
SimpCon – a Simple SoC Interconnect
Draft

Martin Schoeberl
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

November 28, 2005

This document proposes a simple interconnection standard for system-on-chip
(SoC) components. It is intended to provide pipelined access to devices such
on-chip peripherals and on-chip memory controller with minimum hardware re-
sources.

1 Introduction

The intention of the following SoC interconnect standard is to be simple and efficient with
respect to implementation resources and transaction latency.

SimpCon is a fully synchronous standard for on-chip interconnections. It is a point-to-point
connection between a master and a slave. The master starts either a read or write transaction.
Master commands are single cycle to free the master to continue on internal operations during
an outstanding transaction. The slave has to register the address when needed for more than
one cycle. The slave also registers the data on a read and provides it to the master for more
than a single cycle. This property allows the master to delay the actual read if it is busy with
internal operations.

The slave signals the end of the transaction through a novel ready counter to provide an
early notification. This early notification simplifies the integration of peripherals into pipelined
masters.

Slaves can also provide several levels of pipelining. This feature is announced by two static
output ports (one for read and one write pipeline levels).

Off-chip connections (e.g. main memory) are device specific and need a slave to perform
the translation. Peripheral interrupts are not covered by this specification.



Address phase Read phase Result phase

A

Data

clk

address

rd

rd_data

Figure 1: Basic read transaction

1.1 Basic Read Transaction

Figure 1 shows a basic read transaction for a slave with one cycle latency. The acknowledge
signals are omitted from the figure. In the first cycle, the address phase, the rd signals the
slave to start the read transaction. The address is registered by the slave. During the following
cycle, the read phase, the slave performs the read and registers the data. Due to the register in
the slave the data is available in the third cycle, the result phase. To simplify the master, the
read data stays valid till the next read request response.

1.2 Slave Acknowledge

Flow control between the slave and the master is usually done by a single signal in the form of
wait or acknowledge. The ack signal, e.g. in the Wishbone specification, is set when the data
is available or the write operation has finished. However, for a pipelined master it can be of
interest to know it earlier when a transaction will finish.

For a lot of slaves, e.g. a SRAM interface with fixed wait states, this information is available
inside the slave. In the SimpCon interface this information is communicated to the master
through the two bit signal rdy cnt. rdy cnt signals the number of cycles till the read data will
be available or the write transaction will be finished. Value 0 is equivalent to an ack signal
and 1, 2, and 3 are equivalent to a wait request with the distinction that the master knows how
long the wait request will last.

To avoid too many signals at the interconnect rdy cnt has a width of two bits. Therefore,
the maximum value of 3 has the special meaning that the transaction will finish in 3 or more
cycles. As a result the master can only use the values 0, 1, and 2 to release actions in it’s
pipeline.

Idle slaves will keep the former value of 0 for rdy cnt. Slaves, that don’t know in advance
how many wait states are need for the transaction can produce sequences that omit any of the
numbers 3, 2, and 1. The master has to handle this situations.

Figure 2 shows an example of a slave that needs three cycles for the read to be processed.
In cycle 1 the read command and the address are set by the master. The slave registers the

2



A

Data

clk

address

rd

rd_data

rdy_cnt 3 2 1 0

1 2 3 4 5

Figure 2: Read transaction with wait states

A

clk

address

wr_data

wr

rdy_cnt 2 1 0

1 2 3 4

D

Figure 3: Write transaction with wait states

address and sets rdy cnt to 3 in cycle 2. The read takes three cycles (2–4) during which
rdy cnt is decremented. In cycle 4 the data is available inside the slave and gets registered. It
is available in cycle 5 for the master and rdy cnt is finally 0. Both, the data and rdy cnt will
keep their value till a new transaction is requested.

Figure 3 shows an example of a slave that needs three cycles for the write to be processed.
The address, the data to be written and the write command are valid during cycle 1. The slave
registers the address and write data during cycle 1 and performs the write operation during
cycles 2–4. The rdy cnt is decremented and a non-pipelined slave can accept a new command
after cycle 4.

3



A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

level 1 rd

level 2 rd

level 3 rd

0 2 1 03

D1

A2

Figure 4: Different pipeline levels for a read transaction

2 Pipelining

Figure 4 shows a read transaction for a slave with four cycles latency. Without any pipelining
the next read transaction will start in cycle 7 after the data from the former read transaction is
read by the master. The three bottom lines show when new read transactions will be started
for different pipeline levels. With pipeline level 1 a new transaction can start in the same cycle
when the former read data is available (in this example in cycle 6). Higher levels mean that
the next read will start earlier as shown for level 2 and 3.

Implementation of level 1 in the slave is trivial (just two more transitions in the state ma-
chine). It is recommended to provide level 1 at least for read transactions. Level 2 is a little
bit more complex but usually no additional address or data registers are needed.

To implement level 3 pipelining in the slave at least an additional address register is needed.
However, to use level 3 the master has to issue the request in the same cycle as rdy cnt goes
to 2. That means this transition is combinatorial. We see in Figure 4 that rdy cnt value of 3
means three or more cycles till the data is available and can therefore not be used to trigger a
new transaction.

3 Multiple Master

SimpCon defines no signals for the communication between a master and an arbiter. However,
it is possible to build a multi master system with SimpCon. The SimpCon interface can be
used as interconnect between the masters and the arbiter and the arbiter and the slaves. In this
case the arbiter acts as slave for the master and as master for the peripheral devices.

The missing arbitration protocol in SimpCon results in the need to queue n−1 requests in

4



an arbiter for n masters. However, for this additional HW we get zero overheads for the bus
request. The master, which gets the bus will will start the slave transaction in the same cycle.

TODO: add a timing diagram to explain this concept.

4 Examples

This section provides some examples for the application of the SimpCon definition.

4.1 IO Port

TODO: Show how simple an IO port can be with SimpCon. We need no addresses and can tie
bsy cnt to 0. We only need the rd or wr signal to enable the port.

4.2 SRAM interface

The following example is taken from an implementation of SimpCon for a Java processor.
The processor is clocked with 100MHz and the main memory consists of 15ns static RAMs.
Therefore the minimum access time for the RAM is two cycles. The slack time of 5ns forces
us to use output registers for the RAM address and write data and input registers for the read
data in the IO cells of the FPGA. These registers fit nice with the intention of SimpCon to use
registers inside the slave.

Figure 5 shows the interface for a non-pipelined read access followed by a write access.
Four signals are driven by the master and two signal by the slave. The lower half of the figure
shows the signals at the FPGA pins where the RAM is connected.

In cycle 1 the read transaction is started by the master and the slave registers the address.
The slave also sets the registered control signals ncs and noe during cycle1. Due to the IO
cell registers, the address and control signals are valid at the FPGA pins very early in cycle 2.
At the end of cycle 3 (15ns after address, ncs and noe are stable) the data from the RAM is
available and can be sampled with the rising edge for cycle 4.

The master reads the data in cycle 4 and starts a write transaction in cycle 5. Address and
data are again registered from the slave and are available for the RAM at the beginning of
cycle 6. To perform a write in two cycles the nwr signal is registered by a negative triggered
flip-flop.

In figure 6 we see a pipelined read from the RAM with pipeline level 2. With this pipeline
level and the two cycles read access time of the RAM we get the maximum bandwidth possi-
ble.

We can see the start of the second read transaction in cycle 3 during the read of the first data
from the RAM. The new address is registered in the same cycle and available for the RAM in
the following cycle 4. Although we have a pipeline level of 2 we need no additional address
or data register. The read data is available for two cycles (rdy cnt 2 or 1 for the next read) and
the master is free to select one of the two cycles to read the data.

5



A1

clk

address

rd

rd_data

rdy_cnt 2 1

1 2 3 4 5 6 7

wr_data

wr

address

data

ncs

noe

nwr

A1

D1

00

A2

D2

1 0

A2

D2

D1

m
as

te
r

sl
av

e
S

R
A

M

Figure 5: Static RAM interface without pipelining

6



A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

address

data

ncs

noe

nwr

A1

D1

A3

A3

S
im

pC
on

S
R

A
M

0 2 1 2 1 2 1

D1 D2

A2

A2

D2 D3

Figure 6: Pipelined read from a static RAM

4.3 Master Multiplexing

To add several slaves to a single master the rd data and bsy cnt have to be multiplexed. Due
to the fact that all rd data signals are registered by the slaves a single pipeline stage will be
enough for a large multiplexer. The selection of the multiplexer is also known at the transac-
tion start but needed at most in the next cycle. Therefore it can be registered to further speed
up the multiplexer.

TODO: add a schematic for the master rd data multiplexer.

5 Status

• First timing diagrams drawn

• SimpCon SRAM interface for JOP on Cyclone and Spartan-3 is available

• Project at opencores.org is requested

Next steps:

• Continue this document

• Provide more SimpCon examples (e.g. a UART)

7



• Change JOPs IO interface to SimpCon

• Provide Wishbone bridges

8


	Introduction
	Basic Read Transaction
	Slave Acknowledge

	Pipelining
	Multiple Master
	Examples
	IO Port
	SRAM interface
	Master Multiplexing

	Status

