

Counter Library
Novakod Studio is the integrated development environment (IDE) for the psC language.

- Cores in this library use the psC language.

- Compiling the core with the IDE generates Quality VHDL code.

- The generated VHDL code can be used in any FPGA project.

- You can use the cores as is or create your own customized core.

- You can also use Novakod Studio for any FPGA applications, then generate VHDL.

Materials
You need Novakod Studio and the DE1SoC BSP (Board Support Package)

- Download at: https://icitechno.com/download

- Licenses at: https://icitechno.com/licenses

If you want to experiment with a real board, you need the DE1SoC board. This board is fully
integrated into Novakod Studio. psC programs run without modification on the real board.

- Buy at: Terasic

Very important

Folder paths and file names you create must
not contain spaces or special characters.

To begin with…
1. First double-click CopyLib.bat
2. Open the library:

C:\Novakod_Studio\OpenCoresLib\simple_customized_counter\CounterLib.psC

3. Read the first part of the counter library.
4. Have a look at the code of the four counter templates.
5. Select the test bench for the desired core.

Core Test bench

CCounterEvent_T TestCounterEvent

CCounterLevel_T TestCounterLevel

CCounterOprLevel_T TestCounterOprLevel

CCounterOprEvent_T TestCounterOprEventBoard

TestCounterOprEventAPI

6. Follow ReadMe.pdf in the selected folder.

Have fun!

https://icitechno.com/download
https://icitechno.com/licenses
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836
file:///C:/Novakod_Studio/OpenCoresLib/simple_customized_counter/CounterLib.psC

Basic coding rules
Print this page...

The psC language is based on C++ syntax and everything you learned about designing, coding and
documenting C++ programs can be used with psC. You should look at the examples to get a good
feeling for the coding style.

― Naming convention

As in C++, carefully choose names for variables, ports, functions, components, and so on, to reflect
their usage. This must be done as early as possible as it greatly improves readability. In psC, the
recommended naming convention is capitalized first word letter, like ExeOpr.

― Indentation

Indentation of 4 spaces, no tabulation, is recommended for compatibility between editors.

― Suffixes and prefixes

Here is a list of prefixes and suffixes specific to psC. You should use them systematically.

Prefix Suffix Apply to Example

C Component // Component Ports
component CTest (in int iP,
 out int oP)
{ };

CTest PTest; // Process

P Process

i Input port

o Output port

 _t Type typedef int:3 int3_t;

c Constant

const int cLines[] = 1 to 2;
const int cCols [] = 1 to 3;
const identifier cId[] = { A, B, C };
enum Color_t { cRed, cGreen, cBlue };

t
Temp
variable

temp tAdd = V1 + V2;
temp fix8 tAdd(fix8 pF0, fix8 pF1) = pF0 + pF1;

function fct(int pVal, ubyte pTyp) { }; p Parameters

 _T Template

template< int NVAL, identifier NAME >
 function Add_T() { };

function Add_T<8, oPort> Add_I;

 _I
Template
instance

All Caps
Template
parameters

One to three
capital letters

For…end
parameters

for I in <cRange>
 CInc PInc##I;

end

s_ g_ Reserved, do not use

