
SimpCon – a Simple SoC Interconnect
Version 1.0

Martin Schoeberl
martin@jopdesign.com

November 13, 2007

This document proposes a simple interconnection standard for system-on-chip
(SoC) components. It is intended to provide pipelined access to devices such
on-chip peripherals and on-chip memory controller with minimum hardware re-
sources.

1 Introduction

The intention of the following SoC interconnect standard is to be simple and efficient with
respect to implementation resources and transaction latency.

SimpCon is a fully synchronous standard for on-chip interconnections. It is a point-to-point
connection between a master and a slave. The master starts either a read or write transaction.
Master commands are single cycle to free the master to continue on internal operations during
an outstanding transaction. The slave has to register the address when needed for more than
one cycle. The slave also registers the data on a read and provides it to the master for more
than a single cycle. This property allows the master to delay the actual read if it is busy with
internal operations.

The slave signals the end of the transaction through a novel ready counter to provide an
early notification. This early notification simplifies the integration of peripherals into pipelined
masters.

Slaves can also provide several levels of pipelining. This feature is announced by two static
output ports (one for read and one write pipeline levels).

Off-chip connections (e.g. main memory) are device specific and need a slave to perform
the translation. Peripheral interrupts are not covered by this specification.

1.1 Features

• Master/slave point-to-point connection



Address phase Read phase Result phase

Adress

Data

clk

address

rd

rd_data

rdy_cnt 1 0

Figure 1: Basic read transaction

• Synchronous operation

• Read and write transactions

• Early pipeline release for the master

• Pipelined transactions

• Open-source specification

• Low implementation overheads

1.2 Basic Read Transaction

Figure 1 shows a basic read transaction for a slave with one cycle latency. The acknowledge
signals are omitted from the figure. In the first cycle, the address phase, the rd signals the
slave to start the read transaction. The address is registered by the slave. During the following
cycle, the read phase1, the slave performs the read and registers the data. Due to the register
in the slave the data is available in the third cycle, the result phase. To simplify the master,
rd data stays valid till the next read request response. It is therefore possible for a master
to issue a pre-fetch command early. When the pre-fetched data arrives to early it is still valid
when the master actually wants to read it.

1.3 Basic Write Transaction

A write transaction consists of a single cycle address/command phase started by assertion of
wr where the address and the write data are valid. address and wr data are usually registered
by the slave. The end of the write cycle is signalled to the master by the slave with rdy cnt.
See Section 3 and an example in Figure 3.

1It has to be noted that the read phase can be longer for devices with a high latency. For simple on-chip IO
devices the read phase can be omitted completely (0 cycles). In that case rdy cnt will be zero in the cycle
following the address phase.

2



Signal Width Direction Required Description

address 1–32 Master No Address lines from the master
to the slave port

wr data 32 Master No Data lines from the master
to the slave port

rd 1 Master No Start of a read transaction
wr 1 Master No Start of a write transaction
rd data 32 Slave No Data lines from the slave

to the master port
rdy cnt 2 Slave Yes Transaction end signalling
rd pipeline level 2 Slave No Maximum pipeline level

for read transactions
wr pipeline level 2 Slave No Maximum pipeline level

for write transactions

Table 1: SimpCon port signals

2 SimpCon Signals

This sections defines the signals used by the SimpCon connection. Some of the signals are
optional and may not be present on a peripheral device.

All signals are a single direction point-to-point connection between a master and a slave.
The signal details are described by the device that drives the signal. Table 1 lists the signals
that define the SimpCon interface. The column Direction indicates wether the signal is driven
by the master or the slave.

2.1 Master Signal Details

This section describes the signals that are driven by the master to initiate a transaction.

2.1.1 address

Master addresses represent word addresses as offsets in the slaves address range. address is
valid a single cycle either with rd for a read transaction or with wr and wr data for a write
transaction.

The number of bits for address depend on the slaves address range. For a single port slave
address can be omitted.

2.1.2 wr data

The wr data signals carry the data for a write transaction. It is valid for a single cycle together
with address and wr. The signal is typically 32 bits wide. Slaves can ignore upper bits when
the slave port is less than 32 bits.

3



2.1.3 rd

The rd signal is asserted a single clock cycle to start a read transaction. address has to be
valid in the same cycle.

2.1.4 wr

The wr signal is asserted a single clock cycle to start a write transaction. address and wr data
have to be valid in the same cycle.

2.1.5 sel byte

The sel byte signal is reserved for future versions of the SimpCon specification to add indi-
vidual byte enables.

2.2 Slave Signal Details

This section describes the signals that are driven by the slave as a response to transaction
initiated by the master.

2.2.1 rd data

The wr data signals carry the result for a read transaction. The data is valid when rdy cnt
reaches 0 and stays valid till a new read result is available. The signal is typically 32 bits wide.
Slaves that provide less than 32 bits should pad the upper bits with 0.

2.2.2 rdy cnt

The rdy cnt signal provides the number of cycles till the pending transaction will finish. A
0 means that either read data is available or a write transaction has been finished. Values of 1
and 2 mean the the transaction will finish in at least 1 or 2 cycles. The maximum value is 3
and means the the transaction will finish in 3 or more cycles. Note that not all values have to
be used in a transaction. Each monotonic sequence of rdy cnt values is legal.

2.2.3 rd pipeline level

The static rd pipeline level provides the master with the read pipeline level of the slave.
The signal has to be constant to enable the synthesizer to optimize the pipeline level dependent
state machine in the master.

2.2.4 wr pipeline level

The static wr pipeline level provides the master with the write pipeline level of the slave.
The signal has to be constant to enable the synthesizer to optimize the pipeline level dependent
state machine in the master.

4



3 Slave Acknowledge

Flow control between the slave and the master is usually done by a single signal in the form
of wait or acknowledge. The ack signal, e.g. in the Wishbone specification, is set when the
data is available or the write operation has finished. However, for a pipelined master it can be
of interest to know it earlier when a transaction will finish.

For many slaves, e.g. an SRAM interface with fixed wait states, this information is available
inside the slave. In the SimpCon interface this information is communicated to the master
through the two bit ready counter (rdy cnt). rdy cnt signals the number of cycles till the
read data will be available or the write transaction will be finished. Value 0 is equivalent to an
ack signal and 1, 2, and 3 are equivalent to a wait request with the distinction that the master
knows how long the wait request will last.

To avoid too many signals at the interconnect rdy cnt has a width of two bits. There-
fore, the maximum value of 3 has the special meaning that the transaction will finish in 3 or
more cycles. As a result the master can only use the values 0, 1, and 2 to release actions in
its pipeline. If necessary an extension for a longer pipeline is straightforward with a larger
rdy cnt2.

Idle slaves will keep the former value of 0 for rdy cnt. Slaves, that don’t know in advance
how many wait states are needed for the transaction can produce sequences that omit any of
the numbers 3, 2, and 1. A simple slave can hold rdy cnt on 3 until the data is available and
set it than directly to 0. The master has to handle those situations. Practically this reduces the
possibilities of pipelining and therefore the performance of the interconnect. The master will
read the data later, which is not an issue as the data stays valid.

Figure 2 shows an example of a slave that needs three cycles for the read to be processed. In
cycle 1 the read command and the address are set by the master. The slave registers the address
and sets rdy cnt to 3 in cycle 2. The read takes three cycles (2–4) during which rdy cnt gets
decremented. In cycle 4 the data is available inside the slave and gets registered. It is available
in cycle 5 for the master and rdy cnt is finally 0. Both, the rd data and rdy cnt will keep
their value till a new transaction is requested.

Figure 3 shows an example of a slave that needs three cycles for the write to be processed.
The address, the data to be written and the write command are valid during cycle 1. The
slave registers the address and write data during cycle 1 and performs the write operation
during cycles 2–4. The rdy cnt is decremented and a non-pipelined slave can accept a new
command after cycle 4.

4 Pipelining

Figure 4 shows a read transaction for a slave with four clock cycles latency. Without any
pipelining the next read transaction will start in cycle 7 after the data from the former read
transaction is read by the master. The three bottom lines show when new read transactions
(only the rd signal is shown, address lines are omitted from the figure) can be started for

2The maximum value of the ready counter is relevant for the early restart of a waiting master. A longer latency
from the slave e.g., for DDR SDRAM, will map to the maximum value of the counter for the first cycles.

5



A

Data

clk

address

rd

rd_data

rdy_cnt 3 2 1 0

1 2 3 4 5

Figure 2: Read transaction with wait states

Adress

clk

address

wr_data

wr

rdy_cnt 2 1 0

1 2 3 4

Data

Figure 3: Write transaction with wait states

6



A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

level 1 rd

level 2 rd

level 3 rd

0 2 1 03

D1

A2

Figure 4: Different pipeline levels for a read transaction

different pipeline levels. With pipeline level 1 a new transaction can start in the same cycle
when the former read data is available (in this example in cycle 6). At pipeline level 2 a new
transaction (either read or write) can start when rdy cnt is 1, for pipeline level 2 the next
transaction can start at a rdy cnt of 2.

The implementation of level 1 in the slave is trivial (just two more transitions in the state
machine). It is recommended to provide at least level 1 for read transactions. Level 2 is a little
bit more complex but usually no additional address or data registers are necessary.

To implement level 3 pipelining in the slave at least an additional address register is needed.
However, to use level 3 the master has to issue the request in the same cycle as rdy cnt goes
to 2. That means this transition is combinatorial. We see in Figure 4 that rdy cnt value of 3
means three or more cycles till the data is available and can therefore not be used to trigger a
new transaction. Extension to an even deeper pipeline needs a wider rdy cnt.

4.1 Interconnect

Although the definition of SimpCon is from a single master/slave point-to-point viewpoint, all
variations of multiple slave and multiple master devices are possible.

4.1.1 Slave Multiplexing

To add several slaves to a single master rd data and rdy cnt have to be multiplexed. Due
to the fact that all rd data signals are already registered by the slaves a single pipeline stage
will be enough for a large multiplexer. The selection of the multiplexer is also known at the
transaction start but needed at most in the next cycle. Therefore it can be registered to further
speed up the multiplexer.

7



4.1.2 Master Multiplexing

SimpCon defines no signals for the communication between a master and an arbiter. However,
it is possible to build a multi master system with SimpCon. The SimpCon interface can be used
as interconnect between the masters and the arbiter and the arbiter and the slaves. In this case
the arbiter acts as slave for the master and as master for the peripheral devices. An example of
an arbiter for SimpCon, where JOP and a VGA controller are two masters for a shared main
memory, can be found in [10]. The same arbiter is also used to build a chip-multiprocessor
version of JOP.

The missing arbitration protocol in SimpCon results in the need to queue n−1 requests in
an arbiter for n masters. However, this additional hardware results in a zero cycle bus grant.
The master, which gets the bus granted, starts the slave transaction in the same cycle as the
original read/write request.

5 Examples

This section provides some examples for the application of the SimpCon definition.

5.1 IO Port

TODO: Show how simple an IO port can be with SimpCon. We need no addresses and can tie
bsy cnt to 0. We only need the rd or wr signal to enable the port.

5.2 SRAM interface

The following example is taken from an implementation of SimpCon for a Java processor.
The processor is clocked with 100MHz and the main memory consists of 15ns static RAMs.
Therefore the minimum access time for the RAM is two cycles. The slack time of 5ns forces
us to use output registers for the RAM address and write data and input registers for the read
data in the IO cells of the FPGA. These registers fit nice with the intention of SimpCon to use
registers inside the slave.

Figure 5 shows the memory interface for a non-pipelined read access followed by a write
access. Four signals are driven by the master and two signals by the slave. The lower half of
the figure shows the signals at the FPGA pins where the RAM is connected.

In cycle 1 the read transaction is started by the master and the slave registers the address.
The slave also sets the registered control signals ncs and noe during cycle 1. Due to the
placement of the registers in the IO cells, the address and control signals are valid at the
FPGA pins very early in cycle 2. At the end of cycle 3 (15 ns after address, ncs and noe
are stable) the data from the RAM is available and can be sampled with the rising edge for
cycle 4. The setup time for the read register is short as the register can be placed in the IO cell.
The master reads the data in cycle 4 and starts a write transaction in cycle 5. Address and data
are again registered by the slave and are available for the RAM at the beginning of cycle 6. To
perform a write in two cycles the nwr signal is registered by a negative triggered flip-flop.

8



A1

clk

address

rd

rd_data

rdy_cnt 2 1

1 2 3 4 5 6 7

wr_data

wr

address

data

ncs

noe

nwr

A1

D1

00

A2

D2

1 0

A2

D2

D1

m
as

te
r

sl
av

e
S

R
A

M

Figure 5: Static RAM interface without pipelining

9



A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

address

data

ncs

noe

nwr

A1

D1

A3

A3

S
im

pC
on

S
R

A
M

0 2 1 2 1 2 1

D1 D2

A2

A2

D2 D3

Figure 6: Pipelined read from a static RAM

In Figure 6 we see a pipelined read from the RAM with pipeline level 2. With this pipeline
level and the two cycles read access time of the RAM we achieve the maximum possible
bandwidth.

We can see the start of the second read transaction in cycle 3 during the read of the first data
from the RAM. The new address is registered in the same cycle and available for the RAM in
the following cycle 4. Although we have a pipeline level of 2 we need no additional address
or data register. The read data is available for two cycles (rdy cnt 2 or 1 for the next read)
and the master is free to select one of the two cycles to read the data.

It has to be noted that pipelining with one read per cycle is possible with SimpCon. We just
showed a 2 cycle slave in this example. For a SDRAM memory interface the ready counter
will stay either at 2 or 1 during the single cycle reads (depending on the slave pipeline level).
It will go down to 0 only for the last data word to read.

5.3 Master Multiplexing

To add several slaves to a single master the rd data and bsy cnt have to be multiplexed. Due
to the fact that all rd data signals are registered by the slaves a single pipeline stage will be
enough for a large multiplexer. The selection of the multiplexer is also known at the transac-
tion start but needed at most in the next cycle. Therefore it can be registered to further speed
up the multiplexer.

TODO: add a schematic for the master rd data multiplexer.

10



6 Available VHDL Files

Besides the SimpCon documentation some example VHDL files for slave devices and bridges
are available from http://www.opencores.org/projects.cgi/web/simpcon/overview.
All components are also part of the standard JOP distribution.

6.1 Components

• sc pack.vhd defines VHDL records and some constants.

• sc test slave is a very simple SimpCon device. A counter to be read out and a register
that can be written and read. There is no connection to the outer world. This example
can be used as basis for a new SimpCon device.

• sc sram16.vhd is a memory controller for 16-bit SRAM.

• sc sram32.vhd is a memory controller for 32-bit SRAM.

• sc sram32 flash.vhd is a memory controller for 32-bit SRAM, a NOR Flash, and a
NAND Flash as used in the Cycore FPGA board for JOP.

• sc uart.vhd is a simple UART with configurable baud rate and FIFO width.

• sc usb.vhd is an interface to the parallel port of the FTDI 2232 USB chip. The register
definition is identical to the UART and the USB connection can be used as a drop in
replacement for a UART.

• sc isa.vhd interfaces the old ISA bus. It can be used for the popular CS8900 Ethernet
chip.

• sc sigdel.vhd is a configurable sigma-delta converter for an FPGA that needs at mini-
mum just two external components: a capacitor and a resistor.

• sc fpu.vhd provides an interface to the 32-bit FPU available at www.opencores.org.

• sc arbiter.vhd is a zero cycle latency, priority based SimpCon arbiter written by Christof
Pitter [11].

6.2 Bridges

• sc2wb.vhd is a SimpCon/Wishbone [9] bridge.

• sc2avalon.vhd is a SimpCon/Avalon [2] bridge to integrate a SimpCon based design
with Altera’s SOPC Builder [3].

• sc2ahbsl.vhd provides an interface to AHB slaves as defined in Gaisler’s GRLIB [6].
Many of the available GPL AHB modules from the GRLIB can be used in a SimpCon
based design.

11

http://www.opencores.org/projects.cgi/web/simpcon/overview
www.opencores.org


7 Why a New Interconnection Standard?

There are many interconnection standards available for SoC designs. The natural question
is: Why propose a new one? The answer is given in the following section. For short: The
available standards are still in the tradition of backplane busses and do not fit very well for
pipelined on-chip interconnections.

7.1 Common SoC Interconnections

Several point-to-point and bus standards have been proposed over the last years. The following
section gives a brief overview of common SoC interconnection standards.

The Advanced Microcontroller Bus Architecture (AMBA) [4] is the interconnection defini-
tion from ARM. The specification defines three different busses: Advanced High-performance
Bus (AHB), Advanced System Bus (ASB), and Advanced Peripheral Bus (APB). The AHB
is used to connect on-chip memory, cache, and external memory to the processor. Peripheral
devices are connected to the APB. A bridge connects the AHB to the lower bandwidth APB.
An AHB bus transfer can be one cycle with burst operation. With the APB a bus transfer
requires two cycles and no burst mode is available. Peripheral bus cycles with wait states
are added in the version 3 of the APB specification. ASB is the predecessor of AHB and is
not recommended for new designs (ASB uses both clock phases for the bus signals – very
uncommon for today’s synchronous designs). The AMBA 3 AXI (Advanced eXtensible Inter-
face) [5] is the latest extension to AMBA. AXI introduces out-of-order transaction completion
with the help of a 4 bit transaction id tag. A ready signal acknowledges the transaction start.
The master has to hold the transaction information (e.g. address) till the interconnect signals
ready. This enhancement ruins the elegant single cycle address phase from the original AHB
specification.

Wishbone [9] is a public domain standard used by several open-source IP cores. The Wish-
bone interface specification is still in the tradition of microcomputer or backplane busses.
However, for a SoC interconnect, which is usually point-to-point3, this is not the best ap-
proach. The master is requested to hold the address and data valid through the whole read or
write cycle. This complicates the connection to a master that has the data valid only for one
cycle. In this case the address and data have to be registered before the Wishbone connect or an
expensive (time and resources) multiplexer has to be used. A register results in one additional
cycle latency. A better approach would be to register the address and data in the slave. In that
case the address decoding in the slave can be performed in the same cycle as the address is
registered. A similar issue, with respect to the master, exists for the output data from the slave:
As it is only valid for a single cycle the data has to be registered by the master when the master
is not reading it immediately. Therefore, the slave should keep the last valid data at its output
even when the Wishbone strobe signal (wb.stb) is not assigned anymore. Holding the data in
the slave is usually for free from the hardware complexity – it is just a specification issue. In
the Wishbone specification there is no way to perform pipelined read or write. However, for
blocked memory transfers (e.g. cache load) this is the usual way to achieve good performance.

3Multiplexers are used instead of busses to connect several slaves and masters.

12



Adress

Data

clk

address

rd

rd_data

ack

1 2 3 4

Figure 7: Classic basic read transaction

The Avalon [2] interface specification is provided by Altera for a system-on-a-programmable-
chip (SOPC) interconnection. Avalon defines a great range of interconnection devices ranging
from a simple asynchronous interface intended for direct static RAM connection up to so-
phisticated pipeline transfers with variable latencies. This great flexibility provides an easy
path to connect a peripheral device to Avalon. How is this flexibility possible? The Avalon
Switch Fabric translates between all those different interconnection types. The switch fabric
is generated by Altera’s SOPC Builder tool. However, it seems that this switch fabric is Altera
proprietary thus tying this specification to Altera FPGAs.

The On-Chip Peripheral Bus (OPB) [7] is an open standard provided by IBM and used by
Xilinx. The OPB specifies a bus for multiple masters and slaves. The implementation of the
bus is not directly defined in the specification. A distributed ring, a centralized multiplexer,
or a centralized AND/OR network are suggested. Xilinx uses the AND/OR approach and all
masters and slaves must drive the data busses to zero when inactive.

Sonics Inc. defined the Open Core Protocol (OCP) [8] as an open, freely available standard.
The standard is now handled by the OCP International Partnership4.

7.2 What’s Wrong with the Classic Standards?

All SoC interconnection standards, that are widely in use, are still in the tradition of a back-
plane bus. They force the master to hold the address and control signals till the slave provides
the data or acknowledges the write request. However, this is not necessary in a clocked, syn-
chronous system. Why should we force the master to hold the signals? Let the master move
on after submitting the request in a single cycle. Forcing the address and control valid for the
complete request disables any form of pipelined requests.

Figure 7 shows a read transaction with wait states as defined in Wishbone [9], Avalon [2],
OPB [7], and OCP [8]5. The master issues the read request and the address in cycle 1. The
slave has to reset the ack in the same cycle. When the slave data is available the acknowledge
signal is set (ack in cycle 3). The master has to read the data and register them within the

4www.ocpip.org
5The signal names are different, but the principle is the same for all mentioned busses.

13

www.ocpip.org


same clock cycle. The master has to hold the address, write data and control signal active till
the acknowledgement from the slave. For pipelined read the ack signal can be split into two
signals (available in Avalon and OCP): one to accept the request and a second one to signal
the available data.

The master is blind about the status of the outstanding transaction until it is finished. It could
be possible that the slave informs the master in how many cycles the result will be available.
This information can help in building deeper pipelined masters.

Only the AMBA AHB [4] defines a different protocol. A single cycle address phase fol-
lowed by a variable length data phase. The slave acknowledgement (HREADY) is only
necessary in the data phase avoiding the combinatorial path from address/command to the
acknowledgement. Overlapping address and data phase is allowed and recommended for
high performance. Compared to SimpCon, AMBA AHB allows for single stage pipelining,
whereas SimpCon makes multi-stage pipelining possible using the ready counter (rdy cnt).
The rdy cnt signal defines the delay between the address and the data on a read, signalled by
the slave. Therefor, the pipeline depth of the bus and the slaves is only limited by the bit width
of rdy cnt.

Another issue with all interconnection standards is the single cycle availability of read data
at the slaves. Why not keep the read data valid as long as there is no new read data available?
This feature would allow the master to be more flexible when to read the data. It would allow
to issue a read command and then continue with other instructions – a feature known as data
pre-fetching to hide long latencies.

The last argument sounds contradictory to the first argument on providing the transaction
data at the master just for a single cycle, but requesting the slave to hold the data for several
cycles. However, it is motivated to free up the master, keep it moving, and move the data hold
(register) burden into the slave. As data processing bottlenecks are usually found in the master
devices it sounds natural to move as much work as possible to the slave devices to free up the
master.

Avalon, Wishbone and OPB provide a single cycle latency access to slaves due to the pos-
sibility to acknowledge a request in the same cycle. However, this feature is a scaling issue
for larger systems. There is a combinatorial path from master address/command to address
decoding, slave decision on ack, slave ack multiplexing back to the master and the master
decision to hold address/command or read the data and continue. Also the slave output data
multiplexer is on a combinatorial path from the master address.

AMBA AHB and SimpCon avoid this scaling issue by requesting the acknowledge in the
cycle following the command. In SimpCon and AMBA the select for the read data multiplexer
can be registered as the read address is known at least one cycle before the data is available.
The later acknowledge results in a minor drawback on SimpCon and AMBA (nothing is for
free): It is not possible to perform a single cycle read or write without pipelining. A sin-
gle, non pipelined transaction takes two cycles without a wait state. However, a single cycle
read transaction is only possible for very simple slaves. Most non-trivial slaves (e.g. memory
interfaces) will not allow a single cycle access anyway.

14



Performance Memory Interconnect

16,633 32 bit SRAM SimpCon
14,259 32 bit SRAM AMBA
14,015 32 bit SRAM Avalon/PTF
13,920 32 bit SRAM Avalon/VHDL
15,762 32 bit on-chip Avalon
14,760 16 bit SRAM SimpCon
11,322 16 bit SRAM Avalon
7,288 16 bit SDRAM Avalon

Table 2: JOP performance with different interconnection types

7.3 Evaluation

We compare the SimpCon interface with the AMBA and the Avalon interface as two exam-
ples of common interconnection standards. As evaluation example we interface an external
asynchronous SRAM with a tight timing. The system is clocked with 100 MHz and the access
time for the SRAM is 15 ns. Therefore, there are 5 ns available for on-chip register to SRAM
input and SRAM output to on-chip register delays. As SoC we use an actual low-cost FPGA
(Cyclone EP1C6 [1] and a Cyclone II).

The master is a Java processor (JOP [13, 14]). The processor is configured with 4 KB
instruction cache and 512 Byte on-chip stack cache. We run a complete application benchmark
on the different systems. The embedded benchmark (Kfl as described in [12]) is an industrial
control application already in production.

Table 2 shows the performance numbers of this JOP/SRAM interface on the embedded
benchmark. It measures iterations/s and therefore higher numbers are better. One iteration is
the execution of the main control loop of the Kfl application. For a 32 bit SRAM interface we
compare SimpCon against AMBA and Avalon. SimpCon outperforms AMBA by 17% and
Avalon by 19%6 on a 32 bit SRAM.

The AMBA experiment uses the SRAM controller provided as part of GRLIB [6] by Gaisler
Research. We avoided writing our own AMBA slave to verify that the AMBA implementa-
tion on JOP is correct. To provide a fair comparison between the single master solutions with
SimpCon and Avalon the AMBA bus was configured without an arbiter. JOP is connected
directly to the AMBA memory slave. The difference between the SimpCon and the AMBA
performance can be explained by two facts: (1) as with the Avalon interconnect, the master
has the information when the slave request is ready at the same cycle when the data is avail-
able (compared to the rdy cnt feature); (2) the SRAM controller is conservative as it asserts
HREADY one cycle later than the data is available in the read register (HRDATA). The second
issue can be overcome by a better implementation of the SRAM AMBA slave.

The Avalon experiment considers two versions: an SOPC Builder generated interface (PTF)
to the memory and a memory interface written in VHDL. The SOPC Builder interface per-

6The performance is the measurement of the execution time of the whole application, not only the difference
between the bus transactions.

15



forms slightly better than the VHDL version that generates the Avalon waitrequest signal.
It is assumed that the SOPC Builder version uses fixed wait states within the switch fabric.

We also implemented an Avalon interface to the single-cycle on-chip memory. SimpCon
is even faster with the 32 bit off-chip SRAM than with the on-chip memory connected via
Avalon. Furthermore, we also performed experiments with a 16 bit memory interface to the
same SRAM. With this smaller data width the pressure on the interconnection and memory
interface is higher. As a result the difference between SimpCon and Avalon gets larger (30%)
on the 16 bit SRAM interface. To complete the picture we also measured the performance
with an SDRAM memory connected to the Avalon bus. We see that the large latency of an
SDRAM is a big performance issue for the Java processor.

8 Summary

This document describes a simple (with respect to the definition and implementation) and
efficient SoC interconnect. The novel signal rdy cnt allows an early signalling to the master
when read data will be valid. This feature allows the master to restart a stalled pipeline earlier
to react for arriving data. Furthermore, this feature also enables pipelined bus transactions
with a minimal effort on the master and the slave side.

We have compared SimpCon quantitative with AMBA and Avalon, two common intercon-
nection definitions. The application benchmark shows a performance advantage of SimpCon
by 17% over AMBA and 19% over Avalon interfaces to an SRAM.

SimpCon is used as the main interconnect for the Java processor JOP in a single master,
multiple salves configuration. SimpCon is also used to implement a shared memory chip-
multiprocessor version of JOP. Furthermore, in a research project on time-triggered network-
on-chip [15] SimpCon is used as the socket to this NoC.

The author thanks Kevin Jennings and Tommy Thorn for the interesting discussions about
SimpCon, Avalon and on-chip interconnection in general at the usenet newsgroup comp.arch.fpga.

References

[1] Altera. Cyclone FPGA Family Data Sheet, ver. 1.2, April 2003.

[2] Altera. Avalon interface specification, April 2005.

[3] Altera. Quartus ii version 7.1 handbook, May 2007.

[4] ARM. AMBA specification (rev 2.0), May 1999.

[5] ARM. AMBA AXI protocol v1.0 specification, March 2004.

[6] Jiri Gaisler, Edvin Catovic, Marko Isomäki, Kristoffer Carlsson, and Sandi Habinc. GR-
LIB IP core user’s manual, version 1.0.14. Available at http://www.gaisler.com/, Febru-
ary 2007.

16



[7] IBM. On-chip peripheral bus architecture specifications v2.1, April 2001.

[8] OCP-IP Association. Open core protocol specification 2.1. http://www.ocpip.org/, 2005.

[9] Wade D. Peterson. WISHBONE system-on-chip (SoC) interconnection architecture for
portable IP cores, revision: B.3. Available at http://www.opencores.org, September 2002.

[10] Christof Pitter and Martin Schoeberl. Time predictable CPU and DMA shared memory
access. In International Conference on Field-Programmable Logic and its Applications
(FPL 2007), pages 317 – 322, Amsterdam, Netherlands, August 2007.

[11] Christof Pitter and Martin Schoeberl. Towards a Java multiprocessor. In Proceedings
of the 5th International Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2007), pages 144–151, Vienna, Austria, September 2007. ACM Press.

[12] Martin Schoeberl. Evaluation of a Java processor. In Tagungsband Austrochip 2005,
pages 127–134, Vienna, Austria, October 2005.

[13] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems.
PhD thesis, Vienna University of Technology, 2005.

[14] Martin Schoeberl. A Java processor architecture for embedded real-time systems. Jour-
nal of Systems Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[15] Martin Schoeberl. A time-triggered network-on-chip. In International Conference on
Field-Programmable Logic and its Applications (FPL 2007), pages 377 – 382, Amster-
dam, Netherlands, August 2007.

17


	Introduction
	Features
	Basic Read Transaction
	Basic Write Transaction

	SimpCon Signals
	Master Signal Details
	address
	wr_data
	rd
	wr
	sel_byte

	Slave Signal Details
	rd_data
	rdy_cnt
	rd_pipeline_level
	wr_pipeline_level


	Slave Acknowledge
	Pipelining
	Interconnect
	Slave Multiplexing
	Master Multiplexing


	Examples
	IO Port
	SRAM interface
	Master Multiplexing

	Available VHDL Files
	Components
	Bridges

	Why a New Interconnection Standard?
	Common SoC Interconnections
	What's Wrong with the Classic Standards?
	Evaluation

	Summary

