
SD Card Controller IP
Specification

Marek Czerski
Friday 30th August, 2013

1

List of Figures

1 SoC with SD Card IP core . 4
2 Wishbone SD Card Controller IP Core interface . 8
3 Interrupt generation scheme . 10

2

List of Tables

1 Signals description . 9
2 List of registers . 12
3 Argument register . 12
4 Command register . 13
5 Response register 0-3 . 13
6 Control register . 13
7 Timeout register . 13
8 Clock devider register . 14
9 Software reset register . 14
10 Software reset register . 14
11 Capabilities information register . 14
12 Command events status register . 14
13 Command transaction events enable register . 15
14 Data transaction events status register . 15
15 Data transaction events enable register . 15
16 Block size register . 15
17 Block count register . 16
18 DMA destination / source register . 16

3

1 Introduction

This document descripes the multimedia card (MMC) / secure digital (SD) card controller ip core
- Wishbone SD Card Controller IP Core.

1.1 Purpose of the IP core

The Wishbone SD Card Controller IP Core is MMC/SD communication controller designed to be
used in System-on-Chip (img. 1). IP core provides simple interface for any MCU with Wishbone
bus. The communication between the MMC/SD card controller and MMC/SD card is performed
according to the MMC/SD protocol.

Figure 1: SoC with SD Card IP core

1.2 Features

The MMC/SD card controller provides following features:

• 1- or 4-bit MMC/SD mode (does not support SPI mode),

• 32-bit Wishbone interface,

• DMA engine for data transfers,

• Interrupt generation on completion of data and command transactions,

• Configurable data transfer block size,

• Support for any command code (including multiple data block tranfser),

• Support for R1, R1b, R2(136-bit), R3, R6 and R7 responses.

4

2 Usage

This chapter describes usage of the IP core.

2.1 Directory structure

Wishbone SD Card Controller IP Core comes with following directory structure:
.

bench

verilog

doc

references

src

rtl

verilog

sim

rtl sim

bin

log

run

sw

example

syn

quartus

bin

run

src

bench/verilog - verilog testbench sources,

doc - documentation files,

doc/src - documentation LATEXsources,

rtl/verilog - ip core verilog sources,

sim/rtl sim/bin - simulation makefile and modelsim scripts,

sim/rtl sim/log - log files created during simulation,

sim/rtl sim/run - simulation execution directory,

sw/example - baremetal example application for or1k,

syn/quartus/bin - synthesis makefile and scripts for quartus example project,

syn/quartus/run - synthesis execution directory,

syn/quartus/src - example project sources.

2.2 Simulation

To start simulation just enter to sim/rtl_sim/run directory and type make:

#> cd sim/rtl_sim/run

#> make

5

Every testbench is written in SystemVerilog (mostly due to use of assert keyword). Every test-
bench is self checking. Test error are represented by assert failures. Every testbench starts by
displaying:

testbench_name start ...

and ends by displaying:

testbench_name finish ...

If no asserts are displayed between these lines, the test passes. Below is an example of passing test:

...

some compilation output

...

sd_cmd_master_tb start ...

sd_cmd_master_tb finish ...

** Note: $finish : ../../../bench/verilog/sd_cmd_master_tb.sv(385)

Time: 3620 ps Iteration: 0 Instance: /sd_cmd_master_tb

Below is an example of failing test:

...

some compilation output

...

sd_cmd_master_tb start ...

** Error: Assertion error.

Time: 3280 ps Scope: sd_cmd_master_tb File: ../../../bench/verilog/

sd_cmd_master_tb.sv Line: 376

sd_cmd_master_tb finish ...

** Note: $finish : ../../../bench/verilog/sd_cmd_master_tb.sv(385)

Time: 3620 ps Iteration: 0 Instance: /sd_cmd_master_tb

2.2.1 Simulation makefile targets

The default simulation target is to run all testbenches from bench/verilog directory that ends
with _.sv. Other simulation targets are:

clean - remove all simulation output files,

print testbenches - lists all availible testbenches,

modelsim - compiles all sources and launches modelsim (see 2.2.2),

* tb - compiles and executes given testbench. All items listed by the print_testbenches target
can be executed this way,

* tb gui - same as *_tb target, only instead of executing simulation in command-line, launches
modelsim.

2.2.2 Simulation makefile environment variables

Simulation makefile uses couple of environment variables to setup simulation:

6

MODELSIM DIR - modelsim installation directory (\$(MODELSIM_DIR)/bin/vsim should be a valid
path),

VCD - when set to 1 - all waveforms are dumped to sim/rtl_sim/out/*.vcd files; when set to 0 -
no waveforms are dumped (0 is default),

V - when set to 1 - enables verbose output; when set to 0 - normal simulation output (0 is default).

2.3 Synthesis

For the purpose of synthesis verification there is an example FPGA project made for Altera Quar-
tus. To start synthesis just enter to syn/quartus/run directory and type make:

#> cd syn/quartus/run

#> make

Example project consist of all verilog sources from rtl/verilog directory and syn/quartus/src/

sdc_controller_top.v source file. The purpose of the additional verilog file is to instantiate the
Wishbone SD Card Controller IP Core and register all inputs/outputs to/from the core. This
makes timing verification more accurate.

2.3.1 Synthesis makefile targets

The default synthesis target is to synthesize the project and create .sof file in syn/quartus/run

directory. Other synthesis targets are:

clean - remove all synthesis output files,

print config - prints projects configuration of FPGA device,

project - creates quartus project files (.qpf and .qsf),

quartus - creates quartus project files and launches quartus IDE.

2.3.2 Synthesis makefile environment variables

Synthesis makefile uses couple of environment variables to setup synthesis:

QUARTUS DIR - quartus installation directory (\$(QUARTUS_DIR)/bin/quartus should be a valid
path),

FPGA FAMILY - name of the FPGA device family,

FPGA PART - name of the FPGA device,

V - when set to 1 - enables verbose output; when set to 0 - normal simulation output (0 is default).

7

3 HDL interface

IP core has very simple interface:

Figure 2: Wishbone SD Card Controller IP Core interface

Wishbone slave interface provides access from CPU to all IP core registers (see 4.1). It must
be connected to CPU data master. Wishbone master interface provides access for DMA engine
to RAM (see 3.2). It must be connected to RAM memory slave. Interrupts signals provides
mechanism to notify the CPU about finished transactions (data and command tranfers). They are
not necesary for proper operation (if You don’t want to use interrupts). MMC/SD card interface
provides communication with external MMC/SD cards. It must be connected to external pins
of the FPGA wich are connected to MMC/SD card connector. Because those external pins are
bidirectional, IP core provides inputs, outputs and output enables for these signals. Table 1
presents all IP core signals with descriptions.

3.1 Clock consideration

IP core needs two clock sources. First one is for Wishbone bus operation (wb clk i). There are
no constraints for this clock. Second one is for MMC/SD interface operation (sd clk i pad).
sd clk i pad is used to drive sd clk o pad output, which is the external MMC/SD card clock
source, through internal clock devider. This clock devider is able to devide sd clk i pad clock by
2, 4, 6, 8, ... etc. (2*n where n = [1..256]). sd clk o pad clock frequency depends on MMC/SD
specification. To fully utilize the transmission bandwidth sd clk o pad should be able to perform
at 25MHz frequency which imposes constraint of minimum 50MHz on sd clk i pad clock. Clock
inputs wb clk i and sd clk i pad can be sourced by the same signal.

3.2 DMA engine

DMA engine is used to lower the CPU usage during data transactions1. DMA starts its operation
imidiately after succesful end of any read or write command transactions2 3. During write trans-
actions, data is fetched from RAM automatically, starting from known address. This addres has

1Data transaction refers to any traffic on the data lines of MMC/SD card interface.
2Command transaction refers to any traffic on the command line.
3Read or write command refer to command with data payload such as block read(CMD17) or block write(CMD24).

8

Table 1: Signals description

name direction width description

Wishbone common signals
wb clk i input 1 clock for both master and slave wishbone transactions
wb rst i input 1 reset for whole IP core

Wishbone slave signals
wb dat i input 32 data input
wb dat o output 32 data output
wb adr i input 32 address
wb sel i input 4 byte select
wb we i input 1 write enable
wb cyc i input 1 cycle flag
wb stb i input 1 strobe
wb ack o output 1 acknowledge flag

Wishbone master signals
m wb dat o output 32 data output
m wb dat i input 32 data input
m wb adr o output 32 address
m wb sel o output 4 byte select
m wb we o output 1 write enable
m wb cyc o output 1 cycle flag
m wb stb o output 1 strobe
m wb ack i input 1 acknowledge flag
m wb cti o output 3 cycle type identifier (always 000)
m wb bte o output 2 burst type (always 00)

MMC/SD signals
sd cmd dat i input 1 command line input
sd cmd out o output 1 command line output
sd cmd oe o output 1 command line output enable
sd dat dat i input 4 data line inputs
sd dat out o output 4 data line outputs
sd dat oe o output 1 data line outputs enable
sd clk o pad output 1 clock for external MMC/SD card
sd clk i pad input 1 clock for MMC/SD interface

Interrupts
int cmd output 1 command transaction finished interrupt
int data output 1 data transaction finished interrupt

9

to be configured by the CPU before sending any write command. Similarly, during read trans-
actions, data is written to RAM automatically, starting from known address. This address also
has to be configured by the CPU before sending any read command. Because data transmission
is half-duplex, read and write addresses are placed in the same configuration register. Function of
this register depends on the command to be sent.

3.3 Interrupt generation

Interrupts are useful when polling technique is not an option. There are two interrupt sources.
One to notify the end of the commans transaction (int cmd signal) and one to notify the end of the
data transaction (int data signal). Both interrupts has active high logic. All events that triger
each interrupts can be masked(see 4.1) and therefore, do not participate in interrupt generation(see
3).

Figure 3: Interrupt generation scheme

3.3.1 Command transaction events

Command transaction end interrupt is driven by the command transaction events. The events are:

completion - transaction completed succesfuly,

error - transaction completed with error (one or more of the following events occured),

timeout - timeout error (the card did not respond in a timely fashion),

wrong crc - crc check error (crc calculated from received response data did not match to the crc
field of the response),

wrong index - index check error (response consists of wrong index field value).

3.3.2 Data transaction events

Data transaction end interrupt is driven by the data transaction events. The events are:

completion - transaction completed succesfuly,

wrong crc - crc check error (in case of write transaction, crc received in response to write transac-
tion was different than one calculated by the core; in case of read transaction, crc calculated
from received data did not match to the crc field of received data),

10

fifo error - internal fifo error (in case of write transaction, tx fifo became empty before all data
was send; in case of read transaction, rx fifo became full; both cases are caused by to slow
wishbone bus or wishbone bus been busy for to long)).

11

4 Software interface

Access to IP core registers is provided through Wishbone slave interface.

4.1 IP Core registers

Table 2: List of registers
name address access description

argument 0x00 RW command argument
command 0x04 RW command transaction configuration
response0 0x08 R bits 31-0 of the response
response1 0x0C R bits 63-32 of the response
response2 0x10 R bits 95-64 of the response
response3 0x14 R bits 119-96 of the response
control 0x1C RW IP core control settings
timeout 0x20 RW timeout configuration
clock devider 0x24 RW MMC/SD interface clock devider
reset 0x28 RW software reset
voltage 0x2C R power control information
capabilities 0x30 R capabilities information
cmd event status 0x34 RW command transaction events status / clear
cmd event enable 0x38 RW command transaction events enable
data event status 0x3C RW data transaction events status / clear
data event enable 0x38 RW data transaction events enable
blkock size 0x44 RW read / write block transfer size
blkock count 0x48 RW read / write block count
dst src address 0x60 RW DMA destination / source address

4.1.1 Argument register

Write operation to this register triggers command transaction (command register has to be con-
figured before writing to this register).

Table 3: Argument register
bit # reset value access description

[31:0] 0x00000000 RW command argument value.

4.1.2 Command register

This register configures all aspects of command to be sent.

12

Table 4: Command register
bit # reset value access description

[31:14] reserved
[13:8] 0x00 RW command index

[7] reserved

[6:5] 0x0 RW

data transfer specification. 0x0 - no data transfer;
0x1 - triggers read data transaction after command
transaction; 0x2 - triggers write data transaction af-
ter command transaction

[4] 0x0 RW check response for correct command index

[3] 0x0 RW check response crc

[2] 0x0 RW
check for busy signal after command transaction (if
busy signal will be asserted after command transac-
tion, core will wait for as long as busy signal remains)

[1:0] 0x0 RW
response check configuration. 0x0 - don’t wait for
response; 0x1 - wait for short response (48-bits); 0x2
- wait for long response (136-bits)

4.1.3 Response register 0-3

Response registers 0-3 contains response data bits after end of succesful command transaction (if
bits 1-0 of command register were configured to wait for response).

Table 5: Response register 0-3
bit # reset value access description

[31:0] 0x00000000 R response data bits

4.1.4 Control register

Table 6: Control register
bit # reset value access description

[31:1] reserved

[0] 0x0 RW
MMC/SD bus width; 0x0 - 1-bit operation; 0x1 -
4-bit operation

4.1.5 Timeout register

Timeout register configures transaction watchdog counter. If any transaction will last longer than
configured timeout, interrupt will be generated. Value in timeout register represents the number
of sd clk o pad clock cyckles. Register value is calculated by following formula:

REG =
timeout[s] ∗ frequencysd clk i pad[Hz]

(2 ∗ (clock devider + 1))
(1)

Table 7: Timeout register
bit # reset value access description

[31:16] reserved

[15:0] 0x0 RW timeout value

13

4.1.6 Clock devider register

Clock devider register control division of sd clk i pad signal frequency. Output of this devider is
routed to MMC/SD interface clock domain. Register value is calculated by following formula:

REG =
frequencysd clk i pad[Hz]

2 ∗ frequencysd clk i pad[Hz]
− 1 (2)

Table 8: Clock devider register
bit # reset value access description

[31:8] reserved

[7:0] 0x0 RW devider ratio

4.1.7 Software reset register

Table 9: Software reset register
bit # reset value access description

[31:1] reserved

[0] 0x0 RW reset; 0x0 - no reset; 0x1 - reset applied

4.1.8 Voltage information register

Table 10: Software reset register
bit # reset value access description

[31:0] reserved

4.1.9 Capabilities information register

Table 11: Capabilities information register
bit # reset value access description

[31:0] reserved

4.1.10 Command events status register

This register holds all pending event flags related to command transactions. Write operation to
this register clears all flags.

Table 12: Command events status register
bit # reset value access description

[31:5] reserved

[4] 0x0 RW index error event

[3] 0x0 RW crc error event

[2] 0x0 RW timeout error event

[1] 0x0 RW error event (logic sum of all error events)

[0] 0x0 RW command transaction succesful completion event

14

4.1.11 Command transaction events enable register

This register acts as event and mask. To enable given event, corresponding bit must be set to 1.

Table 13: Command transaction events enable register
bit # reset value access description

[31:5] reserved

[4] 0x0 RW enable index error event

[3] 0x0 RW enable crc error event

[2] 0x0 RW enable timeout error event

[1] 0x0 RW enable error event (logic sum of all error events)

[0] 0x0 RW
enable command transaction succesful completion
event

4.1.12 Data transaction events status register

This register holds all pending event flags related to data transactions. Write operation to this
register clears all flags.

Table 14: Data transaction events status register
bit # reset value access description

[31:3] reserved

[2] 0x0 RW fifo error event

[1] 0x0 RW crc error event

[0] 0x0 RW data transaction succesful completion event

4.1.13 Data transaction events enable register

This register acts as event and mask. To enable given event, corresponding bit must be set to 1.

Table 15: Data transaction events enable register
bit # reset value access description

[31:3] reserved

[2] 0x0 RW enable fifo error event

[1] 0x0 RW enable crc error event

[0] 0x0 RW enable data transaction succesful completion event

4.1.14 Block size register

This register controls the number of bytes to write/read in a single block. Data transaction will
transmit number of bytes equal to value of this register times value of blkock count register.

Table 16: Block size register
bit # reset value access description

[31:12] reserved

[11:0] 0x200 RW number of byes in a single block

15

4.1.15 Block count register

This register controls the number of blocks to write/read in data transaction. Data transaction
will transmit number of bytes equal to value of this register times value of blkock size register.

Table 17: Block count register
bit # reset value access description

[31:12] reserved

[11:0] 0x200 RW number of blocks in data transaction

4.1.16 DMA destination / source register

This registers configures the DMA source / destination address. For write transactions, this address
points to the begining of data block to be sent. For read transactions, this address points to the
begining of data block to be written.

Table 18: DMA destination / source register
bit # reset value access description

[31:o] 0x00000000 RW address

16

