SAP-1

The SAP (Simple-As-Possible) computer has been designed
for you, the beginner. The main purpose of SAP is to
introduce all the crucial ideas behind computer operation
without burying you in unnecessary detail. But even a
simple computer like SAP covers many advanced concepts.
To avoid bombarding you with too much all at once, we
will examine three different generations of the SAP com-
puter.

SAP-1 is the first stage in the evolution toward modern
computers. Although primitive, SAP-1 is a big step for a
beginner. So, dig into this chapter; master SAP-1, its
architecture, its programming, and its circuits. Then you
will be ready for SAP-2.

10-1 ARCHITECTURE

Figure 10-1 shows the architecture (structure) of SAP-1, a
bus-organized computer. All register outputs to the W bus
are three-state; this allows orderly transfer of data. All other
register outputs are two-state; these outputs continuously
drive the boxes they are connected to.

The layout of Fig. 10-1 emphasizes the registers used in
SAP-1. For this reason, no attempt has been made to keep
all control circuits in one block called the control unit, all
input-output circuits in another block called the I/O unit,
etc.

Many of the registers of Fig. 10-1 are already familiar
from earlier examples and discussions. What follows is a
brief description of each box; detailed explanations come
later.

Program Counter

The program is stored at the beginning of the memory with
the first instruction at binary address 0000, the second
instruction at address 0001, the third at address 0010, and
so on. The program counter, which is part of the control
unit, counts from 0000 to 1111, Its job is to send to the
memory the address of the next instruction to be fetched
and executed. It does this as follows.

140

The program counter is reset to 0000 before each computer
run. When the computer run begins, the program counter’
sends address 0000 to the memory. The progtam counter
is then incremented to get 0001, After the first instruction
is fetched and executed, the program counter sends address
0001 to the memory. Again the program counter is incre-
mented. After the second instruction is fetched and executed,
the program counter sends address 0010 to the memoty. In
this way, the program counter is keeping track of the next
instruction to be fetched and executed,

The program counter is like someone pointing a finger
at a list of instructions, saying do this first, do this second,
do this third, etc. This is why the program counter is
sometimes called a pointer; it points to an address in
memory where something important is being stored.

Input and MAR

Below the program counter is the inpur and MAR block. It
includes the address and data switch registers discussed in
Sec. 9-4. These switch registers, which are part of the input
unit allow you to send 4 address bits and 8 data bits to
the RAM. As you recall, instruction and data words are
written into the RAM before a computer run.

The memory address register (MAR) is part of the SAP-
1 memory. During a computer run, the address in the
program counter is latched into the MAR. A bit later, the
MAR applies this 4-bit address to the RAM, where a read
operation is performed.

The RAM

The RAM is a 16 X 8 static TTL RAM. As discussed
in Sec. 9-4, you can program the RAM by means of the
address and data switch registers. This allows you to store
a program and data in the memory before a computer run.

During a computer run, the RAM receives 4-bit addresses
from the MAR and a read operation is performed. Inthis way,
the instruction or data word stored in the RAM is placed
on the W bus for use in some other part of the computer.

Cp —| [5] — ¢,
— /
—_ Program Accumulator
CLK —<p [, A —— cLx
—-— counter 4
CLR — 8
Ep —1 N F— €.
{7
Ty — s,
Input
(;___ (L"_— Adder/
LK > “:nAdR hd 8 subtractor
EU
VAR {0}
LB
16x8 B L
RAM 8 8 register 9 cLx
CE —
L — Ly
B
{nstruction : ——:; Qutput
CLK P register AN ,_.l register G—- CLK
CLR —— 4
£, — 7
/
— T
|—— CLK
Controller/ — CLK Binary
sequencer — CLA display
— CLR

V.
CpEply CE LELLEL SuEulslo
Fig. 10-1 SAP-1 architecture.

Instruction Register

The instruction register is part of the control unit. To fetch
an instruction from the memory the computer does a memory
read operation. This places the contents of the addressed
memory location on the W bus. At the same time, the
instruction register is set up for loading on the next positive
clock edge.

The contents of the instruction register are split into two
nibbles. The upper nibble is a two-state output that goes
directly to the block labeled ‘‘Controller-sequencer.’” The
lower nibble is a three-state output that is read onto the W
bus when needed.

Controller-Sequencer

The lower left block contains the controller-sequencer.
Before each computer run, a CLR signal is sent to the
program counter and a CLR signal to the instruction register.

This resets the program counter to 0000 and wipes out the
last instruction in the instruction register.

A clock signal CLK is sent to all buffer registers; this
synchronizes the operation of the computer, ensuring that
things happen when they are supposed to happen. In other
words, all register transfers occur on the positive edge of
a common CLK signal. Notice that a CLX signal also goes
to the program counter.

The 12 bits that come out of the controller-sequencer
form a word controlling the rest of the computer (like a
supervisor telling others what to do.) The 12 wires carrying
the control word are called the control bus.

The control word has the format of

CON = CE;L,WCE LELAE. SyuELslo

This word determines how the registers will react to the
next positive CLK edge. For instance, a high E; and a low

Chapter 10 sAp-1 141

L. mean that the contents of the program counter are latched
into the MAR on the next positive clock edge. As another
example, a low CE and a low L, mean that the addressed
RAM word will be transferred to the accumulator on the
next positive clock edge. Later, we will examine the timing
diagrams to see exactly when and how these data transfers
take place.

Accumulator

The accumulator (A) is a buffer register that stores inter-
mediate answers during a computer run. In Fig. 10-1 the
accumulator has two outputs. The two-state output goes
directly to the adder-subtracter. The three-state output goes
to the W bus. Therefore, the 8-bit accumulator word
continuously drives the adder-subtracter; the same word
appears on the W bus when E, is high.

The Adder-Subtracter

SAP-1 uses a 2’s-complement adder-subtracter. When S,
is low in Fig. 10-1, the sum out of the adder-subtracter is

S=A+B
When Sy, is high, the difference appears:
A=A+ P

(Recall that the 2’s complement is equivalent to a decimal
sign change.)

The adder-subtracter is asynchronous (unclocked); this
means that its contents can change as soon as the input
words change. When Ey, is high, these contents appear on
the W bus.

B Register

The B register is another buffer register. It is used in
arithmetic operations. A low L; and positive clock edge
load the word on the W bus into the B register. The two-
state output of the B register drives the adder-subtracter,
supplying the number to be added or subtracted from the
contents of the accumulator.

Output Register

Example 8-1 discussed the output register. At the end of a
computer run, the accumulator contains the answer to the
problem being solved. At this point, we need to transfer
the answer to the outside world. This is where the outpur
register is used. When E, is high and L, is low, the next
positive clock edge loads the accumulator word into the
output register.

The output register is often called an output port because
processed data can leave the computer through this register.

142 Digital Computer Electronics

In microcomputers the output ports are connected to inter-
face circuits that drive peripheral devices like printers,
cathode-ray tubes, teletypewriters, and so forth. (An inter-
face circuit prepares the data to drive each device.)

Binary Display

The binary display is a row of eight light-emitting diodes
(LEDs). Because each LED connects to one flip-flop of the
output port, the binary display shows us the contents of the
output port. Therefore, after we’ve transferred an answer
from the accumulator to the output port, we can see the
answer in binary form,

Summary

The SAP-1 control unit consists of the program counter,
the instruction register, and the controller-sequencer that
produces the control word, the clear signals, and the clock
signals. The SAP-1 ALU consists of an accumulator, an
adder-subtracter, and a B register. The SAP-1 memory has
the MAR and a 16 x 8 RAM. The VO unit includes the
input programming switches, the output port, and the binary
display.

10-2 INSTRUCTION SET

A computer is a useless pile of hardware until someone
programs it. This means loading step-by-step instructions
into the memory before the start of a computer run. Before
you can program a computer, however, you must learn its
instruction set, the basic operations it can perform. The
SAP-1 instruction set follows.

LDA

As described in Chap. 9, the words in the memory can be
symbolized by Rg, R,, Ry, etc. This means that R is stored
at address OH, R, at address 1H, R; at address 2H, and so
on.

LDA stands for ‘‘load the accumulator.”” A complete
LDA instruction includes the hexadecimal address of the
data to be loaded. LDA 8H, for example, means ‘‘load the
accumulator with the contents of memory location 8H.”
Therefore, given

R; = 1111 0000

the execution of LDA 8H results in

A= 1111 0000

Similarly, LDA AH means ‘‘load the accumulator with
the contents of memory location AH,”” LDA FH means
**load the accumulator with the contents of memory location
FH,”’ and so on.

ADD

ADD is another SAP-1 instruction. A complete ADD
instruction includes the address of the word to be added.
For instance, ADD 9H means ‘‘add the contents of memory
location 9H to the accumulator contents’’; the sum replaces
the original contents of the accumulator.

Here’s an example. Suppose decimal 2 is in the accu-
mulator and decimal 3 is in memory location 9H. Then

A = 00000010
R, = 0000 0011

During the execution of ADD 9H, the followihg things
happen. First, Ry is loaded into the B register to get

B= 0000 0011

and almost instantly the adder-subtracter forms the sum of
Aand B

SUM = (000 0101
Second, this sum is loaded into the accumulator to get
A = 0000 0101

The foregoing routine is used for all ADD instructions;
the addressed RAM word goes to the B register and the
adder-subtracter output to the accumulator. This is why the
execution of ADD 9H adds R, to the accumulator contents,
the execution of ADD FH adds Rg to the accumulator
contents, and so on.

SUB

SUB is another SAP-1 instruction. A complete SUB in-
struction includes the address of the word to be subtracted.
For example, SUB CH means ‘‘subtract the contents of
memory location CH from the contents of the accumulator’’;
the difference out of the adder-subtracter then replaces the
original contents of the accumulator.

For a concrete example, assume that decimal 7 is in the
accumulator and decimal 3 is in memory location CH. Then

A = 00000111
R¢ = 00000011

The execution of SUB CH takes place as follows. First,
Rc is loaded into the B register to get

B = 0000 0011

and almost instantly the adder-subtracter forms the differ-
ence of A and B:

DIFF = 0000 0100

Second, this difference is loaded into the accumulator and
A = 0000 0100

The foregoing routine applies to all SUB instructions;
the addressed RAM word goes to the B register and the
adder-subtracter output to the accumulator. This is why the
execution of SUB CH subtracts R¢ from the contents of
the accumulator, the execution of SUB EH subtracts Rg
from the accumulator, and so on.

ouT

The instruction OUT tells the SAP-1 computer to transfer
the accumulator contents to the output port. After OUT has
been executed, you can see the answer to the problem being
solved.

OUT is complete by itself; that is, you do not have to
include an address when using OUT because the instruction
does not involve data in the memory.

HLT

HLT stands for halt. This instruction tells the computer to
stop processing data. HLT marks the end of a program,
similar to the way a period marks the end of a sentence.
You must use a HLT instruction at the er.d of every SAP-
1 program; otherwise, you get computer trash (meaningless
answers caused by runaway processing).

HLT is complete by itself; you do not have ‘to include a
RAM word when using HLT because this instruction does
not involve the memory.

Memory-Reference Instructions

LDA, ADD, and SUB are called memory-reference instruc-
tions because they use data stored in the memory. OUT
and HLT, on the other hand, are not memory-reference
instructions because they-do not involve data stored in the
memory.

Mnemonics

LDA, ADD, SUB, OUT, and HLT are the instruction set
for SAP-1. Abbreviated instructions like these are called
mnemonics (memory aids). Mnemonics are popular in
computer work because they remind you of the operation
that will take place when the instruction is executed. Table
10-1 summarizes the SAP-1 instruction set.

The 8080 and 8085

The 8080 was the first widely used microprocessor. It has
72 instructions. The 8085 is an enhanced version of the
8080 with essentially the same instruction set. To make
SAP practical, the SAP instructions will be upward com-

Chapter 10 SAP-1 143

TABLE 10-1. SAP-1 INSTRUCTION SET

Mnemonic Operation

LDA Load RAM data into accumulator
ADD Add RAM data to accumulator

SUB Subtract RAM data from accumulator
ouT Load accumulator data into output
register

HLT Stop processing

patible with the 8080/8085 instruction set. In other words,
the SAP-1 instructions LDA, ADD, SUB, OUT, and HLT
are 8080/8085 instructions. Likewise, the SAP-2 and SAP-
3 instructions will be part of the 8080/8085 instruction set.
Learning SAP instructions is getting you ready for the 8080
and 8085, two widely used microprocessors.

EXAMPLE 10-1

Here’s a SAP-1 program in mnemonic form:

Address Mnemonics
OH LDA 9H
1H ADD AH
2H ADD BH
3H SUB CH
4H ouT
SH HLT

The data in higher memory is

Address Data

6H FFH
TH FFH
8H FFH
9H OlH
AH 02H
BH 03H
CH 04H
DH FFH
EH FFH
FH FFH

What does each instruction do?

SOLUTION

The program is in the low memory, located at addresses
OH to SH. The first instruction loads the accumulator with

144 Digital Computer Electronics

the contents of memory location 9H, and so the accumulator
contents become

A = O0lH
The second instruction adds the contents of memory location
AH to the accumulator contents to get a new accumulator
total of
A = OlH + 02H = 03H

Similarly, the third instruction add the contents of memory
location BH

A = 03H + 03H = 06H

The SUB instruction subtracts the contents of memory
location CH to get

A = 06H — 04H = 02H

The OUT instruction loads the accumulator contents into
the output port: therefore, the binary display shows

0000 0010

The HLT instruction stops the data processing.

10-3 PROGRAMMING SAP-1

To load instruction and data words into the SAP-1 memory
we have to use some kind of code that the computer can
interpret. Table 10-2 shows the code used in SAP-1. The
number 0000 stands for LDA, 0001 for ADD, 0010 for
SUB, 1110 for OUT, and 1111 for HLT. Because this code
tells the computer which operation to perform, it is called
an operation code (op code).

As discussed earlier, the address and data switches of
Fig. 9-7 allow you to program the SAP-1 memory. By
design, these switches produce a 1 in the up position (U)

TABLE 10-2. SAP-1

OP CODE

Mnemonic Op code
LDA 0000
ADD 0001
SUB 0010
ouT 1110
HLT 1111

and a 0 in the down position (D). When programming the
data switches with an instruction, the op code goes into the
upper nibble, and the operand (the rest of the instruction)
into the lower nibble.

For instance, suppose we want to store the following
instructions:

Address Instruction
OH LDA FH
1H ADD EH
2H HLT

First, convert each instruction to binary as follows:

LDAFH = 0000 1111
ADDEH = 0001 1110
HLT = 1111 XXXX

In the first instruction, 0000 is the op code for LDA, and
1111 is the binary equivalent of FH. In the second instruc-
tion, 0001 is the op code for ADD, and 1110 is the binary
equivalent of EH. In the third instruction, 1111 is the op
code for HLT, and XXXX are don’t cares because the HLT
is not a memory-reference instruction.

Next, set up the address and data switches as follows:

Address Data
DDDD DDDD UUUU
DDDU DDDU UUUD
DDUD UUUU XXXX

After each address and data word is set, you press the write
button. Since D stores a binary 0 and U stores a binary 1,
the first three memory locations now have these contents:

Address Contents
0000 0000 1111
0001 0001 1110
0010 1111 XXXX

A final point. Assembly language involves working with
mnemonics when writing a program. Machine language
involves working with strings of Os and 1s. The following
examples bring out the distinction between the two lan-
guages.

EXAMPLE 10-2

Translate the program of Example 10-1 into SAP-1 machine
language.

SOLUTION

Here is the program of Example 10-1:

Address Instruction
OH LDA 9H
1H ADD AH
2H ADD BH
3H ‘ SUB CH
4H ouT
5H HLT

This program is in assembly language as it now stands. To
get it into machine language, we translate it to Os and ls
as follows:

Address Instruction
0000 0000 1001
0001 0001 1010
0010 0001 1011
0011 0010 1100
0100 1110 XXXX
0101 11117 XXXX

Now the program is in machine language.

Any program like the foregoing that’s written in machine
language is called an object program. The original program
with mnemonics is called a source program. In SAP-1 the
operator translates the source program into an object program
when programming the address and data switches.

A final point. The four MSBs of a SAP-1 machine-
language instruction specify the operation, and the four
LSBs give the address. Sometimes we refer to the MSBs
as the instruction field and to the LSBs as the address field.
Symbolically,

Instruction = XXXX XXXX

Instruction field
Address field

EXAMPLE 10-3

How would you program SAP-1 to solve this arithmetic
problem?

16 + 20 + 24 — 32

The numbers are in decimal form.

SOLUTION

One way is to use the program of the preceding example,
storing the data (16, 20, 24, 32) in memory locations 9H

Chapter 10 sar-1 145

to CH. With Appendix 2, you can convert the decimal data
into hexadecimal data to get this assembly-language version:

Address Contents
OH LDA 9H
1H ADD AH
2H ADD BH
3H SUB CH
4H ouT
5H HLT
6H XX
TH XX
8H XX
9H 10H
AH 14H
BH 18H
CH 20H

The machine-language version is

Address Contents
0000 0000 1001
0001 0001 1010
0010 0001 1011
0011 0010 1100
0100 1110 XXXX
0101 1111 XXXX
0110 XXXX XXXX
0111 XXXX XXXX
1000 XXXX XXXX
1001 0001 0000
1010 0001 0100
1011 0001 1000
1100 0010 0000

Notice that the program is stored ahead of the data. In
other words, the program is in low memory and the data
in high memory. This is essential in SAP-1 because the
program counter points to address 0000 for the first instruc-
tion, 0001 for the second instruction, and so forth.

EXAMPLE 10-4

Chunk the program and data of the preceding example by
converting to hexadecimal shorthand.

SOLUTION
Address Contents
OH 09H
1H 1AH
2H IBH

146 Digital Computer Electronics

3H 2CH

4H EXH
5H - FXH
6H XXH
7H XXH
8H XXH
9H 10H
AH 14H
BH 18H
CH 20H

This version of the program and data is still considered
machine language.

Incidentally, negative data is loaded in 2’s-complement
form. For example, —03H is entered as FDH.

10-4 FETCH CYCLE

The control unit is the key to a computer’s automatic
operation, The control unit generates the control words that
fetch and execute each instruction. While each instruction
is fetched and executed, the computer passes through
different timing states (T states), periods during which
register contents change. Let’s find out more about these T’
states.

Ring Counter

Earlier, we discussed the SAP-1 ring counter (see Fig.
8-16 for the schematic diagram). Figure 10-2a symbolizes
the ring counter, which has an output of

T = T(TT,T;T,T,
At the beginning of a computer run, the ring word is
T = 000001
Successive clock pulses produce ring words of

= 000010
000100
001000
010000
100000

= = e
I

Then, the ring counter resets to 000001, and the cycle
repeats. Each ring word represents one T state.

Figure 10-2b shows the timing pulses out of the ring
counter. The initial state T starts with a negative clock
edge and ends with the next negative clock edge. During
this T state, the T, bit out of the ring counter is high.

During the next state, T, is high; the following state has
a high T;; then a high T,; and so on. As you can see, the

Ring counter <p— CLK
o— CLR
BEERE

Te Ts Ta T3 T, T

(a)

I-- T T2 Ta —+—T4 Ts Tg T —»‘
state state state state state state state
¥ _J'__| I |

e [el

. (b)

Fig, 10-2 Ring counter: (a) symbol; (&) clock and timing signals.

ring counter produces six T states. Each instruction is Increment State
fetched and executed during these six T states.

Notice that a positive CLK edge occurs midway through
each T state. The importance of this will be brought out
later.

Figure 10-3b shows the active parts of SAP-1 during the
T, state. This state is called the increment state because the
program counter is incremented. During the increment state,
the controller-sequencer is producing a control word of

CON = CiE,Ly,CE LELLEs SuEuLslLo

Address State =1011] 0011

The T, state is called the address state because the address As you see, the Cp bit is active.
in the program counter (PC) is transferred to the memory
address register (MAR) during this state. Figure 10-3a
shows the computer sections that are active during this state Mehidey Btate :
(active parts are light; inactive parts are dark). The T, state is called the memory state because the addressed

During the address state, Ep and ZM are active; all other RAM instruction is transferred from the memory to the
control bits are inactive. This means that the controller- instruction register. Figure 10-3c¢ shows the active parts of
sequencer is sending out a control word of SAP-1 during the memory state. The only active control

bits during this state are CE and L,, and the word out of
CON = G,E,.LyCE LELAE, SuEyL:sLo the controller-sequencer is
=0101 1110 0011
CON = GE,.Ly,CE LEL.E. SyEuLslo

during this state. 0010 0110 0011

Chapter 10 SAP-1 147

CON CON

(a)
Fig. 10-3 Fetch cycle: (a) T, state; (b) T, state; (c) T, state.

Fetch Cycle

The address, increment, and memory states are called the
fetch cycle of SAP-1. During the address state, Ep and Ly
are active; this means that the program counter sets up the
MAR via the W bus. As shown earlier in Fig. 10-2b, a
positive clock edge occurs midway through the address
state; this loads the MAR with the contents of the PC.

Cp is the only active control bit during the increment
state. This sets up the program counter to count positive
clock edges. Halfway through the increment state, a positive
clock edge hits the program counter and advances the count
by 1.

During the memory state, CE and L, are active. Therefore,
the addressed RAM word sets up the instruction register
via the W bus. Midway through the memory state, a positive
clock edge loads the instruction register with the addressed
RAM word.

10-5 EXECUTION CYCLE

The next three states (T4, Ts, and T,) are the execution
cycle of SAP-1. The register transfers during the execution
cycle depend on the particular instruction being executed.
For instance, LDA 9H requires different register transfers
than ADD BH. What follows are the control routines for
different SAP-1 instructions.

LDA Routine

For a concrete discussion, let’s assume that the instruction
register has been loaded with LDA 9H:

IR = 0000 1001
During the T, state, the instruction field 0000 goes to the

controller-sequencer, where it is decoded; the address field
1001 is loaded into the MAR. Figure 10-4a shows the

148 Digital Computer Electronics

(b)

W
CON

fc)

active parts of SAP-1 during the T, state. Note that E, and
L,, are active; all other control bits are inactive.

During the T state, CE and L, go low. This means that
the addressed data word in the RAM will be loaded into
the accumulator on the next positive clock edge (see Fig.
10-4b).

Ts is a no-operation state. During this third execution
state, all registers are inactive (Fig. 10-4¢). This means
that the controller-sequencer is sending out a word whose
bits are all inactive. Nop (pronounced no op) stands for
“‘no operation.’” The Ty state of the LDA routine is a nop.

Figure 10-5 shows the timing diagram for the fetch and
LDA routines. During the T, state, E» and L,, are active;
the positive clock edge midway through this state will
transfer the address in the program counter to the MAR.
During the T, state, Cp is active and the program counter
is incremented on the positive clock edge. During the T
state, CE and L, are active; when the positive clock edge
occurs, the addressed RAM word is transferred to the
instruction register. The LDA execution starts with the 7,
state, where L,, and E, are active; on the positive clock
edge the address field in the instruction register is transferred
to the MAR. During the T state, CE and L, are active;
this means that the addressed RAM data word is transferred
to the accumulator on the positive clock edge. As you
know, the T state of the LDA routine is a nop.

ADD Routine

Suppose at the end of the fetch cycle the instruction register
contains ADD BH:

IR = 0001 1011

During the T, state the instruction field goes to the controller-
sequencer and the address field to the MAR (see Fig.
10-6a). During this state E;and L,, are active.

Control bits CE and Ly are active during the T state.
This allows the addressed RAM word to set up the B

CON

fa) (b) fc)
Fig. 10-4 LDA routine: (a) T, state; (b) Ts state; (¢) T state.

i e e e

La

Fig. 10-5 Fetch and LDA timing diagram.

Add/sub

R3 RN
CON CON CON
(a) (b) fc)
Fig. 10-6 ADD and SUB routines: (a) T, state; (b) T state; (c)

T, state.

Chapter 10 SAP-1 149

—_——

register (Fig. 10-6b). As usual, loading takes place midway
through the state when the positive clock edge hits the CLK
input of the B register,

During the T state, E, and L, are active; therefore, the
adder-subtracter sets up the accumulator (Fig. 10-6¢).
Halfway through this state, the positive clock edge loads
the sum into the accumulator.

Incidentally, setup time and propagation delay time
prevent racing of the accumulator during this final execution
state. When the positive clock edge hits in Fig. 10-6c, the
accumulator contents change, forcing the adder-subtracter
contents to change. The new contents return to the accu-
mulator input, but the new contents don’t get there until
two propagation delays after the positive clock edge (one
for the accumulator and one for the adder-subtracter). By
then it’s too late to set up the accumulator. This prevents
accumulator racing (loading more than once on the same
clock edge).

Figure 10-7 shows the timing diagram for the fetch and
ADD routines. The fetch routine is the same as before: the
T, state loads the PC address into the MAR; the T, state
increments the program counter; the T; state sends the
addressed instruction to the instruction register.

e

|
|
L | } |

Fig. 10-7 Fetch and ADD timing diagram.

150 Digital Computer Electronics

During the T, state, E; and L, are active; on the next
positive clock edge, the address field in the instruction
register goes to the MAR. During the T state, CE and Ly
are active; therefore, the addressed RAM word is loaded
into the B register midway through the state. During the T
state, E;, and L, are active; when the positive clock edge
hits, the sum out of the adder-subtracter is stored in the
accumulator.

SUB Routine

The SUB routine is similar to the ADD routine. Figure
10-6a and b show the active parts of SAP-1 during the T,
and T states. During the Ty state, a high S is sent to the
adder-subtracter of Fig. 10-6¢. The timing diagram is almost
identical to Fig. 10-7. Visualize Sy, low during the T, to T’
states and Sy, high during the T state.

OUT Routine

Suppose the instruction register contains the OUT instruction
at the end of a fetch cycle. Then

IR = 1110 XXXX

The instruction field goes to the controller-sequencer for
decoding. Then the controller-sequencer sends out the
control word needed to load the accumulator contents into
the output register.

Figure 10-8 shows the active sections of SAP-1 during
the execution of an OUT instruction. Since E, and L, are
active, the next positive clock edge loads the accumulator
contents into the output register during the T, state. The Ts
and T states are nops.

Figure 10-9 is the timing diagram for the fetch and OUT
routines. Again, the fetch cycle is same: address state,
increment state, and memory state. During the T, state, E,
and Zo are active; this transfers the accumulator word to
the output register when the positive clock edge occurs.

U
CON

Fig. 10-8 T, state of OUT instruction.

e e]

Fig, 10-9 Fetch and OUT timing diagram.

HLT

HLT does not require a control routine because no registers
are involved in the execution of an HLT instruction. When
the IR contains

IR = 1111 XXXX

the instruction field 1111 signals the controller-sequencer
to stop processing data. The controller-sequencer stops the
computer by turning off the clock (circuitry discussed later).

Machine Cycle and Instruction Cycle

SAP-1 has six T states (three fetch and three execute).
These six states are called a machine cycle (see Fig.
10-10q). It takes one machine cycle to fetch and execute
each instruction. The SAP-1 clock has a frequency of 1
kHz, equivalent to a period of 1 ms. Therefore, it takes 6
ms for a SAP-1 machine cycle.

SAP-2 is slightly different because some of its instructions
take more than one machine cycle to fetch and execute.
Figure 10-10b shows the timing for an instruction that
requires two machine cycles. The first three 7' states are
the fetch cycle; however, the execution cycle requires the
next nine T states. This is because a two-machine-cycle
instruction is more complicated and needs those extra T
states to complete the execution.

The number of T states needed to fetch and execute an
instruction is called the instruction cycle. In SAP-1 the
instruction cycle equals the machine cycle. In SAP-2 and
other microcomputers the instruction cycle may equal two
or more machine cycles, as shown in Fig. 10:105.

The instruction cycles for the 8080 and 8085 take from
one to five machine cycles (more on this later).

EXAMPLE 10-5

The 8080/8085 programming manual says that it takes
thirteen T states to fetch and execute the LDA instruction.

Execute

T

Machine cycle

r‘——_“‘ Instruction CVCIE —_—

(a)

Execute ———————=

TI[TZ‘TIS‘T4|T5|T6

Execute

v

- Machine cycle

Machine cycle =

A

Fig. 10-10 (a) SAP-1 instruction cycle; (b) instruction cycle with
two machine cycles.

Instruction cycle

(b)

Chapter 10 SAP-1 151

If the system clock has a frequency of 2.5 MHz, how long
is an instruction cycle?

SOLUTION

The period of the clock is

Therefore, each T state lasts 400 ns. Since it takes thirteen
T states to fetch and execute the LDA instruction, the
instruction cycle lasts for

13 X 400 ns = 5,200 ns = 5.2 ps

EXAMPLE 10-6

Figure 10-11 shows the six T states of SAP-1. The positive
clock edge occurs halfway through each state. Why is this
important?

SOLUTION

SAP-1 is a bus-organized computer (the common type
nowadays). This allows its registers to communicate via
the W bus. But reliable loading of a register takes place
only when the setup and hold times are satisfied. Waiting
half a cycle before loading the register satisfies the setup
time; waiting half a cycle after loading satisfies the hold
time. This is why the positive clock edge is designed to
strike the registers halfway through each T state (Fig.
10-11).

There’s another reason for waiting half a cycle before
loading a register. When the ENABLE input of the sending
register goes active, the contents of this register are suddenly
dumped on the W bus. Stray capacitance and lead inductance
prevent the bus lines from reaching their correct voltage
levels immediately. In other words, we get transients on
the W bus and have to wait for them to die out to ensure
valid data at the time of loading. The half-cycle delay
before clocking allows the data to settle before loading.

+ edge + edge + edge

T

10-6 THE SAP-1 MICROPROGRAM

We will soon be analyzing the schematic diagram of the
SAP-1 computer, but first we need to summarize the
execution of SAP-1 instructions in a neat table called a
microprogram.

Microinstructions

The controller-sequencer sends out control words, one
during each T state or clock cycle. These words are like
directions telling the rest of the computer what to do.
Because it produces a small step in the data processing,
each control word is called a microinstruction. When looking
at the SAP-1 block diagram (Fig. 10-1), we can visualize
a steady stream of microinstructions flowing out of the
controller-sequencer to the other SAP-1 circuits.

Macroinstructions

The instructions we have been programming with (LDA,
ADD, SUB, . . .) are sometimes called macroinstructions
to distinguish them from microinstructions. Each SAP-1
macroinstruction is made up of three microinstructions. For
example, the LDA macroinstruction consists of the mi-
croinstructions in Table 10-3. To simplify the appearance
of these microinstructions, we can use hexadecimal chunk-
ing as shown in Table 10-4.

Table 10-5 shows the SAP-1 microprogram, a listing of
each macroinstruction and the microinstructions needed to
carry it out. This table summarizes the execute routines for
the SAP-1 instructions. A similar table can be used with
more advanced instruction sets.

16-7 THE SAP-1 SCHEMATIC
DIAGRAM

In this section we examine the complete schematic diagram
for SAP:1. Figures 10-12 to 10-15 show all the chips,
wires, and signals. You should refer to these figures
throughout the following discussion. Appendix 4 gives
additional details for some of the more complicated chips.

+ edge + edge + edge

oo

CLK l

T T T3

Fig. 10-11 Positive clock edges occur midway through T states.

152 Digital Computer Electronics

TABLE 10-3

S L Sl

Macro State C.E.L,,CE L EL,E, SyE L L, Active

LDA T, 0.0 @ 1 1010 0011 LM,E,

T 001 0 1100 0011 CE. Ly

Ts 001 1 1110 0011 None

TABLE 10-4 MAR

Macro State CON Actlve Chip C4, a 74LS173, is a 4-bit buffer register; it serves as
- the MAR. Notice that pins 1 and 2 are grounded; this
LDA T, 1A3H I_,'_M, E, converts the three-state output to a two-state output, In
T 2C3H CE, L, other words, the output of the MAR is not connected to
Te 3E3H None the W bus, and so there’s no need to use the three-state

TABLE 10-5, SAP-1 MICROPROGRAM+

Macro State CON Active

LDA C ¥ 1A3H Ly, E
Ts 2C3H CE, L,

‘ T 3E3H None

ADD T 1A3H Ly, E,
T 2E1H CE, I
T 3C7H L B

SUB T, 1A3H Lopi B
T 2EIH CE, Ly
T 3CFH boe 85 By

ouT s 3F2H B Ly
T 3E3H None
T, 3E3H None

T CON = CGE.L,CE LELE, S,E,Lilo.

Program Counter

Chips C1, C2, and C3 of Fig. 10-12 are the program
counter. Chip Cl, a 74LS107, is a dual JK master-slave
flip-flop, that produces the upper 2 address bits. Chip C2,
another 74L5107, produces the lower 2 address bits. Chip
C3 is a 74L.S126, a quad three-state normally open switch;
it gives the program counter a three-state output.

At the start of a computer run, a low CLR resets the
program counter to 0000. During the T, state, a high E,
places the address on the W bus. During the T, state, a
high Cpis applied to the Pprogram counter; midway through
this state, the negative CLK edge (equivalent to positive
CLK edge) increments the program counter.

The program counter is inactive during the T; to T states.

output,

2-to-1 Multiplexer

Chip C5 is a 74LS157, a 2-to-1 nibble multiplexer. The
left nibble (pins 14, 11, 5, 2) comes from the address
switch register (S,). The right nibble (pins 13, 10, 6, 3)
comes from the MAR. The RUN-PROG switch (S,) selects
the nibble to reach to the output of C5. When S, is-in the
PROG position, the nibble out of the address switch register
is selected. On the other hand, when S, is the RUN position,
the output of the MAR is selected.

16 x 8 RAM :
Chips C6 and C7 are 74189s. Each chip is a 16 X 4 static
RAM. Together, they give us a 16 X 8 read-write memory.
S; is the data switch register (8 bits), and S, is the read-
write switch (a push-button switch). To program the mem-
ory, S, is put in the PROG position; this takes the CE input
low (pin 2). The address and data switches are then set to
the correct address and data words. A momentary push of
the read-write switch takes WE low (pin 3) and loads the
memory.

After the program and data are in memory, the RUN-
PROG switch (S,) is put in the RUN position in preparation
for the computer run.

Instruction Register

Chips C8 and C9 are 74LS173s. Each chip is a 4-bit three-
state buffer register. The two chips are the instruction
register. Grounding pins 1 and 2 of C8 converts the three-
state output to a two-state output, I;lsIsI,. This nibble goes
to the instruction decoder in the controller-sequencer. Signal
E, controls the output of C9, the lower nibble in the
instruction register. When E; is low, this nibble is placed
on the W bus.

Chapter 10 SAP-1 153

L™
L]

| o~

m__
HIXIVAILTINW 15152 8 uomM/||_h|
oL e 10} 1
e %
L — A6+ NNY
9l =
of o] e1| 2| s| 1t ﬁ—
Ey
Ty le
v
= oy
Si
£L1STPL 8
H D—e
YN 472 5 > 9 5
R _
b e —— A G+
6 13
i zi| gt] i
snq M - “II.I e e _ .
| e i o\A8 A ;
_ £9
uISIWL | z1 6 g
419 @ * L 4
== EH n_H EH m_k
Y b
431NNOD i ¥ ! i
X792 =, z0 we) q 12 12
WYHD0Hd e 6 zL 6 zl
0 I = r
g S 1 £ 8 5 £
99

L0LSTIVL

LOLSTIVL

154 Digital Computer Electronics

1981821 uononnsul pue ‘Kowawr ‘10un0o wreidord [-dJvs ZI-0T ‘Sid

v S5 9
P %) _
9| S| ¥| € - 9] S|] € -
/
g ﬂ z M st 8
¥3151934 L L osuswe s L, easwe 5
NOILINYLSNI L 60 L 80 H
ol = o H
—— A G+ —— A G+
6 91 6 91
MENEED M ENE
by @
JLI8M ™
.\ﬂn_‘
avay
= | 6] £ s i 6] £f s
o084 b, B0 0 bon
NNHe I 4 = ¢ =
e
WvY o 681YL (4 °q £ - 68L7L 4] *g
8 X9l |~|l L2 oL lg |_|I 90 oL Sg | s
8 9 g 8 9 9
A G+ A G+ e
al ¥ £g gL ¥ Lg
E®) R ED m__i sif 1

155

Chapter 10 SAP-1

UG .

n3

S1LD

. L _

G 4

[4 Sl

E———

610 __ 9ZLSTIvL

== 6

L g1
9z1S YL

| T

vl €l
—— A G+
S

- £8517L

Ll

L

gL|ct

oL

-
2| =
|
w| ~
©| =«
©
m| =

<
o

-

HOL1OVH18NS
/43aayv

L£]

X710

> ELISTIVL
L1

HOLVYINWNIOV

A G+

pL| 2L Ly vi

€LLSOVL
L > (s]39)

oL

A G+

9zZLSYL

[:
o 91r-

sng M

156 Digital Computer Electronics

5 \\M \.uﬁ

‘synolio ndino pue ‘1o)oenqns-1appe ‘siasidar g pue y £1-0T 91

7 yT 4 4T %
A V:M w_PM 1! AL G AL g ML it
< < 4
X719
9 S 4 £ " 9] ¥ € =
.
Sl Sl
S SLISTPL 8 i s SL1STWL 8 43151934
(i €20 & ol zZo0 z 1NdLno
ol L ol !
— —As+
6 Tl 6 T
LL cl €l 14} L cl €l vL
%3
Y72
9 S| | € = 9l S %] & =
Gl Sl
8 8
€LISTVL ELLSTPL
———y p
L o 122 cﬂ. L P> 0zd H. 43151934 9
—
oL L oL L
— A G+ ———
6 ol 6 T
MEAEED MENEN iﬁ
8y

157

-1

Chapter 10

Accumulator

Chips C10 and Cl11, 74LS173s, are the accumulator (see
Fig. 10-13). Pins 1 and 2 are grounded on both chips to
produce a two-state output for the adder-subtracter. Chips
C12 and C13 are 74LS126s; these three-state switches place
the accumulator contents on the W bus when E,, is high.

Adder-subtracter

Chips C14 and C15 are 74LS86s. These EXCLUSIVE-OR
gates are a controlled inverter. When Sy, is low, the contents
of the B register are transmitted. When Sy, is high, the 1's
complement is transmitted and a 1 is added to the LSB to
form the 2’s complement.

Chips C16 and C17 are 74LS83s. These 4-bit full adders
combine to produce an 8-bit sum or difference. Chips C18
and C19, which are 74LS126s, convert this 8-bit answer
into a three-state output for driving the W bus.

B Register and Output Register

Chips C20 and C21, which are 74LS173s, form the B
register. It contains the data to be added or subtracted from
the accumulator. Grounding pins 1 and 2 of both chips
produces a two-state output for the adder-subtracter.

Chips C22 and C23 are 74LS173s and form the output
register. It drives the binary display and lets us see the
processed data,

Clear-Start Debouncer

In Fig. 10-14, the clear-start debouncer produces two
outputs: CLR for the instruction register and CLR for the
program counter and ring counter. CLR also goes to C29,
the clock-start flip-flop. Ss is a push-button switch. When
depressed, it goes to the CLEAR position, generating a high
CLR and a low CLR. When S; is released, it returns to the
START position, producing a low CLR and a high CLR.

Notice that half of C24 is used for the clear-start debouncer
and the other half for the single-step debouncer. Chip C24
is a 7400, a quad 2-input NAND gate.

Single-Step Debouncer

SAP-1 can run in either of two modes, manual or automatic.
In the manual mode, you press and release Sq to generate
one clock pulse. When S is depressed, CLK is high; when
released, CLK is low. In other words, the single-step
debouncer of Fig. 10-14 generates the T states one at a
time as you press and release the button. This allows you
to step through the different T states while troubleshooting
or debugging. (Debugging means looking for errors in your
program. You troubleshoot hardware and debug software.)

158 Digital Computer Electronics

Manual-Auto Debouncer

Switch S, is a single-pole double-throw (SPDT) switch that
can remain in either the MANUAL position or the AUTO
posmon When in MANUAL, the single-step button is active.

When in AUTO, the computer runs automatically. Two of
the NAND gates in C26 are used to debounce the MANUAL-
AUTO switch. The other two NAND C26 gates are part of a
NAND-NAND network that steers the single-step clock or the
automatic clock to the final CLK and CLK outputs.

Clock Buffers

The output of pin 11, C26, drives the clock buffers. As
you see in Fig. 10-14, two inverters are used to produce
the final CLK output and one inverter to produce the CLK
output. Unlike most of the other chips, C27 is standard
TTL rather than a low-power Schottky (see SAP-1 Parts
List, Appendix 5). Standard TTL is used because it can
drive 20 low-power Schottky TTL loads, as indicated in
Table 4-5.

If you check the data sheets of the 74LS107 and 74LS173
for input currents, you will be able to count the following
low-power Schottky (LS) TTL loads on the clock and clear
signals:

CLK = 19 LS loads
CLK = 2 LS loads
CLR = 1LS load
CLR = 20 LS loads

This means that the CLK and CLK signals out of C27
(standard TTL) are adequate to drive the low-power Schottky
TTL loads. Also, the CLR and CLR signals out of C24
(standard TTL) can drive their loads.

Clock Circuits and Power Supply

Chip C28 is a 555 timer. This IC produces a rectangular
2-kHz output with a 75 percent duty cycle. As previously
discussed, a start-the-clock flip-flop (C29) divides the signal
down to 1 kHz and at the same time produces a 50 percent
duty cycle.

The power supply consists of a full-wave bridge rectifier
working into a capacitor-input filter. The dc voltage across
the 1,000-F capacitor is approximately 20 V. Chip C30,
an LM340T-5, is a voltage regulator that produces a stable
output of +5 V.

Instruction Decoder

Chip C31, a hex inverter, produces complements of the
op-code bits, LIsl, (see Fig. 10-15). Then chips C32,
C33, and C34 decode the op code to produce five output
signals: LDA, ADD, SUB, OUT, and HLT. Remember:

CLR
Sg
LEAR/ START
TART CLEAR
= I CLR
. Se LOW
JINGLE ——
STEP I HIGH HLT
2 1 12 CLOCK
BUFFERS
c25— @ e—e——— o
- r il
1 | 1 2 4 |
—+—" >O———| >O—+— CLK
. l 12 | ’ '
7
JANUAL/ TaAHbAL ‘@ L1 "T—‘ll St l TLK
AUTO AUTO qQ
12 l ca7 1
= ... _
CLOCK
CIRCUIT
3/8A 1
POWER E 2
C30 -
SUPPLY :D:"j” 1000 uF LM340-5 +5V
+
3 f|‘\ 220 uF
Fig. 10-14 Power supply, clock, and clear circuits.
only one of these is active at a time. (HLT is active low; Ring Counter

all the others are active high.)

When the HLT instruction is in the instruction register,
bits I I, are 1111 and HLT is low. This signal returns
to C25 (single-step clock) and C29 (automatic clock). In
either MANUAL or AUTO mode, the clock stops and the
computer run ends.

The ring counter, sometimes called a state counter, consists
of three chips, C36, C37, and C38. Each of these chips is
a 74LS107, a dual JK master-slave flip-flop. This counter
is reset when the clear-start button (Ss) is pressed. The Qg
flip-flop is inverted so that its O output (pin 6, C38) drives

Chapter 10 SAP-1 1859

“XLIjew [0NU0Y PUR ‘1A)unod Suil ‘1apoodp uononnsu] ST-0T Sig

oD .
K
z[1]
X141V TOHLNOD S0 NW)
& & ¥30003a
s NOILONHLSNI
P
| 12 |m_
|
" 5 8|
Yy Z g v, 5, 9, _ I
_ g o 9 “
479 t ? 1
SH er] oL] m_H EH € r _ *
L} Y o] € 4
g|” Org 9 & LS o TR Org 71 o T 11 O B et “- ;
— — — —G 9€£0 ~—9 9€2
i gl = i a] 6 e b NH_
pill| o) r
T Ofs 3 d 13 gl” Ofs 73 Ol gL” g 1 Ofg Ml -
70 : ¥ S 9 4

H3ILNNOD DONIY

1680 Dpigital Computer Electronics

‘e J input of the Q, flip-flop (pin 1, C38). Because of this,
he T, output is initially high.

The CLK signal drives an active low input. This means
‘hat the negative edge of the CLK signal initiates each T
state. Half a cycle later, the positive edge of the CLK signal
oroduces register loading, as previously described.

Control Matrix

The LDA, ADD, SUB, and OUT signals from the instruction
decoder drive the control matrix, C39 to C48. At the same
time, the ring-counter signals, T, to Tg, are driving the
matrix (a circuit receiving two groups of bits from different
sources). The matrix produces CON, a 12-bit microinstruc-
tion that tells the rest of the computer what to do.

In Fig. 10-15, T, goes high, then T, then T3, and so on.
Analyze the control matrix and here is what you will find.
A high T, produces a high Ep and a low L,, (address state);
a high T, results in a high Cp (increment state); and a high
T, produces a low CE and a low L; (memory state). The
first three T states, therefore, are always the fetch cycle in
SAP-1. In chunked notation, the CON words for the fetch
cycle are

State CON Active Bits
T SE3H B, Ly
T BE3H _Cp_
1, 263H CE, L;

During the execution states, T, through T go high in
succession. At the same time, only one of the decoded
signals (LDA through OUT) is high. Because of this, the
matrix automatically steers active bits to the correct output
control lines.

For instance, when LDA is high, the only enabled 2-
input NAND gates are the first, fourth, seventh, and tenth.

When T, is high, it activates the first and seventh NAND -

gates, resulting in low L, and low E; (load MAR with
address field). When T is high, it activates the fourth and
tenth NAND gates, producing a low CE and a low L, (load
RAM data into accumulator). When Ty goes high, none of
the control bits are active (nop).

You should analyze the action of the control matrix
during the execution states of the remaining possibilities:
high ADD, high SUB, and high OUT. Then you will agree
the control matrix can generate the ADD, SUB, and OUT
microinstructions shown in Table 10-5 (SAP-1 micropro-
gram).

Operation

Before each computer run, the operator enters the program
and data into the SAP-1 memory. With the program in low

memory and the data in high memory, the operator presses
and releases the clear button. The CLK and CLK signals
drive the registers and counters. The microinstruction out
of the controller-sequencer determines what happens on
each positive CLK edge.

Each SAP-1 machine cycle begins with a fetch cycle. T
is the address state, T, is the increment state, and 75 is the
memory state. At the end of the fetch cycle, the instruction
is stored in the instruction register. After the instruction
field has been decoded, the control matrix automatically
generates the correct execution routine. Upon completion
of the execution cycle, the ring counter resets and the next
machine cycle begins.

The data processing ends when a HLT instruction is
loaded into the instruction register.

10-8 MICROPROGRAMMING

The control matrix of Fig. 10-15 is one way to generate
the microinstructions needed for each execution cycle. With
larger instruction sets, the control matrix becomes very
complicated and requires hundreds or even thousands of
gates. This is why hardwired control (matrix gates soldered
together) forced designers to look for an alternative way to
produce the control words that run a computer.

Microprogramming is the alternative. The basic idea is
to store microinstructions in a ROM rather than produce
them with a control matrix. This approach simplifies the
problem of building a controller-sequencer.

Storing the Microprogram

By assigning addresses and including the fetch routine, we
can come up with the SAP-1 microinstructions shown in
Table 10-6. These microinstructions can be stored in a
control ROM with the fetch routine at addresses OH to 2H,
the LDA routine at addresses 3H to 5H, the ADD routine
at 6H to 8H, the SUB routine at 9H to BH, and the OUT
routine at CH to EH.

To access any routine, we need to supply the correct
addresses. For instance, to get the ADD routine, we need
to supply addresses 6H, 7H, and 8H. To get the OUT
routine, we supply addresses CH, DH, and EH. Therefore,
accessing any routine requires three steps:

1. Knowing the starting address of the routine
2. Stepping through the routine addresses
3. Applying the addresses to the control ROM.

Address ROM

Figure 10-16 shows how to microprogram the SAP-1
computer. It has an address ROM, a presettable counter,
and a control ROM. The address ROM contains the starting
addresses of each routine in Table 10-6. In other words,

Chapter 10 sAP-1 161

TABLE 10-6. SAP-1 CONTROL ROM

TABLE 10-7. ADDRESS ROM

Address Contents Routine
0000 0011 LDA
0001 0110 ADD
0010 1001 SUB
0011 XXXX None
0100 XXXX None
0101 XXXX None
0110 XXXX None
0111 XXXX None
1000 XXXX None
1001 XXXX None
1010 XXXX None
1011 XXXX None
1100 XXXX None
1101 XXXX None
1110 1100 ouT
1111 XXXX None

Address Contentst Routine Active
OH 5E3H Fetch B b
1H BE3H Cr _
2H 263H CE, L;
3H 1A3H LDA Ly, E
4H 2C3H CE, Ly
5H 3E3H None
6H 1A3H ADD Z_M, E_,
TH 2E1H CE, Ly
8H 3C7H L, Ey
9H 1A3H SUB Ly, E,
AH 2E1H CE, Ly
BH 3CFH Ly, Sy, Ey
CH 3F2H ouT Bl it
DH 3E3H None
EH 3E3H None
FH X X Not used

+ CON = CE,L,CE LEL.E. SuEiLsLo.

Address
ROM
16X 4

N

T LOAD
CLK a Presettable
T, counter
1
| CLR
i]

= Control

ROM
16X 12

ITTT TTIT T

Microinstruction

Fig. 10-16 Microprogrammed control of SAP-1.

the address ROM contains the data listed in Table 10-7.
As shown, the starting address of the LDA routine is 0011,
the starting address of the ADD routine is 0110, and so on.

When the op-code bits II¢lsI, drive the address ROM,
the starting address is generated. For instance, if the ADD

182 Digital Computer Electronics

instruction is being executed, I;I¢IsI, is 0001. This is the
input to the address ROM; the output of this ROM is 0110.

Presettable Counter

When T is high, the load input of the presettable counter
is high and the counter loads the starting address from the
address ROM. During the other T states, the counter counts.

Initially, a high CLR signal from the clear-start debouncer
is differentiated to get a narrow positive spike. This resets
the counter. When the computer run begins, the counter
output is 0000 during the T, state, 0001 during the T, state,
and 0010 during the T; state, Every fetch cycle is the same
because 0000, 0001, and 0010 come out of the counter
during states T, T, and T.

The op code in the instruction register controls the
execution cycle. If an ADD instruction has been fetched,
the I,IglsI, bits are 0001, These op-code bits drive the
address ROM, producing an output of 0110 (Table 10-7).
This starting address is the input to the presettable counter.
When T is high, the next negative clock edge loads 0110
into the presettable counter. The counter is now preset, and
counting can resume at the starting address of the ADD
routine. The counter output is 0110 during the T, state,
0111 during the Ty state, and 1000 during the T state.

When the T, state begins, the leading edge of the T,
signal is differentiated to produce a narrow positive spike
which resets the counter to 0000, the starting address of
the fetch routine. A new machine cycle then begins.

Control ROM

The control ROM stores the SAP-1 microinstructions.
During the fetch cycle, it receives addresses 0000, 0001,
and 0010. Therefore, its outputs are

5E3H
BE3H
263H

These microinstructions, listed in Table 10-6, produce the
address state, increment state, and memory state.

If an ADD instruction is being executed, the control
ROM receives addresses 0110, 0111, and 1000 during the
execution cycle. Its outputs are

1A3H
2E1H
3C7H

These microinstructions carry out the addition as previously
discussed.

For another example, suppose the OUT instruction is
being executed. Then the op code is 1110 and the starting
address is 1100 (Table 10-7). During the execution cycle,
the counter output is 1100, 1101, and 1110. The output of
the control ROM is 3F2H, 3E3H, and 3E3H (Table 10-6).
This routine transfers the accumulator contents to the output

port.

Variable Machine Cycle

The microinstruction 3E3H in Table 10-6 is a nop. It occurs
once in the LDA routine and twice in the OUT routine.
These nops are used in SAP-1 to get a fixed machine cycle
for all instructions. In other words, each machine cycle
takes exactly six T states, no matter what the instruction.
In some computers a fixed machine cycle is an advantage.
But when speed is important, the nops are a waste of time
and can be eliminated.

One way to speed up the operation of SAP-1 is to skip
any T state with a nop. By redesigning the circuit of Fig.
10-16 we can eliminate the nop states. This will shorten
the machine cycle of the LDA instruction to five states (T,
T,, Ts, T4, and Ts). It also shortens the machine cycle of
the QUT instruction to four T states (T, T5, T3, and Ty).

Figure 10-17 shows one way to get a variable machine
cycle. With an LDA instruction, the action is the same as
before during the T, to T states. When the T state begins,
the control ROM produces an output of 3E3H (the nop
microinstruction). The NAND gate detects this nop instantly
and produces a low output signal NOP. NOP is fed back
to the ring counter through an AND gate, as shown in Fig.
10-18. This resets the ring counter to the T, state, and a
new machine cycle begins. This reduces the machine cycle
of the LDA instruction from six states to five.

Address
ROM
16¥ 4

| [|

LOAD

CLK —0O Presettable
counter

an—L % T
|]4

ol

T3

18X 12

NOP 1 OQ
[

Fig. 10-17 Variable machine cycle.

Microinstruction

Ring counter

’—-CT
C — NOP

Fig. 10-18

With the OUT instruction, the first nop occurs in the 7’
state. In this case, just after the T state begins, the control
ROM produces an output of 3E3H, which is detected by
the NAND gate. The low NOP signal then resets the ring
counter to the T, state. In this way, we have reduced the
machine cycle of the OUT instruction from six states to
four.

Chapter 10 SAP-1 163

