and FMAX.S write, respectively, the smaller or larger of rs1 and
rs2 to rd. FSQRT.S computes the square root of rs1 and writes the result to rd.

The 2-bit floating-point format field fmt is encoded as shown in Table 7.3. It is set to S (00) for all
instructions in the F extension.

fmt field Mnemonic Meaning
00 S 32-bit single-precision
01 D 64-bit double-precision
10 - reserved
11 Q 128-bit quad-precision

Table 7.3: Format field encoding.

All floating-point operations that perform rounding can select the rounding mode using the rm
field with the encoding shown in Table 7.1.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB S src2 src1 RM dest OP-FP
FMUL/FDIV S src2 src1 RM dest OP-FP
FMIN-MAX S src2 src1 MIN/MAX dest OP-FP

FSQRT S 0 src RM dest OP-FP

Floating-point fused multiply-add instructions require a new standard instruction format. R4-type
instructions specify three source registers (rs1, rs2, and rs3) and a destination register (rd). This
format is only used by the floating-point fused multiply-add instructions. Fused multiply-add in-
structions multiply the values in rs1 and rs2 then add or subtract the value in rs3 to the unrounded
product, with a final optional negation of the rounded result. FMADD.S computes rs1×rs2+rs3;
FMSUB.S computes rs1×rs2-rs3; FNMADD.S computes -(rs1×rs2+rs3); and FNMSUB.S com-
putes -(rs1×rs2-rs3).

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 S src2 src1 RM dest F[N]MADD/F[N]MSUB

7.7 Single-Precision Floating-Point Conversion and Move
Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the
OP-FP major opcode space. FCVT.W.S or FCVT.L.S converts a floating-point number in floating-
point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.S.W
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or FCVT.S.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs1 into a
floating-point number in floating-point register rd. FCVT.WU.S, FCVT.LU.S, FCVT.S.WU, and
FCVT.S.LU variants convert to or from unsigned integer values. FCVT.L[U].S and FCVT.S.L[U]
are illegal in RV32. If the rounded result is not representable in the destination format, it is
clipped to the nearest value and the invalid flag is set. Table 7.4 gives the range of valid inputs for
FCVT.int.S and the behavior for invalid inputs.

FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S
Minimum valid input (after rounding) −231 0 −263 0
Maximum valid input (after rounding) 231 − 1 232 − 1 263 − 1 264 − 1
Output for out-of-range negative input −231 0 −263 0
Output for −∞ −231 0 −263 0
Output for out-of-range positive input 231 − 1 232 − 1 263 − 1 264 − 1
Output for +∞ or NaN 231 − 1 232 − 1 263 − 1 264 − 1

Table 7.4: Domains of float-to-integer conversions and behavior for invalid inputs.

All floating-point to integer and integer to floating-point conversion instructions round according
to the rm field. A floating-point register can be initialized to floating-point positive zero using
FCVT.S.W rd, x0, which will never raise any exceptions.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt S W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int S W[U]/L[U] src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.S, FSGNJN.S, and FSGNJX.S,
produce a result that takes all bits except the sign bit from rs1. For FSGNJ, the result’s sign bit is
rs2’s sign bit; for FSGNJN, the result’s sign bit is the opposite of rs2’s sign bit; and for FSGNJX,
the sign bit is the XOR of the sign bits of rs1 and rs2. Sign-injection instructions do not set floating-
point exception flags. Note, FSGNJ.S rx, ry, ry moves ry to rx (assembler pseudo-op FMV.S rx,
ry); FSGNJN.S rx, ry, ry moves the the negation of ry to rx (assembler pseudo-op FNEG.S rx, ry);
and FSGNJX.S rx, ry, ry moves the absolute value of ry to rx (assembler pseudo-op FABS.S rx,
ry).

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ S src2 src1 J[N]/JX dest OP-FP

The sign-injection instructions were proposed by John Hauser. These instructions provide
floating-point MV, ABS, and NEG, as well as supporting a few other operations, including
the IEEE copySign operation and sign manipulation in transcendental math function libraries.
Although MV, ABS, and NEG only need a single register operand, whereas FSGNJ instruc-
tions need two, it is unlikely most microarchitectures would add optimizations to benefit from
the reduced number of register reads for these relatively infrequent instructions. Even in this
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case, a microarchitecture can simply detect when both source registers are the same for FSGNJ
instructions and only read a single copy.

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.S moves the single-precision value in floating-point register rs1 represented in IEEE 754-
2008 encoding to the lower 32 bits of integer register rd. For RV64, the higher 32 bits of the
destination register are filled with copies of the floating-point number’s sign bit. FMV.S.X moves
the single-precision value encoded in IEEE 754-2008 standard encoding from the lower 32 bits of
integer register rs1 to the floating-point register rd. The bits are not modified in the transfer, and
in particular, the payloads of non-canonical NaNs are preserved.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FMV.X.fmt S 0 src 000 dest OP-FP
FMV.fmt.X S 0 src 000 dest OP-FP

The base floating-point ISA was defined so as to allow implementations to employ an internal
recoding of the floating-point format in registers to simplify handling of subnormal values and
possibly to reduce functional unit latency. To this end, the base ISA avoids representing integer
values in the floating-point registers by defining conversion and comparison operations that read
and write the integer register file directly. This also removes many of the common cases where
explicit moves between integer and floating-point registers are required, reducing instruction count
and critical paths for common mixed-format code sequences.

7.8 Single-Precision Floating-Point Compare Instructions

Floating-point compare instructions perform the specified comparison (equal, less than, or less
than or equal) between floating-point registers rs1 and rs2 and record the Boolean result in integer
register rd.

FLT.S and FLE.S perform what the IEEE 754-2008 standard refers to as signaling comparisons:
that is, an Invalid Operation exception is raised if either input is NaN. FEQ.S performs a quiet com-
parison: only signaling NaN inputs cause an Invalid Operation exception. For all three instructions,
the result is 0 if either operand is NaN.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP S src2 src1 EQ/LT/LE dest OP-FP

7.9 Single-Precision Floating-Point Classify Instruction

The FCLASS.S instruction examines the value in floating-point register rs1 and writes to integer
register rd a 10-bit mask that indicates the class of the floating-point number. The format of the
mask is described in Table 7.5. The corresponding bit in rd will be set if the the property is true
and clear otherwise. All other bits in rd are cleared. Note that exactly one bit in rd will be set.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS S 0 src 001 dest OP-FP

rd bit Meaning
0 rs1 is −∞.
1 rs1 is a negative normal number.
2 rs1 is a negative subnormal number.
3 rs1 is −0.
4 rs1 is +0.
5 rs1 is a positive subnormal number.
6 rs1 is a positive normal number.
7 rs1 is +∞.
8 rs1 is a signaling NaN.
9 rs1 is a quiet NaN.

Table 7.5: Format of result of FCLASS instruction.



48 Volume I: RISC-V User-Level ISA V2.1



Chapter 8

“D” Standard Extension for
Double-Precision Floating-Point,
Version 2.0

This chapter describes the standard double-precision floating-point instruction-set extension, which
is named “D” and adds double-precision floating-point computational instructions compliant with
the IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision
instruction subset F.

8.1 D Register State

The D extension widens the 32 floating-point registers, f0–f31, to 64 bits (FLEN=64 in Figure 7.1).

8.2 Double-Precision Load and Store Instructions

The FLD instruction loads a double-precision floating-point value from memory into floating-point
register rd. FSD stores a double-precision value from the floating-point registers to memory.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base D dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base D offset[4:0] STORE-FP
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If a floating-point register holds a single-precision value, it is guaranteed that a FSD of that register
will place a value into memory that when reloaded with a FLD will recreate the original single-
precision value in a register. The data format that is stored in memory is undefined beyond having
this property.

User-level code might not know the current type of data stored in a floating-point register but
has to be able to save and restore the register values. A common case is for callee-save registers,
but this is also essential to implement varargs and user-level threading libraries.

FLD and FSD are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN≥64.

8.3 Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double-
precision results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB D src2 src1 RM dest OP-FP
FMUL/FDIV D src2 src1 RM dest OP-FP
FMIN-MAX D src2 src1 MIN/MAX dest OP-FP

FSQRT D 0 src RM dest OP-FP

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 D src2 src1 RM dest F[N]MADD/F[N]MSUB

8.4 Double-Precision Floating-Point Conversion and Move In-
structions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the
OP-FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point
number in floating-point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer
register rd. FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively,
in integer register rs1 into a double-precision floating-point number in floating-point register rd.
FCVT.WU.D, FCVT.LU.D, FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned
integer values. FCVT.L[U].D and FCVT.D.L[U] are illegal in RV32. The range of valid inputs for
FCVT.int.D and the behavior for invalid inputs are the same as for FCVT.int.S.



Copyright © 2010–2016, The Regents of the University of California. All rights reserved. 51

All floating-point to integer and integer to floating-point conversion instructions round according
to the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding
mode.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt D W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int D W[U]/L[U] src RM dest OP-FP

The double-precision to single-precision and single-precision to double-precision conversion instruc-
tions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the
source and destination are floating-point registers. The rs2 field encodes the datatype of the
source, and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to
the RM field; FCVT.D.S will never round.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.fmt.fmt S D src RM dest OP-FP
FCVT.fmt.fmt D S src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D
are defined analogously to the single-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ D src2 src1 J[N]/JX dest OP-FP

For RV64 only, instructions are provided to move bit patterns between the floating-point and
integer registers. FMV.X.D moves the double-precision value in floating-point register rs1 to a
representation in IEEE 754-2008 standard encoding in integer register rd. If the last value written to
the source floating-point register was a single-precision floating-point value, then the value returned
by FMV.X.D is undefined beyond having the property that moving the value back to a floating-
point register will recreate the original single-precision value. FMV.D.X moves the double-precision
value encoded in IEEE 754-2008 standard encoding from the integer register rs1 to the floating-
point register rd.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FMV.X.fmt D 0 src 000 dest OP-FP
FMV.fmt.X D 0 src 000 dest OP-FP
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8.5 Double-Precision Floating-Point Compare Instructions

The double-precision floating-point compare instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP D src2 src1 EQ/LT/LE dest OP-FP

8.6 Double-Precision Floating-Point Classify Instruction

The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its
single-precision counterpart, but operates on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS D 0 src 001 dest OP-FP



Chapter 9

RV32/64G Instruction Set Listings

One goal of the RISC-V project is that it be used as a stable software development target. For this
purpose, we define a combination of a base ISA (RV32I or RV64I) plus selected standard extensions
(IMAFD) as a “general-purpose” ISA, and we use the abbreviation G for the IMAFD combination
of instruction-set extensions. This chapter presents opcode maps and instruction-set listings for
RV32G and RV64G.

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b

01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

Table 9.1: RISC-V base opcode map, inst[1:0]=11

Table 9.1 shows a map of the major opcodes for RVG. Major opcodes with 3 or more lower bits
set are reserved for instruction lengths greater than 32 bits. Opcodes marked as reserved should be
avoided for custom instruction set extensions as they might be used by future standard extensions.
Major opcodes marked as custom-0 and custom-1 will be avoided by future standard extensions and
are recommended for use by custom instruction-set extensions within the base 32-bit instruction
format. The opcodes marked custom-2/rv128 and custom-3/rv128 are reserved for future use by
RV128, but will otherwise be avoided for standard extensions and so can also be used for custom
instruction-set extensions in RV32 and RV64.

We believe RV32G and RV64G provide simple but complete instruction sets for a broad range of
general-purpose computing. The optional compressed instruction set described in Chapter 14 can
be added (forming RV32GC and RV64GC) to improve performance, code size, and energy efficiency,
though with some additional hardware complexity.

As we move beyond IMAFDC into further instruction set extensions, the added instructions tend
to be more domain-specific and only provide benefits to a restricted class of applications, e.g., for
multimedia or security. Unlike most commercial ISAs, the RISC-V ISA design clearly separates
the base ISA and broadly applicable standard extensions from these more specialized additions.
Chapter 10 has a more extensive discussion of ways to add extensions to the RISC-V ISA.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode SB-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode UJ-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

0000 pred succ 00000 000 00000 0001111 FENCE
0000 0000 0000 00000 001 00000 0001111 FENCE.I

000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK

csr rs1 001 rd 1110011 CSRRW
csr rs1 010 rd 1110011 CSRRS
csr rs1 011 rd 1110011 CSRRC
csr zimm 101 rd 1110011 CSRRWI
csr zimm 110 rd 1110011 CSRRSI
csr zimm 111 rd 1110011 CSRRCI
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64I Base Instruction Set (in addition to RV32I)
imm[11:0] rs1 110 rd 0000011 LWU
imm[11:0] rs1 011 rd 0000011 LD

imm[11:5] rs2 rs1 011 imm[4:0] 0100011 SD
000000 shamt rs1 001 rd 0010011 SLLI
000000 shamt rs1 101 rd 0010011 SRLI
010000 shamt rs1 101 rd 0010011 SRAI

imm[11:0] rs1 000 rd 0011011 ADDIW
0000000 shamt rs1 001 rd 0011011 SLLIW
0000000 shamt rs1 101 rd 0011011 SRLIW
0100000 shamt rs1 101 rd 0011011 SRAIW
0000000 rs2 rs1 000 rd 0111011 ADDW
0100000 rs2 rs1 000 rd 0111011 SUBW
0000000 rs2 rs1 001 rd 0111011 SLLW
0000000 rs2 rs1 101 rd 0111011 SRLW
0100000 rs2 rs1 101 rd 0111011 SRAW

RV32M Standard Extension
0000001 rs2 rs1 000 rd 0110011 MUL
0000001 rs2 rs1 001 rd 0110011 MULH
0000001 rs2 rs1 010 rd 0110011 MULHSU
0000001 rs2 rs1 011 rd 0110011 MULHU
0000001 rs2 rs1 100 rd 0110011 DIV
0000001 rs2 rs1 101 rd 0110011 DIVU
0000001 rs2 rs1 110 rd 0110011 REM
0000001 rs2 rs1 111 rd 0110011 REMU

RV64M Standard Extension (in addition to RV32M)
0000001 rs2 rs1 000 rd 0111011 MULW
0000001 rs2 rs1 100 rd 0111011 DIVW
0000001 rs2 rs1 101 rd 0111011 DIVUW
0000001 rs2 rs1 110 rd 0111011 REMW
0000001 rs2 rs1 111 rd 0111011 REMUW

RV32A Standard Extension
00010 aq rl 00000 rs1 010 rd 0101111 LR.W
00011 aq rl rs2 rs1 010 rd 0101111 SC.W
00001 aq rl rs2 rs1 010 rd 0101111 AMOSWAP.W
00000 aq rl rs2 rs1 010 rd 0101111 AMOADD.W
00100 aq rl rs2 rs1 010 rd 0101111 AMOXOR.W
01100 aq rl rs2 rs1 010 rd 0101111 AMOAND.W
01000 aq rl rs2 rs1 010 rd 0101111 AMOOR.W
10000 aq rl rs2 rs1 010 rd 0101111 AMOMIN.W
10100 aq rl rs2 rs1 010 rd 0101111 AMOMAX.W
11000 aq rl rs2 rs1 010 rd 0101111 AMOMINU.W
11100 aq rl rs2 rs1 010 rd 0101111 AMOMAXU.W
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
rs3 funct2 rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64A Standard Extension (in addition to RV32A)
00010 aq rl 00000 rs1 011 rd 0101111 LR.D
00011 aq rl rs2 rs1 011 rd 0101111 SC.D
00001 aq rl rs2 rs1 011 rd 0101111 AMOSWAP.D
00000 aq rl rs2 rs1 011 rd 0101111 AMOADD.D
00100 aq rl rs2 rs1 011 rd 0101111 AMOXOR.D
01100 aq rl rs2 rs1 011 rd 0101111 AMOAND.D
01000 aq rl rs2 rs1 011 rd 0101111 AMOOR.D
10000 aq rl rs2 rs1 011 rd 0101111 AMOMIN.D
10100 aq rl rs2 rs1 011 rd 0101111 AMOMAX.D
11000 aq rl rs2 rs1 011 rd 0101111 AMOMINU.D
11100 aq rl rs2 rs1 011 rd 0101111 AMOMAXU.D

RV32F Standard Extension
imm[11:0] rs1 010 rd 0000111 FLW

imm[11:5] rs2 rs1 010 imm[4:0] 0100111 FSW
rs3 00 rs2 rs1 rm rd 1000011 FMADD.S
rs3 00 rs2 rs1 rm rd 1000111 FMSUB.S
rs3 00 rs2 rs1 rm rd 1001011 FNMSUB.S
rs3 00 rs2 rs1 rm rd 1001111 FNMADD.S

0000000 rs2 rs1 rm rd 1010011 FADD.S
0000100 rs2 rs1 rm rd 1010011 FSUB.S
0001000 rs2 rs1 rm rd 1010011 FMUL.S
0001100 rs2 rs1 rm rd 1010011 FDIV.S
0101100 00000 rs1 rm rd 1010011 FSQRT.S
0010000 rs2 rs1 000 rd 1010011 FSGNJ.S
0010000 rs2 rs1 001 rd 1010011 FSGNJN.S
0010000 rs2 rs1 010 rd 1010011 FSGNJX.S
0010100 rs2 rs1 000 rd 1010011 FMIN.S
0010100 rs2 rs1 001 rd 1010011 FMAX.S
1100000 00000 rs1 rm rd 1010011 FCVT.W.S
1100000 00001 rs1 rm rd 1010011 FCVT.WU.S
1110000 00000 rs1 000 rd 1010011 FMV.X.S
1010000 rs2 rs1 010 rd 1010011 FEQ.S
1010000 rs2 rs1 001 rd 1010011 FLT.S
1010000 rs2 rs1 000 rd 1010011 FLE.S
1110000 00000 rs1 001 rd 1010011 FCLASS.S
1101000 00000 rs1 rm rd 1010011 FCVT.S.W
1101000 00001 rs1 rm rd 1010011 FCVT.S.WU
1111000 00000 rs1 000 rd 1010011 FMV.S.X
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
rs3 funct2 rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64F Standard Extension (in addition to RV32F)
1100000 00010 rs1 rm rd 1010011 FCVT.L.S
1100000 00011 rs1 rm rd 1010011 FCVT.LU.S
1101000 00010 rs1 rm rd 1010011 FCVT.S.L
1101000 00011 rs1 rm rd 1010011 FCVT.S.LU

RV32D Standard Extension
imm[11:0] rs1 011 rd 0000111 FLD

imm[11:5] rs2 rs1 011 imm[4:0] 0100111 FSD
rs3 01 rs2 rs1 rm rd 1000011 FMADD.D
rs3 01 rs2 rs1 rm rd 1000111 FMSUB.D
rs3 01 rs2 rs1 rm rd 1001011 FNMSUB.D
rs3 01 rs2 rs1 rm rd 1001111 FNMADD.D

0000001 rs2 rs1 rm rd 1010011 FADD.D
0000101 rs2 rs1 rm rd 1010011 FSUB.D
0001001 rs2 rs1 rm rd 1010011 FMUL.D
0001101 rs2 rs1 rm rd 1010011 FDIV.D
0101101 00000 rs1 rm rd 1010011 FSQRT.D
0010001 rs2 rs1 000 rd 1010011 FSGNJ.D
0010001 rs2 rs1 001 rd 1010011 FSGNJN.D
0010001 rs2 rs1 010 rd 1010011 FSGNJX.D
0010101 rs2 rs1 000 rd 1010011 FMIN.D
0010101 rs2 rs1 001 rd 1010011 FMAX.D
0100000 00001 rs1 rm rd 1010011 FCVT.S.D
0100001 00000 rs1 rm rd 1010011 FCVT.D.S
1010001 rs2 rs1 010 rd 1010011 FEQ.D
1010001 rs2 rs1 001 rd 1010011 FLT.D
1010001 rs2 rs1 000 rd 1010011 FLE.D
1110001 00000 rs1 001 rd 1010011 FCLASS.D
1100001 00000 rs1 rm rd 1010011 FCVT.W.D
1100001 00001 rs1 rm rd 1010011 FCVT.WU.D
1101001 00000 rs1 rm rd 1010011 FCVT.D.W
1101001 00001 rs1 rm rd 1010011 FCVT.D.WU

RV64D Standard Extension (in addition to RV32D)
1100001 00010 rs1 rm rd 1010011 FCVT.L.D
1100001 00011 rs1 rm rd 1010011 FCVT.LU.D
1110001 00000 rs1 000 rd 1010011 FMV.X.D
1101001 00010 rs1 rm rd 1010011 FCVT.D.L
1101001 00011 rs1 rm rd 1010011 FCVT.D.LU
1111001 00000 rs1 000 rd 1010011 FMV.D.X

Table 9.2: Instruction listing for RISC-V
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Chapter 10

Extending RISC-V

In addition to supporting standard general-purpose software development, another goal of RISC-V
is to provide a basis for more specialized instruction-set extensions or more customized accelerators.
The instruction encoding spaces and optional variable-length instruction encoding are designed to
make it easier to leverage software development effort for the standard ISA toolchain when building
more customized processors. For example, the intent is to continue to provide full software support
for implementations that only use the standard I base, perhaps together with many non-standard
instruction-set extensions.

This chapter describes various ways in which the base RISC-V ISA can be extended, together
with the scheme for managing instruction-set extensions developed by independent groups. This
volume only deals with the user-level ISA, although the same approach and terminology is used for
supervisor-level extensions described in the second volume.

10.1 Extension Terminology

This section defines some standard terminology for describing RISC-V extensions.

Standard versus Non-Standard Extension

Any RISC-V processor implementation must support a base integer ISA (RV32I or RV64I). In
addition, an implementation may support one or more extensions. We divide extensions into two
broad categories: standard versus non-standard.

• A standard extension is one that is generally useful and that is designed to not conflict with
any other standard extension. Currently, “MAFDQLCBTPV”, described in other chapters
of this manual, are either complete or planned standard extensions.

• A non-standard extension may be highly specialized and may conflict with other standard
or non-standard extensions. We anticipate a wide variety of non-standard extensions will be
developed over time, with some eventually being promoted to standard extensions.
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Instruction Encoding Spaces and Prefixes

An instruction encoding space is some number of instruction bits within which a base ISA or
ISA extension is encoded. RISC-V supports varying instruction lengths, but even within a single
instruction length, there are various sizes of encoding space available. For example, the base ISA
is defined within a 30-bit encoding space (bits 31–2 of the 32-bit instruction), while the atomic
extension “A” fits within a 25-bit encoding space (bits 31–7).

We use the term prefix to refer to the bits to the right of an instruction encoding space (since
RISC-V is little-endian, the bits to the right are stored at earlier memory addresses, hence form a
prefix in instruction-fetch order). The prefix for the standard base ISA encoding is the two-bit “11”
field held in bits 1–0 of the 32-bit word, while the prefix for the standard atomic extension “A”
is the seven-bit “0101111” field held in bits 6–0 of the 32-bit word representing the AMO major
opcode. A quirk of the encoding format is that the 3-bit funct3 field used to encode a minor opcode
is not contiguous with the major opcode bits in the 32-bit instruction format, but is considered
part of the prefix for 22-bit instruction spaces.

Although an instruction encoding space could be of any size, adopting a smaller set of common
sizes simplifies packing independently developed extensions into a single global encoding. Table 10.1
gives the suggested sizes for RISC-V.

Size Usage # Available in standard instruction length
16-bit 32-bit 48-bit 64-bit

14-bit Quadrant of compressed 16-bit encoding 3

22-bit Minor opcode in base 32-bit encoding 28 220 235

25-bit Major opcode in base 32-bit encoding 32 217 232

30-bit Quadrant of base 32-bit encoding 1 212 227

32-bit Minor opcode in 48-bit encoding 210 225

37-bit Major opcode in 48-bit encoding 32 220

40-bit Quadrant of 48-bit encoding 4 217

45-bit Sub-minor opcode in 64-bit encoding 212

48-bit Minor opcode in 64-bit encoding 29

52-bit Major opcode in 64-bit encoding 32

Table 10.1: Suggested standard RISC-V instruction encoding space sizes.

Greenfield versus Brownfield Extensions

We use the term greenfield extension to describe an extension that begins populating a new in-
struction encoding space, and hence can only cause encoding conflicts at the prefix level. We
use the term brownfield extension to describe an extension that fits around existing encodings in
a previously defined instruction space. A brownfield extension is necessarily tied to a particular
greenfield parent encoding, and there may be multiple brownfield extensions to the same greenfield
parent encoding. For example, the base ISAs are greenfield encodings of a 30-bit instruction space,
while the FDQ floating-point extensions are all brownfield extensions adding to the parent base
ISA 30-bit encoding space.
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Note that we consider the standard A extension to have a greenfield encoding as it defines a new
previously empty 25-bit encoding space in the leftmost bits of the full 32-bit base instruction
encoding, even though its standard prefix locates it within the 30-bit encoding space of the base
ISA. Changing only its single 7-bit prefix could move the A extension to a different 30-bit encoding
space while only worrying about conflicts at the prefix level, not within the encoding space itself.

Adds state No new state

Greenfield RV32I(30), RV64I(30) A(25)

Brownfield F(I), D(F), Q(D) M(I)

Table 10.2: Two-dimensional characterization of standard instruction-set extensions.

Table 10.2 shows the bases and standard extensions placed in a simple two-dimensional taxonomy.
One axis is whether the extension is greenfield or brownfield, while the other axis is whether the
extension adds architectural state. For greenfield extensions, the size of the instruction encoding
space is given in parentheses. For brownfield extensions, the name of the extension (greenfield or
brownfield) it builds upon is given in parentheses. Additional user-level architectural state usually
implies changes to the supervisor-level system or possibly to the standard calling convention.

Note that RV64I is not considered an extension of RV32I, but a different complete base encoding.

Standard-Compatible Global Encodings

A complete or global encoding of an ISA for an actual RISC-V implementation must allocate a
unique non-conflicting prefix for every included instruction encoding space. The bases and every
standard extension have each had a standard prefix allocated to ensure they can all coexist in a
global encoding.

A standard-compatible global encoding is one where the base and every included standard extension
have their standard prefixes. A standard-compatible global encoding can include non-standard
extensions that do not conflict with the included standard extensions. A standard-compatible
global encoding can also use standard prefixes for non-standard extensions if the associated standard
extensions are not included in the global encoding. In other words, a standard extension must use
its standard prefix if included in a standard-compatible global encoding, but otherwise its prefix is
free to be reallocated. These constraints allow a common toolchain to target the standard subset
of any RISC-V standard-compatible global encoding.

Guaranteed Non-Standard Encoding Space

To support development of proprietary custom extensions, portions of the encoding space are
guaranteed to never be used by standard extensions.
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10.2 RISC-V Extension Design Philosophy

We intend to support a large number of independently developed extensions by encouraging ex-
tension developers to operate within instruction encoding spaces, and by providing tools to pack
these into a standard-compatible global encoding by allocating unique prefixes. Some extensions
are more naturally implemented as brownfield augmentations of existing extensions, and will share
whatever prefix is allocated to their parent greenfield extension. The standard extension prefixes
avoid spurious incompatibilities in the encoding of core functionality, while allowing custom packing
of more esoteric extensions.

This capability of repacking RISC-V extensions into different standard-compatible global encodings
can be used in a number of ways.

One use-case is developing highly specialized custom accelerators, designed to run kernels from
important application domains. These might want to drop all but the base integer ISA and add
in only the extensions that are required for the task in hand. The base ISA has been designed to
place minimal requirements on a hardware implementation, and has been encoded to use only a
small fraction of a 32-bit instruction encoding space.

Another use-case is to build a research prototype for a new type of instruction-set extension. The
researchers might not want to expend the effort to implement a variable-length instruction-fetch
unit, and so would like to prototype their extension using a simple 32-bit fixed-width instruction
encoding. However, this new extension might be too large to coexist with standard extensions in
the 32-bit space. If the research experiments do not need all of the standard extensions, a standard-
compatible global encoding might drop the unused standard extensions and reuse their prefixes to
place the proposed extension in a non-standard location to simplify engineering of the research
prototype. Standard tools will still be able to target the base and any standard extensions that are
present to reduce development time. Once the instruction-set extension has been evaluated and
refined, it could then be made available for packing into a larger variable-length encoding space to
avoid conflicts with all standard extensions.

The following sections describe increasingly sophisticated strategies for developing implementations
with new instruction-set extensions. These are mostly intended for use in highly customized, edu-
cational, or experimental architectures rather than for the main line of RISC-V ISA development.

10.3 Extensions within fixed-width 32-bit instruction format

In this section, we discuss adding extensions to implementations that only support the base fixed-
width 32-bit instruction format.

We anticipate the simplest fixed-width 32-bit encoding will be popular for many restricted accel-
erators and research prototypes.
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Available 30-bit instruction encoding spaces

In the standard encoding, three of the available 30-bit instruction encoding spaces (those with 2-bit
prefixes 00, 01, and 10) are used to enable the optional compressed instruction extension. However,
if the compressed instruction-set extension is not required, then these three further 30-bit encoding
spaces become available. This quadruples the available encoding space within the 32-bit format.

Available 25-bit instruction encoding spaces

A 25-bit instruction encoding space corresponds to a major opcode in the base and standard
extension encodings.

There are four major opcodes expressly reserved for custom extensions (Table 9.1), each of which
represents a 25-bit encoding space. Two of these are reserved for eventual use in the RV128 base
encoding (will be OP-IMM-64 and OP-64), but can be used for standard or non-standard extensions
for RV32 and RV64.

The two opcodes reserved for RV64 (OP-IMM-32 and OP-32) can also be used for standard and
non-standard extensions to RV32 only.

If an implementation does not require floating-point, then the seven major opcodes reserved for
standard floating-point extensions (LOAD-FP, STORE-FP, MADD, MSUB, NMSUB, NMADD,
OP-FP) can be reused for non-standard extensions. Similarly, the AMO major opcode can be
reused if the standard atomic extensions are not required.

If an implementation does not require instructions longer than 32-bits, then an additional four
major opcodes are available (those marked in gray in Table 9.1).

The base RV32I encoding uses only 11 major opcodes plus 3 reserved opcodes, leaving up to 18
available for extensions. The base RV64I encoding uses only 13 major opcodes plus 3 reserved
opcodes, leaving up to 16 available for extensions.

Available 22-bit instruction encoding spaces

A 22-bit encoding space corresponds to a funct3 minor opcode space in the base and standard
extension encodings. Several major opcodes have a funct3 field minor opcode that is not completely
occupied, leaving available several 22-bit encoding spaces.

Usually a major opcode selects the format used to encode operands in the remaining bits of the
instruction, and ideally, an extension should follow the operand format of the major opcode to
simplify hardware decoding.

Other spaces

Smaller spaces are available under certain major opcodes, and not all minor opcodes are entirely
filled.
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10.4 Adding aligned 64-bit instruction extensions

The simplest approach to provide space for extensions that are too large for the base 32-bit fixed-
width instruction format is to add naturally aligned 64-bit instructions. The implementation must
still support the 32-bit base instruction format, but can require that 64-bit instructions are aligned
on 64-bit boundaries to simplify instruction fetch, with a 32-bit NOP instruction used as alignment
padding where necessary.

To simplify use of standard tools, the 64-bit instructions should be encoded as described in Fig-
ure 1.1. However, an implementation might choose a non-standard instruction-length encoding for
64-bit instructions, while retaining the standard encoding for 32-bit instructions. For example, if
compressed instructions are not required, then a 64-bit instruction could be encoded using one or
more zero bits in the first two bits of an instruction.

We anticipate processor generators that produce instruction-fetch units capable of automatically
handling any combination of supported variable-length instruction encodings.

10.5 Supporting VLIW encodings

Although RISC-V was not designed as a base for a pure VLIW machine, VLIW encodings can be
added as extensions using several alternative approaches. In all cases, the base 32-bit encoding has
to be supported to allow use of any standard software tools.

Fixed-size instruction group

The simplest approach is to define a single large naturally aligned instruction format (e.g., 128 bits)
within which VLIW operations are encoded. In a conventional VLIW, this approach would tend
to waste instruction memory to hold NOPs, but a RISC-V-compatible implementation would have
to also support the base 32-bit instructions, confining the VLIW code size expansion to VLIW-
accelerated functions.

Encoded-Length Groups

Another approach is to use the standard length encoding from Figure 1.1 to encode parallel in-
struction groups, allowing NOPs to be compressed out of the VLIW instruction. For example,
a 64-bit instruction could hold two 28-bit operations, while a 96-bit instruction could hold three
28-bit operations, and so on. Alternatively, a 48-bit instruction could hold one 42-bit operation,
while a 96-bit instruction could hold two 42-bit operations, and so on.

This approach has the advantage of retaining the base ISA encoding for instructions holding a
single operation, but has the disadvantage of requiring a new 28-bit or 42-bit encoding for operations
within the VLIW instructions, and misaligned instruction fetch for larger groups. One simplification
is to not allow VLIW instructions to straddle certain microarchitecturally significant boundaries
(e.g., cache lines or virtual memory pages).
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Fixed-Size Instruction Bundles

Another approach, similar to Itanium, is to use a larger naturally aligned fixed instruction bundle
size (e.g., 128 bits) across which parallel operation groups are encoded. This simplifies instruction
fetch, but shifts the complexity to the group execution engine. To remain RISC-V compatible, the
base 32-bit instruction would still have to be supported.

End-of-Group bits in Prefix

None of the above approaches retains the RISC-V encoding for the individual operations within
a VLIW instruction. Yet another approach is to repurpose the two prefix bits in the fixed-width
32-bit encoding. One prefix bit can be used to signal “end-of-group” if set, while the second bit
could indicate execution under a predicate if clear. Standard RISC-V 32-bit instructions generated
by tools unaware of the VLIW extension would have both prefix bits set (11) and thus have the
correct semantics, with each instruction at the end of a group and not predicated.

The main disadvantage of this approach is that the base ISA lacks the complex predication support
usually required in an aggressive VLIW system, and it is difficult to add space to specify more
predicate registers in the standard 30-bit encoding space.
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Chapter 11

ISA Subset Naming Conventions

This chapter describes the RISC-V ISA subset naming scheme that is used to concisely describe
the set of instructions present in a hardware implementation, or the set of instructions used by an
application binary interface (ABI).

The RISC-V ISA is designed to support a wide variety of implementations with various exper-
imental instruction-set extensions. We have found that an organized naming scheme simplifies
software tools and documentation.

11.1 Case Sensitivity

The ISA naming strings are case insensitive.

11.2 Base Integer ISA

RISC-V ISA strings begin with either RV32I, RV32E, RV64I, or RV128I indicating the supported
address space size in bits for the base integer ISA.

11.3 Instruction Extensions Names

Standard ISA extensions are given a name consisting of a single letter. For example, the first
four standard extensions to the integer bases are: “M” for integer multiplication and division, “A”
for atomic memory instructions, “F” for single-precision floating-point instructions, and “D” for
double-precision floating-point instructions. Any RISC-V instruction set variant can be succinctly
described by concatenating the base integer prefix with the names of the included extensions. For
example, “RV64IMAFD”.

We have also defined an abbreviation “G” to represent the “IMAFD” base and extensions, as this
is intended to represent our standard general-purpose ISA.
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Standard extensions to the RISC-V ISA are given other reserved letters, e.g., “Q” for quad-precision
floating-point, or “C” for the 16-bit compressed instruction format.

11.4 Version Numbers

Recognizing that instruction sets may expand or alter over time, we encode subset version numbers
following the subset name. Version numbers are divided into major and minor version numbers,
separated by a “p”. If the minor version is “0”, then “p0” can be omitted from the version string.
Changes in major version numbers imply a loss of backwards compatibility, whereas changes in only
the minor version number must be backwards-compatible. For example, the original 64-bit standard
ISA defined in release 1.0 of this manual can be written in full as “RV64I1p0M1p0A1p0F1p0D1p0”,
more concisely as “RV64I1M1A1F1D1”, or even more concisely as “RV64G1”. The G ISA subset
can be written as “RV64I2p0M2p0A2p0F2p0D2p0”, or more concisely “RV64G2”.

We introduced the version numbering scheme with the second release, which we also intend to
become a permanent standard. Hence, we define the default version of a standard subset to be
that present at the time of this document, e.g., “RV32G” is equivalent to “RV32I2M2A2F2D2”.

11.5 Non-Standard Extension Names

Non-standard subsets are named using a single “X” followed by a name beginning with a letter
and an optional version number. For example, “Xhwacha” names the Hwacha vector-fetch ISA
extension; “Xhwacha2” and “Xhwacha2p0” name version 2.0 of same.

Non-standard extensions must be separated from other multi-letter extensions by a single un-
derscore. For example, an ISA with non-standard extensions Argle and Bargle may be named
“RV64GXargle Xbargle”.

11.6 Supervisor-level Instruction Subsets

Standard supervisor instruction subsets are defined in Volume II, but are named using “S” as a
prefix, followed by a supervisor subset name beginning with a letter and an optional version number.

Supervisor extensions must be separated from other multi-letter extensions by a single underscore.

11.7 Supervisor-level Extensions

Non-standard extensions to the supervisor-level ISA are defined using the “SX” prefix.
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11.8 Subset Naming Convention

Table 11.1 summarizes the standardized subset names.

Subset Name

Standard General-Purpose ISA

Integer I
Integer Multiplication and Division M
Atomics A
Single-Precision Floating-Point F
Double-Precision Floating-Point D

General G = IMAFD

Standard User-Level Extensions

Quad-Precision Floating-Point Q
Decimal Floating-Point L
16-bit Compressed Instructions C
Bit Manipulation B
Transactional Memory T
Packed-SIMD Extensions P
Vector Extensions V

Non-Standard User-Level Extensions

Non-standard extension “abc” Xabc

Standard Supervisor-Level ISA

Supervisor extension “def” Sdef

Non-Standard Supervisor-Level Extensions

Supervisor extension “ghi” SXghi

Table 11.1: Standard ISA subset names. The table also defines the canonical order in which subset
names must appear in the name string, with top-to-bottom in table indicating first-to-last in the
name string, e.g., RV32IMAFDQC is legal, whereas RV32IMAFDCQ is not.
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Chapter 12

“Q” Standard Extension for
Quad-Precision Floating-Point,
Version 2.0

This chapter describes the Q standard extension for 128-bit binary floating-point instructions com-
pliant with the IEEE 754-2008 arithmetic standard. The 128-bit or quad-precision binary floating-
point instruction subset is named “Q”, and requires RV64IFD. The floating-point registers are now
extended to hold either a single, double, or quad-precision floating-point value (FLEN=128).

12.1 Quad-Precision Load and Store Instructions

New 128-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new
value for the funct3 width field.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base Q dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base Q offset[4:0] STORE-FP

If a floating-point register holds a single-precision or double-precision value, it is guaranteed that
a FSQ of that register will place a value into memory that when reloaded with a FLQ will recreate
the original value in a register. The data format that is stored in memory is undefined beyond
having this property.
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FLQ and FSQ are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN=128.

12.2 Quad-Precision Computational Instructions

A new supported format is added to the format field of most instructions, as shown in Table 12.1.

fmt field Mnemonic Meaning

00 S 32-bit single-precision
01 D 64-bit double-precision
10 - reserved
11 Q 128-bit quad-precision

Table 12.1: Format field encoding.

The quad-precision floating-point computational instructions are defined analogously to their
double-precision counterparts, but operate on quad-precision operands and produce quad-precision
results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB Q src2 src1 RM dest OP-FP
FMUL/FDIV Q src2 src1 RM dest OP-FP
FMIN-MAX Q src2 src1 MIN/MAX dest OP-FP

FSQRT Q 0 src RM dest OP-FP

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 Q src2 src1 RM dest F[N]MADD/F[N]MSUB

12.3 Quad-Precision Convert and Move Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt Q W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int Q W[U]/L[U] src RM dest OP-FP

New floating-point to floating-point conversion instructions FCVT.S.Q, FCVT.Q.S, FCVT.D.Q,
FCVT.Q.D are added.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.fmt.fmt S Q src RM dest OP-FP
FCVT.fmt.fmt Q S src RM dest OP-FP
FCVT.fmt.fmt D Q src RM dest OP-FP
FCVT.fmt.fmt Q D src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.Q, FSGNJN.Q, and FSGNJX.Q
are defined analogously to the double-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ Q src2 src1 J[N]/JX dest OP-FP

FMV.X.Q and FMV.Q.X instructions are not provided, so quad-precision bit patterns must be
moved to the integer registers via memory.

RV128 supports FMV.X.Q and FMV.Q.X in the Q extension.

12.4 Quad-Precision Floating-Point Compare Instructions

Floating-point compare instructions perform the specified comparison (equal, less than, or less
than or equal) between floating-point registers rs1 and rs2 and record the Boolean result in integer
register rd.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP Q src2 src1 EQ/LT/LE dest OP-FP

12.5 Quad-Precision Floating-Point Classify Instruction

The quad-precision floating-point classify instruction, FCLASS.Q, is defined analogously to its
double-precision counterpart, but operates on quad-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS Q 0 src 001 dest OP-FP
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Chapter 13

“L” Standard Extension for Decimal
Floating-Point, Version 0.0

This chapter is a placeholder for the specification of a standard extension named “L” designed to
support decimal floating-point arithmetic as defined in the IEEE 754-2008 standard.

13.1 Decimal Floating-Point Registers

Existing floating-point registers are used to hold 64-bit and 128-bit decimal floating-point values,
and the existing floating-point load and store instructions are used to move values to and from
memory.

Due to the large opcode space required by the fused multiply-add instructions, the decimal floating-
point instruction extension will require five 25-bit major opcodes in a 30-bit encoding space.
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Chapter 14

“C” Standard Extension for
Compressed Instructions, Version 1.9

This chapter describes the current draft proposal for the RISC-V standard compressed instruction
set extension, named “C”, which reduces static and dynamic code size by adding short 16-bit
instruction encodings for common operations. The C extension can be added to any of the base
ISAs (RV32, RV64, RV128), and we use the generic term “RVC” to cover any of these. Typically,
50%–60% of the RISC-V instructions in a program can be replaced with RVC instructions, resulting
in a 25%–30% code-size reduction.

We believe this draft represents the close to final design for RV32C and RV64C (it seems premature
to freeze R128C), though we are requesting one more round of comments, hence the 1.9 revision
number. Please send your comments to the isa-dev mailing list at isa-dev@lists.riscv.org.

14.1 Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack
pointer (x2), or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension
allows 16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able
to start on any 16-bit boundary.

Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly
greater code density.
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The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C,
but as shown in Table 14.3, a few opcodes are used for different purposes depending on base
ISA width. For example, the wider address-space RV64C and RV128C variants require additional
opcodes to compress loads and stores of 64-bit integer values, while RV32C uses the same opcodes
to compress loads and stores of single-precision floating-point values. Similarly, RV128C requires
additional opcodes to capture loads and stores of 128-bit integer values, while these same opcodes
are used for loads and stores of double-precision floating-point values in RV32C and RV64C. If the
C extension is implemented, the appropriate compressed floating-point load and store instructions
must be provided whenever the relevant standard floating-point extension (F and/or D) is also
implemented. In addition, RV32C includes a compressed jump and link instruction to compress
short-range subroutine calls, where the same opcode is used to compress ADDIW for RV64C and
RV128C.

Double-precision loads and stores are a significant fraction of static and dynamic instructions,
hence the motivation to include them in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or dynamic
compression for benchmarks compiled for the currently supported ABIs, for microcontrollers
that only provide hardware single-precision floating-point units and have an ABI that only sup-
ports single-precision floating-point numbers, the single-precision loads and stores will be used
at least as frequently as double-precision loads and stores in the measured benchmarks. Hence,
the motivation to provide compressed support for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence the
motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base register widths adds some
complexity to documentation, the impact on implementation complexity is small even for designs
that support multiple base ISA register widths. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider integer
loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit
instruction in either the base ISA (RV32I/E, RV64I, or RV128I) or the F and D standard extensions
where present. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification
and minimizing modifications to existing microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler
and linker, although a compression-aware compiler will generally be able to produce better
results.

We felt the multiple complexity reductions of a simple one-one mapping between C and base
IFD instructions far outweighed the potential gains of a slightly denser encoding that added
additional instructions only supported in the C extension, or that allowed encoding of multiple
IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant
to be used alongside a base ISA.

Variable-length instruction sets have long been used to improve code density. For example, the
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IBM Stretch [3], developed in the late 1950s, had an ISA with 32-bit and 64-bit instructions,
where some of the 32-bit instructions were compressed versions of the full 64-bit instructions.
Stretch also employed the concept of limiting the set of registers that were addressable in some
of the shorter instruction formats, with short branch instructions that could only refer to one
of the index registers. The later IBM 360 architecture [2] supported a simple variable-length
instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 [23], a precursor to RISC archi-
tectures, that introduced a register-rich load-store architecture with instructions of two lengths,
15-bits and 30-bits. The later Cray-1 design used a very similar instruction format, with 16-bit
and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was
reasonable for a workstation environment, but not for embedded systems. Hence, both ARM
and MIPS subsequently made versions of the ISAs that offered smaller code size by offering an
alternative 16-bit wide instruction set instead of the standard 32-bit wide instructions. The com-
pressed RISC ISAs reduced code size relative to their starting points by about 25–30%, yielding
code that was significantly smaller than 80x86. This result surprised some, as their intuition
was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-bit
and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these
unplanned compressed instructions, they were instead developed as complete new ISAs. This
meant compilers needed different code generators for the separate compressed ISAs. The first
compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a fixed 16-bit in-
struction size, which gave good reductions in static code size but caused an increase in dynamic
instruction count, which led to lower performance compared to the original fixed-width 32-bit
instruction size. This led to the development of a second generation of compressed RISC ISA
designs with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS, Pow-
erPC VLE), so that performance was similar to pure 32-bit instructions but with significant
code size savings. Unfortunately, these different generations of compressed ISAs are incompati-
ble with each other and with the original uncompressed ISA, leading to significant complexity in
documentation, implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a
compressed instruction format. It is surprising that the most popular 64-bit ISA for mobile
platforms (ARM v8) does not include a compressed instruction format given that static code
size and dynamic instruction fetch bandwidth are important metrics. Although static code size
is not a major concern in larger systems, instruction fetch bandwidth can be a major bottleneck
in servers running commercial workloads, which often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed instruc-
tions from the outset, leaving enough opcode space for RVC to be added as a simple extension
on top of the base ISA (along with many other extensions). The philosophy of RVC is to reduce
code size for embedded applications and to improve performance and energy-efficiency for all
applications due to fewer misses in the instruction cache. Waterman shows that RVC fetches
25%-30% fewer instruction bits, which reduces instruction cache misses by 20%-25%, or roughly
the same performance impact as doubling the instruction cache size [28].

14.2 Compressed Instruction Formats

Table 14.1 shows the eight compressed instruction formats. CR, CI, and CSS can use any of the
32 RVI registers, but CIW, CL, CS, and CB are limited to just 8 of them. Table 14.2 lists these
popular registers, which correspond to registers x8 to x15. Note that there is a separate version of
load and store instructions that use the stack pointer as the base address register, since saving to
and restoring from the stack are so prevalent, and that they use the CI and CSS formats to allow
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access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The RISC-V ABI was changed to make the frequently used registers map to registers x8–x15.
This simplifies the decompression decoder by having a contiguous naturally aligned set of register
numbers, and is also compatible with the RV32E subset base specification, which only has 16
integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats respec-
tively, with the eight registers mapping to f8 to f15.

The standard RISC-V calling convention maps the most frequently used floating-point registers
to registers f8 to f15, which allows the same register decompression decoding as for integer
register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates
are sign-extended, the sign-extension is always from bit 12. Immediate fields have been scrambled,
as in the base specification, to reduce the number of immediate muxes required.

The immediate fields are scrambled in the instruction formats instead of in sequential order so
that as many bits as possible are in the same position in every instruction, thereby simplify-
ing implementations. For example, immediate bits 17—10 are always sourced from the same
instruction bit positions. Five other immediate bits (5, 4, 3, 1, and 0) have just two source
instruction bits, while four (9, 7, 6, and 2) have three sources and one (8) has four sources.

For many RVC instructions, zero-valued immediates are disallowed and x0 is not a valid 5-bit
register specifier. These restrictions free up encoding space for other instructions requiring fewer
operand bits.

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd′ op
CL Load funct3 imm rs1′ imm rd′ op
CS Store funct3 imm rs1′ imm rs2′ op
CB Branch funct3 offset rs1′ offset op
CJ Jump funct3 jump target op

Table 14.1: Compressed 16-bit RVC instruction formats.

RVC Register Number 000 001 010 011 100 101 110 111
Integer Register Number x8 x9 x10 x11 x12 x13 x14 x15

Integer Register ABI Name s0 s1 a0 a1 a2 a3 a4 a5

Floating-Point Register Number f8 f9 f10 f11 f12 f13 f14 f15

Floating-Point Register ABI Name fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

Table 14.2: Registers specified by the three-bit rs1’, rs2’, and rd’ fields of the CIW, CL, CS, and
CB formats.
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14.3 Load and Store Instructions

To increase the reach of 16-bit instructions, data-transfer instructions use zero-extended immediates
that are scaled by the size of the data in bytes: ×4 for words, ×8 for double words, and ×16 for
quad words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base
address and can target any data register. The other can reference one of 8 base address registers
and one of 8 data registers.

Stack-Pointer-Based Loads and Stores

15 13 12 11 7 6 2 1 0

funct3 imm rd imm op

3 1 5 5 2
C.LWSP offset[5] dest6=0 offset[4:2|7:6] C2
C.LDSP offset[5] dest 6=0 offset[4:3|8:6] C2
C.LQSP offset[5] dest 6=0 offset[4|9:6] C2

C.FLWSP offset[5] dest offset[4:2|7:6] C2
C.FLDSP offset[5] dest offset[4:3|8:6] C2

These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address
by adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to lw rd,

offset[7:2](x2).

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd. It computes its effective address by adding the zero-extended offset, scaled by 8, to the stack
pointer, x2. It expands to ld rd, offset[8:3](x2).

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to lq rd, offset[9:4](x2).

C.FLWSP is an RV32FC-only instruction that loads a single-precision floating-point value from
memory into floating-point register rd. It computes its effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to flw rd, offset[7:2](x2).

C.FLDSP is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point
value from memory into floating-point register rd. It computes its effective address by adding
the zero-extended offset, scaled by 8, to the stack pointer, x2. It expands to fld rd,

offset[8:3](x2).
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15 13 12 7 6 2 1 0

funct3 imm rs2 op

3 6 5 2
C.SWSP offset[5:2|7:6] src C2
C.SDSP offset[5:3|8:6] src C2
C.SQSP offset[5:4|9:6] src C2

C.FSWSP offset[5:2|7:6] src C2
C.FSDSP offset[5:3|8:6] src C2

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2,

offset[7:2](x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer,
x2. It expands to sd rs2, offset[8:3](x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to sq rs2, offset[9:4](x2).

C.FSWSP is an RV32FC-only instruction that stores a single-precision floating-point value in
floating-point register rs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to fsw rs2, offset[7:2](x2).

C.FSDSP is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point
value in floating-point register rs2 to memory. It computes an effective address by adding the zero-
extended offset, scaled by 8, to the stack pointer, x2. It expands to fsd rs2, offset[8:3](x2).

Register-Based Loads and Stores

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rd′ op

3 3 3 2 3 2
C.LW offset[5:3] base offset[2|6] dest C0
C.LD offset[5:3] base offset[7:6] dest C0
C.LQ offset[5|4|8] base offset[7:6] dest C0

C.FLW offset[5:3] base offset[2|6] dest C0
C.FLD offset[5:3] base offset[7:6] dest C0

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd′. It computes an effective address by adding
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the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to lw rd′,
offset[6:2](rs1′).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd′. It computes an effective address by adding the zero-extended offset, scaled by 8, to the base
address in register rs1′. It expands to ld rd′, offset[7:3](rs1′).

C.LQ is an RV128C-only instruction that loads a 128-bit value from memory into register rd′. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to lq rd′, offset[8:4](rs1′).

C.FLW is an RV32FC-only instruction that loads a single-precision floating-point value from mem-
ory into floating-point register rd′. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the base address in register rs1′. It expands to flw rd′, offset[6:2](rs1′).

C.FLD is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd′. It computes an effective address by adding the
zero-extended offset, scaled by 8, to the base address in register rs1′. It expands to fld rd′,
offset[7:3](rs1′).

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rs2′ op

3 3 3 2 3 2
C.SW offset[5:3] base offset[2|6] src C0
C.SD offset[5:3] base offset[7:6] src C0
C.SQ offset[5|4|8] base offset[7:6] src C0

C.FSW offset[5:3] base offset[2|6] src C0
C.FSD offset[5:3] base offset[7:6] src C0

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2′ to memory. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to sw rs2′,
offset[6:2](rs1′).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2′ to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the base address
in register rs1′. It expands to sd rs2′, offset[7:3](rs1′).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2′ to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to sq rs2′, offset[8:4](rs1′).

C.FSW is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2′ to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1′. It expands to fsw rs2′, offset[6:2](rs1′).

C.FSD is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value
in floating-point register rs2′ to memory. It computes an effective address by adding the zero-
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extended offset, scaled by 8, to the base address in register rs1′. It expands to fsd rs2′,
offset[7:3](rs1′).

14.4 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. As with base
RVI instructions, the offsets of all RVC control transfer instruction are in multiples of 2 bytes.

15 13 12 2 1 0

funct3 imm op

3 11 2
C.J offset[11|4|9:8|10|6|7|3:1|5] C1

C.JAL offset[11|4|9:8|10|6|7|3:1|5] C1

These instructions use the CJ format.

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to
form the jump target address. C.J can therefore target a ±2 KiB range. C.J expands to jal x0,

offset[11:1].

C.JAL is an RV32C-only instruction that performs the same operation as C.J, but additionally
writes the address of the instruction following the jump (pc+2) to the link register, x1. C.JAL
expands to jal x1, offset[11:1].

15 12 11 7 6 2 1 0

funct4 rs1 rs2 op

4 5 5 2
C.JR src6=0 0 C2

C.JALR src 6=0 0 C2

These instructions use the CR format.

C.JR (jump register) performs an unconditional control transfer to the address in register rs1. C.JR
expands to jalr x0, rs1, 0.

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. C.JALR expands to
jalr x1, rs1, 0.

Strictly speaking, C.JALR does not expand exactly to a base RVI instruction as the value added
to the PC to form the link address is 2 rather than 4 as in the base ISA, but supporting both
offsets of 2 and 4 bytes is only a very minor change to the base microarchitecture.
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15 13 12 10 9 7 6 2 1 0

funct3 imm rs1′ imm op

3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6|2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6|2:1|5] C1

These instructions use the CB format.

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to
form the branch target address. It can therefore target a ±256 B range. C.BEQZ takes the branch
if the value in register rs1′ is zero. It expands to beq rs1′, x0, offset[8:1].

C.BNEZ is defined analogously, but it takes the branch if rs1′ contains a nonzero value. It expands
to bne rs1′, x0, offset[8:1].

14.5 Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.

Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any
integer register.

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd imm[4:0] op

3 1 5 5 2
C.LI imm[5] dest6=0 imm[4:0] C1

C.LUI nzimm[17] dest6={0, 2} nzimm[16:12] C1

C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI is only valid when rd6=x0.
C.LI expands into addi rd, x0, imm[5:0].

C.LUI loads the non-zero 6-bit immediate field into bits 17–12 of the destination register, clears
the bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI is only
valid when rd6={x0, x2}, and when the immediate is not equal to zero. C.LUI expands into lui

rd, nzimm[17:12].

Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations
on any non-x0 integer register and a 6-bit immediate. The immediate cannot be zero.
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15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.ADDI nzimm[5] dest nzimm[4:0] C1

C.ADDIW imm[5] dest6=0 imm[4:0] C1
C.ADDI16SP nzimm[9] 2 nzimm[4|6|8:7|5] C1

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes
the result to rd. C.ADDI expands into addi rd, rd, nzimm[5:0].

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but pro-
duces a 32-bit result, then sign-extends result to 64 bits. C.ADDIW expands into addiw rd, rd,

imm[5:0]. The immediate can be zero for C.ADDIW, where this corresponds to sext.w rd.

C.ADDI16SP shares the opcode with C.LUI, but has a destination field of x2. C.ADDI16SP adds
the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the
immediate is scaled to represent multiples of 16 in the range (-512,496). C.ADDI16SP is used
to adjust the stack pointer in procedure prologues and epilogues. It expands into addi x2, x2,

nzimm[9:4].

In the standard RISC-V calling convention, the stack pointer sp is always 16-byte aligned.

15 13 12 5 4 2 1 0

funct3 imm rd′ op

3 8 3 2
C.ADDI4SPN zimm[5:4|9:6|2|3] dest C0

C.ADDI4SPN is a CIW-format RV32C/RV64C-only instruction that adds a zero-extended non-zero
immediate, scaled by 4, to the stack pointer, x2, and writes the result to rd′. This instruction is
used to generate pointers to stack-allocated variables, and expands to addi rd′, x2, zimm[9:2].

15 13 12 11 7 6 2 1 0

funct3 shamt[5] rd/rs1 shamt[4:0] op

3 1 5 5 2
C.SLLI shamt[5] dest6=0 shamt[4:0] C2

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then
writes the result to rd. The shift amount is encoded in the shamt field, where shamt[5] must be
zero for RV32C. For RV32C and RV64C, the shift amount must be non-zero. For RV128C, a shift
amount of zero is used to encode a shift of 64. C.SLLI expands into slli rd, rd, shamt[5:0],
except for RV128C with shamt=0, which expands to slli rd, rd, 64.

15 13 12 11 10 9 7 6 2 1 0

funct3 shamt[5] funct2 rd′/rs1′ shamt[4:0] op

3 1 2 3 5 2
C.SRLI shamt[5] C.SRLI dest shamt[4:0] C1
C.SRAI shamt[5] C.SRAI dest shamt[4:0] C1
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C.SRLI is a CB-format instruction that performs a logical right shift of the value in register rd′

then writes the result to rd′. The shift amount is encoded in the shamt field, where shamt[5] must
be zero for RV32C. For RV32C and RV64C, the shift amount must be non-zero. For RV128C, a
shift amount of zero is used to encode a shift of 64. Furthermore, the shift amount is sign-extended
for RV128C, and so the legal shift amounts are 1–31, 64, and 96–127. C.SRLI expands into srli

rd′, rd′, shamt[5:0], except for RV128C with shamt=0, which expands to srli rd′, rd′, 64.

C.SRAI is defined analogously to C.SRLI, but instead performs an arithmetic right shift. C.SRAI
expands to srai rd′, rd′, shamt[5:0].

Left shifts are usually more frequent than right shifts, as left shifts are frequently used to scale
address values. Right shifts have therefore been granted less encoding space and are placed in
an encoding quadrant where all other immediates are sign-extended. For RV128, the decision
was made to have the 6-bit shift-amount immediate also be sign-extended. Apart from reducing
the decode complexity, we believe right-shift amounts of 96–127 will be more useful than 64–95,
to allow extraction of tags located in the high portions of 128-bit address pointers. We note
that RV128C will not be frozen at the same point as RV32C and RV64C, to allow evaluation of
typical usage of 128-bit address-space codes.

15 13 12 11 10 9 7 6 2 1 0

funct3 imm[5] funct2 rd′/rs1′ imm[4:0] op

3 1 2 3 5 2
C.ANDI imm[5] C.ANDI dest imm[4:0] C1

C.ANDI is a CB-format instruction that computes the bitwise AND of of the value in register rd′

and the sign-extended 6-bit immediate, then writes the result to rd′. C.ANDI expands to andi

rd′, rd′, imm[5:0].

Integer Register-Register Operations

15 12 11 7 6 2 1 0

funct4 rd/rs1 rs2 op

4 5 5 2
C.MV dest 6=0 src 6=0 C0

C.ADD dest6=0 src 6=0 C0

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2.

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands
into add rd, rd, rs2.
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15 10 9 7 6 5 4 2 1 0

funct6 rd′/rs1′ funct rs2′ op

6 3 2 3 2
C.AND dest C.AND src C1
C.OR dest C.OR src C1

C.XOR dest C.XOR src C1
C.SUB dest C.SUB src C1

C.ADDW dest C.ADDW src C1
C.SUBW dest C.SUBW src C1

These instructions use the CS format.

C.AND computes the bitwise AND of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.AND expands into and rd′, rd′, rs2′.

C.OR computes the bitwise OR of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.OR expands into or rd′, rd′, rs2′.

C.XOR computes the bitwise XOR of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.XOR expands into xor rd′, rd′, rs2′.

C.SUB subtracts the value in register rs2′ from the value in register rd′, then writes the result to
register rd′. C.SUB expands into sub rd′, rd′, rs2′.

C.ADDW is an RV64C/RV128C-only instruction that adds the values in registers rd′ and rs2′,
then sign-extends the lower 32 bits of the sum before writing the result to register rd′. C.ADDW
expands into addw rd′, rd′, rs2′.

C.SUBW is an RV64C/RV128C-only instruction that subtracts the value in register rs2′ from the
value in register rd′, then sign-extends the lower 32 bits of the difference before writing the result
to register rd′. C.SUBW expands into subw rd′, rd′, rs2′.

This group of six instructions do not provide large savings individually, but do not occupy much
encoding space and are straightforward to implement, and as a group provide a worthwhile im-
provement in static and dynamic compression.

Defined Illegal Instruction
15 13 12 11 7 6 2 1 0

0 0 0 0 0

3 1 5 5 2
0 0 0 0 0

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.

We reserve all-zero instructions to be illegal instructions to help trap attempts to execute zero-ed
or non-existent portions of the memory space. The all-zero value should not be redefined in any
non-standard extension. Similarly, we reserve instructions with all bits set to 1 (corresponding
to very long instructions in the RISC-V variable-length encoding scheme) as illegal to capture
another common value seen in non-existent memory regions.
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NOP Instruction
15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.NOP 0 0 0 C1

C.NOP is a CI-format instruction that does not change any user-visible state, except for advancing
the pc. C.NOP is encoded as c.addi x0, 0 and so expands to addi x0, x0, 0.

Breakpoint Instruction
15 12 11 2 1 0

funct4 0 op

4 10 2
C.EBREAK 0 C0

Debuggers can use the C.EBREAK instruction, which expands to ebreak, to cause control to be
transferred back to the debugging environment. C.EBREAK shares the opcode with the C.ADD
instruction, but with rd and rs2 both zero, thus can also use the CR format.

14.6 Usage of C Instructions in LR/SC Sequences

On implementations that support the C extension, compressed forms of the I instructions permitted
inside LR/SC sequences can be used while retaining the guarantee of eventual success, as described
in Section 6.2.

The implication is that any implementation that claims to support both the A and C extensions
must ensure that LR/SC sequences containing valid C instructions will eventually complete.
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14.7 RVC Instruction Set Listings

Table 14.3 shows a map of the major opcodes for RVC. Opcodes with the lower two bits set
correspond to instructions wider than 16 bits, including those in the base ISAs. Several instructions
are only valid for certain operands; when invalid, they are marked either RES to indicate that the
opcode is reserved for future standard extensions; NSE to indicate that the opcode is reserved
for non-standard extensions; or HINT to indicate that the opcode is reserved for future standard
microarchitectural hints. Instructions marked HINT must execute as no-ops on implementations
for which the hint has no effect.

The HINT instructions are designed to support future addition of microarchitectural hints that
might affect performance but cannot affect architectural state. The HINT encodings have been
chosen so that simple implementations can ignore the HINT encoding and execute the HINT as
a regular operation that does not change architectural state. For example, C.ADD is a HINT if
the destination register is x0, where the five-bit rs2 field encodes details of the HINT. However,
a simple implementation can simply execute the HINT as an add to register x0, which will have
no effect.

inst[15:13]
000 001 010 011 100 101 110 111

inst[1:0]

00 ADDI4SPN
FLD

LW
FLW

Reserved
FSD

SW
FSW RV32

FLD LD FSD SD RV64
LQ LD SQ SD RV128

01 ADDI
JAL

LI LUI/ADDI16SP MISC-ALU J BEQZ BNEZ
RV32

ADDIW RV64
ADDIW RV128

10 SLLI
FLDSP

LWSP
FLWSP

J[AL]R/MV/ADD
FSDSP

SWSP
FSWSP RV32

FLDSP LDSP FSDSP SDSP RV64
LQ LDSP SQ SDSP RV128

11 >16b

Table 14.3: RVC opcode map

Tables 14.4–14.6 list the RVC instructions.

14.8 Instruction Compression Statistics

The following tables provide some data we used to guide the selection of instructions to include in
RVC.

Table 14.7 lists the standard RVC instructions with the most frequent first, showing the individual
contributions of those instructions to static code size and then the running total for three experi-
ments: the SPEC benchmarks for both RV32C and RV64C for the Linux kernel. For RV32, RVC
reduces static code size by 24.5% on Dhrystone and 30.9% on CoreMark. For RV64, it reduces
static code size by 26.3% on SPECint, 25.8% on SPECfp, and 31.1% on the Linux kernel.

Table 14.8 ranks the RVC instructions by order of typical dynamic frequency. For RV32, RVC
reduces dynamic bytes fetched by 29.2% on Dhrystone and 29.3% on CoreMark. For RV64, it
reduces dynamic bytes fetched by 26.9% on SPECint, 22.4% on SPECfp, and 26.11% booting the
Linux kernel.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 0 00 Illegal instruction
000 nzimm[5:4|9:6|2|3] rd′ 00 C.ADDI4SPN (RES, nzimm=0)

001 imm[5:3] rs1′ imm[7:6] rd′ 00 C.FLD (RV32/64)

001 imm[5:4|8] rs1′ imm[7:6] rd′ 00 C.LQ (RV128)

010 imm[5:3] rs1′ imm[2|6] rd′ 00 C.LW

011 imm[5:3] rs1′ imm[2|6] rd′ 00 C.FLW (RV32)

011 imm[5:3] rs1′ imm[7:6] rd′ 00 C.LD (RV64/128)

100 — 00 Reserved

101 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.FSD (RV32/64)

101 imm[5:4|8] rs1′ imm[7:6] rs2′ 00 C.SQ (RV128)

110 imm[5:3] rs1′ imm[2|6] rs2′ 00 C.SW

111 imm[5:3] rs1′ imm[2|6] rs2′ 00 C.FSW (RV32)

111 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.SD (RV64/128)

Table 14.4: Instruction listing for RVC, Quadrant 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 0 0 01 C.NOP
000 nzimm[5] rs1/rd6=0 nzimm[4:0] 01 C.ADDI (HINT, nzimm=0)

001 offset[11|4|9:8|10|6|7|3:1|5] 01 C.JAL (RV32)

001 imm[5] rs1/rd6=0 imm[4:0] 01 C.ADDIW (RV64/128; RES, rd=0)

010 imm[5] rs1/rd6=0 imm[4:0] 01 C.LI (HINT, rd=0)

011 nzimm[9] 2 nzimm[4|6|8:7|5] 01 C.ADDI16SP (RES, nzimm=0)

011 nzimm[17] rs1/rd6={0, 2} nzimm[16:12] 01 C.LUI (RES, nzimm=0; HINT, rd=0)

100 nzimm[5] 00 rs1′/rd′ nzimm[4:0] 01 C.SRLI (RV32 NSE, nzimm[5]=1)

100 0 00 rs1′/rd′ 0 01 C.SRLI64 (RV128; RV32/64 HINT)

100 nzimm[5] 01 rs1′/rd′ nzimm[4:0] 01 C.SRAI (RV32 NSE, nzimm[5]=1)

100 0 01 rs1′/rd′ 0 01 C.SRAI64 (RV128; RV32/64 HINT)

100 imm[5] 10 rs1′/rd′ imm[4:0] 01 C.ANDI
100 0 11 rs1′/rd′ 00 rs2′ 01 C.SUB
100 0 11 rs1′/rd′ 01 rs2′ 01 C.XOR
100 0 11 rs1′/rd′ 10 rs2′ 01 C.OR
100 0 11 rs1′/rd′ 11 rs2′ 01 C.AND
100 1 11 rs1′/rd′ 00 rs2′ 01 C.SUBW (RV64/128; RV32 RES)

100 1 11 rs1′/rd′ 01 rs2′ 01 C.ADDW (RV64/128; RV32 RES)

100 1 11 — 10 — 01 Reserved
100 1 11 — 11 — 01 Reserved

101 offset[11|4|9:8|10|6|7|3:1|5] 01 C.J

110 offset[8|4:3] rs1′ offset[7:6|2:1|5] 01 C.BEQZ

111 offset[8|4:3] rs1′ offset[7:6|2:1|5] 01 C.BNEZ

Table 14.5: Instruction listing for RVC, Quadrant 1.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 nzimm[5] rd6=0 nzimm[4:0] 10 C.SLLI (HINT, rd=0; RV32 NSE, nzimm[5]=1)

000 0 rd6=0 0 10 C.SLLI64 (RV128; RV32/64 HINT; HINT, rd=0)

001 imm[5] rd imm[4:3|8:6] 10 C.FLDSP (RV32/64)

001 imm[5] rd6=0 imm[4|9:6] 10 C.LQSP (RV128; RES, rd=0)

010 imm[5] rd6=0 imm[4:2|7:6] 10 C.LWSP (RES, rd=0)

011 imm[5] rd imm[4:2|7:6] 10 C.FLWSP (RV32)

011 imm[5] rd6=0 imm[4:3|8:6] 10 C.LDSP (RV64/128; RES, rd=0)

100 0 rs1 6=0 0 10 C.JR (RES, rs1=0)

100 0 rd6=0 rs2 6=0 10 C.MV (HINT, rd=0)

100 1 0 0 10 C.EBREAK
100 1 rs1 6=0 0 10 C.JALR
100 1 rd6=0 rs2 6=0 10 C.ADD (HINT, rd=0)

101 imm[5:3|8:6] rs2 10 C.FSDSP (RV32/64)

101 imm[5:4|9:6] rs2 10 C.SQSP (RV128)

110 imm[5:2|7:6] rs2 10 C.SWSP

111 imm[5:2|7:6] rs2 10 C.FSWSP (RV32)

111 imm[5:3|8:6] rs2 10 C.SDSP (RV64/128)

Table 14.6: Instruction listing for RVC, Quadrant 2.
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RV32GC RV64GC
Instruction Dhry- Core- SPEC SPEC Linux Max

stone Mark 2006 2006 Kernel
C.MV 1.78 5.03 4.06 3.62 5.00 5.03
C.LWSP 4.51 2.80 2.89 0.49 0.14 4.51
C.LDSP — — — 3.20 4.44 4.44
C.SWSP 4.19 2.45 2.76 0.45 0.18 4.19
C.SDSP — — — 2.75 3.79 3.79
C.LI 2.99 3.74 2.81 2.35 2.86 3.74
C.ADDI 2.16 3.28 1.87 1.19 0.95 3.28
C.ADD 0.51 1.64 1.94 2.28 0.91 2.28
C.LW 2.10 1.68 2.00 0.74 0.62 2.10
C.LD — — — 1.14 2.09 2.09
C.J 0.32 1.71 1.63 0.97 1.53 1.71
C.SW 1.59 0.85 0.73 0.27 0.26 1.59
C.JR 1.52 1.16 0.49 0.44 1.05 1.52
C.BEQZ 0.38 1.14 0.76 0.55 1.24 1.24
C.SLLI 0.06 1.09 0.57 0.93 0.57 1.09
C.ADDI16SP 0.19 0.26 0.32 0.42 1.01 1.01
C.SRLI 0.00 0.81 0.05 0.12 0.31 0.81
C.BNEZ 0.19 0.53 0.53 0.32 0.80 0.80
C.SD — — — 0.25 0.79 0.79
C.ADDIW — — — 0.77 0.50 0.77
C.JAL 0.38 0.59 0.05 — — 0.59
C.ADDI4SPN 0.57 0.37 0.45 0.50 0.30 0.57
C.LUI 0.32 0.37 0.44 0.56 0.52 0.56
C.SRAI 0.13 0.48 0.07 0.03 0.03 0.48
C.ANDI 0.00 0.42 0.20 0.07 0.35 0.42
C.FLD 0.00 0.00 0.16 0.39 0.00 0.39
C.FLDSP 0.00 0.02 0.20 0.31 0.00 0.31
C.FSDSP 0.13 0.09 0.15 0.26 0.00 0.26
C.SUB 0.25 0.09 0.13 0.06 0.11 0.25
C.AND 0.00 0.00 0.07 0.03 0.21 0.21
C.FSD 0.00 0.00 0.08 0.18 — 0.18
C.OR 0.06 0.18 0.09 0.04 0.14 0.18
C.JALR 0.13 0.07 0.17 0.10 0.14 0.17
C.ADDW — — — 0.16 0.12 0.16
C.EBREAK 0.00 0.02 0.00 0.00 0.08 0.08
C.FLW 0.00 0.00 0.05 — — 0.05
C.XOR 0.00 0.04 0.01 0.01 0.03 0.04
C.SUBW — — — 0.04 0.03 0.04
C.FLWSP 0.00 0.00 0.03 — — 0.03
C.FSW 0.00 0.00 0.02 — — 0.02
C.FSWSP 0.00 0.00 0.02 — — 0.02
Total 24.46 30.92 25.78 25.98 31.11 —

Table 14.7: RVC instructions in order of typical static frequency. The numbers in the table show
the percentage savings in static code size attributable to each instruction. This list was generated
using a compacting assembler for the output of the RISC-V GCC compiler, directed to use RV32GC
for Dhrystone, CoreMark, and SPEC CPU2006, and RV64GC for SPEC CPU2006 and the Linux
kernel, version 3.14.29. A dash means that instruction is not defined for this address size.
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RV32GC RV64GC
Instruction Dhry- Core- SPEC Linux Max

stone Mark 2006 Kernel
C.ADDI 3.70 3.91 4.36 1.26 4.36
C.LW 4.15 3.89 1.09 0.87 4.15
C.MV 1.93 4.01 1.70 1.37 4.01
C.BNEZ 0.44 2.57 0.47 3.62 3.62
C.SW 3.55 1.62 0.32 0.68 3.55
C.LD — — 1.43 3.29 3.29
C.SWSP 3.26 0.32 0.20 0.03 3.26
C.LWSP 2.96 0.48 0.14 0.02 2.96
C.LI 2.22 1.47 0.81 2.73 2.73
C.ADD 2.07 2.69 2.64 1.84 2.69
C.SRLI 0.00 2.48 0.20 0.38 2.48
C.JR 2.07 0.34 0.46 0.42 2.07
C.FLD 0.00 0.00 1.63 0.00 1.63
C.SDSP — — 1.14 1.38 1.38
C.J 0.44 0.46 0.33 1.35 1.35
C.LDSP — — 1.34 1.31 1.34
C.ANDI 0.15 1.30 0.10 0.23 1.30
C.ADDIW — — 1.26 1.03 1.26
C.SLLI 0.15 1.10 1.24 0.89 1.24
C.SD — — 0.39 1.13 1.13
C.BEQZ 0.59 0.95 0.74 0.76 0.95
C.AND 0.00 0.00 0.21 0.75 0.75
C.SRAI 0.00 0.72 0.02 0.01 0.72
C.JAL 0.59 0.26 — — 0.59
C.ADDI4SPN 0.44 0.16 0.07 0.05 0.44
C.FLDSP 0.00 0.00 0.40 0.00 0.40
C.ADDI16SP 0.13 0.18 0.28 0.38 0.38
C.FSD 0.00 0.00 0.29 0.00 0.29
C.FSDSP 0.00 0.00 0.25 0.00 0.25
C.ADDW — — 0.19 0.04 0.19
C.XOR 0.00 0.19 0.06 0.02 0.19
C.OR 0.15 0.08 0.05 0.04 0.15
C.SUB 0.15 0.03 0.05 0.04 0.15
C.LUI 0.02 0.06 0.09 0.10 0.10
C.JALR 0.00 0.05 0.05 0.03 0.05
C.SUBW — — 0.04 0.02 0.04
C.EBREAK 0.00 0.00 0.00 0.00 0.00
C.FLW 0.00 0.00 — — —
C.FLWSP 0.00 0.00 — — —
C.FSW 0.00 0.00 — — —
C.FSWSP 0.00 0.00 — — —
Total 29.18 29.29 24.03 26.11 —

Table 14.8: RVC instructions in order of typical dynamic frequency. The numbers in the table show
the percentage savings in dynamic code size attributable to each instruction. This list was generated
by executing CoreMark and Dhrystone compiled for RV32GC and SPEC CPU2006 compiled for
RV64GC. For SPEC, we used the reference input set. The Linux boot includes the time to boot
the kernel, then execute the init process, the shell, and the poweroff command.
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14.9 Optimizing Register Save/Restore Code Size

Register save/restore code at function entry/exit represents a significant portion of static code
size. The stack-pointer-based compressed loads and stores in RVC are effective at reducing the
save/restore static code size by a factor of 2 while improving performance by reducing dynamic
instruction bandwidth.

The standard RISC-V toolchain provides an alternative approach to reduce save/restore static code
size even further in exchange for reduced performance. Instead of inlining the register save/restore
code in each function, register save code is replaced with a jump-and-link instruction to call a
subroutine to copy registers to the stack then return to the function. Register restore code is
replaced with a jump to a routine that restores registers from the stack then jumps to the restored
return address.

Figure 14.1 shows the impact on static code size and dynamic instruction count of these routines
when näıvely applied to all functions in the SPEC CPU2006 benchmarks. On average, code size is
reduced by 4% in exchange for a 3% increase in dynamic instruction count.

The inline save/restore code is replaced with calls to the save/restore subroutines when the -Os

flag (reduce code size) is passed to gcc.

A common alternative mechanism used in other ISAs to reduce save/restore code size is load-
multiple and store-multiple instructions. We considered adopting these for RISC-V but noted
the following drawbacks to these instructions:

• These instructions complicate processor implementations.

• For virtual memory systems, some data accesses could be resident in physical memory and
some could not, which requires a new restart mechanism for partially executed instructions.

• Unlike the rest of the RVC instructions, there is no IFD equivalent to Load Multiple and
Store Multiple.

• Unlike the rest of the RVC instructions, the compiler would have to be aware of these
instructions to both generate the instructions and to allocate registers in an order to maxi-
mize the chances of the them being saved and stored, since they would be saved and restored
in sequential order.

• Simple microarchitectural implementations will constrain how other instructions can be
scheduled around the load and store multiple instructions, leading to a potential perfor-
mance loss.

• The desire for sequential register allocation might conflict with the featured registers selected
for the CIW, CL, CS, and CB formats.

While reasonable architects might come to different conclusions, we decided to omit load and store
multiple and instead use the software-only approach of calling save/restore millicode routines to
attain the greatest code size reduction.
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Figure 14.1: Impact on static code size and dynamic instruction count of compressed function
prologue and epilogue subroutines.



Chapter 15

“V” Standard Extension for Vector
Operations, Version 0.0

This chapter is a placeholder for a future standard extension to provide vector instructions.
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Chapter 16

“B” Standard Extension for Bit
Manipulation, Version 0.0

This chapter is a placeholder for a future standard extension to provide bit manipulation instruc-
tions, including instructions to insert, extract, and test bit fields, and for rotations, funnel shifts,
and bit and byte permutations.

Although bit manipulation instructions are very effective in some application domains, particu-
larly when dealing with externally packed data structures, we excluded them from the base ISA
as they are not useful in all domains and can add additional complexity or instruction formats
to supply all needed operands.

We anticipate the B extension will be a brownfield encoding within the base 30-bit instruction
space.
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Chapter 17

“T” Standard Extension for
Transactional Memory, Version 0.0

This chapter is a placeholder for a future standard extension to provide transactional memory
operations.

Despite much research over the last twenty years, and initial commercial implementations, there
is still much debate on the best way to support atomic operations involving multiple addresses.

Our current thoughts are to include a small limited-capacity transactional memory buffer
along the lines of the original transactional memory proposals.
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Chapter 18

“P” Standard Extension for
Packed-SIMD Instructions, Version
0.1

In this chapter, we outline a standard packed-SIMD extension for RISC-V. We’ve reserved the
instruction subset name “P” for a future standard set of packed-SIMD extensions. Many other
extensions can build upon a packed-SIMD extension, taking advantage of the wide data registers
and datapaths separate from the integer unit.

Packed-SIMD extensions, first introduced with the Lincoln Labs TX-2 [5], have become a pop-
ular way to provide higher throughput on data-parallel codes. Earlier commercial microproces-
sor implementations include the Intel i860, HP PA-RISC MAX [15], SPARC VIS [24], MIPS
MDMX [8], PowerPC AltiVec [4], Intel x86 MMX/SSE [19, 21], while recent designs include In-
tel x86 AVX [16] and ARM Neon [7]. We describe a standard framework for adding packed-SIMD
in this chapter, but are not actively working on such a design. In our opinion, packed-SIMD
designs represent a reasonable design point when reusing existing wide datapath resources, but
if significant additional resources are to be devoted to data-parallel execution then designs based
on traditional vector architectures are a better choice and should use the V extension.

A RISC-V packed-SIMD extension reuses the floating-point registers (f0-f31). These registers can
be defined to have widths of FLEN=32 to FLEN=1024. The standard floating-point instruction
subsets require registers of width 32 bits (“F”), 64 bits (“D”), or 128 bits (“Q”).

It is natural to use the floating-point registers for packed-SIMD values rather than the integer
registers (PA-RISC and Alpha packed-SIMD extensions) as this frees the integer registers for
control and address values, simplifies reuse of scalar floating-point units for SIMD floating-
point execution, and leads naturally to a decoupled integer/floating-point hardware design. The
floating-point load and store instruction encodings also have space to handle wider packed-SIMD
registers. However, reusing the floating-point registers for packed-SIMD values does make it
more difficult to use a recoded internal format for floating-point values.

The existing floating-point load and store instructions are used to load and store various-sized words
from memory to the f registers. The base ISA supports 32-bit and 64-bit loads and stores, but the
LOAD-FP and STORE-FP instruction encodings allows 8 different widths to be encoded as shown
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in Table 18.1. When used with packed-SIMD operations, it is desirable to support non-naturally
aligned loads and stores in hardware.

width field Code Size in bits

000 B 8
001 H 16
010 W 32
011 D 64
100 Q 128
101 Q2 256
110 Q4 512
111 Q8 1024

Table 18.1: LOAD-FP and STORE-FP width encoding.

Packed-SIMD computational instructions operate on packed values in f registers. Each value can
be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit, and both integer and floating-point representations can
be supported. For example, a 64-bit packed-SIMD extension can treat each register as 1×64-bit,
2×32-bit, 4×16-bit, or 8×8-bit packed values.

Simple packed-SIMD extensions might fit in unused 32-bit instruction opcodes, but more exten-
sive packed-SIMD extensions will likely require a dedicated 30-bit instruction space.



Chapter 19

RV128I Base Integer Instruction Set,
Version 1.7

“There is only one mistake that can be made in computer design that is difficult to re-
cover from—not having enough address bits for memory addressing and memory man-
agement.” Bell and Strecker, ISCA-3, 1976.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space.
The variant is a straightforward extrapolation of the existing RV32I and RV64I designs.

The primary reason to extend integer register width is to support larger address spaces. It is
not clear when a flat address space larger than 64 bits will be required. At the time of writing,
the fastest supercomputer in the world as measured by the Top500 benchmark had over 1 PB
of DRAM, and would require over 50 bits of address space if all the DRAM resided in a single
address space. Some warehouse-scale computers already contain even larger quantities of DRAM,
and new dense solid-state non-volatile memories and fast interconnect technologies might drive a
demand for even larger memory spaces. Exascale systems research is targeting 100 PB memory
systems, which occupy 57 bits of address space. At historic rates of growth, it is possible that
greater than 64 bits of address space might be required before 2030.

History suggests that whenever it becomes clear that more than 64 bits of address space is
needed, architects will repeat intensive debates about alternatives to extending the address space,
including segmentation, 96-bit address spaces, and software workarounds, until, finally, flat 128-
bit address spaces will be adopted as the simplest and best solution.

We have not frozen the RV128 spec at this time, as there might be need to evolve the design
based on actual usage of 128-bit address spaces.

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers
extended to 128 bits (i.e., XLEN=128). Most integer computational instructions are unchanged as
they are defined to operate on XLEN bits. The RV64I “*W” integer instructions that operate on
32-bit values in the low bits of a register are retained, and a new set of “*D” integer instructions
that operate on 64-bit values held in the low bits of the 128-bit integer registers are added. The
“*D” instructions consume two major opcodes (OP-IMM-64 and OP-64) in the standard 32-bit
encoding.

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.
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A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along
with new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE
major opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to
and from the T (128-bit) integer format.



Chapter 20

Calling Convention

This chapter describes the C compiler standards for RV32 and RV64 programs and two calling
conventions: the convention for the base ISA plus standard general extensions (RV32G/RV64G),
and the soft-float convention for implementations lacking floating-point units (e.g., RV32I/RV64I).

Implementations with ISA extensions might require extended calling conventions.

20.1 C Datatypes and Alignment

Table 20.1 summarizes the datatypes natively supported by RISC-V C programs. In both RV32
and RV64 C compilers, the C type int is 32 bits wide. longs and pointers, on the other hand, are
both as wide as a integer register, so in RV32, both are 32 bits wide, while in RV64, both are 64
bits wide. Equivalently, RV32 employs an ILP32 integer model, while RV64 is LP64. In both RV32
and RV64, the C type long long is a 64-bit integer, float is a 32-bit IEEE 754-2008 floating-point
number, double is a 64-bit IEEE 754-2008 floating-point number, and long double is a 128-bit
IEEE floating-point number.

The C types char and unsigned char are 8-bit unsigned integers and are zero-extended when
stored in a RISC-V integer register. unsigned short is a 16-bit unsigned integer and is zero-
extended when stored in a RISC-V integer register. signed char is an 8-bit signed integer and is
sign-extended when stored in a RISC-V integer register, i.e. bits (XLEN-1)..7 are all equal. short
is a 16-bit signed integer and is sign-extended when stored in a register.

In RV64, 32-bit types, such as int, are stored in integer registers as proper sign extensions of their
32-bit values; that is, bits 63..31 are all equal. This restriction holds even for unsigned 32-bit types.

The RV32 and RV64 C compiler and compliant software keep all of the above datatypes naturally
aligned when stored in memory.
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C type Description Bytes in RV32 Bytes in RV64

char Character value/byte 1 1
short Short integer 2 2
int Integer 4 4
long Long integer 4 8
long long Long long integer 8 8
void* Pointer 4 8
float Single-precision float 4 4
double Double-precision float 8 8
long double Extended-precision float 16 16

Table 20.1: C compiler datatypes for base RISC-V ISA.

20.2 RVG Calling Convention

The RISC-V calling convention passes arguments in registers when possible. Up to eight integer
registers, a0–a7, and up to eight floating-point registers, fa0–fa7, are used for this purpose.

If the arguments to a function are conceptualized as fields of a C struct, each with pointer align-
ment, the argument registers are a shadow of the first eight pointer-words of that struct. If
argument i < 8 is a floating-point type, it is passed in floating-point register fai; otherwise, it is
passed in integer register ai. However, floating-point arguments that are part of unions or array
fields of structures are passed in integer registers. Additionally, floating-point arguments to vari-
adic functions (except those that are explicitly named in the parameter list) are passed in integer
registers.

Arguments smaller than a pointer-word are passed in the least-significant bits of argument registers.
Correspondingly, sub-pointer-word arguments passed on the stack appear in the lower addresses of
a pointer-word, since RISC-V has a little-endian memory system.

When primitive arguments twice the size of a pointer-word are passed on the stack, they are
naturally aligned. When they are passed in the integer registers, they reside in an aligned even-odd
register pair, with the even register holding the least-significant bits. In RV32, for example, the
function void foo(int, long long) is passed its first argument in a0 and its second in a2 and
a3. Nothing is passed in a1.

Arguments more than twice the size of a pointer-word are passed by reference.

The portion of the conceptual struct that is not passed in argument registers is passed on the
stack. The stack pointer sp points to the first argument not passed in a register.

Values are returned from functions in integer registers a0 and a1 and floating-point registers fa0

and fa1. Floating-point values are returned in floating-point registers only if they are primitives
or members of a struct consisting of only one or two floating-point values. Other return values
that fit into two pointer-words are returned in a0 and a1. Larger return values are passed entirely
in memory; the caller allocates this memory region and passes a pointer to it as an implicit first
parameter to the callee.
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In the standard RISC-V calling convention, the stack grows downward and the stack pointer is
always kept 16-byte aligned.

In addition to the argument and return value registers, seven integer registers t0–t6 and twelve
floating-point registers ft0–ft11 are temporary registers that are volatile across calls and must be
saved by the caller if later used. Twelve integer registers s0–s11 and twelve floating-point registers
fs0–fs11 are preserved across calls and must be saved by the callee if used. Table 20.2 indicates
the role of each integer and floating-point register in the calling convention.

Register ABI Name Description Saver

x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5–7 t0–2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10–11 a0–1 Function arguments/return values Caller
x12–17 a2–7 Function arguments Caller
x18–27 s2–11 Saved registers Callee
x28–31 t3–6 Temporaries Caller

f0–7 ft0–7 FP temporaries Caller
f8–9 fs0–1 FP saved registers Callee
f10–11 fa0–1 FP arguments/return values Caller
f12–17 fa2–7 FP arguments Caller
f18–27 fs2–11 FP saved registers Callee
f28–31 ft8–11 FP temporaries Caller

Table 20.2: RISC-V calling convention register usage.

20.3 Soft-Float Calling Convention

The soft-float calling convention is intended for use on RV32 and RV64 implementations that lack
floating-point hardware. It avoids all use of instructions in the F, D, and Q standard extensions,
and hence the f registers.

Integral arguments are passed and returned in the same manner as the RVG convention, and the
stack discipline is the same except that the stack is only kept aligned to XLEN/8-byte boundaries
(e.g., four-byte alignment for RV32I).

As floating-point data on the stack will be accessed using integer load and store instructions,
there is no incentive to maintain stack alignment at a coarse granularity in the soft-float calling
convention. The reduced stack alignment saves space in the memory-constrained systems that
might commonly use soft floating-point.
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Floating-point arguments are passed and returned in integer registers, using the rules for integer
arguments of the same size. In RV32, for example, the function double foo(int, double, long

double) is passed its first argument in a0, its second argument in a2 and a3, and its third argument
by reference via a4; its result is returned in a0 and a1. In RV64, the arguments are passed in a0,
a1, and the a2-a3 pair, and the result is returned in a0.

The dynamic rounding mode and accrued exception flags are accessed through the routines provided
by the C99 header fenv.h.

20.4 RV32E Calling Convention

RV32E uses a subset of the Soft-Float calling convention. As only 16 integer registers x0–x15 are
present, there are only six argument registers (x10–x15), two saved registers (x8–x9), and three
temporary registers (x5–x7). The stack is kept aligned on a four-byte boundary.



Chapter 21

RISC-V Assembly Programmer’s
Handbook

This chapter is a placeholder for an assembly programmer’s manual.

Table 21.1 contains a list of standard RISC-V pseudoinstructions.
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Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

l{b|h|w|d} rd, symbol
auipc rd, symbol[31:12]

Load global
l{b|h|w|d} rd, symbol[11:0](rd)

s{b|h|w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

fl{w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point load global
fl{w|d} rd, symbol[11:0](rt)

fs{w|d} rd, symbol, rt
auipc rt, symbol[31:12]

Floating-point store global
fs{w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
negw rd, rs subw rd, x0, rs Two’s complement word
sext.w rd, rs addiw rd, rs, x0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero
snez rd, rs sltu rd, x0, rs Set if 6= zero
sltz rd, rs slt rd, rs, x0 Set if < zero
sgtz rd, rs slt rd, x0, rs Set if > zero
fmv.s rd, rs fsgnj.s rd, rs, rs Copy single-precision register
fabs.s rd, rs fsgnjx.s rd, rs, rs Single-precision absolute value
fneg.s rd, rs fsgnjn.s rd, rs, rs Single-precision negate
fmv.d rd, rs fsgnj.d rd, rs, rs Copy double-precision register
fabs.d rd, rs fsgnjx.d rd, rs, rs Double-precision absolute value
fneg.d rd, rs fsgnjn.d rd, rs, rs Double-precision negate
beqz rs, offset beq rs, x0, offset Branch if 6= zero
bnez rs, offset bne rs, x0, offset Branch if = zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
bgez rs, offset bge rs, x0, offset Branch if ≥ zero
bltz rs, offset blt rs, x0, offset Branch if < zero
bgtz rs, offset blt x0, rs, offset Branch if > zero
j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
jr rs jalr x0, rs, 0 Jump register
jalr rs jalr x1, rs, 0 Jump and link register
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x6, offset[31:12]

Call far-away subroutine
jalr x1, x6, offset[11:0]

tail offset
auipc x6, offset[31:12]

Tail call far-away subroutine
jalr x0, x6, offset[11:0]

Table 21.1: RISC-V pseudoinstructions.
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History and Acknowledgments

22.1 History from Revision 1.0 of ISA manual

The RISC-V ISA and instruction set manual builds up several earlier projects. Several aspects of
the supervisor-level machine and the overall format of the manual date back to the T0 (Torrent-0)
vector microprocessor project at UC Berkeley and ICSI, begun in 1992. T0 was a vector processor
based on the MIPS-II ISA, with Krste Asanović as main architect and RTL designer, and Brian
Kingsbury and Bertrand Irrisou as principal VLSI implementors. David Johnson at ICSI was a
major contributor to the T0 ISA design, particularly supervisor mode, and to the manual text.
John Hauser also provided considerable feedback on the T0 ISA design.

The Scale (Software-Controlled Architecture for Low Energy) project at MIT, begun in 2000, built
upon the T0 project infrastructure, refined the supervisor-level interface, and moved away from the
MIPS scalar ISA by dropping the branch delay slot. Ronny Krashinsky and Christopher Batten
were the principal architects of the Scale Vector-Thread processor at MIT, while Mark Hampton
ported the GCC-based compiler infrastructure and tools for Scale.

A lightly edited version of the T0 MIPS scalar processor specification (MIPS-6371) was used in
teaching a new version of the MIT 6.371 Introduction to VLSI Systems class in the Fall 2002
semester, with Chris Terman and Krste Asanović as lecturers. Chris Terman contributed most
of the lab material for the class (there was no TA!). The 6.371 class evolved into the trial 6.884
Complex Digital Design class at MIT, taught by Arvind and Krste Asanović in Spring 2005, which
became a regular Spring class 6.375. A reduced version of the Scale MIPS-based scalar ISA, named
SMIPS, was used in 6.884/6.375. Christopher Batten was the TA for the early offerings of these
classes and developed a considerable amount of documentation and lab material based around the
SMIPS ISA. This same SMIPS lab material was adapted and enhanced by TA Yunsup Lee for
the UC Berkeley Fall 2009 CS250 VLSI Systems Design class taught by John Wawrzynek, Krste
Asanović, and John Lazzaro.

The Maven (Malleable Array of Vector-thread ENgines) project was a second-generation vector-
thread architecture. Its design was led by Christopher Batten when he was an Exchange Scholar
at UC Berkeley starting in summer 2007. Hidetaka Aoki, a visiting industrial fellow from Hitachi,
gave considerable feedback on the early Maven ISA and microarchitecture design. The Maven
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infrastructure was based on the Scale infrastructure but the Maven ISA moved further away from
the MIPS ISA variant defined in Scale, with a unified floating-point and integer register file. Maven
was designed to support experimentation with alternative data-parallel accelerators. Yunsup Lee
was the main implementor of the various Maven vector units, while Rimas Avižienis was the main
implementor of the various Maven scalar units. Yunsup Lee and Christopher Batten ported GCC
to work with the new Maven ISA. Christopher Celio provided the initial definition of a traditional
vector instruction set (“Flood”) variant of Maven.

Based on experience with all these previous projects, the RISC-V ISA definition was begun in
Summer 2010. An initial version of the RISC-V 32-bit instruction subset was used in the UC
Berkeley Fall 2010 CS250 VLSI Systems Design class, with Yunsup Lee as TA. RISC-V is a clean
break from the earlier MIPS-inspired designs. John Hauser contributed to the floating-point ISA
definition.

22.2 History from Revision 2.0 of ISA manual

Multiple implementations of RISC-V processors have been completed, including several silicon
fabrications, as shown in Figure 22.1.

Name Tapeout Date Process ISA

Raven-1 May 29, 2011 ST 28nm FDSOI RV64G1 Xhwacha1

EOS14 April 1, 2012 IBM 45nm SOI RV64G1p1 Xhwacha2

EOS16 August 17, 2012 IBM 45nm SOI RV64G1p1 Xhwacha2

Raven-2 August 22, 2012 ST 28nm FDSOI RV64G1p1 Xhwacha2

EOS18 February 6, 2013 IBM 45nm SOI RV64G1p1 Xhwacha2

EOS20 July 3, 2013 IBM 45nm SOI RV64G1p99 Xhwacha2

Raven-3 September 26, 2013 ST 28nm SOI RV64G1p99 Xhwacha2

EOS22 March 7, 2014 IBM 45nm SOI RV64G1p9999 Xhwacha3

Table 22.1: Fabricated RISC-V testchips.

The first RISC-V processors to be fabricated were written in Verilog and manufactured in a pre-
production 28 nm FDSOI technology from ST as the Raven-1 testchip in 2011. Two cores were
developed by Yunsup Lee and Andrew Waterman, advised by Krste Asanović, and fabricated
together: 1) an RV64 scalar core with error-detecting flip-flops, and 2) an RV64 core with an
attached 64-bit floating-point vector unit. The first microarchitecture was informally known as
“TrainWreck”, due to the short time available to complete the design with immature design libraries.

Subsequently, a clean microarchitecture for an in-order decoupled RV64 core was developed by
Andrew Waterman, Rimas Avižienis, and Yunsup Lee, advised by Krste Asanović, and, continuing
the railway theme, was codenamed “Rocket” after George Stephenson’s successful steam locomotive
design. Rocket was written in Chisel, a new hardware design language developed at UC Berkeley.
The IEEE floating-point units used in Rocket were developed by John Hauser, Andrew Waterman,
and Brian Richards. Rocket has since been refined and developed further, and has been fabricated
two more times in 28 nm FDSOI (Raven-2, Raven-3), and five times in IBM 45 nm SOI technology
(EOS14, EOS16, EOS18, EOS20, EOS22) for a photonics project. Work is ongoing to make the
Rocket design available as a parameterized RISC-V processor generator.
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EOS14–EOS22 chips include early versions of Hwacha, a 64-bit IEEE floating-point vector unit,
developed by Yunsup Lee, Andrew Waterman, Huy Vo, Albert Ou, Quan Nguyen, and Stephen
Twigg, advised by Krste Asanović. EOS16–EOS22 chips include dual cores with a cache-coherence
protocol developed by Henry Cook and Andrew Waterman, advised by Krste Asanović. EOS14
silicon has successfully run at 1.25 GHz. EOS16 silicon suffered from a bug in the IBM pad libraries.
EOS18 and EOS20 have successfully run at 1.35 GHz.

Contributors to the Raven testchips include Yunsup Lee, Andrew Waterman, Rimas Avižienis,
Brian Zimmer, Jaehwa Kwak, Ruzica Jevtić, Milovan Blagojević, Alberto Puggelli, Steven Bailey,
Ben Keller, Pi-Feng Chiu, Brian Richards, Borivoje Nikolić, and Krste Asanović.

Contributors to the EOS testchips include Yunsup Lee, Rimas Avižienis, Andrew Waterman, Henry
Cook, Huy Vo, Daiwei Li, Chen Sun, Albert Ou, Quan Nguyen, Stephen Twigg, Vladimir Sto-
janović, and Krste Asanović.

Andrew Waterman and Yunsup Lee developed the C++ ISA simulator “Spike”, used as a golden
model in development and named after the golden spike used to celebrate completion of the US
transcontinental railway. Spike has been made available as a BSD open-source project.

Andrew Waterman completed a Master’s thesis with a preliminary design of the RISC-V compressed
instruction set [28].

Various FPGA implementations of the RISC-V have been completed, primarily as part of integrated
demos for the Par Lab project research retreats. The largest FPGA design has 3 cache-coherent
RV64IMA processors running a research operating system. Contributors to the FPGA implemen-
tations include Andrew Waterman, Yunsup Lee, Rimas Avižienis, and Krste Asanović.

RISC-V processors have been used in several classes at UC Berkeley. Rocket was used in the Fall
2011 offering of CS250 as a basis for class projects, with Brian Zimmer as TA. For the undergraduate
CS152 class in Spring 2012, Christopher Celio used Chisel to write a suite of educational RV32
processors, named “Sodor” after the island on which “Thomas the Tank Engine” and friends live.
The suite includes a microcoded core, an unpipelined core, and 2, 3, and 5-stage pipelined cores,
and is publicly available under a BSD license. The suite was subsequently updated and used again
in CS152 in Spring 2013, with Yunsup Lee as TA, and in Spring 2014, with Eric Love as TA.
Christopher Celio also developed an out-of-order RV64 design known as BOOM (Berkeley Out-of-
Order Machine), with accompanying pipeline visualizations, that was used in the CS152 classes.
The CS152 classes also used cache-coherent versions of the Rocket core developed by Andrew
Waterman and Henry Cook.

Over the summer of 2013, the RoCC (Rocket Custom Coprocessor) interface was defined to sim-
plify adding custom accelerators to the Rocket core. Rocket and the RoCC interface were used
extensively in the Fall 2013 CS250 VLSI class taught by Jonathan Bachrach, with several student
accelerator projects built to the RoCC interface. The Hwacha vector unit has been rewritten as a
RoCC coprocessor.

Two Berkeley undergraduates, Quan Nguyen and Albert Ou, have successfully ported Linux to run
on RISC-V in Spring 2013.

Colin Schmidt successfully completed an LLVM backend for RISC-V 2.0 in January 2014.
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Darius Rad at Bluespec contributed soft-float ABI support to the GCC port in March 2014.

We are aware of several other RISC-V core implementations, including one in Verilog by Tommy
Thorn, and one in Bluespec by Rishiyur Nikhil.
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