

SystemC 2 Verilog
pablo.huerta@urjc.es

javier.castillo@urjc.es
www.escet.urjc.es/~jmartine

Rev. 1.4
October, 2005

Revision History:

Rev Date Author Description
1.0 3/10/2004 Javier Castillo Initial Release
1.1 18/12/2004 Javier Castillo Adapted to sc2v 0.2
1.2 17/01/2005 Javier Castillo Updated to fit sc2v 0.2.2
1.3 25/02/2005 Javier Castillo Updated to fit sc2v 0.4. Function support explained
1.4 10/10/2005 Javier Castillo Updated to fit sc2v 0.5. Struc support explained

SystemC is a powerful language that allows the designer to develop a complete system description of his
design.
From this system level design is necessary to get down to a RT synthesizable description that allows a
physicall implementation of the model. But at this point there is a lack of synthesis tools that get a
SystemC RT description as input. That means it is necessary a translation step to a supported HDL, that
means Verilog or VHDL. Due to the similitude of Verilog and C it looks reasonable to convert the
SystemC RT description to a Verilog equivalent one.

This translator performs this translation. From a SystemC description written following some rules we
can obtain a synthesizable Verilog description supported by most of the synthesis tools available in the
market.

1 OVERVIEW

1- Compiling the sources:

The sc2v translator is based on lex and yacc tools. You need lex and yacc
installed before trying to compile sc2v.

For compiling the sources just type "make" under the directory you unzipped the
fonts. It will generate three executables: sc2v_step1, sc2v_step2 and sc2v_step3.
.

2- Translating an SystemC module:

A script that performs the translation is included in ./bin directory

Just type:

 > sc2v.sh module_name

3- Format and restrictions of the SystemC files:

- Supported SystemC types are:

- bool
- sc_uint<>
- sc_int <>
- sc_biguint <>
- sc_bigint<>

 Do not use C standard types as: char, int, long ……..

- Each module must have an .h file with the declarations of ports, signals, and processes, and there must
exist a .cpp file with the code of the processes.

- For writing to a port or a signal you must ALWAYS use the .write() method.

-Macros with no parameters are supported, but may cause little problems with name of variables. Macros
with parameters are not supported.

-Only data types: bool, sc_int, sc_bigint, sc_uint and sc_biguint are supported.

- No global variables supported.

- No inout ports supported

2 Instructions of use

4- Known bugs

-The usage of macros and defines may cause some errors.

TODO:

 - Repair all known bugs.
 - Support macros.
 - Support inout ports
 - Support new constructions

The code of the MD5 hash algorithm is included in the ./examples directory inside md5.h and md5.cpp
files. The complete project including SystemC and Verilog testbenches is available at www.opencores.org
webpage under the systemcmd5 project.

In this chapter we will see the SystemC RT coding style in order to be automatically translated to Verilog.

The first thing you must take in account is that a file only can contain a module and it must be separated
into a header file with the module declaration and a implementation file with the methods code.

3.1 HEADER FILES

First we will take a look to the md5.h file:

md5.h

#include "systemc.h"

SC_MODULE (md5)
{

 //Port declaration
 sc_in < bool > clk;
 sc_in < bool > reset;

 sc_in < bool > load_i;
 sc_out < bool > ready_o;
 sc_in < bool > newtext_i;

 //Input must be padded and in little endian mode
 sc_in < sc_biguint < 128 > > data_i;
 sc_out < sc_biguint < 128 > > data_o;

 // ---
 //Signals
 sc_signal < sc_uint < 32 > >ar, br, cr, dr;
 sc_signal < sc_uint < 32 > >next_ar, next_br, next_cr, next_dr;
 sc_signal < sc_uint < 32 > >A, B, C, D;
 sc_signal < sc_uint < 32 > >next_A, next_B, next_C, next_D;

 sc_signal < bool > next_ready_o;
 sc_signal < sc_biguint < 128 > >next_data_o;

 sc_signal < sc_biguint < 512 > >message, next_message;

3 Commented example: MD5

 sc_signal < bool > generate_hash, hash_generated,next_generate_hash;

 sc_signal < sc_uint < 3 > >getdata_state, next_getdata_state;

 sc_signal < sc_uint < 2 > >round, next_round;
 sc_signal < sc_uint < 6 > >round64, next_round64;

 sc_signal < sc_uint < 44 > >t;

 sc_signal < sc_uint < 32 > >func_out;

 //Method functions
 void md5_getdata ();
 void reg_signal ();
 void round64FSM ();
 void md5_rom ();
 void funcs ();

 SC_CTOR (md5)
 {

 SC_METHOD (reg_signal);
 sensitive_pos << clk;
 sensitive_neg << reset;

 SC_METHOD (md5_getdata);
 sensitive << newtext_i << data_i << load_i << getdata_state;
 sensitive << hash_generated << message;
 sensitive << func_out << A << B << C << D << ar << br << cr << dr;
 sensitive << generate_hash;

 SC_METHOD (round64FSM);
 sensitive << newtext_i << round << round64 << ar << br << cr <<dr;
 sensitive << generate_hash << func_out;
 sensitive << getdata_state << A << B << C << D;

 SC_METHOD (md5_rom);
 sensitive << round64;

 SC_METHOD (funcs);
 sensitive << t << ar << br << cr << dr << round << message;
 sensitive << func_out;

 }
};

The first part of the module is the port description.

As you read before, only sc_in and sc_out ports are supported. The types of these ports are bool for one
bit ports as clk or reset. Other ports can be sc_int or sc_uint for ports with less than 64 bits and sc_biguint
ot sc_bigint for ports with more than 64 bits.

Next section is the signal declaration. The signals have the same type restrictions ports have.

All the processes in a SystemC RT description must be declared as SC_METHOD. In this case we can
see the declaration of combinational and sequential processes and then inside the constructor we declare
the sensitivity list of this processed.

For sequential processed we use the following syntax:

 SC_METHOD (reg_signal);
 sensitive_pos << clk;
 sensitive_neg << reset;

Or this one:

 SC_METHOD (reg_signal);
 sensitive_pos (clk);
 sensitive_neg (reset);

At the moment no clk.pos() construction and similar ones are supported, please use only the referred
above.

For combinational processes use the following syntax, where you declare all the signals you read inside
the process.

 SC_METHOD (funcs);
 sensitive (t);
 sensitive (ar);
 sensitive << br << cr << dr << round << message;
 sensitive << func_out;

Both () and << are supported for sensitivity list declaration.

3.1.1 Instantiating modules

SystemC has many ways of instantiate modules inside another. At the moment only one constructions is
allowed, using pointers to instantiate the module.

This code is taken from the systemcaes project, freely downloadable at www.opencores.org.

#include "systemc.h"
#include "word_mixcolum.h"

SC_MODULE(mixcolum)

{
 sc_in<bool> clk;
 sc_in<bool> reset;

 sc_in<bool> decrypt_i;
 sc_in<bool> start_i;
 sc_in<sc_biguint<128> > data_i;

 sc_out<bool> ready_o;
 sc_out<sc_biguint<128> > data_o;

 //Signals
 sc_signal<sc_biguint<128> > data_reg, next_data_reg, data_o_reg;
 sc_signal<sc_biguint<128> > next_data_o;

 sc_signal<bool> next_ready_o;

 //Methods
 void mixcol();
 void registers();
 void mux();
 void assign_data_o();

 //Signals
 sc_signal<sc_uint<2> > state, next_state;
 sc_signal<sc_uint<32> > outx, outy, mix_word, outmux;

 //Module declaration
 word_mixcolum *w1;

 SC_CTOR(mixcolum)
 {
 //Module instantiation
 w1 = new word_mixcolum("w1");
 w1->in(mix_word);
 w1->outx(outx);
 w1->outy(outy);

 SC_METHOD(assign_data_o);
 sensitive << data_o_reg;

 SC_METHOD(mux);
 sensitive << outx << outy;

 SC_METHOD(registers);
 sensitive_pos << clk;
 sensitive_neg << reset;

 SC_METHOD(mixcol);
 sensitive << decrypt_i << start_i << state << data_reg;

sensitive << outmux << data_o_reg;
}

};

In this example first we include the module to be instantiated:

 #include "word_mixcolum.h"

Then we can create a pointer to the module, instantiate it inside the constructor and connect the signals to
the ports.

 //Module declaration
 word_mixcolum *w1;

 SC_CTOR(mixcolum)

 {
 //Module instantiation
 w1 = new word_mixcolum("w1");
 w1->in(mix_word);
 w1->outx(outx);
 w1->outy(outy);

3.2 IMPLEMENTATION FILES

Now we will see a example of implementation of a sequential process and another example of a
combinational one.

First we will see the sequential process:

void md5::reg_signal ()
{
 if (!reset)
 {
 ready_o.write (0);
 data_o.write (0);
 message.write (0);

 ar.write (0x67452301);

 br.write (0xEFCDAB89);
 cr.write (0x98BADCFE);
 dr.write (0x10325476);

 getdata_state.write (0);
 generate_hash.write (0);

 round.write (0);
 round64.write (0);

 A.write (0x67452301);
 B.write (0xEFCDAB89);
 C.write (0x98BADCFE);
 D.write (0x10325476);

 }
 else
 {
 ready_o.write (next_ready_o.read ());
 data_o.write (next_data_o.read ());
 message.write (next_message.read ());

 ar.write (next_ar.read ());
 br.write (next_br.read ());
 cr.write (next_cr.read ());
 dr.write (next_dr.read ());

 A.write (next_A.read ());
 B.write (next_B.read ());
 C.write (next_C.read ());
 D.write (next_D.read ());

 generate_hash.write (next_generate_hash.read ());
 getdata_state.write (next_getdata_state.read ());

 round.write (next_round.read ());
 round64.write (next_round64.read ());

 }

}

You must notice one important thing, always use the .write() method when writing to a signal or port, is
the only way the translator have to distinguish between a variable and a signal. The .read() method is not
necessary but is recommended.

The recommended style for a sequential process is:

 if(reset){

 }else{

 }

But any other might be used.

A combinational process has the following aspect:

md5::md5_getdata ()
{

 sc_biguint < 128 > data_o_var;
 sc_biguint < 512 > aux;

 sc_uint < 32 > A_t, B_t, C_t, D_t;

 next_A.write (A.read ());
 next_B.write (B.read ());
 next_C.write (C.read ());
 next_D.write (D.read ());

 next_generate_hash.write (0);
 next_ready_o.write (0);
 next_data_o.write (0);

 aux = message.read ();
 next_message.write (message.read ());
 next_getdata_state.write (getdata_state.read ());

 if (newtext_i.read ())
 {
 next_A.write (0x67452301);
 next_B.write (0xEFCDAB89);
 next_C.write (0x98BADCFE);
 next_D.write (0x10325476);
 next_getdata_state.write (0);
 }

}

Local variables must be declared at the beginning of the process, declarations as:

sc_uint<32> temp=A;

inside a process are not allowed.

The types allowed for variables are the same permitted for ports and signals.

After the translation all the local variables inside a process are converted to Verilog reg type and a prefix
with the name of the process is added to each one. For example in the process funcs the variable aux is
converted to auxfuncs.

The beginning of the equivalent Verilog code for this process is:

//md5_getdata:
reg[127:0] data_o_varmd5_getdata;
reg[511:0] auxmd5_getdata;
reg[31:0] A_tmd5_getdata,B_tmd5_getdata,C_tmd5_getdata,D_tmd5_getdata;
always @(newtext_i or data_i or load_i or getdata_state or
hash_generated or message or func_out or A or B or C or D or ar or
br or cr or dr or generate_hash)

begin

 next_A = (A);
 next_B = (B);
 next_C = (C);
 next_D = (D);

 next_generate_hash = (0);
 next_ready_o = (0);
 next_data_o = (0);

 auxmd5_getdata =message ;
 next_message = (message);
 next_getdata_state = (getdata_state);

 if (newtext_i)
 begin

 next_A = ('h67452301);
 next_B = ('hEFCDAB89);
 next_C = ('h98BADCFE);
 next_D = ('h10325476);
 next_getdata_state = (0);

 end

end

3.3 ENUMERATED DATA TYPES

Enumerated data types are supported in order to describe FSM.

You can declare a signal as enumerated in this way:

enum state_t {S0,S1,S2};
sc_signal<state_t> state;

or in this other:

enum {S0,S1,S2} state;

Using this second one the translator assumes the variable declared is a sc_signal.

Automatic calculation of the number of bits required to store the enumerated signals is performed by the
translator.

The enumerated types described above are translated into the following lines:

parameter S0=0,
 S1=1,
 S2=2;

3.4 FUNCTION SUPPORT

Since version 0.4 functions are supported. Functions are limited to those ones which have direct
translation to Verilog.

The function has to be declared inside the SC_MODULE in the header file as a member of the class. The
implementation file will contains the implementation of the function.

Functions can only have one output but can have as inputs as desired. The allowed types for inputs and
outputs are the ones supported by the translator (bool, sc_uint, sc_biguint, sc_int, sc_bigint).

As example we will declare in this SC_MODULE the xtime function:

SC_MODULE(byte_mixcolum)
{
 sc_in<sc_uint<8> > a, b, c, d;
 sc_out<sc_uint<8> > outx, outy;

 void dataflow();
 sc_uint <8> xtime(sc_uint<8> in); // Function declaration

 SC_CTOR(byte_mixcolum)
 {
 SC_METHOD(dataflow);
 sensitive << a << b << c << d;
 }
};

In the implementation file we will write the functions implementation:

sc_uint<8> byte_mixcolum::xtime(sc_uint<8> in)
{
 sc_uint<4> xtime_t;
 sc_uint<8> out;

 out.range(7, 5) = in.range(6, 4);
 xtime_t[3] = in[7]; xtime_t[2] = in[7]; xtime_t[1] = 0;
 xtime_t[0] = in[7];
 out.range(4, 1) = xtime_t ^ in.range(3, 0);
 out[0] = in[7];
 return out;
}

This function will be translated into this Verilog equivalent source code:

function [7:0] xtime;

 input [7:0] in;
 reg [3:0] xtime_txtime;
 reg[7:0] outxtime;

 begin
 outxtime[7:5]=in[6:4];

xtime_txtime[3] = in[7]; xtime_txtime[2] = in[7];
xtime_txtime[1]=0;

 xtime_txtime[0] = in[7];

 outxtime[4:1] =xtime_txtime^in[3:0];
 outxtime[0] = in[7];
 xtime=outxtime;
 end
endfunction

This has the same behaviour.

3.5 STRUCTURES SUPPORT

Since version 0.5 structures inside the process code as local variables are supported.

Example:

void fsm::fsm_proc(){

 struct {
 sc_uint<16> addr;
 sc_uint<32> data;
 } st;

 struct {
 sc_int<26> data1;
 } st1;

 st1.data=45;
 st.addr=26;

}

Notice that structures can only be used locally to a process. It can not include inside arrays or other
structures declarations.

3.6 TRANSLATOR DIRECTIVES

Currently sc2v support two directives:

//translate off
…
//translate on

With this directives the lines between them are ignored.

/*Verilog begin
……
Verilog end*/

In this case the lines between the directives are copy to the verilog file without translate it

Since this is a beta version of the tool we recommend you to manually review the code after the
translation.

For more information about SystemC Synthesizable Subset read “Describing Synthesizable RTL in
SystemC”.

Please send comments, feedback, contributions to:

pablo.huerta@urjc.es
javier.castillo@urjc.es

4 Conclusions

