
SDC/MMC
Controller

Design Document

Author: [Adam Edvardsson]
[adam@orsoc.se]

Rev. [0.1]
May 7, 2009

http://www.opencores.org/

 OpenCores SD/MMC controller specification 5/7/2009

This page has been intentionally left blank.

www.opencores.org Rev 0.1 Preliminary ii

http://www.opencores.org/

 OpenCores SD/MMC controller design document 5/7/2009

Revision History
Re
v.

Date Author Description

0.1 4/05/2009 Adam E First Draft

www.opencores.org Rev 0.1 iii

http://www.opencores.org/

 OpenCores SD/MMC controller design document 5/7/2009

Contents
1. INTRODUCTION...1

GLOSSARY..2

2. ARCHITECTURE...3
2.1 SD CONTROLLER TOP...4
...5

www.opencores.org Rev 0.1 iv

http://www.opencores.org/

 OpenCores 5/7/2009

1.
Introduction

The "sd card

1.1 SD/MMC controller introduction
The "SD/MMC card controller" is an SD/MMC communication controller IP core. It
connects to the SD card on one side and to the wishbone SoC bus on the other. The cores has
been designed with the goal that a SD card controlled with the controller should be usable as
a system disk contain a file system.
Therefore the core has been developed with features a system with operative system will
benefit from, as DMA, interrupts and buffered write/readings. The design also include a
simplified model of a SD-card to run in test bench.

1.2 Features
The following lists the main features of the SD/MMC controller IP core:

• 32-bit Wishbone Interface
• DMA
• Buffer Descriptor
• Compliant with SD Host Controller Spec version 2.0
• Support SD 4-bit mode
• Interrupt-on-completion of Data and Command transmission
• Write/Read FIFO with variable size
• Internal implementation of CRC16 for data lines and CRC7 for command line

1.3 SD/MMC controller IP Core Directory Structure
Following picture shows the structure of directories of the core.

www.opencores.org Rev 0.1 1 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

Fig 1: SD/MMC controller Core Directory Structure

www.opencores.org Rev 0.1 2 of 22

bench

sim

rtl

doc

Trunk

verilog

src

sdc_dma

References

SDC

backend

Actel

verilog

sdc_dma

verilog

sdc_dma

Sw

sdc_dma

sdc_dma

http://www.opencores.org/

 OpenCores 5/7/2009

There are two major parts of the Verilog code in the sdcard_mass_storage_controller (SDC)
directory. First one is the code for the SD/MMC controller IP core.
The Verilog files are in the trunk\rtl\sdc_dma\verilog subdirectory. The second one is the
code for the Testbench. These files are used together with files for the SD/MMC controller.
The Verilog files are in the trunk\bench\sdc_dma\verilog subdirectory.

The documentation is in the subdirectory trunk\doc. Documentation consists of Ethernet
Specification SDC_MMC controller.pdf and Design SDC_MMC controller.pdf

Backend containts Vendor specific floorplan, place and route directory structure

A software example can be found in trunk\SW\sdc_dma the folder contains the software for
the controller sd_controller.c and sd_controller.h aswell as a testporgram main.c and a
comple software to be run on a ORPSoC.

www.opencores.org Rev 0.1 3 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.
SD/MMC controller

2.1 Overview

The SD/MMC controller IP Core consists of 7 Major modules,
Host Interface, CMD Master, CMD Host, Data Master, Data Host, BD structure,FIFO buffer
filler. Many of these modules have sub-modules. Module and submodule operations are
described later in this section.

2.1.1 Host Interface
Consists of both master and slave interfaces and connects the core to the
WISHBONE bus. Master interface is used for storing the received data block to
the memory and loading the data that needs to be sent from the memory to the
SD/MMC card. Interface is WISHBONE Revision B.2 compatible.

2.1.2 CMD Master
The SD CMD Master module synchronize the communication from the host interface with
the physical interface

2.1.3 CMD Host
This module is the interface towards physical SD/MMC cards command pin. This module
takes care of the physical sending and receiving of the messages,preamble generation,
padding, adding start bits, stop bits, CRC etc..

2.1.4 Data Master
The SD Data Master module synchronize and initiate the data transmission from the host
interface with the physical data interface.

www.opencores.org Rev 0.1 4 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.1.5 Data Host
This is the interface towards physical SD card device Data port, it takes care of the physical
sending and receiving of the data, preamble generation, padding, adding start bits, stop bits,
CRC etc.

2.1.6 BD
The transmission and the reception processes are based on the descriptors.

2.1.7 FIFO Tx/Rx Filler
This module works as the DMA it manager the receive and transceiver FIFO buffer for the
data stream. It keeps track of the status of the FIFO:s if somethings goes wrong, like full
receiver FIFO or empty transfer buffer it signals this.

www.opencores.org Rev 0.1 5 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2 Description of Core Modules
The module sd_controller_top.v consists of sub modules sd_cmd_master.v,
sd_cmd_host.v sd_data_master.v, sd_bd.v, sd_fifo_filer_rx.v, sd_fifo_filer_tx.v and some
logic for synchronizing, multiplexing and registering outputs. All modules and their
submodules aswell as their relation can be seen in figure 2.

Fig 2: Core modules

www.opencores.org Rev 0.1 6 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2.1 Description Sd_CMD_ serial_host.v
The Sd_CMD_ serial_host.v module is an interface to the external SD /MMC card. It is used
to read and write command to the SD/MMC card. The external interface consist of two
signals clk and a bidirectional signal CMD. The cmd_out_o, cmd_dat_i and cmd_oe_o
signals has to be combined in additional module (Preferable the SoC top module).

2.2.1.1 Port declaration
Direction Width name Description
input 1 SD_CLK_IN CLK

input 1 RST_IN Synchronous Reset Active high

input 16 SETTING_IN Define setting for current command

input 1 GO_IDLE Reset and go to idle state

input 40 CMD_IN CMD to be sent

input 1 REQ_IN Request for service

input 1 ACK_IN; ACK on service completion

input 1 cmd_dat_i CMD from SD card

output 40 CMD_OUT CMD reply

output 1 ACK_OUT ACK on service completion

output 1 REQ_OUT Request for service

output 16 STATUS Status of the module

output 1 cmd_oe_o Tri-state CMD Output enable

output 1 cmd_out_o CMD to SD card

output 2 st_dat_t Start data transfer
“01” Start Read block
“10” Start Write block
“11” Stop

Table 1: Sd_CMD_ serial_host.v port declaration
2.2.1.2 Signal Description
Because the data cross a clock domain the signals is synchronized with REQ and ACK
signals. REQ_IN is set to high when a service is requested, the module answer with setting
ACK_OUT to low, as long as ACK_OUT is high the SETTING_IN and CMD_IN should
not change. ACK_OUT is kept low until a CMD cycle is completed. When the Module has
data to send (like updated STATUS or valid data in CMD_OUT) the module assert
REQ_OUT and wait for ACK_IN to go high before doing any further operation.

www.opencores.org Rev 0.1 7 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

The Go_IDLE signal is used to reset the module and put it into idle state, used to cancel a
transfer.

SETTING_IN - Bit Description
Bit 15 [14:13] 12 11 [10:8] 7 [6:0]

Width 1 2 1 1 3 1 7

Reserved Word
Select

Block
Read

Block
Write

Timing
Values

CRC-Check
ON/OFF

Response
Size

Table 2: CMD_ serial_host Setting_in register
STATUS- Bit Description
Bit [15:7] 6 5 4 [3:0]

Width 8 1 1 1 4

Reserved Data Available CRC-valid CMD status L/H State

Table 3: CMD_ serial_host status register

2.2.1.3 Operation
The module consist of 6 block, FSM_COMBO, REQ_SYNC, ACK_SYNC,
COMMAND_DECODER, FSM_OUT and FSM_SEQ.
FSM_COMBO is combinatorial logic to calculate the next state of the FSM, FSM_SEQ is the
sequntial part of the FSM and it sets the state synchronized with the clock. REQ_SYNC and
ACK_SYNC is 2 flipflop used to reduce chance for metastable state when signals cross clock
domains. COMMAND_DECODER read the SETTING_IN vector and store the settings and
command to internal register, which is used in the FSM_OUT. The FSM_OUT is the output
logic of the FSM as can been seen in figure 3.

www.opencores.org Rev 0.1 8 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

Fig 3: FSM CMD Serial Host

2.2.1.3.1 FSM State transitions
The following state transitions occurs when given condition is fulfilled
Init → Idle

Cmd_ counter >= INIT_DELAY
Idle → Write_WR

Write_Read = 1 (Response size >0)
Idle→Write_WO

Write_Only = 1 (Response size == 0)

Write_WR → Delay_wr
Sent_counter>= 47

Write_WO→Delay_wo
Sent_counter>= 47

Delay_WR → READ_WR
cmd_dat_i == 0

Delay_WO → ACK_WO
Delay_counter>= Delay_cycler

READ_WR → Delay_Read
Receive_counter > Response_size

www.opencores.org Rev 0.1 9 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

ACK_WO → IDLE
Any event.

Delay_Read → Ack_WR
ACK_IN == 1

ACK_WR->IDLE
Any event

2.2.1.3.2 FSM State operation
Init:
Keep command line high for 64 cycler.

Idle State:
Reset the CRC and pause it. Reset counters that been used previously.

Write_WR:
1. Enable CRC.
2. Increase Sent_counter for each bit
3. For bit 0 til 39 assign data to OUT_D from the In_Buffer
4. Pause CRC
5. Bit 40 to 46 is assign data to OUT_D from CRC_out
6. The last bit 47 is always 1 (End of transmission)
7. If block_read is enabled set st_dat_t to “10”

Write_W0:
Same as Write_WR

Delay-WR
1. Disable and reset CRC
2. Reset sent counter
3. Put CMD to High'Impedance 'Z' (By setting enable to 0)
4. Increase Delay_counter

Delay-WO
Same as Delay-WR

ACK_WO
1. Set FSM_ACK to 1

Read-WR
1. Enable CRC.
2. Increase Receive_counter for each bit
3. Check Word Select setting bit and put read data to Out_buff
4. Pause CRC unit when (Response size - Receive_counter <=6)
5. Store the next 7 bit to CRC_IN
6. If CRC check enabled compare CRC_IN with the CRC value from CRC unit
7. If not equal set Out_buff to zero and set CRC error status bit
8. If block_write is enabled set st_dat_t to “01”

Dly_read
1. Disable and reset CRC
2. Reset Receive counter
3. Put CMD line to High'Impedance 'Z' (By setting enable to 0)
4. Set REQ_Out to 1
5. Assign CMD_OUT the value from Out_Buff

www.opencores.org Rev 0.1 10 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

ACK_WR
1. Set FSM_ACK to 1
2. REQ_Out 0
3. Reset CMD_OUT

2.2.2 Description Sd_data_ serial_host.v
This module is the interface towards physical SD card device Data port. The external
interface consist of two signals clk and a bidirectional signal DAT. The DAT_oe_o,
DAT_dat_o and DAT_dat_i, signals has to be combined in additional module (Preferable the
SoC top module).

The module perform the following actions.
• Synchronized request for write and read data and .
• Adding a CRC-16 checksum on sent data and check for correct CRC-16 on received
commands.

2.2.2.1 Port declaration

Direction Width name Description
input 1 sd_clk CLK

input 1 rst Reset

input 32 data_in FIFO data in

input 2 start_dat Start data transfer
“01” Start Read block
“10” Start Write block
“11” Stop

input 1 ack_transfer ACK on transm_complete

output 4 data_out FIFO data out

output 1 we FIFO WriteEnable

output 1 DAT_oe_o Tri-state Output enable

output 4 DAT_dat_o SD Data output

input 4 DAT_dat_i, SD Data input

output 1 rd FIFO read enable

output 1 busy_n Data line Busy Active Low

output 1 transm_complete Transmission complete

www.opencores.org Rev 0.1 11 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

output 1 crc_ok CRC checksum ok
Table 4: Sd_Data_ serial_host.v port declaration

2.2.2.2 Signal Description
The data_in signal is the data from the Tx_FIFO and data_out is the data going to the
Rx_Fifo. The we (write) and rd(read) signals is used to control the read and writing to the
FIFO:s. The signal busy_n is 1 when the module is in idle state else its 0.

When a transfer is completed (block read/block write) the module assert the
transm_complete, during the assertion of this signal the value of crc_ok and busy_n is
unchanged, the signal stay asserted until a ack_transfer is received.

2.2.2.3 Operation
The module consist of 5 blocks, ACK_SYNC, FSM_COMBO, START_SYNC, FSM_OUT
and FSM_SEQ. FSM_COMBO is the combinatorial logic to calculate the next state of the
FSM, FSM_SEQ is the sequential part of the FSM and it sets the state synchronized with the
clock. FSM_OUT is the output logic process for the FSM, ACK_SYNC and START_SYNC
dual flipflop to reduce the chances for metastable states when the signals cros the clock
domain.

Fig 4: FSM Data Serial Host

www.opencores.org Rev 0.1 12 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2.2.3.1 FSM State transitions
Idle → WRITE_DAT

start_dat == 2'b01
Idle→ READ_WAIT

start_dat == 2'b10

READ_WAIT→ READ_DAT
q_start_bit == 0 (gated DAT_dat_o[0])

WRITE_DAT→ WRITE_CRC
transf_cnt >= Bits in a block (+CrC bits)

READ_DAT→ IDLE
ack_transfer_int == 1 (acknowledgment on transm_complete)

or
start_dat == 2'b11

WRITE_CRC→ WRITE_BUSY
crc_status == 0 (Size of CRC Response token)

WRITE_BUSY→ IDLE
dat[0] == 1 and ack_transfer_int == 1 (card not busy and acknowledgment on transm_complete)

2.2.2.3.2 FSM State operation
IDLE:
Reset the CRC and pause it. Reset counters that been used previously.

WRITE_DATA:
1. Fill the inbufferts “write_buf_0” and “write_buf_1” with data from FIFO
2. Set the outputbuffert “sd_data_out” to point at the inbuffert the out_buff_ptr points at.
3. Send Startbit → dat<=0;
4. Read 4 bits from the outputbuffert “sd_data_out” and assign to last_din and crc_in
5. Assign value of last_din to DAT_dat_o, (this makes the card lay 1 step behind CRC unit)
6. When 28 bit have been sent from outputbuffert, increase out_buff_ptr and read in a new value to

sd_data_out from a inbuffert.
7. Repeat (1-7) until 512 bytes has been sent
8. Attach a 16 bit CRC to each data line
9. End with stop bit

WRITE_CRC:
Read the CRC response token, 7 cycler. Ignore the 3 first cycler 2 delay and 1 start bit. Save bit 4 to 6 to crc_s.
Read bit nr 7 the stopbit.

WRITE_BUSY:
1. Signal for transm_complete
2. Check the CRC response set crc_ok.
3. Poll DAT_dat_i[0] to sense whenever the card is busy

READ_WAIT:
Prepare for data reception, enable crc units, disable output enable, and set up internal control register.

READ_DAT:

1. Read DAT_dat_i and store to FIFO data_out and crc_in
2. Increase the transfercounter

www.opencores.org Rev 0.1 13 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

3. Repeat 1-2 until 512 bytes been received
4. Compare receiving bits with all crc_out units
5. When crc mismatch set crc_ok<=0
6. Set transm_complete when 16 CRC bit has been read

2.2.3 Description Sd_crc_ 7.v
Shift register implemented CRC-7 Checksum calculator with the polynomial, x7+x3+1

2.2.4 Description Sd_crc_ 16.v
Shift register implemented CRC-7 Checksum calculator with the polynomial, x16+x12+x5+1

2.2.5 Description Sd_cmd_master.v
The SD CMD Master module synchronize the communication from the host interface with
the physical interface . perform has three main tasks:
•Read a set of register from the user accessible register in the SD Controller Top to compose
a 40 bit command messages to pass to the SD CMD
•Read response messages from the SD CMD Host and forward it to the user accessible
register in the SD Controller Top module.
•Keep track of the status of the CMD Host module.

2.2.5.1 Port declaration
Direction Width name Description
input 1 CLK_PAD_IO CLK

input 1 RST_PAD_I Reset

input 1 New_CMD New command incoming

input 1 data_write Data Write Command

input 1 data_read Data Read Command

input 32 ARG_REG Check Specification for details

input 16 CMD_SET_REG Check Specification for details

input 16 TIMEOUT_REG Check Specification for details

input 1 ERR_INT_RST Error interrupt register reset

input 1 NORMAL_INT_RST1 Normal interrupt register reset

input 1 req_in Request for service

input 1 ack_in ACK on service completion

input 40 cmd_in Command to be sent

input 16 serial_status Status of the Serial_Host

output 16 STATUS_REG, Check Specification for details

output 32 RESP_1_REG, Check Specification for details

output 16 ERR_INT_REG, Check Specification for details

output 16 NORMAL_INT_REG Check Specification for details

www.opencores.org Rev 0.1 14 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

output 16 settings Settings to be used for the serial host

output 1 go_idle_o, Put the serial host in idle state

output 40 cmd_out CMD to be sent

output 1 req_out Request for service

output 1 ack_out ACK on a request service

Table 5: Sd_CMD_ master.v port declaration

2.2.5.2 Signal description
The usage of the input and output signals is as following.
The New_CMD is asserted when a new command is available in the ARG_REG. The both
signals data_write and data_read is set if the incoming command is a block write or block
read command. The module read CMD_SET_REG and sets up the settings signals together
with cmd_out. Then to initiate a command transfer, the module assert req_out, until ack_in
is received the req_out, settings and cmd_out is left unchanged during this time. The req_in
signal is asserted when valid value on serial_status and/or cmd_in is present, this is
acknowledged with ack_out. If a timeout occures the go_idle_o signal is asserted.

2.2.5.3 Module Operation
The module consist of a FSM with combinatorial, sequential and output logic, and two
process for synchronize the req_in and ack_in signals.

Fig 5: FSM Cmd Master

2.2.5.3.1 FSM State transitions

www.opencores.org Rev 0.1 15 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

IDLE→ SETUP
New_CMD == 1

SETUP→ EXECUTE
ack_in_int== 1 (Acknowledged on req_out)

EXECUTE → IDLE
 complete==1 (either watchdog timeout or status[6]==1)

2.2.2.3.2 FSM State operation
Idle:
Keep checking for status update in the cmd_host module and reseting the go_idle signal
togheter with the req and ack out signals..

SETUP:
1. Compose cmd_out by combining command_setting_reg and arg_reg
2. Sets up the settings output vector
3. resets NORMAL_INT_REG, ERR_INT_REG and STATUS_REG

EXECUTE:
1. Increase watchdog counter and check if (Watchdog_Cnt>TIMEOUT_REG)
2. If timeout occur set EI bit and CTE bit to 1 and reset the CMD_Host module
3. Check if the ACK in line is high (CMD_Host is ready) if so request for service.
4. Check for new serial_status by checking the req_in signal
5. If new status, check it if status [6] is set, then a command cycle is completed
6. If set in command_setting check status for valid CRC and performe Index check
7. Store the data to the Resp_1 register, if response size is >0

2.2.6 Description Sd_data_master.v
Starts to check if there are any new BD thats need to be processed if so the module generate a
command by setting up the command and argument register. It then set up the DMA in the
FIFO filer to read/write to correct address. If the command line is free the module send the
command and wait fore response. If response is valid the module starts the DMA if not valid
the CMD is resent again.

During transmission the module keep track for FIFO buffet underflow or overflows, when
the transmission is completed it check for valid CRC. If anything goes wrong during a
transmission a stop command is sent and the module try to restart the transmission n times
before giving up.

2.2.6.1 Port declaration
input 1 clk Clock

input 1 rst Reset

www.opencores.org Rev 0.1 16 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

input N:0 dat_in_tx, Data in from Tx BD

input M:0 free_tx_bd NO Free Tx BD

input 1 ack_i_s_tx, ACK in Read request

output 1 re_s_tx Read Tx BD

output 1 a_cmp_tx Free a Tx BD

input N:0 dat_in_rx, Data in from Rx BD

input M:0 free_rx_bd NO Free Rx BD

input 1 ack_i_s_rx, ACK in Read request

output 1 re_s_rx Read Rx BD

output 1 a_cmp_rx Free a Rx BD

Input 1 cmd_busy CMD Busy state

output 1 we_req, Request access to CMD registers

input 1 we_ack Access granted

output 1 d_write Block write command

output 1 d_read Block read command

output 32 cmd_arg Cmd argugment out

output 16 cmd_set Cmd setting out

input 1 cmd_tsf_err Error status of sent cmd

input 5 card_status Status of card after response

output 1 start_tx_fifo Start the Tx Fifo Filler

output 1 start_rx_fifo Start the Rx Fifo Filler

output 32 sys_adr Memory address for DMA

input 1 tx_empt, Tx Fifo empty flag

input 1 tx_full, Tx Fifo full flag

input 1 rx_full Rx Fifo full flag

input 1 busy_n Data Busy

input 1 transm_complete Transmission complete

input 1 crc_ok, Crc status

output 1 ack_transfer Ack o n transmission complete

output 8 Dat_Int_Status Se Specification for register details

input 1 Dat_Int_Status_rst Reset Dat_Int_Status

output 1 CIDAT Data inhabit statusbit

Table 6: Sd_Data_ master.v port declaration

2.2.6.2 Signal description
The signal free_xx_bd is used to keep track on how many free buffer descriptors (BD) there
are. To read a BD the signal re_s_xx is asserted when ack_i_s_xx is received the BD data is

www.opencores.org Rev 0.1 17 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

read from dat_in_xx. When a data block has been processed the BD is released with a_cmp_xx signal
set to high.

To send a block write or block read command the first the internal cmd_arg and cmd_set
register is set up. Then the d_write or d_read is set depending on type of data operation,
block read or block write. Then cmd_busy is checked so the CMM line is free, if so the
we_req signal is asserted, an acknowledgment we_ack is received when the command has
been sent. When the response comes back the cmd_tsf_err and card_status is checked so
the card is in correct state and no errors occurred during transfer.

The signals start_xx_fifo is used to start the fifo filler module, tx_full, tx_empty and rx_full
is used to keep track on the status of the fifo. The system address the DMA uses is set by the
sys_adr signal.

When a data block has been transmitted, the transm_complete signal asserted, the module
resposne with setting ack_transfer to 1.

2.2.6.3 Module Operation
The module consist of a FSM with combinatorial, sequential and output logic, and one
process for synchronize the transm_complete signal.

www.opencores.org Rev 0.1 18 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

Fig 6: FSM Data Master

2.2.6.3.1 FSM State transitions
IDLE → GET_TX_BD

free_tx_bd !=`BD_EMPTY (BD Buffer not empty)
IDLE → GET_RX_BD

free_rx_bd !=`BD_EMPTY (BD Buffer not empty)

GET_TX_BD → SEND_CMD
 bd_cnt > `READ_CYCLE-1 && tx_full==1 (Read two complete BD:s and the Tx FIFO is full)

GET_RX_BD → SEND_CMD
 bd_cnt > `READ_CYCLE-1 (Read two complete BD:s)

 SEND_CMD → RECIVE_CMD
send_done (we_ack == 1)

 RECIVE_CMD → DATA_TRANSFER
 rec_done (SD Card in correct state and no transfer error occurred)

 RECIVE_CMD → SEND_CMD
rec_failed (SD Card in incorrect state or transfer error occurred)

www.opencores.org Rev 0.1 19 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

DATA_TRANSFER → IDLE
 trans_done (transm_comple == 1, crc_ok == 1 and busy_n == 1)
DATA_TRANSFER → STOP

trans_failed (CRC Error, FIFO overflowed/under run)

STOP→STOP_SEND
Always

STOP_SEND → STOP_RECIVE_CMD
send_done (we_ack == 1)

STOP_RECIVE_CMD→ RECIVE_CMD
 rec_done (SD Card in correct state and no transfer error occurred)

STOP_RECIVE_CMD→IDLE
resend_try_cnt>=`RESEND_MAX_CNT (Still error after N tries)

STOP_RECIVE_CMD→STOP
rec_failed (SD Card in incorrect state or transfer error occurred)

2.2.6.3.2 FSM State operation
IDLE:

Reset all control signals

GET_TX_BD:

1. Enable re_s_Tx to read a BD,
2. When ack==1 save the data from the first BD to system addres
3. When ack==1 Save the data from the second BD to cmd_arg.
4. Set cmd_set to block_write
5. Set tx_cycle flag to 1
6. Start Tx_Ffo_Filer

GET_RX_BD:
1. Enable re_s_rx to read a BD
2. When ack==1 save the data from the first BD to system addres
3. When ack==1 Save the data from the second BD to cmd_arg.
4. Set cmd_set to block_read
5. Set rx_cycle flag to 1

SEND_CMD:
1. Check type of cycle rx or tx
2. set d_read or d_write acordely
3. Check if CMD is free, if so assert we_req
4. Wait for we_ack
5. Set send_done to 1 .

RECIVE_CMD:

1. Start Rx_Fifo_Filer if Rx cycle
2. Wait for command response (indicated by cmd_busy are low)

www.opencores.org Rev 0.1 20 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

3. Check so cmd_tsf_err is not asserted, if asserted set command_failed.
4. Check the response data,
5. If card is ready for data card_status[0] == 1
6. If card is in transmission state for data card_status[4:1] == 4,5 or 6

DATA_TRANSFER:

1. If tx_cycle check so tx_fifo doenst get empty
2. If rx_cycle check so rx_fifo doenst get full
3. Wait for command complete
4. Check so crc_ok == 1
5. Free the BD

2.2.7 Description FIFO_RX_FILLER.v
This module works as the DMA it manager the rx_fifo for the data stream. It keeps track of
the status of the FIFO:s if the fifo get full it signals this. The module contains the submodule
sd_rx_fifo.v.

2.2.7.1 Port declaration
input 1 clk Clock

input 1 rst Reset

output 32 m_wb_adr_o Wishbone master Address Out

output 1 m_wb_we_o Wishbone master write enable

output 32 m_wb_dat_o Wishbone master data out

output 1 m_wb_cyc_o Wishbone master cycle out

output 1 m_wb_stb_o Wishbone master strobe out

input 1 m_wb_ack_i Wishbone master ack in

input 1 en Enable module

input 32 adr Memory read address

input 1 sd_clk Write clk to FIFO

input 4 dat_i Data in to FIFO

input 1 wr Write enable to FIFO

output 1 full FIFO Full Flag
Table 7: SD_FIFO_RX_FILLER.v port declaration

2.2.7.2 Signal description
The module contain the master wishbone interface signals. The signal En is used to start the
operation of the module. The adr signal is where the module shall start read data from. The
sd_clk, dat_i and wr are signals going to the write side of the sd_rx_fifo.

www.opencores.org Rev 0.1 21 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2.7.3 Operation
The module do nothing as long as the en signal is low. When the en signal is asserted the
module do the following

 If the rx_fifo is'nt empty and wb_free is not asserted (wb_free is a signal is set to 1 when
free and 0 when wishbone transaction is in progres), the module start a wishbone write cycle,
by reading 1 word from the fifo buffert and assigning to the m_wb_dat_o.

Then when m_wb_ack_i is arriving all wishbone signals is deasserted and the memory offset
increase. The wb_free register is set to 1 again, signaling the wishbone bus is free again.
It perfromce those action until en is deasserted then all the internal register and the FIFO is
reseted.

2.2.8 Description FIFO_TX_FILLER.v
This module works as the DMA it manager the tx_fifo for the data stream. It keeps track of
the status of the FIFO:s if the fifo get empty it signals this. The module contains the
submodule sd_tx_fifo.v.

2.2.8.1 Port declaration
input 1 clk Clock

input 1 rst Reset

output 32 m_wb_adr_o Wishbone master Address Out

output 1 m_wb_we_o Wishbone master write enable

output 32 m_wb_dat_o Wishbone master data out

output 1 m_wb_cyc_o Wishbone master cycle out

output 1 m_wb_stb_o Wishbone master strobe out

input 1 m_wb_ack_i Wishbone master ack in

input 1 en Enable module

input 32 adr Memory write address

input 1 sd_clk Read clk to FIFO

input 32 dat_o Data out frin FIFO

input 1 rd Read enable to FIFO

output 1 empty FIFO empty flag

output 1 fe FIFO full flag
Table 8: SD_FIFO_RX_FILLER.v port declaration

www.opencores.org Rev 0.1 22 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2.8.2 Signal description
The module contain the master wishbone interface signals. The signal En is used to start the
operation of the module. The adr signal is where the module shall start read data from. The
sd_clk, dat_o and rd are signals going to the read side of the sd_tx_fifo.

2.2.8.3 Operation
The module do nothing as long as the en signal is low. When the en signal is asserted the
module do the following

The module initiate a wishbone master read transaction when the m_wb_ack_i is not high
and the fifo is not full and wishbone is free (wb_free asserted) . When m_wb_ack_i arrives
all wishbone master signals is deserted, then the module set the FIFO write (wr_tx) signal
and assign the m_wb_dat_o to the fifo din. A delay signal delay is then set to 1.

The delay is used to delay the offset increase and wb_free signaling with 1 cycle to prevent a
new wishbone transaction to begin before fifo full signal is updated.

2.2.9 Description sd_rx_fifo.v / sd_tx_fifo.v
An ordinary FIFO with 1 read side and one write side, with logic to signaling full and empty
state. Its designed to be implemented as register and not ram block so the size of the fifo
should be kept low.

2.2.10 Description of sd_bd.v
The transmission and the reception processes are based on the descriptors. Two sequential
wrings to this module is required to create one buffer descriptor. First the source address
(Memory location) of the data is written then the card block address is written. Depending on
the specified RAM width (16, 32 bits) 4 or 2 writings is required to forge a comlpete BD.

2.2.10.1 Port declaration
input 1 clk Clock

input 1 rst Reset

input 1 we_m Write Enable Master side

input 1 re_m Read Enable Master side

input N:0 dat_in_m Data in master side

output N:0 dat_out_m Data out master side

output M:0 free_bd, NO Free BD

input 1 re_s, Read Enable slave side

output 1 ack_o_s ACK slave

input 1 a_cmp Free one BD

output N:0 dat_out_s Data out slave side
Table 9: sd_bd.v port declaration

www.opencores.org Rev 0.1 23 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

2.2.10.2 Signals & operation
The signal we_m is asserted when the master side (writer) are writing the dat_in_m data to
the BD ram. Master side can also read a BD by asserting re_m, data is then available on the
dat_out_m port. When the reader side wants to read a BD re_s is asserted and data will be
available on dat_out_s when ack_o_s is set.

2.2.11 Description of sd_controller_top.v
The host interface connects the IP Core to the rest of the system (RISC,
memory) via the WISHBONE bus. The WISHBONE serves to access the configuration
registers and the memory. Currently, only DMA transfers are supported for transferring
the data from/to the memory

2.2.11.1 Port declaration

Direction Width Name Description
Input 1 wb_clk_i Slave WISHBONE Clock Input
Input 1 wb_rst_i Slave WISHBONE Reset Input
Input 4 wb_sel_i Slave WISHBONE Select Inputs
Input 32 wb_dat_i Slave WISHBONE Data Inputs
Output 32 wb_dat_o Slave WISHBONE Data Output
Input 8 wb_adr_i Slave WISHBONE Address Input
Input 1 wb_we_i Slave WISHBONE Write Enable
Input 1 wb_cyc_i Slave WISHBONE Cycle
Input 1 wb_stb_i Slave WISHBONE Strobe
Output 1 wb_ack_o Slave WISHBONE

Acknowledgment
Output 32 m_wb_adr_o Master WISHBONE Address
Output 1 m_wb_sel_o Master WISHBONE Select
Output 1 m_wb_we_o Master WISHBONE Write

Enable
Output 32 m_wb_dat_o Master WISHBONE Data

Output
Input 31 m_wb_dat_i Master WISHBONE Data Input
Output 1 m_wb_cyc_o Master WISHBONE Cycle
Input 1 m_wb_ack_i Master WISHBONE

Acknowledgment Input
Output 1 m_wb_cti_o Master WISHBONE Cti
Output 1 m_wb_bte_o Master WISHBONE Bte
Input 1 sd_cmd_dat_i SDC/MMC CMD Input
Output 1 sd_cmd_out_o, SDC/MMC CMD Output
Output 1 sd_cmd_oe_o SDC/MMC CMD Output enable
Input 4 sd_dat_dat_i SDC/MMC Data Input
Output 4 sd_dat_out_o SDC/MMC Data Output
Output 1 sd_dat_oe_o SDC/MMC Data Output enable

www.opencores.org Rev 0.1 24 of 22

http://www.opencores.org/

 OpenCores 5/7/2009

Direction Width Name Description
Output 1 sd_clk_o_pad SDC/MMC CLK Output
Input 1 sd_clk_i_pad SDCLK input
Output 1 int_a, Interrupt A Output
Output 1 int_b Interrupt B Output
Output 1 int_c Interrupt C Output

Table 10: sd_controller_top.v port declaration

2.2.11.2 Signal & Operation
As this is the top module for the the design it contains all the Wishbone signals, SD-Card
interface and the interrupt signals.

The module instantiate all the major submodules, the connection between the different
modules can be seen in figure 2.

The module also contain some muxes where more then one module want to acces the same
recourse. This is the case whith the tx and rx fifo filler where both need to drive the wishbone
master signals _cyc, _stb, _we and _adr_o. The mux uses the start_rx_fifo and
start_tx_fifo from the data_master module to descried witch module who needs access to the
bus, if neither do its set to 0.

Fig 7: Master Wishbone mux

The module also clock in some wireconnection to registers

2.2.12 Description of sd_controller_wb.v

www.opencores.org Rev 0.1 25 of 22

http://www.opencores.org/

