

 Test Bench for CCounterOprLevel

Core description
The core CCounterOprLevel is almost identical to the core CCounterLevel. The counter is clocked

at each step, i.e. at FPGA clock. Instead of individual signals, the counter control is done via the

signal iOpr, which type is:

enum Opr_t { cOprNone, cOprReset, cOprUp, cOprDown, cOprLoad };

Therefore, if iOpr equals cOprUp then the counter counts up.

Test bench
This test bench uses the signal editor and the signal viewer to test the core. The test will be

done in single step simulation. Follow the instructions to:

• Create signals in the Signal Editor

• Execute with the Single Step function (F8)

• Use the Watch Window in single step mode

• View the result in the Signal Viewer

Description
The Signal Editor is an Excel like spreadsheet to edit the input signals and view the output

signals, including the events. The signal editor saves its information in a .evdoc file.

Virtual Board
Simulator (RVM)

Debug Connection

Novakod Studio

Watch Window

Signal and event files (.evi, .evo, .evdoc, .vcd)

Signal Editor

Signal Viewer

2

During simulation, the signals are read from an input event file (.evi) and written to an output

event file (.evo). After simulation, the Signal Editor is used to view the resulting output signals.

Then, the Signal Viewer will display the signal in the more common temporal view, with digital

or analog representation. The signal viewer is GTK Wave and it uses .vcd (value change dump)

files.

The psC test program
The test program consists of a single component, the core to be tested, and IO connections. The

counter operation is controlled by the value of the iOpr input.

1) Double-click on Counter.rpj to start Novakod Studio.
2) Double-click on the main component to view the schematic.
3) Double-click on the CCounterOprLevel component to view the counter code.
4) Right-click on Targets to view the target. The Target Type is Auto (Event files) indicating

that simulation will use .evi and .evo event files.

5) Expand Targets then Simulation, you should see the two event files:

 3

Viewing and editing input signals
The signals are already set, but you can change them as you wish.

6) Double-click on targets\Simulation.evi to start the Signal Editor.

As you can see, the signal iOpr takes different values to control the counter. The values are

displayed as their enum names. You can easily interpret the signal to predict the counter value.

If you change the signals, don’t forget to save.

4

Compiling and running the test
You are now ready to run and use the Single Step execution mode.

7) Select the menu Run→ Start Paused to begin simulation, accept the build confirmation.

8) Right click on each port in the project Inspect tab to add them to the Watch window.

9) You should see the initial values.

10) The RVM is in pause, and you can execute step by step.

11) For single step, simply type F8. Repeat until you reach step 30. You will see all the input
signals being applied at each step.

12) After 30 or more steps, stop the simulation by selecting menu Run→ Stop.

View results in signal editor
You can now view the results.

13) Double-click on targets\Simulation.evo, the Signal Editor window starts with the values
in oValue column.

14) Verify the counter operation.

 5

View results in signal viewer
Novakod Studio integrates the well-known signal viewer called GTK Wave.

15) Select menu File→ View Signals or click the shortcut . The GTK Wave windows
appears. GTK Wave has been pre-configured to show the desired signals. You can see
the inputs and the output in hexadecimal or as an analog signal.

