Spartan-3E Libraries Guide for Schematic Designs

ISE 10.1

Copyrights and Trademarks

Xilinx is disclosing this Document and Intellectual Property (hereinafter "the Design") to you for use in the development of designs to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you require for your use or implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED "AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring failsafe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or weapons systems ("High-Risk Applications"). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

Table of Contents

About this Guide	1
Functional Categories	3
About Design Elements	
ACC16	22
ACC4	24
ACC8	26
ADD16	28
ADD4	30
ADD8	32
ADSU16	33
ADSU4	35
ADSU8	37
AND12	39
AND16	40
AND2	41
AND2B1	42
AND2B2	43
AND3	44
AND3B1	45
AND3B2	46
AND3B3	
AND4	
AND4B1	
AND4B2	
AND4B3	
AND4B4	
AND5	
AND5B1	
AND5B2	
AND5B3	
AND5B4	
AND5B5	
AND6	
AND7	
AND8	
AND9	
BRLSHFT4	
BRLSHFT8	
BSCAN_SPARTAN3	65
BUF	
BUFG	
BUFGCE	
BUFGCE 1	
BUFGMUX	
BUFGMUX 1	
CAPTURE SPARTAN3	
CB16CE	
CB16CLE	
CB16CLED.	
CB16RE	
CB2CE	
CB2CLE	
CB2CLED.	
CB2RE.	
CB4CE	
CB4CLE	
C2 1C22	

CB4CLED	89
CB4RE	91
CB8CE	92
CB8CLE	
CB8CLED.	
CB8RE.	
CC16CE	
CC16CLE	
CC16CLED.	
CC16RE	
CC8CE	104
CC8CLE	105
CC8CLED	107
CC8RE	109
CD4CE	110
CD4CLE.	
CD4RE	
CD4RLE	
CI4CE	
CJ4RE	
CJ5CE	
CJ5RE	
CJ8CE	
CJ8RE	123
COMP16	124
COMP2	125
COMP4	126
COMP8	
COMPM16	
COMPM2	
COMPM4	
COMPM8	
COMPMC16	
COMPMC8	
CR16CE	
CR8CE	137
D2_4E	138
D3_8E	139
D4 16E	140
DCM SP	141
DEC CC16	
DEC CC4	
DEC CC8	
DECODE16	
DECODE32	
DECODE4	
DECODE64	
DECODE8	
FD	152
FD_1	153
FD16CE	154
FD16RE	
FD4CE	
FD4RE	
FD8CE	
FD8RE	
FDC	
FDC_1	
FLA E	162

FDCE_1	
FDCP	
FDCP_1	
FDCPE	
FDCPE_1	
FDE	
FDE_1	
FDP	
FDP_1	
FDPE	
FDPE_1	
FDR	
FDR_1	
FDRE 1	
FDRE_1	
FDRS	
FDRS_1	
FDRSE 1	
FDS	
FDS 1	
FDS_1 FDSE	
FDSE 1	
FJKC	
FIKCE	
FJKP	
FJKPE	
FJKRSE	
FJKSRE	
FTC	
FTCE	
FTCLE	
FTCLEX	
FTP.	
FTPE	
FTPLE	199
FTRSE	200
FTRSLE	201
FTSRE	202
FTSRLE	203
GND	
IBUF	
IBUF16	
IBUF4	
IBUF8	
IBUFDS	
IBUFG	
IBUFGDS	
IDDR2	
IFD 1	
IFD_1	
IFD16	
IFD4	
IFD8IFDI	
IFDI 1	
IFDI_1IFDX	
IFDX_1	
IFDX_1	
II D/\(\text{IU}\)	

IFDX4	
IFDX8	
IFDXI	
IFDXI_1	
ILD	
ILD_1	
ILD16	
ILD4	232
ILD8	233
ILDI	234
ILDI_1	
ILDX	
ILDX_1	
ILDX16	
ILDX4	
ILDX8	240
ILDXI	
ILDXI_1	
INV	
INV16	
INV4	
INV8	_
IOBUF	
IOBUFDS	
KEEPER	249
LD	250
LD_1	
LD16	252
LD16CE	
LD4	254
LD4CE	
LD8	
LD8CE	
LDC	
LDC_1	
LDCE	
LDCE_1	262
LDCP	263
LDCP_1	265
LDCPE	
LDCPE_1	
LDE	271
LDE_1	
LDP	_
LDP_1	
LDPE	
LDPE_1	
LUT1	
LUT1_D	280
LUT1_L	
LUT2	
LUT2_D	286
LUT2_L	
LUT3	290
LUT3_D	291
LUT3_L	
LUT4	
LUT4_D	297
LUT4 I	

M16_1E30	
M2_130	303
M2_1B130	504
M2_1B2	505
M2_1E	
M4_1E30	507
M8_1E30	
MULT_AND30	
MULT18X18	10
MULT18X18S	311
MULT18X18SIO3	
MUXCY3	
MUXCY_D3	
MUXCY_L3	
MUXF5	
MUXF5_D	
MUXF5_L	
MUXF6	
MUXF6_D	
MUXF6_L3	
MUXF7	
MUXF7_D	
MUXF7_L	
MUXF8	
MUXF8_D	
MUXF8_L	
NAND12	
NAND16	
NAND2	
NAND2B1	
NAND2B2	
NAND3	-
NAND3B1	
NAND3B2	
NAND3B3	
NAND4	
NAND4B1	
NAND4B3	
NAND4B4	
NAND5	
	344
NAND5B2	
NAND5B3	
NAND5B4	
NAND5B5	
NAND6 34	
NAND7	
NAND8	
NAND9	
NOR12	
NOR16	
NOR2	
NOR2B1 3	
NOR2B2	
NOR3.	
NOR3B1 3	
NOR3B2	
NOR3B3	

NOR4	
NOR4B1	363
NOR4B2	
NOR4B3	
NOR4B4	
NOR5	367
NOR5B1	368
NOR5B2	369
NOR5B3	370
NOR5B4	371
NOR5B5	372
NOR6	373
NOR7	374
NOR8	375
NOR9	376
OBUF	
OBUF16	
OBUF4	
OBUF8	
OBUFDS	
OBUFT	
OBUFT16	
OBUFT8	
OBUFTDS	
ODDR2	
OFD	
OFD_1	
OFD16	395
OFD4	
OFD8	397
OFDE	398
OFDE_1	399
OFDE16	400
OFDE4	
OFDE8	
OFDI	
OFDI 1	
OFDT	
OFDT 1	
OFDT16	
OFDT4	
OFDY	
OFDY 1	
OFDX_1	
OFDX16	
OFDX4	
OFDX8	
OFDXI	415
OFDXI_1	
OR12	
OR16	
OR2	
OR2B1	
OR2B2	
OR3	
OR3B1	
OR3B2	
OR3B3.	
OINDO	T ∠.)

OR4	
OR4B1	427
OR4B2	
OR4B3	429
OR4B4	430
OR5	
OR5B1	432
OR5B2	433
OR5B3	434
OR5B4	435
OR5B5	436
OR6	
OR7	438
OR8	
OR9	440
PULLDOWN	441
PULLUP	442
RAM16X1D	443
RAM16X1D_1	445
RAM16X1S	447
RAM16X1S_1	449
RAM16X2S	451
RAM16X4S	453
RAM16X8S	455
RAM32X1S	457
RAM32X1S 1	459
RAM32X2S	
RAM32X4S	463
RAM32X8S	
RAM64X1S	
RAM64X1S 1	
RAM64X2S	
RAMB16 S1	
RAMB16 S1 S1	
RAMB16_S1_S18	
RAMB16 S1 S2	
RAMB16 S1 S36	
RAMB16 S1 S4	
RAMB16 S1 S9	
RAMB16_S18	
RAMB16 S18 S18	
RAMB16 S18 S36	
RAMB16_S2	
RAMB16_S2_S18	
RAMB16 S2 S2	
RAMB16_S2_S36	
RAMB16_S2_S4	
RAMB16_S2_S4	
RAMB16_S36	
RAMB16_S36_S36	
RAMB16 S4	
RAMB16_S4_S18	
RAMB16_S4_S36RAMB16_S4_S4	
RAMB16_S4_S9	
RAMB16_S9	
RAMB16_S9_S18	
RAMB16_S9_S36	
RAMB16_S9_S9	655

ROM128X1	663
ROM16X1	665
ROM256X1	667
ROM32X1	669
ROM64X1	671
SOP3	673
SOP3B1A	
SOP3B1B	
SOP3B2A	
SOP3B2B	
SOP3B3	
SOP4	
SOP4B1	
SOP4B2A	681
SOP4B2B	682
SOP4B3	683
SOP4B4	684
SR16CE	
SR16CLE	
SR16CLED.	
SR16RE	
SR16RLED	
SR4CE	
SR4CLE	
SR4CLED	698
SR4RE	700
SR4RLE	701
SR4RLED	703
SR8CE	
SR8CLE.	
SR8CLED.	
SR8RE	
SR8RLE	
SR8RLED	
SRL16	
SRL16_1	717
SRL16E	719
SRL16E_1	721
SRLC16	723
SRLC16 1	
SRLC16E	
SRLC16E 1.	
STARTUP_SPARTAN3E	721
VCC	
XNOR2	
XNOR3	
XNOR4	
XNOR5	736
XNOR6	737
XNOR7	738
XNOR8	
XNOR9	
XOR2	
XOR3	
XOR4	
XOR5	
XOR6	
XOR7	746

XOR8	747
XOR9	748
XORCY	
XORCY D	750
XORCY I	751

About this Guide

This guide is part of the ISE documentation collection and covers the use of Xilinx design elements in schematics. A separate version of this guide is also available if you prefer to work with Verilog or VHDL in your circuit design activities.

This guide contains the following:

- A general introduction to the design elements, including descriptions of the types of elements available in this architecture.
- A list of pre-existing design elements are automatically changed by the ISE software tools when they are used in this architecture, thus ensuring that you are always able to take full advantage of the latest circuit design advances.
- A list of the design elements that are supported in this architecture, organized by functional categories. Click on the element of your choice to immediately access its profile.
- Individual profiles describing each of the primitives and macros, and including, as appropriate, for each element:
- Its formal name
- A brief introduction to each element, including the names of all architectures in which it is supported
- Its schematic symbol
- Logic tables (if any)
- Port descriptions (if any)
- A list of available attributes
- VHDL and Verilog instantiation code
- References to any additional sources of information

About this Architecture

This version of the Libraries Guide describes the categories of design elements that comprise the Xilinx Unified Libraries for this architecture. These categories are:

- **Primitives** The simplest design elements in the Xilinx libraries. Primitives are the design element "atoms." Primitives can be created from primitives or macros. Examples of Xilinx primitives are the simple buffer, BUF, and the D flip-flop with clock enable and clear, FDCE.
- **Macros -** The design element "molecules" of the Xilinx libraries. Macros can be created from the design element primitives or macros. For example, the FD4CE flip-flop macro is a composite of 4 FDCE primitives.

Xilinx maintains software libraries with hundreds of functional design elements (unimacros and primitives) for different device architectures. New functional elements are assembled with each release of development system software. In addition to a comprehensive Unified Library containing all design elements, this guide is one in a series of architecture-specific libraries.

Functional Categories

This section categorizes, by function, the circuit design elements described in detail later in this guide. The elements (*primitives* and *macros*) are listed in alphanumeric order under each functional category.

Arithmetic Decoder Latch
Buffer Flip Flop Logic
Carry Logic General LUT
Comparator IO Memory
Counter IO FlipFlop Mux

DDR Flip Flop IO Latch Shift Register

Arithmetic

Design Element	Description	
ACC16	Macro: 16-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset	
ACC4	Macro: 4-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset	
ACC8	Macro: 8-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset	
ADD16	Macro: 16-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow	
ADD4	Macro: 4-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow	
ADD8	Macro: 8-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow	
ADSU16	Macro: 16-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow	
ADSU4	Macro: 4-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow	
ADSU8	Macro: 8-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow	
MULT18X18	Primitive: 18 x 18 Signed Multiplier	
MULT18X18S	Primitive: 18 x 18 Signed Multiplier Registered Version	
MULT18X18SIO	Primitive: 18 x 18 Cascadable Signed Multiplier with Optional Input and Output Registers, Clock Enable, and Synchronous Reset	

Buffer

Design Element	Description
BUF	Primitive: General Purpose Buffer
BUFG	Primitive: Global Clock Buffer

Design Element	Description
BUFGCE	Primitive: Global Clock Buffer with Clock Enable
BUFGCE_1	Primitive: Global Clock Buffer with Clock Enable and Output State 1
BUFGMUX	Primitive: Global Clock MUX Buffer
BUFGMUX_1	Primitive: Global Clock MUX Buffer with Output State 1

Carry Logic

Design Element	Description
MUXCY	Primitive: 2-to-1 Multiplexer for Carry Logic with General Output
MUXCY_D	Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output
MUXCY_L	Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output
XORCY	Primitive: XOR for Carry Logic with General Output
XORCY_D	Primitive: XOR for Carry Logic with Dual Output
XORCY_L	Primitive: XOR for Carry Logic with Local Output

Comparator

Design Element	Description
COMP16	Macro: 16-Bit Identity Comparator
COMP2	Macro: 2-Bit Identity Comparator
COMP4	Macro: 4-Bit Identity Comparator
COMP8	Macro: 8-Bit Identity Comparator
COMPM16	Macro: 16-Bit Magnitude Comparator
COMPM2	Macro: 2-Bit Magnitude Comparator
COMPM4	Macro: 4-Bit Magnitude Comparator
COMPM8	Macro: 8-Bit Magnitude Comparator
COMPMC16	Macro: 16-Bit Magnitude Comparator
COMPMC8	Macro: 8-Bit Magnitude Comparator

Counter

Design Element	Description
CB16CE	Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CB16CLE	Macro: 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear
CB16CLED	Macro: 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear

Design Element	Description
CB16RE	Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CB2CE	Macro: 2-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CB2CLE	Macro: 2-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear
CB2CLED	Macro: 2-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear
CB2RE	Macro: 2-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CB4CE	Macro: 4-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CB4CLE	Macro: 4-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear
CB4CLED	Macro: 4-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear
CB4RE	Macro: 4-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CB8CE	Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CB8CLE	Macro: 8-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear
CB8CLED	Macro: 8-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear
CB8RE	Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CC16CE	Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CC16CLE	Macro: 16-Bit Loadable Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CC16CLED	Macro: 16-Bit Loadable Cascadable Bidirectional Binary Counter with Clock Enable and Asynchronous Clear
CC16RE	Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CC8CE	Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CC8CLE	Macro: 8-Bit Loadable Cascadable Binary Counter with Clock Enable and Asynchronous Clear
CC8CLED	Macro: 8-Bit Loadable Cascadable Bidirectional Binary Counter with Clock Enable and Asynchronous Clear
CC8RE	Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset
CD4CE	Macro: 4-Bit Cascadable BCD Counter with Clock Enable and Asynchronous Clear

Design Element	Description
CD4CLE	Macro: 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Asynchronous Clear
CD4RE	Macro: 4-Bit Cascadable BCD Counter with Clock Enable and Synchronous Reset
CD4RLE	Macro: 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Synchronous Reset
CJ4CE	Macro: 4-Bit Johnson Counter with Clock Enable and Asynchronous Clear
CJ4RE	Macro: 4-Bit Johnson Counter with Clock Enable and Synchronous Reset
CJ5CE	Macro: 5-Bit Johnson Counter with Clock Enable and Asynchronous Clear
CJ5RE	Macro: 5-Bit Johnson Counter with Clock Enable and Synchronous Reset
CJ8CE	Macro: 8-Bit Johnson Counter with Clock Enable and Asynchronous Clear
CJ8RE	Macro: 8-Bit Johnson Counter with Clock Enable and Synchronous Reset
CR16CE	Macro: 16-Bit Negative-Edge Binary Ripple Counter with Clock Enable and Asynchronous Clear
CR8CE	Macro: 8-Bit Negative-Edge Binary Ripple Counter with Clock Enable and Asynchronous Clear

DDR Flip Flop

Design Element	Description
IDDR2	Primitive: Double Data Rate Input D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or Asynchronous Set/Reset
ODDR2	Primitive: Dual Data Rate Output D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or Asynchronous Set/Reset

Decoder

Design Element	Description
D2_4E	Macro: 2- to 4-Line Decoder/Demultiplexer with Enable
D3_8E	Macro: 3- to 8-Line Decoder/Demultiplexer with Enable
D4_16E	Macro: 4- to 16-Line Decoder/Demultiplexer with Enable
DEC_CC16	Macro: 16-Bit Active Low Decoder
DEC_CC4	Macro: 4-Bit Active Low Decoder
DEC_CC8	Macro: 8-Bit Active Low Decoder
DECODE16	Macro: 16-Bit Active-Low Decoder
DECODE32	Macro: 32-Bit Active-Low Decoder
DECODE4	Macro: 4-Bit Active-Low Decoder
DECODE64	Macro: 64-Bit Active-Low Decoder
DECODE8	Macro: 8-Bit Active-Low Decoder

Flip Flop

Design Element	Description
FD	Primitive: D Flip-Flop
FD_1	Primitive: D Flip-Flop with Negative-Edge Clock
FD16CE	Macro: 16-Bit Data Register with Clock Enable and Asynchronous Clear
FD16RE	Macro: 16-Bit Data Register with Clock Enable and Synchronous Reset
FD4CE	Macro: 4-Bit Data Register with Clock Enable and Asynchronous Clear
FD4RE	Macro: 4-Bit Data Register with Clock Enable and Synchronous Reset
FD8CE	Macro: 8-Bit Data Register with Clock Enable and Asynchronous Clear
FD8RE	Macro: 8-Bit Data Register with Clock Enable and Synchronous Reset
FDC	Primitive: D Flip-Flop with Asynchronous Clear
FDC_1	Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Clear
FDCE	Primitive: D Flip-Flop with Clock Enable and Asynchronous Clear
FDCE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear
FDCP	Primitive: D Flip-Flop with Asynchronous Preset and Clear
FDCP_1	Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Preset and Clear
FDCPE	Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
FDCPE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and Clear
FDE	Primitive: D Flip-Flop with Clock Enable
FDE_1	Primitive: D Flip-Flop with Negative-Edge Clock and Clock Enable
FDP	Primitive: D Flip-Flop with Asynchronous Preset
FDP_1	Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Preset
FDPE	Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset
FDPE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset
FDR	Primitive: D Flip-Flop with Synchronous Reset
FDR_1	Primitive: D Flip-Flop with Negative-Edge Clock and Synchronous Reset
FDRE	Primitive: D Flip-Flop with Clock Enable and Synchronous Reset
FDRE_1	Primitive: D Flip-Flop with Negative-Clock Edge, Clock Enable, and Synchronous Reset
FDRS	Primitive: D Flip-Flop with Synchronous Reset and Set
FDRS_1	Primitive: D Flip-Flop with Negative-Clock Edge and Synchronous Reset and Set
FDRSE	Primitive: D Flip-Flop with Synchronous Reset and Set and Clock Enable
FDRSE_1	Primitive: D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock Enable
FDS	Primitive: D Flip-Flop with Synchronous Set

Design Element	Description
FDS_1	Primitive: D Flip-Flop with Negative-Edge Clock and Synchronous Set
FDSE	Primitive: D Flip-Flop with Clock Enable and Synchronous Set
FDSE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Synchronous Set
FJKC	Macro: J-K Flip-Flop with Asynchronous Clear
FJKCE	Macro: J-K Flip-Flop with Clock Enable and Asynchronous Clear
FJKP	Macro: J-K Flip-Flop with Asynchronous Preset
FJKPE	Macro: J-K Flip-Flop with Clock Enable and Asynchronous Preset
FJKRSE	Macro: J-K Flip-Flop with Clock Enable and Synchronous Reset and Set
FJKSRE	Macro: J-K Flip-Flop with Clock Enable and Synchronous Set and Reset
FTC	Macro: Toggle Flip-Flop with Asynchronous Clear
FTCE	Macro: Toggle Flip-Flop with Clock Enable and Asynchronous Clear
FTCLE	Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Clear
FTCLEX	Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Clear
FTP	Macro: Toggle Flip-Flop with Asynchronous Preset
FTPE	Macro: Toggle Flip-Flop with Clock Enable and Asynchronous Preset
FTPLE	Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Preset
FTRSE	Macro: Toggle Flip-Flop with Clock Enable and Synchronous Reset and Set
FTRSLE	Macro: Toggle/Loadable Flip-Flop with Clock Enable and Synchronous Reset and Set
FTSRE	Macro: Toggle Flip-Flop with Clock Enable and Synchronous Set and Reset
FTSRLE	Macro: Toggle/Loadable Flip-Flop with Clock Enable and Synchronous Set and Reset

General

Design Element	Description
BSCAN_SPARTAN3	Primitive: Spartan-3 Register State Capture for Bitstream Readback
CAPTURE_SPARTAN3	Primitive: Spartan-3 Register State Capture for Bitstream Readback
DCM_SP	Primitive: Digital Clock Manager
GND	Primitive: Ground-Connection Signal Tag
KEEPER	Primitive: KEEPER Symbol
PULLDOWN	Primitive: Resistor to GND for Input Pads, Open-Drain, and 3-State Outputs
PULLUP	Primitive: Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

Design Element	Description
STARTUP_SPARTAN3E	Primitive: Spartan-3E User Interface to the GSR, GTS, Configuration Startup Sequence and Multi-Boot Trigger Circuitry
VCC	Primitive: VCC-Connection Signal Tag

10

Design Element	Description
IBUF	Primitive: Input Buffer
IBUF16	Macro: 16-Bit Input Buffer
IBUF4	Macro: 4-Bit Input Buffer
IBUF8	Macro: 8-Bit Input Buffer
IBUFDS	Primitive: Differential Signaling Input Buffer with Optional Delay
IBUFG	Primitive: Dedicated Input Clock Buffer
IBUFGDS	Primitive: Differential Signaling Dedicated Input Clock Buffer and Optional Delay
IOBUF	Primitive: Bi-Directional Buffer
IOBUFDS	Primitive: 3-State Differential Signaling I/O Buffer with Active Low Output Enable
OBUF	Primitive: Output Buffer
OBUF16	Macro: 16-Bit Output Buffer
OBUF4	Macro: 4-Bit Output Buffer
OBUF8	Macro: 8-Bit Output Buffer
OBUFDS	Primitive: Differential Signaling Output Buffer
OBUFT	Primitive: 3-State Output Buffer with Active Low Output Enable
OBUFT16	Macro: 16-Bit 3-State Output Buffer with Active Low Output Enable
OBUFT4	Macro: 4-Bit 3-State Output Buffers with Active-Low Output Enable
OBUFT8	Macro: 8-Bit 3-State Output Buffers with Active-Low Output Enable
OBUFTDS	Primitive: 3-State Output Buffer with Differential Signaling, Active-Low Output Enable

IO FlipFlop

Design Element	Description
IFD	Macro: Input D Flip-Flop
IFD_1	Macro: Input D Flip-Flop with Inverted Clock (Asynchronous Preset)
IFD16	Macro: 16-Bit Input D Flip-Flop
IFD4	Macro: 4-Bit Input D Flip-Flop
IFD8	Macro: 8-Bit Input D Flip-Flop

Design Element	Description
IFDI	Macro: Input D Flip-Flop (Asynchronous Preset)
IFDI_1	Macro: Input D Flip-Flop with Inverted Clock (Asynchronous Preset)
IFDX	Macro: Input D Flip-Flop with Clock Enable
IFDX_1	Macro: Input D Flip-Flop with Inverted Clock and Clock Enable
IFDX16	Macro: 16-Bit Input D Flip-Flops with Clock Enable
IFDX4	Macro: 4-Bit Input D Flip-Flop with Clock Enable
IFDX8	Macro: 8-Bit Input D Flip-Flop with Clock Enable
IFDXI	Macro: Input D Flip-Flop with Clock Enable (Asynchronous Preset)
IFDXI_1	Macro: Input D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)
OFD	Macro: Output D Flip-Flop
OFD_1	Macro: Output D Flip-Flop with Inverted Clock
OFD16	Macro: 16-Bit Output D Flip-Flop
OFD4	Macro: 4-Bit Output D Flip-Flop
OFD8	Macro: 8-Bit Output D Flip-Flop
OFDE	Macro: D Flip-Flop with Active-High Enable Output Buffers
OFDE_1	Macro: D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock
OFDE16	Macro: 16-Bit D Flip-Flop with Active-High Enable Output Buffers
OFDE4	Macro: 4-Bit D Flip-Flop with Active-High Enable Output Buffers
OFDE8	Macro: 8-Bit D Flip-Flop with Active-High Enable Output Buffers
OFDI	Macro: Output D Flip-Flop (Asynchronous Preset)
OFDI_1	Macro: Output D Flip-Flop with Inverted Clock (Asynchronous Preset)
OFDT	Macro: D Flip-Flop with Active-Low 3-State Output Buffer
OFDT_1	Macro: D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock
OFDT16	Macro: 16-Bit D Flip-Flop with Active-Low 3-State Output Buffers
OFDT4	Macro: 4-Bit D Flip-Flop with Active-Low 3-State Output Buffers
OFDT8	Macro: 8-Bit D Flip-Flop with Active-Low 3-State Output Buffers
OFDX	Macro: Output D Flip-Flop with Clock Enable
OFDX_1	Macro: Output D Flip-Flop with Inverted Clock and Clock Enable
OFDX16	Macro: 16-Bit Output D Flip-Flop with Clock Enable
OFDX4	Macro: 4-Bit Output D Flip-Flop with Clock Enable
OFDX8	Macro: 8-Bit Output D Flip-Flop with Clock Enable
OFDXI	Macro: Output D Flip-Flop with Clock Enable (Asynchronous Preset)
OFDXI_1	Macro: Output D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

IO Latch

Design Element	Description
ILD	Macro: Transparent Input Data Latch
ILD_1	Macro: Transparent Input Data Latch with Inverted Gate
ILD16	Macro: Transparent Input Data Latch
ILD4	Macro: Transparent Input Data Latch
ILD8	Macro: Transparent Input Data Latch
ILDI	Macro: Transparent Input Data Latch (Asynchronous Preset)
ILDI_1	Macro: Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)
ILDX	Macro: Transparent Input Data Latch
ILDX_1	Macro: Transparent Input Data Latch with Inverted Gate
ILDX16	Macro: Transparent Input Data Latch
ILDX4	Macro: Transparent Input Data Latch
ILDX8	Macro: Transparent Input Data Latch
ILDXI	Macro: Transparent Input Data Latch (Asynchronous Preset)
ILDXI_1	Macro: Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

Latch

Design Element	Description
LD	Primitive: Transparent Data Latch
LD_1	Primitive: Transparent Data Latch with Inverted Gate
LD16	Macro: Multiple Transparent Data Latch
LD16CE	Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable
LD4	Macro: Multiple Transparent Data Latch
LD4CE	Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable
LD8	Macro: Multiple Transparent Data Latch
LD8CE	Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable
LDC	Primitive: Transparent Data Latch with Asynchronous Clear
LDC_1	Primitive: Transparent Data Latch with Asynchronous Clear and Inverted Gate
LDCE	Primitive: Transparent Data Latch with Asynchronous Clear and Gate Enable
LDCE_1	Primitive: Transparent Data Latch with Asynchronous Clear, Gate Enable, and Inverted Gate
LDCP	Primitive: Transparent Data Latch with Asynchronous Clear and Preset
LDCP_1	Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Inverted Gate

Design Element	Description
LDCPE	Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable
LDCPE_1	Primitive: Transparent Data Latch with Asynchronous Clear and Preset, Gate Enable, and Inverted Gate
LDE	Primitive: Transparent Data Latch with Gate Enable
LDE_1	Primitive: Transparent Data Latch with Gate Enable and Inverted Gate
LDP	Primitive: Transparent Data Latch with Asynchronous Preset
LDP_1	Primitive: Transparent Data Latch with Asynchronous Preset and Inverted Gate
LDPE	Primitive: Transparent Data Latch with Asynchronous Preset and Gate Enable
LDPE_1	Primitive: Transparent Data Latch with Asynchronous Preset, Gate Enable, and Inverted Gate

Logic

Design Element	Description
AND12	Macro: 12- Input AND Gate with Non-Inverted Inputs
AND16	Macro: 16- Input AND Gate with Non-Inverted Inputs
AND2	Primitive: 2-Input AND Gate with Non-Inverted Inputs
AND2B1	Primitive: 2-Input AND Gate with 1 Inverted and 1 Non-Inverted Inputs
AND2B2	Primitive: 2-Input AND Gate with Inverted Inputs
AND3	Primitive: 3-Input AND Gate with Non-Inverted Inputs
AND3B1	Primitive: 3-Input AND Gate with 1 Inverted and 2 Non-Inverted Inputs
AND3B2	Primitive: 3-Input AND Gate with 2 Inverted and 1 Non-Inverted Inputs
AND3B3	Primitive: 3-Input AND Gate with Inverted Inputs
AND4	Primitive: 4-Input AND Gate with Non-Inverted Inputs
AND4B1	Primitive: 4-Input AND Gate with 1 Inverted and 3 Non-Inverted Inputs
AND4B2	Primitive: 4-Input AND Gate with 2 Inverted and 2 Non-Inverted Inputs
AND4B3	Primitive: 4-Input AND Gate with 3 Inverted and 1 Non-Inverted Inputs
AND4B4	Primitive: 4-Input AND Gate with Inverted Inputs
AND5	Primitive: 5-Input AND Gate with Non-Inverted Inputs
AND5B1	Primitive: 5-Input AND Gate with 1 Inverted and 4 Non-Inverted Inputs
AND5B2	Primitive: 5-Input AND Gate with 2 Inverted and 3 Non-Inverted Inputs
AND5B3	Primitive: 5-Input AND Gate with 3 Inverted and 2 Non-Inverted Inputs
AND5B4	Primitive: 5-Input AND Gate with 4 Inverted and 1 Non-Inverted Inputs
AND5B5	Primitive: 5-Input AND Gate with Inverted Inputs
AND6	Macro: 6-Input AND Gate with Non-Inverted Inputs
AND7	Macro: 7-Input AND Gate with Non-Inverted Inputs

Design Element	Description
AND8	Macro: 8-Input AND Gate with Non-Inverted Inputs
AND9	Macro: 9-Input AND Gate with Non-Inverted Inputs
INV	Primitive: Inverter
INV16	Macro: 16 Inverters
INV4	Macro: Four Inverters
INV8	Macro: Eight Inverters
MULT_AND	Primitive: Fast Multiplier AND
NAND12	Macro: 12- Input NAND Gate with Non-Inverted Inputs
NAND16	Macro: 16- Input NAND Gate with Non-Inverted Inputs
NAND2	Primitive: 2-Input NAND Gate with Non-Inverted Inputs
NAND2B1	Primitive: 2-Input NAND Gate with 1 Inverted and 1 Non-Inverted Inputs
NAND2B2	Primitive: 2-Input NAND Gate with Inverted Inputs
NAND3	Primitive: 3-Input NAND Gate with Non-Inverted Inputs
NAND3B1	Primitive: 3-Input NAND Gate with 1 Inverted and 2 Non-Inverted Inputs
NAND3B2	Primitive: 3-Input NAND Gate with 2 Inverted and 1 Non-Inverted Inputs
NAND3B3	Primitive: 3-Input NAND Gate with Inverted Inputs
NAND4	Primitive: 4-Input NAND Gate with Non-Inverted Inputs
NAND4B1	Primitive: 4-Input NAND Gate with 1 Inverted and 3 Non-Inverted Inputs
NAND4B2	Primitive: 4-Input NAND Gate with 2 Inverted and 2 Non-Inverted Inputs
NAND4B3	Primitive: 4-Input NAND Gate with 3 Inverted and 1 Non-Inverted Inputs
NAND4B4	Primitive: 4-Input NAND Gate with Inverted Inputs
NAND5	Primitive: 5-Input NAND Gate with Non-Inverted Inputs
NAND5B1	Primitive: 5-Input NAND Gate with 1 Inverted and 4 Non-Inverted Inputs
NAND5B2	Primitive: 5-Input NAND Gate with 2 Inverted and 3 Non-Inverted Inputs
NAND5B3	Primitive: 5-Input NAND Gate with 3 Inverted and 2 Non-Inverted Inputs
NAND5B4	Primitive: 5-Input NAND Gate with 4 Inverted and 1 Non-Inverted Inputs
NAND5B5	Primitive: 5-Input NAND Gate with Inverted Inputs
NAND6	Macro: 6-Input NAND Gate with Non-Inverted Inputs
NAND7	Macro: 7-Input NAND Gate with Non-Inverted Inputs
NAND8	Macro: 8-Input NAND Gate with Non-Inverted Inputs
NAND9	Macro: 9-Input NAND Gate with Non-Inverted Inputs
NOR12	Macro: 12-Input NOR Gate with Non-Inverted Inputs
NOR16	Macro: 16-Input NOR Gate with Non-Inverted Inputs
NOR2	Primitive: 2-Input NOR Gate with Non-Inverted Inputs
NOR2B1	Primitive: 2-Input NOR Gate with 1 Inverted and 1 Non-Inverted Inputs
NOR2B2	Primitive: 2-Input NOR Gate with Inverted Inputs

Design Element	Description
NOR3	Primitive: 3-Input NOR Gate with Non-Inverted Inputs
NOR3B1	Primitive: 3-Input NOR Gate with 1 Inverted and 2 Non-Inverted Inputs
NOR3B2	Primitive: 3-Input NOR Gate with 2 Inverted and 1 Non-Inverted Inputs
NOR3B3	Primitive: 3-Input NOR Gate with Inverted Inputs
NOR4	Primitive: 4-Input NOR Gate with Non-Inverted Inputs
NOR4B1	Primitive: 4-Input NOR Gate with 1 Inverted and 3 Non-Inverted Inputs
NOR4B2	Primitive: 4-Input NOR Gate with 2 Inverted and 2 Non-Inverted Inputs
NOR4B3	Primitive: 4-Input NOR Gate with 3 Inverted and 1 Non-Inverted Inputs
NOR4B4	Primitive: 4-Input NOR Gate with Inverted Inputs
NOR5	Primitive: 5-Input NOR Gate with Non-Inverted Inputs
NOR5B1	Primitive: 5-Input NOR Gate with 1 Inverted and 4 Non-Inverted Inputs
NOR5B2	Primitive: 5-Input NOR Gate with 2 Inverted and 3 Non-Inverted Inputs
NOR5B3	Primitive: 5-Input NOR Gate with 3 Inverted and 2 Non-Inverted Inputs
NOR5B4	Primitive: 5-Input NOR Gate with 4 Inverted and 1 Non-Inverted Inputs
NOR5B5	Primitive: 5-Input NOR Gate with Inverted Inputs
NOR6	Macro: 6-Input NOR Gate with Non-Inverted Inputs
NOR7	Macro: 7-Input NOR Gate with Non-Inverted Inputs
NOR8	Macro: 8-Input NOR Gate with Non-Inverted Inputs
NOR9	Macro: 9-Input NOR Gate with Non-Inverted Inputs
OR12	Macro: 12-Input OR Gate with Non-Inverted Inputs
OR16	Macro: 16-Input OR Gate with Non-Inverted Inputs
OR2	Primitive: 2-Input OR Gate with Non-Inverted Inputs
OR2B1	Primitive: 2-Input OR Gate with 1 Inverted and 1 Non-Inverted Inputs
OR2B2	Primitive: 2-Input OR Gate with Inverted Inputs
OR3	Primitive: 3-Input OR Gate with Non-Inverted Inputs
OR3B1	Primitive: 3-Input OR Gate with 1 Inverted and 2 Non-Inverted Inputs
OR3B2	Primitive: 3-Input OR Gate with 2 Inverted and 1 Non-Inverted Inputs
OR3B3	Primitive: 3-Input OR Gate with Inverted Inputs
OR4	Primitive: 4-Input OR Gate with Non-Inverted Inputs
OR4B1	Primitive: 4-Input OR Gate with 1 Inverted and 3 Non-Inverted Inputs
OR4B2	Primitive: 4-Input OR Gate with 2 Inverted and 2 Non-Inverted Inputs
OR4B3	Primitive: 4-Input OR Gate with 3 Inverted and 1 Non-Inverted Inputs
OR4B4	Primitive: 4-Input OR Gate with Inverted Inputs
OR5	Primitive: 5-Input OR Gate with Non-Inverted Inputs
OR5B1	Primitive: 5-Input OR Gate with 1 Inverted and 4 Non-Inverted Inputs
OR5B2	Primitive: 5-Input OR Gate with 2 Inverted and 3 Non-Inverted Inputs

Design Element	Description
OR5B3	Primitive: 5-Input OR Gate with 3 Inverted and 2 Non-Inverted Inputs
OR5B4	Primitive: 5-Input OR Gate with 4 Inverted and 1 Non-Inverted Inputs
OR5B5	Primitive: 5-Input OR Gate with Inverted Inputs
OR6	Macro: 6-Input OR Gate with Non-Inverted Inputs
OR7	Macro: 7-Input OR Gate with Non-Inverted Inputs
OR8	Macro: 8-Input OR Gate with Non-Inverted Inputs
OR9	Macro: 9-Input OR Gate with Non-Inverted Inputs
SOP3	Macro: Sum of Products
SOP3B1A	Macro: Sum of Products
SOP3B1B	Macro: Sum of Products
SOP3B2A	Macro: Sum of Products
SOP3B2B	Macro: Sum of Products
SOP3B3	Macro: Sum of Products
SOP4	Macro: Sum of Products
SOP4B1	Macro: Sum of Products
SOP4B2A	Macro: Sum of Products
SOP4B2B	Macro: Sum of Products
SOP4B3	Macro: Sum of Products
SOP4B4	Macro: Sum of Products
XNOR2	Primitive: 2-Input XNOR Gate with Non-Inverted Inputs
XNOR3	Primitive: 3-Input XNOR Gate with Non-Inverted Inputs
XNOR4	Primitive: 4-Input XNOR Gate with Non-Inverted Inputs
XNOR5	Primitive: 5-Input XNOR Gate with Non-Inverted Inputs
XNOR6	Macro: 6-Input XNOR Gate with Non-Inverted Inputs
XNOR7	Macro: 7-Input XNOR Gate with Non-Inverted Inputs
XNOR8	Macro: 8-Input XNOR Gate with Non-Inverted Inputs
XNOR9	Macro: 9-Input XNOR Gate with Non-Inverted Inputs
XOR2	Primitive: 2-Input XOR Gate with Non-Inverted Inputs
XOR3	Primitive: 3-Input XOR Gate with Non-Inverted Inputs
XOR4	Primitive: 4-Input XOR Gate with Non-Inverted Inputs
XOR5	Primitive: 5-Input XOR Gate with Non-Inverted Inputs
XOR6	Macro: 6-Input XOR Gate with Non-Inverted Inputs
XOR7	Macro: 7-Input XOR Gate with Non-Inverted Inputs
XOR8	Macro: 8-Input XOR Gate with Non-Inverted Inputs
XOR9	Macro: 9-Input XOR Gate with Non-Inverted Inputs

LUT

Design Element	Description
LUT1	Primitive: 1-Bit Look-Up-Table with General Output
LUT1_D	Primitive: 1-Bit Look-Up-Table with Dual Output
LUT1_L	Primitive: 1-Bit Look-Up-Table with Local Output
LUT2	Primitive: 2-Bit Look-Up-Table with General Output
LUT2_D	Primitive: 2-Bit Look-Up-Table with Dual Output
LUT2_L	Primitive: 2-Bit Look-Up-Table with Local Output
LUT3	Primitive: 3-Bit Look-Up-Table with General Output
LUT3_D	Primitive: 3-Bit Look-Up-Table with Dual Output
LUT3_L	Primitive: 3-Bit Look-Up-Table with Local Output
LUT4	Primitive: 4-Bit Look-Up-Table with General Output
LUT4_D	Primitive: 4-Bit Look-Up-Table with Dual Output
LUT4_L	Primitive: 4-Bit Look-Up-Table with Local Output

Memory

Design Element Description					
RAM16X1D	Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM				
RAM16X1D_1	Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock				
RAM16X1S	Primitive: 16-Deep by 1-Wide Static Synchronous RAM				
RAM16X1S_1	Primitive: 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock				
RAM16X2S	Primitive: 16-Deep by 2-Wide Static Synchronous RAM				
RAM16X4S	Primitive: 16-Deep by 4-Wide Static Synchronous RAM				
RAM16X8S	Primitive: 16-Deep by 8-Wide Static Synchronous RAM				
RAM32X1S	Primitive: 32-Deep by 1-Wide Static Synchronous RAM				
RAM32X1S_1	Primitive: 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock				
RAM32X2S	Primitive: 32-Deep by 2-Wide Static Synchronous RAM				
RAM32X4S	Primitive: 32-Deep by 4-Wide Static Synchronous RAM				
RAM32X8S	Primitive: 32-Deep by 8-Wide Static Synchronous RAM				
RAM64X1S	Primitive: 64-Deep by 1-Wide Static Synchronous RAM				
RAM64X1S_1	Primitive: 64-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock				
RAM64X2S	Primitive: 64-Deep by 2-Wide Static Synchronous RAM				
RAMB16_S1	No: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 1-bit Port				

Design Element	Description				
RAMB16_S1_S1	Primitive:				
RAMB16_S1_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 18-bit Ports				
RAMB16_S1_S2	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAN with 1-bit and 2-bit Ports				
RAMB16_S1_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 36-bit Ports				
RAMB16_S1_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 4-bit Ports				
RAMB16_S1_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 9-bit Ports				
RAMB16_S18	No: 16K-bit Data + 2K-bit Parity Memory, Single-Port Synchronous Block RAM with 18-bit Port				
RAMB16_S18_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit Ports				
RAMB16_S18_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit and 36-bit Ports				
RAMB16_S2	No: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit Port				
RAMB16_S2_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 18-bit Ports				
RAMB16_S2_S2	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit Ports				
RAMB16_S2_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 36-bit Ports				
RAMB16_S2_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 4-bit Ports				
RAMB16_S2_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 9-bit Ports				
RAMB16_S36	No: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 36-bit Port				
RAMB16_S36_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with Two 36-bit Ports				
RAMB16_S4	No: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 4-bit Port				
RAMB16_S4_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 18-bit Ports				
RAMB16_S4_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 36-bit Ports				
RAMB16_S4_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit Ports				
RAMB16_S4_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 9-bit Ports				

Design Element	Description			
RAMB16_S9	No: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 9-bit Port			
RAMB16_S9_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 18-bit Ports			
RAMB16_S9_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 36-bit Ports			
RAMB16_S9_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit Ports			
ROM128X1	Primitive: 128-Deep by 1-Wide ROM			
ROM16X1	Primitive: 16-Deep by 1-Wide ROM			
ROM256X1	Primitive: 256-Deep by 1-Wide ROM			
ROM32X1	Primitive: 32-Deep by 1-Wide ROM			
ROM64X1	Primitive: 64-Deep by 1-Wide ROM			

Mux

Design Element	Description				
M16_1E	Macro: 16-to-1 Multiplexer with Enable				
M2_1	Macro: 2-to-1 Multiplexer				
M2_1B1	Macro: 2-to-1 Multiplexer with D0 Inverted				
M2_1B2	Macro: 2-to-1 Multiplexer with D0 and D1 Inverted				
M2_1E	Macro: 2-to-1 Multiplexer with Enable				
M4_1E	Macro: 4-to-1 Multiplexer with Enable				
M8_1E	Macro: 8-to-1 Multiplexer with Enable				
MUXF5	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output				
MUXF5_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output				
MUXF5_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output				
MUXF6	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output				
MUXF6_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output				
MUXF6_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output				
MUXF7	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output				
MUXF7_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output				
MUXF7_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output				
MUXF8	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output				
MUXF8_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output				
MUXF8_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output				

Shift Register

Design Element	Description				
SR16CE	Macro: 16-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR16CLE	Macro: 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR16CLED	Macro: 16-Bit Shift Register with Clock Enable and Asynchronous Clear				
SR16RE	Macro: 16-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR16RLE	Macro: 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR16RLED	Macro: 16-Bit Shift Register with Clock Enable and Synchronous Reset				
SR4CE	Macro: 4-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR4CLE	Macro: 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR4CLED	Macro: 4-Bit Shift Register with Clock Enable and Asynchronous Clear				
SR4RE	Macro: 4-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR4RLE	Macro: 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR4RLED	Macro: 4-Bit Shift Register with Clock Enable and Synchronous Reset				
SR8CE	Macro: 8-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR8CLE	Macro: 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear				
SR8CLED	Macro: 8-Bit Shift Register with Clock Enable and Asynchronous Clear				
SR8RE	Macro: 8-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR8RLE	Macro: 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset				
SR8RLED	Macro: 8-Bit Shift Register with Clock Enable and Synchronous Reset				
SRL16	Primitive: 16-Bit Shift Register Look-Up-Table (LUT)				
SRL16_1	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock				
SRL16E	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable				
SRL16E_1	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock Enable				
SRLC16	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry				
SRLC16_1	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Negative-Edge Clock				

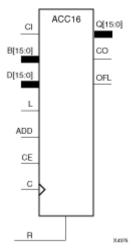
Design Element	Description			
SRLC16E	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Clock Enable			
SRLC16E_1	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry, Negative-Edge Clock, and Clock Enable			

Shifter

Design Element	Description
BRLSHFT4	Macro: 4-Bit Barrel Shifter
BRLSHFT8	Macro: 8-Bit Barrel Shifter

About Design Elements

This section describes the design elements that can be used with this architecture. The design elements are organized alphabetically.


The following information is provided for each design element, where applicable:

- Name of element
- Brief description
- Schematic symbol (if any)
- Logic Table (if any)
- Port Descriptions (if any)
- Usage
- Available Attributes (if any)
- For more information

You can find examples of VHDL and Verilog instantiation code in the ISE software (in the main menu, select **Edit** > **Language Templates** or in the *Libraries Guide for HDL Designs* for this architecture.

ACC₁₆

Macro: 16-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset

Introduction

This design element can add or subtract a 16-bit unsigned-binary, respectively or twos-complement word to or from the contents of a 16-bit data register and store the results in the register. The register can be loaded with the 16-bit word.

When the load input (L) is High, CE is ignored and the data on the D inputs is loaded into the register during the Low-to-High clock (C) transition. ACC16 loads the data on inputs D15 – D0 into the 16-bit register.

This design element operates on either 16-bit unsigned binary numbers or 16-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is how they determine when "overflow" occurs. Unsigned binary uses carry-out (CO), while twos complement uses OFL to determine when "overflow" occurs.

• For unsigned binary operation, ACC16 can represent numbers between 0 and 15, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds. The carry-out (CO) is not registered synchronously with the data outputs. CO always reflects the accumulation of the B inputs (B15 – B0 for ACC16). This allows the cascading of ACC16s by connecting CO of one stage to CI of the next stage. An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

```
unsigned overflow = CO XOR ADD
```

Ignore OFL in unsigned binary operation.

For twos-complement operation, ACC16 represents numbers between -8 and +7, inclusive. If an addition or subtraction operation result exceeds this range, the OFL output goes High. The overflow (OFL) is not registered synchronously with the data outputs. OFL always reflects the accumulation of the B inputs (B15 – B0 for ACC16) and the contents of the register, which allows cascading of ACC4s by connecting OFL of one stage to CI of the next stage.

Ignore CO in twos-complement operation.

The synchronous reset (R) has priority over all other inputs, and when set to High, causes all outputs to go to logic level zero during the Low-to-High clock (C) transition. Clock (C) transitions are ignored when clock enable (CE) is Low.

This design element is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

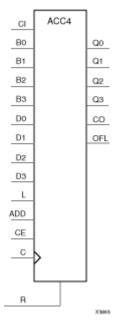
Input				Output		
R	L	CE	ADD	D	С	Q
1	x	x	x	x	Rising	0
0	1	x	x	Dn	Rising	Dn
0	0	1	1	X	Rising	Q0+Bn+CI
0	0	1	0	Х	Rising	Q0-Bn-CI
0	0	0	x	X	Rising	No Change

Q0: Previous value of Q

Bn: Value of Data input B

CI: Value of input CI

Design Entry Method


This design element is only for use in schematics.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ACC4

Macro: 4-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset

Introduction

This design element can add or subtract a 4-bit unsigned-binary, respectively or twos-complement word to or from the contents of a 4-bit data register and store the results in the register. The register can be loaded with the 4-bit word.

When the load input (L) is High, CE is ignored and the data on the D inputs is loaded into the register during the Low-to-High clock (C) transition. ACC4 loads the data on inputs D3 – D0 into the 4-bit register.

This design element operates on either 4-bit unsigned binary numbers or 4-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is how they determine when "overflow" occurs. Unsigned binary uses carry-out (CO), while twos complement uses OFL to determine when "overflow" occurs.

• For unsigned binary operation, ACC4 can represent numbers between 0 and 15, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds. The carry-out (CO) is not registered synchronously with the data outputs. CO always reflects the accumulation of the B inputs (B3 – B0 for ACC4). This allows the cascading of ACC4s by connecting CO of one stage to CI of the next stage. An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

```
unsigned overflow = CO XOR ADD
```

Ignore OFL in unsigned binary operation.

• For twos-complement operation, ACC4 represents numbers between -8 and +7, inclusive. If an addition or subtraction operation result exceeds this range, the OFL output goes High. The overflow (OFL) is not registered synchronously with the data outputs. OFL always reflects the accumulation of the B inputs (B3 – B0 for ACC4) and the contents of the register, which allows cascading of ACC4s by connecting OFL of one stage to CI of the next stage.

Ignore CO in twos-complement operation.

The synchronous reset (R) has priority over all other inputs, and when set to High, causes all outputs to go to logic level zero during the Low-to-High clock (C) transition. Clock (C) transitions are ignored when clock enable (CE) is Low.

This design element is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

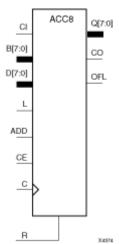
Logic Table

Input						Output
R	L	CE	ADD	D	С	Q
1	x	x	х	х	Rising	0
0	1	x	x	Dn	Rising	Dn
0	0	1	1	х	Rising	Q0+Bn+CI
0	0	1	0	х	Rising	Q0-Bn-CI
0	0	0	х	х	Rising	No Change

Q0: Previous value of Q

Bn: Value of Data input B

CI: Value of input CI


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ACC8

Macro: 8-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous Reset

Introduction

This design element can add or subtract a 8-bit unsigned-binary, respectively or twos-complement word to or from the contents of a 8-bit data register and store the results in the register. The register can be loaded with the 8-bit word.

When the load input (L) is High, CE is ignored and the data on the D inputs is loaded into the register during the Low-to-High clock (C) transition. ACC8 loads the data on inputs D7 – D0 into the 8-bit register.

This design element operates on either 8-bit unsigned binary numbers or 8-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is how they determine when "overflow" occurs. Unsigned binary uses carry-out (CO), while twos complement uses OFL to determine when "overflow" occurs.

• For unsigned binary operation, ACC8 can represent numbers between 0 and 255, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds. The carry-out (CO) is not registered synchronously with the data outputs. CO always reflects the accumulation of the B inputs (B3 – B0 for ACC4). This allows the cascading of ACC8s by connecting CO of one stage to CI of the next stage. An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

```
unsigned overflow = CO XOR ADD
```

Ignore OFL in unsigned binary operation.

• For twos-complement operation, ACC8 represents numbers between -128 and +127, inclusive. If an addition or subtraction operation result exceeds this range, the OFL output goes High. The overflow (OFL) is not registered synchronously with the data outputs. OFL always reflects the accumulation of the B inputs (B3 – B0 for ACC8) and the contents of the register, which allows cascading of ACC8s by connecting OFL of one stage to CI of the next stage.

Ignore CO in twos-complement operation.

The synchronous reset (R) has priority over all other inputs, and when set to High, causes all outputs to go to logic level zero during the Low-to-High clock (C) transition. Clock (C) transitions are ignored when clock enable (CE) is Low.

This design element is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

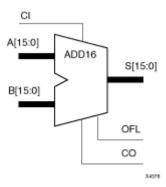
Logic Table

Input						Output
R	L	CE	ADD	D	С	Q
1	x	x	x	x	Rising	0
0	1	x	x	Dn	Rising	Dn
0	0	1	1	х	Rising	Q0+Bn+CI
0	0	1	0	Х	Rising	Q0-Bn-CI
0	0	0	x	х	Rising	No Change

Q0: Previous value of Q

Bn: Value of Data input B

CI: Value of input CI


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ADD16

Macro: 16-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow

Introduction

This design element adds two words and a carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). The factors added are A15 – A0, B15 – B0 and CI, producing the sum output S15 – S0 and CO (or OFL).

Logic Table

Input	Output			
A	В	S		
An Bn		An+Bn+CI		
CI: Value of input CI.				

Unsigned Binary Versus Twos Complement

This design element can operate on either 16-bit unsigned binary numbers or 16-bit twos-complement numbers, respectively. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos-complement uses OFL to determine when "overflow" occurs. To interpret the inputs as unsigned binary, follow the CO output. To interpret the inputs as twos complement, follow the OFL output.

Unsigned Binary Operation

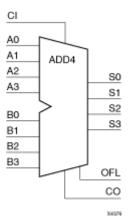
For unsigned binary operation, this element represents numbers between 0 and 65535, inclusive. OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -32768 and +32767, inclusive. OFL is active (High) when the sum exceeds the bounds of the adder. CO is ignored in twos-complement operation.

Design Entry Method

This design element is only for use in schematics.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

ADD4

Macro: 4-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow

Introduction

This design element adds two words and a carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). The factors added are A3 – A0, B3 – B0, and CI producing the sum output S3 – S0 and CO (or OFL).

Logic Table

Input	Output			
A	В	S		
An	Bn	An+Bn+CI		
CI: Value of input CI.				

Unsigned Binary Versus Twos Complement

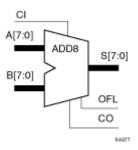
This design element can operate on either 4-bit unsigned binary numbers or 4-bit twos-complement numbers, respectively. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos-complement uses OFL to determine when "overflow" occurs. To interpret the inputs as unsigned binary, follow the CO output. To interpret the inputs as twos complement, follow the OFL output.

Unsigned Binary Operation

For unsigned binary operation, this element represents numbers from 0 to 15, inclusive. OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -8 and +7, inclusive. OFL is active (High) when the sum exceeds the bounds of the adder. CO is ignored in twos-complement operation.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ADD8

Macro: 8-Bit Cascadable Full Adder with Carry-In, Carry-Out, and Overflow

Introduction

This design element adds two words and a carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). The factors added are A7 – A0, B7 – B0, and CI, producing the sum output S7 – S0 and CO (or OFL).

Logic Table

Input	Output			
A	В	S		
An Bn		An+Bn+CI		
CI: Value of input CI.				

Unsigned Binary Versus Twos Complement

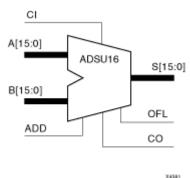
This design element can operate on either 8-bit unsigned binary numbers or 8-bit twos-complement numbers, respectively. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos-complement uses OFL to determine when "overflow" occurs. To interpret the inputs as unsigned binary, follow the CO output. To interpret the inputs as twos complement, follow the OFL output.

Unsigned Binary Operation

For unsigned binary operation, this element represents numbers between 0 and 255, inclusive. OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -128 and +127, inclusive. OFL is active (High) when the sum exceeds the bounds of the adder. CO is ignored in twos-complement operation.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ADSU16

Macro: 16-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow

Introduction

Logic Table

Input	Output			
ADD	A	В	S	
1	An	Bn	An+Bn+CI*	
0	An	Bn	An-Bn-CI*	
CI*: ADD = 0, CI, CO active LOW				
CI*: ADD = 1, CI, CO active HIGH				

Unsigned Binary Versus Twos Complement

This design element can operate on either 16-bit unsigned binary numbers or 16-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos complement uses OFL to determine when "overflow" occurs.

With adder/subtracters, either unsigned binary or twos-complement operations cause an overflow. If the result crosses the overflow boundary, an overflow is generated. Similarly, when the result crosses the carry-out boundary, a carry-out is generated. The following figure shows the ADSU carry-out and overflow boundaries.

Unsigned Binary Operation

For unsigned binary operation, this element can represent numbers between 0 and 65535, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds.

An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

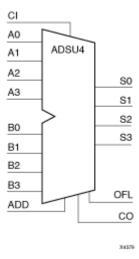
unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -32768 and +32767, inclusive.

If an addition or subtraction operation result exceeds this range, the OFL output goes High. CO is ignored in twos-complement operation.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ADSU4

Macro: 4-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow

Introduction

When the ADD input is High, this element adds two words and a carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). For this element, two 4-bit words (A3 – A0 and B3 – B0) and a CI are added, producing a 4-bit sum output (S3 – S0) and CO or OFL

When the ADD input is Low, this element subtracts Bz – B0 from Az– A0, producing a difference output and CO or OFL. It subtracts B3 – B0 from A3 – A0, producing a 4-bit difference (S3 – S0) and CO or OFL.

In add mode, CO and CI are active-High. In subtract mode, CO and CI are active-Low. OFL is active-High in add and subtract modes.

Logic Table

Input	Output			
ADD	A	В	S	
1	An	Bn	An+Bn+CI*	
0	An	Bn	An-Bn-CI*	
CI*: ADD = 0, CI, CO active LOW				
CI*: ADD = 1, CI, CO active HIGH				

Unsigned Binary Versus Twos Complement

This design element can operate on either 4-bit unsigned binary numbers or 4-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos complement uses OFL to determine when "overflow" occurs.

With adder/subtracters, either unsigned binary or twos-complement operations cause an overflow. If the result crosses the overflow boundary, an overflow is generated. Similarly, when the result crosses the carry-out boundary, a carry-out is generated. The following figure shows the ADSU carry-out and overflow boundaries.

Unsigned Binary Operation

For unsigned binary operation, ADSU4 can represent numbers between 0 and 15, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds.

An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

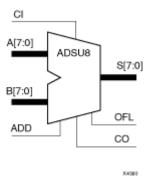
```
unsigned overflow = CO XOR ADD
```

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -8 and +7, inclusive.

If an addition or subtraction operation result exceeds this range, the OFL output goes High. CO is ignored in twos-complement operation.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ADSU8

Macro: 8-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out, and Overflow

Introduction

When the ADD input is High, this element adds two words and a carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). For this element, two 8-bit words (A7 - A0 and B7 - B0) and a CI producing, an 8-bit sum output (S7 - S0) and CO or OFL.

When the ADD input is Low, this element subtracts B7 - B0 from A7 - A0, producing an 8-bit difference (S7 - S0) and CO or OFL.

Logic Table

Input	Output			
ADD	A	В	S	
1	An	Bn	An+Bn+CI*	
0	An	Bn	An-Bn-CI*	
CI*: ADD = 0, CI, CO active LOW				
CI*: ADD = 1, CI, CO active HIGH				

Unsigned Binary Versus Twos Complement

This design element can operate on either 8-bit unsigned binary numbers or 8-bit twos-complement numbers. If the inputs are interpreted as unsigned binary, the result can be interpreted as unsigned binary. If the inputs are interpreted as twos complement, the output can be interpreted as twos complement. The only functional difference between an unsigned binary operation and a twos-complement operation is the way they determine when "overflow" occurs. Unsigned binary uses CO, while twos complement uses OFL to determine when "overflow" occurs.

With adder/subtracters, either unsigned binary or twos-complement operations cause an overflow. If the result crosses the overflow boundary, an overflow is generated. Similarly, when the result crosses the carry-out boundary, a carry-out is generated. The following figure shows the ADSU carry-out and overflow boundaries.

Unsigned Binary Operation

For unsigned binary operation, this element can represent numbers between 0 and 255, inclusive. In add mode, CO is active (High) when the sum exceeds the bounds of the adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the difference exceeds the bounds.

An unsigned binary "overflow" that is always active-High can be generated by gating the ADD signal and CO as follows:

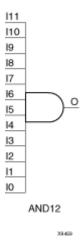
unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, this element can represent numbers between -128 and +127, inclusive.

If an addition or subtraction operation result exceeds this range, the OFL output goes High. CO is ignored in twos-complement operation.


Design Entry Method

This design element is only for use in schematics.

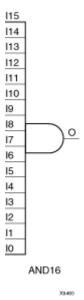
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND₁₂

Macro: 12- Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND₁₆

Macro: 16- Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND₂

Primitive: 2-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND2B1

Primitive: 2-Input AND Gate with 1 Inverted and 1 Non-Inverted Inputs

AND2B1 11 10 ×10024

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND2B2

Primitive: 2-Input AND Gate with Inverted Inputs

AND2B2

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND3

Primitive: 3-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND3B1

Primitive: 3-Input AND Gate with 1 Inverted and 2 Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND3B2

Primitive: 3-Input AND Gate with 2 Inverted and 1 Non-Inverted Inputs

AND3B2 12 11 0 N10730

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND3B3

Primitive: 3-Input AND Gate with Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND4

Primitive: 4-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input AND Gate with 1 Inverted and 3 Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input AND Gate with 2 Inverted and 2 Non-Inverted Inputs

AND4B2

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input AND Gate with 3 Inverted and 1 Non-Inverted Inputs

AND4B3

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

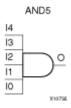
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input AND Gate with Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

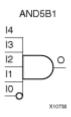
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND₅

Primitive: 5-Input AND Gate with Non-Inverted Inputs

Introduction


AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input AND Gate with 1 Inverted and 4 Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

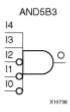
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input AND Gate with 2 Inverted and 3 Non-Inverted Inputs

AND5B2 |4 |3 |2 |2 |0 |0

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

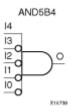
Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input AND Gate with 3 Inverted and 2 Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input AND Gate with 4 Inverted and 1 Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.

Design Entry Method

This design element is only for use in schematics.

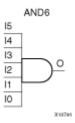
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input AND Gate with Inverted Inputs

AND5B5

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND₆

Macro: 6-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

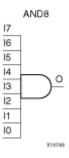
- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

AND7

Macro: 7-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

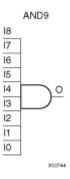
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

AND8

Macro: 8-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

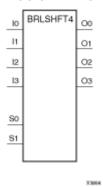
- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

AND9

Macro: 9-Input AND Gate with Non-Inverted Inputs

Introduction

AND functions of up to five inputs are available in any combination of inverting and non-inverting inputs. AND functions of six to nine inputs, 12 inputs, and 16 inputs are available with noninverting inputs. To make some or all inputs inverting, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the appropriate number of inputs.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BRLSHFT4

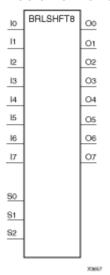
Macro: 4-Bit Barrel Shifter

Introduction

This design element is a 4-bit barrel shifter that can rotate four inputs (I3 - I0) up to four places. The control inputs (S1 and S0) determine the number of positions, from one to four, that the data is rotated. The four outputs (O3 - O0) reflect the shifted data inputs.

Logic Table

Inputs						Outputs			
S1	S0	10	I1	I2	I3	O0	O 1	O2	O3
0	0	a	b	С	d	a	b	С	d
0	1	a	b	С	d	b	С	d	a
1	0	a	b	С	d	С	d	a	b
1	1	a	b	С	d	d	a	b	С


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BRLSHFT8

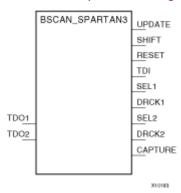
Macro: 8-Bit Barrel Shifter

Introduction

This design element is an 8-bit barrel shifter, can rotate the eight inputs (I7 - I0) up to eight places. The control inputs (S2 - S0) determine the number of positions, from one to eight, that the data is rotated. The eight outputs (O7 - O0) reflect the shifted data inputs.

Logic Table

Inpu	Inputs								Outputs									
S2	S1	S0	I 0	I1	I2	I 3	I4	I 5	I6	I7	O0	O 1	O2	О3	O4	O 5	O 6	O 7
0	0	0	a	b	С	d	e	f	g	h	a	b	С	d	e	f	g	h
0	0	1	a	b	С	d	e	f	g	h	b	С	d	e	f	g	h	a
0	1	0	a	b	С	d	e	f	g	h	С	d	e	f	g	h	a	b
0	1	1	a	b	С	d	e	f	g	h	d	e	f	g	h	a	b	С
1	0	0	a	b	С	d	e	f	g	h	e	f	g	h	a	b	С	d
1	0	1	a	b	С	d	e	f	g	h	f	g	h	a	b	С	d	e
1	1	0	a	b	С	d	e	f	g	h	g	h	a	b	С	d	e	f
1	1	1	a	b	С	d	e	f	g	h	h	a	b	С	d	e	f	g


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BSCAN SPARTAN3

Primitive: Spartan-3 Register State Capture for Bitstream Readback

Introduction

This design element provides access to the BSCAN sites on a Spartan-3 device. It is used to create internal boundary scan chains. The 4-pin JTAG interface (TDI, TDO, TCK, and TMS) are dedicated pins in Spartan-3. To use normal JTAG for boundary scan purposes, just hook up the JTAG pins to the port and go. The pins on the BSCAN_SPARTAN3 symbol do not need to be connected, unless those special functions are needed to drive an internal scan chain.

A signal on the TDO1 input is passed to the external TDO output when the USER1 instruction is executed; the SEL1 output goes High to indicate that the USER1 instruction is active. The DRCK1 output provides USER1 access to the data register clock (generated by the TAP controller). The TDO2 and SEL2 pins perform a similar function for the USER2 instruction and the DRCK2 output provides USER2 access to the data register clock (generated by the TAP controller). The RESET, UPDATE, SHIFT, and CAPTURE pins represent the decoding of the corresponding state of the boundary scan internal state machine. The TDI pin provides access to the TDI signal of the JTAG port in order to shift data into an internal scan chain.

Note For specific information on boundary scan for an architecture, see The Programmable Logic Data Sheets

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUF

Primitive: General Purpose Buffer

BUF

Introduction

This is a general-purpose, non-inverting buffer.

This element is not necessary and is removed by the partitioning software (MAP).

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUFG

Primitive: Global Clock Buffer

BUFG

Introduction

This design element is a high-fanout buffer that connects signals to the global routing resources for low skew distribution of the signal. BUFGs are typically used on clock nets as well other high fanout nets like sets/resets and clock enables.

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUFGCE

Primitive: Global Clock Buffer with Clock Enable

Introduction

This design element is a global clock buffer with a single gated input. Its O output is "0" when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is transferred to the O output.

Logic Table

Inp	outs	Outputs
I	CE	0
X	0	0
I	1	I

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUFGCE_1

Primitive: Global Clock Buffer with Clock Enable and Output State 1

Introduction

This design element is a multiplexed global clock buffer with a single gated input. Its O output is High (1) when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is transferred to the O output.

Logic Table

Inp	Inputs					
I	CE	0				
X	0	1				
I	1	I				

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUFGMUX

Primitive: Global Clock MUX Buffer

Introduction

BUFGMUX is a multiplexed global clock buffer, based off of the BUFGCTRL, that can select between two input clocks: I0 and I1. When the select input (S) is Low, the signal on I0 is selected for output (O). When the select input (S) is High, the signal on I1 is selected for output.

BUFGMUX_1 are distinguished by the state the output assumes when that output switches between clocks in response to a change in its select input. BUGFMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.

Note BUFGMUX guarantees that when S is toggled, the state of the output remains in the inactive state until the next active clock edge (either I0 or I1) occurs.

Port Descriptions

Inputs	Outputs		
10	I1	S	0
10	X	0	I0
Χ	I1	1	I1
X	X		0
Χ	Χ		0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

BUFGMUX_1

Primitive: Global Clock MUX Buffer with Output State 1

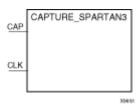
Introduction

This design element is a multiplexed global clock buffer that can select between two input clocks: I0 and I1. When the select input (S) is Low, the signal on I0 is selected for output (0). When the select input (S) is High, the signal on I1 is selected for output.

This design element is distinguished from BUFGMUX by the state the output assumes when that output switches between clocks in response to a change in its select input. BUFGMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.

Logic Table

Inputs	Outputs		
10	I1	S	0
10	Χ	0	I0
X	I1	1	I1
X	Х		1
Χ	X		1


Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CAPTURE_SPARTAN3

Primitive: Spartan-3 Register State Capture for Bitstream Readback

Introduction

The Copyrights and Trademarks element provides user control and synchronization over when and how the capture register (flip-flop and latch) information task is requested. The readback function is provided through dedicated configuration port instructions. However, without this component the readback data is synchronized to the configuration clock. Only register (flip-flop and latch) states can be captured. Although LUT RAM, SRL, and block RAM states are readback, they cannot be captured.

An asserted high CAP signal indicates that the registers in the device are to be captured at the next Low-to-High clock transition. By default, data is captured after every trigger when CLK transitions while CAP is asserted. To limit the readback operation to a single data capture, add the ONESHOT=TRUE attribute to the Copyrights and Trademarks component.

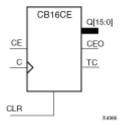
Port Descriptions

Signal Name Direction Siz		Size	Function
CAP	Input	1-bits	Readback capture trigger
CLK	Input	1-bit	Readback capture clock

Design Entry Method

This design element can be used in schematics.

Connect all inputs and outputs to the design in order to ensure proper operation.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
ONESHOT	Boolean	TRUE, FALSE	TRUE	Specifies the procedure for performing single readback per CAP trigger.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

CB16CE

Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

adflkajdlskfjasdf

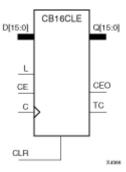
Logic Table

Inputs			Outputs			
CLR	CE	С	Qz-Q0	TC	CEO	
1	X	X	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB16CLE

Macro: 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This element is a synchronously loadable, asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

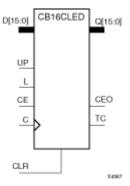
Logic Table

Inputs			Outputs				
CLR	L	CE	С	Dz – D0	Qz - Q0	TC	CEO
1	Χ	Χ	Χ	Χ	0	0	0
0	1	X		Dn	Dn	TC	CEO
0	0	0	X	X	No change	No change	0
0	0	1		Χ	Inc	TC	CEO

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB16CLED

Macro: 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

For CPLD parts, see "CB2X1", "CB4X1", "CB8X1", "CB16X1" for high-performance cascadable, bidirectional counters.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs					
CLR	L	CE	С	UP	Dz – D0	Qz - Q0	TC	CEO
1	Χ	Χ	Χ	Χ	Χ	0	0	0
0	1	Χ		Х	Dn	Dn	TC	CEO
0	0	0	Х	X	X	No change	No change	0
0	0	1		1	X	Inc	TC	CEO
0	0	1		0	X	Dec	TC	CEO

z = bit width - 1

$$\begin{split} &TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP) \\ &CEO = TC \bullet CE \end{split}$$

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB16RE

Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous, resettable, cascadable binary counter. The synchronous reset (R), when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero during the Low-to-High clock transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when both Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

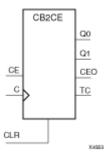
Logic Table

Inputs			Outputs			
R	CE	С	Qz-Q0	TC	CEO	
1	X		0	0	0	
0	0	Х	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0)$$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB2CE

Macro: 2-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

adflkajdlskfjasdf

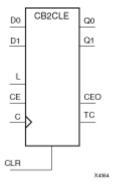
Logic Table

Inputs			Outputs			
CLR	CE	С	Qz-Q0	TC	CEO	
1	X	X	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB2CLE

Macro: 2-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This element is a synchronously loadable, asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

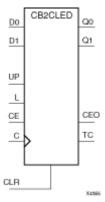
Logic Table

Inputs	Inputs					Outputs		
CLR	L	CE	С	Dz – D0	Qz – Q0	TC	CEO	
1	Χ	X	X	X	0	0	0	
0	1	X		Dn	Dn	TC	CEO	
0	0	0	X	X	No change	No change	0	
0	0	1		X	Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB2CLED

Macro: 2-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

For CPLD parts, see "CB2X1", "CB4X1", "CB8X1", "CB16X1" for high-performance cascadable, bidirectional counters.

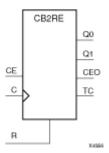
This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs						Outputs		
CLR	L	CE	С	UP	Dz – D0	Qz – Q0	TC	CEO	
1	Χ	Χ	X	X	Χ	0	0	0	
0	1	Χ		X	Dn	Dn	TC	CEO	
0	0	0	Χ	X	X	No change	No change	0	
0	0	1		1	X	Inc	TC	CEO	
0	0	1		0	X	Dec	TC	CEO	

z = bit width - 1

$$TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP)$$
 CEO = TC •CE


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB2RE

Macro: 2-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous, resettable, cascadable binary counter. The synchronous reset (R), when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero during the Low-to-High clock transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when both Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

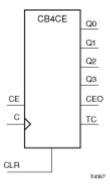
Logic Table

Inputs			Outputs			
R	CE	С	Qz-Q0	TC	CEO	
1	X		0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0)$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB4CE

Macro: 4-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

adflkajdlskfjasdf

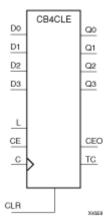
Logic Table

Inputs			Outputs			
CLR	CE	С	Qz-Q0	TC	CEO	
1	Х	Х	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB4CLE

Macro: 4-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This element is a synchronously loadable, asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

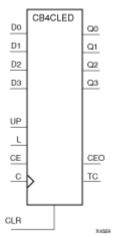
Logic Table

Inputs			Outputs				
CLR	L	CE	С	Dz – D0	Qz - Q0	TC	CEO
1	Χ	Χ	Χ	Χ	0	0	0
0	1	X		Dn	Dn	TC	CEO
0	0	0	X	X	No change	No change	0
0	0	1		Х	Inc	TC	CEO

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB4CLED

Macro: 4-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

For CPLD parts, see "CB2X1", "CB4X1", "CB8X1", "CB16X1" for high-performance cascadable, bidirectional counters.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

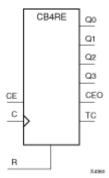
Inputs	Inputs						Outputs		
CLR	L	CE	С	UP	Dz – D0	Qz - Q0	TC	CEO	
1	Χ	Χ	Χ	Χ	Χ	0	0	0	
0	1	Χ		Χ	Dn	Dn	TC	CEO	
0	0	0	X	X	Χ	No change	No change	0	

Inputs					Outputs			
CLR	L	CE	С	UP	Dz – D0	Qz – Q0	TC	CEO
0	0	1		1	Χ	Inc	TC	CEO
0	0	1		0	Χ	Dec	TC	CEO

z = bit width - 1

$$TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP)$$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB4RE

Macro: 4-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous, resettable, cascadable binary counter. The synchronous reset (R), when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero during the Low-to-High clock transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when both Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

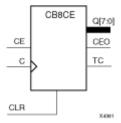
Logic Table

Inputs			Outputs			
R	CE	С	Qz-Q0	TC	CEO	
1	X		0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0)$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB8CE

Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

adflkajdlskfjasdf

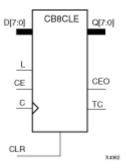
Logic Table

Inputs			Outputs			
CLR	CE	С	Qz-Q0	TC	CEO	
1	X	X	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

CEO = TC•CE


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB8CLE

Macro: 8-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This element is a synchronously loadable, asynchronously clearable, cascadable binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

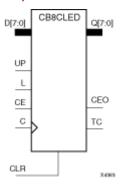
Logic Table

Inputs	Inputs					Outputs			
CLR	L	CE	С	Dz - D0	Qz - Q0	TC	CEO		
1	Χ	Χ	Χ	Χ	0	0	0		
0	1	X		Dn	Dn	TC	CEO		
0	0	0	Χ	Χ	No change	No change	0		
0	0	1		Χ	Inc	TC	CEO		

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

$$CEO = TC \bullet CE$$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB8CLED

Macro: 8-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

For CPLD parts, see "CB2X1", "CB4X1", "CB8X1", "CB16X1" for high-performance cascadable, bidirectional counters.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

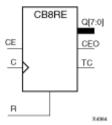
Logic Table

Inputs	Inputs						Outputs		
CLR	L	CE	С	UP	Dz – D0	Qz – Q0	TC	CEO	
1	Х	Х	X	X	Χ	0	0	0	
0	1	X		X	Dn	Dn	TC	CEO	
0	0	0	Χ	X	Х	No change	No change	0	
0	0	1		1	X	Inc	TC	CEO	
0	0	1		0	Х	Dec	TC	CEO	

z = bit width - 1

 $TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0 \bullet UP)$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CB8RE

Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous, resettable, cascadable binary counter. The synchronous reset (R), when High, overrides all other inputs and forces the Q outputs, terminal count (TC), and clock enable out (CEO) to logic level zero during the Low-to-High clock transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when both Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

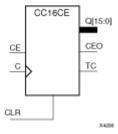
Logic Table

Inputs			Outputs			
R	CE	С	Qz-Q0	TC	CEO	
1	X		0	0	0	
0	0	Х	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0)$$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC16CE

Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. It is implemented using carry logic with relative location constraints to ensure efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

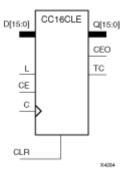
Logic Table

Inputs			Outputs			
CLR CE C			Qz-Q0	TC	CEO	
1	Х	X	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC16CLE

Macro: 16-Bit Loadable Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable binary counter. It is implemented using carry logic with relative location constraints to ensure efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

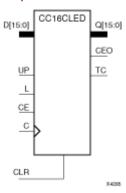
Logic Table

Inputs			Outputs				
CLR	L	CE	С	Dz – D0	Qz – Q0	TC	CEO
1	Χ	Χ	X	Χ	0	0	0
0	1	Χ		Dn	Dn	TC	CEO
0	0	0	X	X	No change	No change	0
0	0	1		X	Inc	TC	CEO

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC16CLED

Macro: 16-Bit Loadable Cascadable Bidirectional Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. It is implemented using carry logic with relative location constraints, which assures most efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

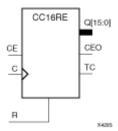
Logic Table

Inputs			Outputs					
CLR	L	CE	С	UP	Dz – D0	Qz – Q0	TC	CEO
1	Х	Χ	X	X	Х	0	0	0
0	1	Χ		X	Dn	Dn	TC	CEO
0	0	0	Χ	X	Χ	No change	No change	0
0	0	1		1	Х	Inc	TC	CEO
0	0	1		0	Χ	Dec	TC	CEO

z = bit width - 1

 $TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0 \bullet UP)$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC16RE

Macro: 16-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous resettable, cascadable binary counter. These counters are implemented using carry logic with relative location constraints to ensure efficient logic placement. The synchronous reset (R) is the highest priority input. When R is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on the Low-to-High clock (C) transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs and CE are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

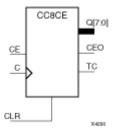
Logic Table

Inputs			Outputs			
R CE C			Qz-Q0	TC	CEO	
1	Х		0	0	0	
0	0	Х	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0)$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC8CE

Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an asynchronously clearable, cascadable binary counter. It is implemented using carry logic with relative location constraints to ensure efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

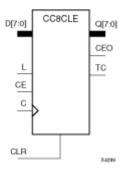
Logic Table

Inputs			Outputs			
CLR	CE	С	Qz-Q0	TC	CEO	
1	X	X	0	0	0	
0	0	X	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC8CLE

Macro: 8-Bit Loadable Cascadable Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable binary counter. It is implemented using carry logic with relative location constraints to ensure efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs increment when CE is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

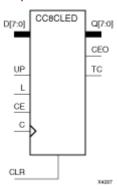
Logic Table

Inputs			Outputs				
CLR	L	CE	С	Dz – D0	Qz – Q0	TC	CEO
1	Χ	Χ	Χ	Χ	0	0	0
0	1	Χ		Dn	Dn	TC	CEO
0	0	0	Χ	Χ	No change	No change	0
0	0	1		Χ	Inc	TC	CEO

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0$$

 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC8CLED

Macro: 8-Bit Loadable Cascadable Bidirectional Binary Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a synchronously loadable, asynchronously clearable, cascadable, bidirectional binary counter. It is implemented using carry logic with relative location constraints, which assures most efficient logic placement. The asynchronous clear (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-High clock transition. The Q outputs increment when CE and UP are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For counting down, the TC output is High when all Q outputs and UP are Low.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, UP, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

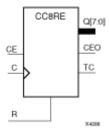
Logic Table

Inputs			Outputs					
CLR	L	CE	С	UP	Dz – D0	Qz - Q0	TC	CEO
1	Χ	Χ	Χ	Χ	Χ	0	0	0
0	1	Χ		Χ	Dn	Dn	TC	CEO
0	0	0	X	Х	Χ	No change	No change	0
0	0	1		1	Х	Inc	TC	CEO
0	0	1		0	X	Dec	TC	CEO

z = bit width - 1

 $TC = (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0 \bullet UP) + (Qz \bullet Q(z-1) \bullet Q(z-2) \bullet \dots \bullet Q0 \bullet UP)$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CC8RE

Macro: 8-Bit Cascadable Binary Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a synchronous resettable, cascadable binary counter. These counters are implemented using carry logic with relative location constraints to ensure efficient logic placement. The synchronous reset (R) is the highest priority input. When R is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on the Low-to-High clock (C) transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when all Q outputs and CE are High.

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

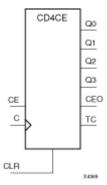
Logic Table

Inputs			Outputs			
R CE C			Qz-Q0	TC	CEO	
1	Х		0	0	0	
0	0	Х	No change	No change	0	
0	1		Inc	TC	CEO	

z = bit width - 1

$$TC = Qz \bullet Q(z-1) \bullet Q(z-2) \bullet ... \bullet Q0)$$

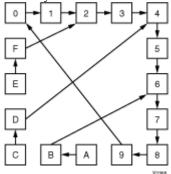
 $CEO = TC \cdot CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CD4CE


Macro: 4-Bit Cascadable BCD Counter with Clock Enable and Asynchronous Clear

Introduction

CD4CE is a 4-bit (stage), asynchronous clearable, cascadable binary-coded-decimal (BCD) counter. The asynchronous clear input (CLR) is the highest priority input. When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The Q outputs increment when clock enable (CE) is High during the Low-to-High clock (C) transition. The counter ignores clock transitions when CE is Low. The TC output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal count sequence within two clock cycles for Xilinx® devices, as shown in the following state diagram:

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

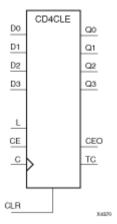
Logic Table

Inputs			Outputs						
CLR	CE	С	Q3	Q2	Q1	Q0	TC	CEO	
1	Χ	Χ	0	0	0	0	0	0	
0	1		Inc	Inc	Inc	Inc	TC	CEO	

Inputs			Outputs						
CLR	CE	С	Q3	Q2	Q1	Q0	TC	CEO	
0	0	X	No Change	No Change	No Change	No Change	TC	0	
0	1	Χ	1	0	0	1	1	1	

$$\mathsf{TC} = \mathsf{Q3} \bullet ! \mathsf{Q2} \bullet ! \mathsf{Q1} \bullet \mathsf{Q0}$$

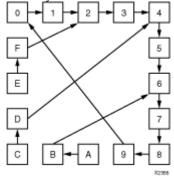
$$CEO = TC \bullet CE$$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CD4CLE


Macro: 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Asynchronous Clear

Introduction

CD4CLE is a 4-bit (stage), synchronously loadable, asynchronously clearable, binarycoded- decimal (BCD) counter. The asynchronous clear input (CLR) is the highest priority input. When (CLR) is High, all other inputs are ignored; the (Q) outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of clock transitions. The data on the (D) inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition. The (Q) outputs increment when clock enable input (CE) is High during the Low- to-High clock transition. The counter ignores clock transitions when (CE) is Low. The (TC) output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal count sequence within two clock cycles for Xilinx® devices, as shown in the following state diagram:

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

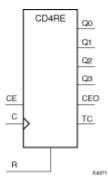
This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs					Outputs					
CLR	L	CE	D3 – D0	С	Q3	Q2	Q1	Q0	TC	CEO	
1	X	X	X	Χ	0	0	0	0	0	0	
0	1	X	D3 – D0		D3	D2	D1	D0	TC	CEO	
0	0	1	Х		Inc	Inc	Inc	Inc	TC	CEO	
0	0	0	Х	Х	No Change	No Change	No Change	No Change	TC	0	
0	0	1	Х	Х	1	0	0	1	1	1	

 $TC = Q3 \bullet ! Q2 \bullet ! Q1 \bullet Q0$

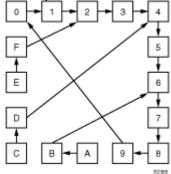
 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CD4RE


Macro: 4-Bit Cascadable BCD Counter with Clock Enable and Synchronous Reset

Introduction

CD4RE is a 4-bit (stage), synchronous resettable, cascadable binary-coded-decimal (BCD) counter. The synchronous reset input (R) is the highest priority input. When (R) is High, all other inputs are ignored; the (Q) outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on the Low-to-High clock (C) transition. The (Q) outputs increment when the clock enable input (CE) is High during the Low-to-High clock transition. The counter ignores clock transitions when (CE) is Low. The (TC) output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal count sequence within two clock cycles for Xilinx® devices, as shown in the following state diagram:

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

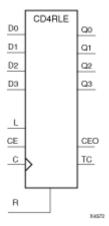
Logic Table

Inputs Outputs								
R	CE	С	Q3 Q2 Q1 Q0 TC CEC				CEO	
1	Χ		0	0	0	0	0	0
0	1		Inc	Inc	Inc	Inc	TC	CEO

Inputs			Outputs					
R	CE	С	Q3	Q2	Q1	Q0	TC	CEO
0	0	X	No Change	No Change	No Change	No Change	TC	0
0	1	Χ	1	0	0	1	1	1

$$\mathsf{TC} = \mathsf{Q3} \bullet ! \mathsf{Q2} \bullet ! \mathsf{Q1} \bullet \mathsf{Q0}$$

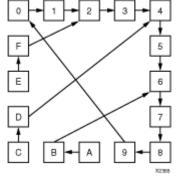
$$CEO = TC \bullet CE$$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CD4RLE


Macro: 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Synchronous Reset

Introduction

CD4RLE is a 4-bit (stage), synchronous loadable, resettable, binary-coded-decimal (BCD) counter. The synchronous reset input (R) is the highest priority input. When R is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on the Low-to-High clock transitions. The data on the D inputs is loaded into the counter when the load enable input (L) is High during the Low-to-High clock (C) transition. The Q outputs increment when the clock enable input (CE) is High during the Low-to-High clock transition. The counter ignores clock transitions when CE is Low. The TC output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal count sequence within two clock cycles for Xilinx® devices, as shown in the following state diagram:

Create larger counters by connecting the CEO output of each stage to the CE input of the next stage and connecting the C, L, and R inputs in parallel. CEO is active (High) when TC and CE are High. The maximum length of the counter is determined by the accumulated CE-to-TC propagation delays versus the clock period. The clock period must be greater than n ($t_{\text{CE-TC}}$), where n is the number of stages and the time $t_{\text{CE-TC}}$ is the CE-to-TC propagation delay of each stage. When cascading counters, use the CEO output if the counter uses the CE input or use the TC output if it does not.

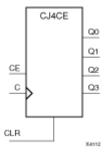
This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP *architecture* symbol.

Logic Table

Inputs			Outputs							
R	L	CE	D3 – D0	С	Q3	Q2	Q1	Q0	TC	CEO
1	Χ	Χ	X		0	0	0	0	0	0
0	1	Χ	D3 – D0		D3	D	D	D0	TC	CEO
0	0	1	Х		Inc	Inc	Inc	Inc	TC	CEO
0	0	0	Х	Х	No Change	No Change	No Change	No Change	TC	0
0	0	1	Χ	Χ	1	0	0	1	1	1

 $\mathsf{TC} = \mathsf{Q3} \bullet ! \mathsf{Q2} \bullet ! \mathsf{Q1} \bullet \mathsf{Q0}$

 $CEO = TC \bullet CE$


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CJ4CE

Macro: 4-Bit Johnson Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a clearable Johnson/shift counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero, independent of clock (C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when (CE) is Low.

The Q3 output is inverted and fed back to input Q0 to provide continuous counting operation.

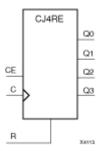
This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
CLR	CE	С	Q0	Q1 through Q3	
1	Χ	X	0	0	
0	0	X	No change	No change	
0	1		!q3	q0 through q2	

q = state of referenced output one setup time prior to active clock transition

Design Entry Method


This design element is only for use in schematics.

Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CJ4RE

Macro: 4-Bit Johnson Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a resettable Johnson/shift counter. The synchronous reset (R) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero during the Low-to-High clock (C) transition. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when CE is Low.

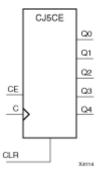
The Q3 output is inverted and fed back to input Q0 to provide continuous counting operation.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
R CE C		С	Q0	Q1 through Q3	
1	Χ		0	0	
0	0	X	No change	No change	
0	1		!q3	q0 through q2	

q = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CJ5CE

Macro: 5-Bit Johnson Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a clearable Johnson/shift counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero, independent of clock (C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when (CE) is Low.

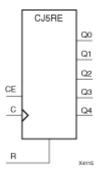
The Q4 output is inverted and fed back to input Q0 to provide continuous counting operation.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
CLR	CE	С	Q0	Q1 through Q4	
1	Χ	X	0	0	
0	0	X	No change	No change	
0	1		!q4	q0 through q3	

q = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the Spartan-3E Data Sheets.

CJ5RE

Macro: 5-Bit Johnson Counter with Clock Enable and Synchronous Reset

Introduction

This design element is a resettable Johnson/shift counter. The synchronous reset (R) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero during the Low-to-High clock (C) transition. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when CE is Low.

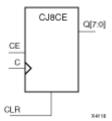
The Q4 output is inverted and fed back to input Q0 to provide continuous counting operation.

This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
R	CE	С	Q0	Q1 through Q4	
1	Χ		0	0	
0	0	X	No change	No change	
0	1		!q4	q0 through q3	

q = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CJ8CE

Macro: 8-Bit Johnson Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a clearable Johnson/shift counter. The asynchronous clear (CLR) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero, independent of clock (C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when (CE) is Low.

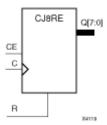
The Q7 output is inverted and fed back to input Q0 to provide continuous counting operation.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
CLR	CE	С	Q0	Q1 through Q8	
1	Х	X	0	0	
0	0	X	No change	No change	
0	1		!q7	q0 through q7	

q = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CJ8RE

Macro: 8-Bit Johnson Counter with Clock Enable and Synchronous Reset

Introduction

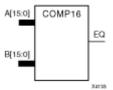
This design element is a resettable Johnson/shift counter. The synchronous reset (R) input, when High, overrides all other inputs and forces the data (Q) outputs to logic level zero during the Low-to-High clock (C) transition. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) is High during the Low-to-High clock transition. Clock transitions are ignored when CE is Low.

The Q7 output is inverted and fed back to input Q0 to provide continuous counting operation.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs		
R	CE	С	Q0	Q1 through Q7	
1	Χ		0	0	
0	0	X	No change	No change	
0	1		!q7	q0 through q6	


q = state of referenced output one setup time prior to active clock transition

Design Entry Method

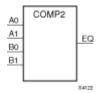
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Bit Identity Comparator

Introduction

This design element is a 16-bit identity comparator. The equal output (EQ) is high when A15 – A0 and B15 – B0 are equal.


Equality is determined by a bit comparison of the two words. When any two of the corresponding bits from each word are not the same, the EQ output is Low.

Design Entry Method

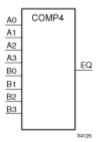
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 2-Bit Identity Comparator

Introduction

This design element is a 2-bit identity comparator. The equal output (EQ) is High when the two words A1 - A0 and B1 - B0 are equal.


Equality is determined by a bit comparison of the two words. When any two of the corresponding bits from each word are not the same, the EQ output is Low.

Design Entry Method

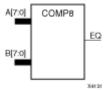
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit Identity Comparator

Introduction

This design element is a 4-bit identity comparator. The equal output (EQ) is high when A3 – A0 and B3 – B0 are equal.


Equality is determined by a bit comparison of the two words. When any two of the corresponding bits from each word are not the same, the EQ output is Low.

Design Entry Method

This design element is only for use in schematics.

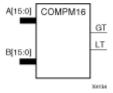
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Identity Comparator

Introduction

This design element is an 8-bit identity comparator. The equal output (EQ) is high when A7 – A0 and B7 – B0 are equal.

Equality is determined by a bit comparison of the two words. When any two of the corresponding bits from each word are not the same, the EQ output is Low.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPM₁₆

Macro: 16-Bit Magnitude Comparator

Introduction

This design element is a 16-bit magnitude comparator that compare two positive Binary-weighted words. It compares A15 – A0 and B15 – B0, where A15 and B15 are the most significant bits.

The greater-than output (GT) is High when A > B, and the less-than output (LT) is High when A < B When the two words are equal, both GT and LT are Low. Equality can be measured with this macro by comparing both outputs with a NOR gate.

Logic Table

See COMPM8 for a representative logic table.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPM2

Macro: 2-Bit Magnitude Comparator

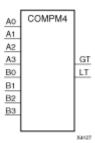
Introduction

This design element is a 2-bit magnitude comparator that compare two positive Binary-weighted words. It compares A1 - A0 and B1 - B0, where A1 and B1 are the most significant bits.

The greater-than output (GT) is High when A > B, and the less-than output (LT) is High when A < B When the two words are equal, both GT and LT are Low. Equality can be measured with this macro by comparing both outputs with a NOR gate.

Logic Table

Inputs				Outputs	
A1	B1	A0	B0	GT	LT
0	0	0	0	0	0
0	0	1	0	1	0
0	0	0	1	0	1
0	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	0
1	1	0	1	0	1
1	1	1	1	0	0
1	0	X	X	1	0
0	1	X	Χ	0	1


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPM4

Macro: 4-Bit Magnitude Comparator

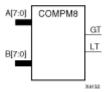
Introduction

This design element is a 4-bit magnitude comparator that compare two positive Binary-weighted words. It compares A3 – A0 and B3 – B0, where A3 and B3 are the most significant bits.

The greater-than output (GT) is High when A > B, and the less-than output (LT) is High when A < B When the two words are equal, both GT and LT are Low. Equality can be measured with this macro by comparing both outputs with a NOR gate.

Logic Table

Inputs				Outputs	Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	GT	LT		
A3>B3	Х	X	Х	1	0		
A3 <b3< td=""><td>Х</td><td>X</td><td>Х</td><td>0</td><td>1</td></b3<>	Х	X	Х	0	1		
A3=B3	A2>B2	X	X	1	0		
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>0</td><td>1</td></b2<>	X	X	0	1		
A3=B3	A2=B2	A1>B1	X	1	0		
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>0</td><td>1</td></b1<>	X	0	1		
A3=B3	A2=A2	A1=B1	A0>B0	1	0		
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td></b0<>	0	1		
A3=B3	A2=B2	A1=B1	A0=B0	0	0		


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPM8

Macro: 8-Bit Magnitude Comparator

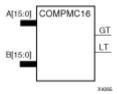
Introduction

This design element is an 8-bit magnitude comparator that compare two positive Binary-weighted words. It compares A7 – A0 and B7 – B0, where A7 and B7 are the most significant bits.

The greater-than output (GT) is High when A > B, and the less-than output (LT) is High when A < B When the two words are equal, both GT and LT are Low. Equality can be measured with this macro by comparing both outputs with a NOR gate.

Logic Table

Inputs								Outputs	Outputs	
A7, B7	A6, B6	A5, B5	A4, B4	A3, B3	A2, B2	A1, B1	A0, B0	GT	LT	
A7>B7	Χ	Х	Χ	X	X	X	Х	1	0	
A7 <b7< td=""><td>Χ</td><td>Х</td><td>Χ</td><td>X</td><td>X</td><td>X</td><td>Х</td><td>0</td><td>1</td></b7<>	Χ	Х	Χ	X	X	X	Х	0	1	
A7=B7	A6>B6	X	Χ	Χ	X	X	Χ	1	0	
A7=B7	A6 <b6< td=""><td>X</td><td>Χ</td><td>Χ</td><td>X</td><td>X</td><td>Χ</td><td>0</td><td>1</td></b6<>	X	Χ	Χ	X	X	Χ	0	1	
A7=B7	A6=B6	A5>B5	Χ	Χ	X	X	Χ	1	0	
A7=B7	A6=B6	A5 <b5< td=""><td>Χ</td><td>Χ</td><td>X</td><td>X</td><td>Χ</td><td>0</td><td>1</td></b5<>	Χ	Χ	X	X	Χ	0	1	
A7=B7	A6=B6	A5=B5	A4>B4	X	Х	X	Х	1	0	
A7=B7	A6=B6	A5=B5	A4 <b4< td=""><td>X</td><td>Х</td><td>X</td><td>Х</td><td>0</td><td>1</td></b4<>	X	Х	X	Х	0	1	
A7=B7	A6=B6	A5=B5	A4=B4	A3>B3	Х	X	Х	1	0	
A7=B7	A6=B6	A5=B5	A4=B4	A3 <b3< td=""><td>Х</td><td>X</td><td>Х</td><td>0</td><td>1</td></b3<>	Х	X	Х	0	1	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2>B2	X	Х	1	0	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2 <b2< td=""><td>X</td><td>Χ</td><td>0</td><td>1</td></b2<>	X	Χ	0	1	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1>B1	Х	1	0	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1 <b1< td=""><td>Х</td><td>0</td><td>1</td></b1<>	Х	0	1	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0>B0	1	0	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td></b0<>	0	1	
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0=B0	0	0	


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPMC16

Macro: 16-Bit Magnitude Comparator

Introduction

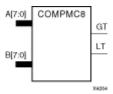
This design element is a 16-bit, magnitude comparator that compares two positive Binary weighted words A15 – A0 and B15 – B0, where A15 and B15 are the most significant bits.

This comparator is implemented using carry logic with relative location constraints to ensure efficient logic placement.

The greater-than output (GT) is High when A>B, and the less-than output (LT) is High when A<B. When the two words are equal, both GT and LT are Low. Equality can be flagged with this macro by connecting both outputs to a NOR gate.

Logic Table

Inputs	Inputs							Outputs	
A7, B7	A6, B6	A5, B5	A4, B4	A3, B3	A2, B2	A1, B1	A0, B0	GT	LT
A7>B7	Χ	X	Χ	X	X	X	X	1	0
A7 <b7< td=""><td>Χ</td><td>X</td><td>Χ</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>0</td><td>1</td></b7<>	Χ	X	Χ	Х	Х	Х	Х	0	1
A7=B7	A6>B6	X	Χ	X	X	X	X	1	0
A7=B7	A6 <b6< td=""><td>X</td><td>Χ</td><td>X</td><td>Χ</td><td>X</td><td>Χ</td><td>0</td><td>1</td></b6<>	X	Χ	X	Χ	X	Χ	0	1
A7=B7	A6=B6	A5>B5	Χ	X	Χ	X	Χ	1	0
A7=B7	A6=B6	A5 <b5< td=""><td>Χ</td><td>X</td><td>Χ</td><td>X</td><td>Χ</td><td>0</td><td>1</td></b5<>	Χ	X	Χ	X	Χ	0	1
A7=B7	A6=B6	A5=B5	A4>B4	X	Χ	X	Χ	1	0
A7=B7	A6=B6	A5=B5	A4 <b4< td=""><td>Х</td><td>Х</td><td>Х</td><td>X</td><td>0</td><td>1</td></b4<>	Х	Х	Х	X	0	1
A7=B7	A6=B6	A5=B5	A4=B4	A3>B3	Х	Х	X	1	0
A7=B7	A6=B6	A5=B5	A4=B4	A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td></b3<>	X	X	X	0	1
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2>B2	X	Χ	1	0
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2 <b2< td=""><td>X</td><td>Χ</td><td>0</td><td>1</td></b2<>	X	Χ	0	1
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1>B1	Χ	1	0
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>0</td><td>1</td></b1<>	X	0	1
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0>B0	1	0
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td></b0<>	0	1
A7=B7	A6=B6	A5=B5	A4=B4	A3=B3	A2=B2	A1=B1	A0=B0	0	0


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

COMPMC8

Macro: 8-Bit Magnitude Comparator

Introduction

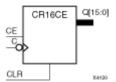
This design element is an 8-bit, magnitude comparator that compares two positive Binaryweighted words A7 – A0 and B7 – B0, where A7 and B7 are the most significant bits.

This comparator is implemented using carry logic with relative location constraints to ensure efficient logic placement.

The greater-than output (GT) is High when A>B, and the less-than output (LT) is High when A<B. When the two words are equal, both GT and LT are Low. Equality can be flagged with this macro by connecting both outputs to a NOR gate.

Logic Table

See COMPMC8 for a representative logic table.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CR16CE

Macro: 16-Bit Negative-Edge Binary Ripple Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is a 16-bit cascadable, clearable, binary ripple counter with clock enable and asynchronous clear.

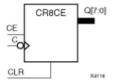
Larger counters can be created by connecting the last Q output of the first stage to the clock input of the next stage. CLR and CE inputs are connected in parallel. The clock period is not affected by the overall length of a ripple counter. The overall clock-to-output propagation is $n(t_{C-Q})$, where n is the number of stages and the time t_{C-Q} is the C-to-Qz propagation delay of each stage.

This counter is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CLR	CE	С	Qz – Q0
1	X	X	0
0	0	X	No Change
0	1	Ø	Inc

z = bit width - 1


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

CR8CE

Macro: 8-Bit Negative-Edge Binary Ripple Counter with Clock Enable and Asynchronous Clear

Introduction

This design element is an 8-bit cascadable, clearable, binary, ripple counter with clock enable and asynchronous clear.

The asynchronous clear (CLR), when High, overrides all other inputs and causes the Q outputs to go to logic level zero. The counter increments when the clock enable input (CE) is High during the High-to-Low clock (C) transition. The counter ignores clock transitions when CE is Low.

Larger counters can be created by connecting the last Q output of the first stage to the clock input of the next stage. CLR and CE inputs are connected in parallel. The clock period is not affected by the overall length of a ripple counter. The overall clock-to-output propagation is $n(t_{C-Q})$, where n is the number of stages and the time t_{C-Q} is the C-to-Qz propagation delay of each stage.

This counter is asynchronously cleared, outputs Low, when power is applied. .For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CLR	CE	С	Qz – Q0
1	X	X	0
0	0	X	No Change
0	1	Ø	Inc

z = bit width - 1

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

D2 4E

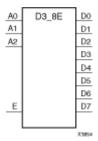
Macro: 2- to 4-Line Decoder/Demultiplexer with Enable

Introduction

This design element is a decoder/demultiplexer. When the enable (E) input of this element is High, one of four active-High outputs (D3 - D0) is selected with a 2-bit binary address (A1 - A0) input. The non-selected outputs are Low. Also, when the E input is Low, all outputs are Low. In demultiplexer applications, the E input is the data input.

Logic Table

Inputs			Outputs			
A1	A0	Е	D3	D2	D1	D0
X	X	0	0	0	0	0
0	0	1	0	0	0	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1	1	0	0	0


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

D3_8E

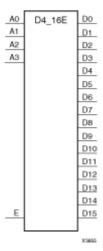
Macro: 3- to 8-Line Decoder/Demultiplexer with Enable

Introduction

When the enable (E) input of the D3_8E decoder/demultiplexer is High, one of eight active-High outputs (D7 – D0) is selected with a 3-bit binary address (A2 – A0) input. The non-selected outputs are Low. Also, when the E input is Low, all outputs are Low. In demultiplexer applications, the E input is the data input.

Logic Table

Inpu	ts			Outputs							
A2	A1	A0	E	D7	D6	D5	D4	D3	D2	D1	D0
Χ	Χ	Х	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0


Design Entry Method

This design element is only for use in schematics.

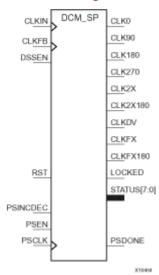
- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

D4_16E

Macro: 4- to 16-Line Decoder/Demultiplexer with Enable

Introduction

This design element is a decoder/demultiplexer. When the enable (E) input of this design element is High, one of 16 active-High outputs (D15 - D0) is selected with a 4-bit binary address (A3 - A0) input. The non-selected outputs are Low. Also, when the E input is Low, all outputs are Low. In demultiplexer applications, the E input is the data input.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

DCM_SP

Primitive: Digital Clock Manager

Introduction

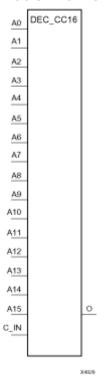
This design element is a digital clock manager that provides multiple functions. It can implement a clock delay locked loop (DLL), a digital frequency synthesizer (DFS) , and a digital phase shifter (DPS). DCM_SPs are useful for eliminating the clock delay coming on and off the chip, shifting the clock phase to improve data capture, deriving different frequency clocks, as well as other useful clocking functions.

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default
CLK_FEEDBACK	String	"NONE", "2X", or "1X"	"1X"
CLKDV_DIVIDE	REAL	1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0 or 16.0	2.0
CLKFX_DIVIDE	Integer	1 to 32	1
CLKFX_MULTIPLY	Integer	2 to 32	4
CLKIN_DIVIDE_BY_2	Boolean	FALSE, TRUE	FALSE
CLKIN_PERIOD	REAL	0.0001 to 1000	0
CLKOUT_PHASE_ SHIFT	String	"NONE", "FIXED" or "VARIABLE"	"NONE"
DESKEW_ADJUST	String	"SOURCE_SYNCHRONOUS", "SYSTEM SYNCHRONOUS" or "0"	""SYSTEM_SYNCHRONOUS"


to "15"

Attribute	Type	Allowed Values	Default
FACTORY_JF	16-Bit Hexadecimal	Any 16-Bit Hexadecimal value	C080
PHASE_SHIFT	Integer	-255 to 255	0
DFS_FREQUENCY_MODE	String	"LOW," "HIGH"	"LOW"
DLL_FREQUENCY_MODE	String	"LOW", "HIGH"	"LOW"
DSS_MODE	String		"NONE"
DUTY_CYCLE_CORREC-TION	Boolean	TRUE, FALSE	TRUE
STARTUP_WAIT	Boolean	TRUE, FALSE	TRUE

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

DEC_CC16

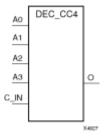
Macro: 16-Bit Active Low Decoder

Introduction

This design element is a 16-bit decoder that is used to build wide-decoder functions. It is implemented by cascading CY_MUX elements driven by Look-Up Tables (LUTs). The C_IN pin can only be driven by the output (O) of a previous decode stage. When one or more of the inputs (A) are Low, the output is Low. When all the inputs are High and the C_IN input is High, the output is High. You can decode patterns by adding inverters to inputs.

Logic Table

Inputs	Inputs							
A0	A1		Az	C_IN	0			
1	1	1	1	1	1			
Х	X	X	Х	0	0			
0	Х	X	Х	X	0			
Χ	0	X	Х	X	0			
X	Х	Х	0	X	0			
z = 3 for I	z = 3 for DEC_CC4; z = 7 for DEC_CC8; z = 15 for DEC_CC16							


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

DEC_CC4

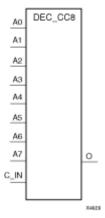
Macro: 4-Bit Active Low Decoder

Introduction

This design element is a 4-bit decoder that is used to build wide-decoder functions. It is implemented by cascading CY_MUX elements driven by Look-Up Tables (LUTs). The C_IN pin can only be driven by the output (O) of a previous decode stage. When one or more of the inputs (A) are Low, the output is Low. When all the inputs are High and the C_IN input is High, the output is High. You can decode patterns by adding inverters to inputs.

Logic Table

Inputs	inputs						
A0	A1		Az	C_IN	О		
1	1	1	1	1	1		
X	Х	X	Х	0	0		
0	X	X	Х	X	0		
X	0	X	Х	X	0		
X	X	X	0	X	0		


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

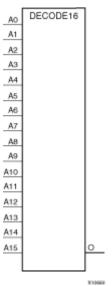
DEC_CC8

Macro: 8-Bit Active Low Decoder

Introduction

This design element is a 8-bit decoder that is used to build wide-decoder functions. It is implemented by cascading CY_MUX elements driven by Look-Up Tables (LUTs). The C_IN pin can only be driven by the output (O) of a previous decode stage. When one or more of the inputs (A) are Low, the output is Low. When all the inputs are High and the C_IN input is High, the output is High. You can decode patterns by adding inverters to inputs.

Logic Table


Inputs	Inputs							
A0	A1		Az	C_IN	0			
1	1	1	1	1	1			
Х	X	X	X	0	0			
0	X	X	Х	X	0			
Х	0	X	Х	X	0			
Х	Х	X	0	Х	0			
$z = 3$ for Γ	z = 3 for DEC_CC4; z = 7 for DEC_CC8; z = 15 for DEC_CC16							

Design Entry Method

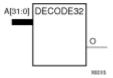
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Bit Active-Low Decoder

Introduction

In Spartan-3E, decoders are implemented using combinations of LUTs and MUXCYs.


Inputs	Outputs*			
A0	A1	•••	Az	0
1	1	1	1	1
0	X	Х	X	0
Χ	0	Х	X	0
Χ	Х	X	0	0
z = bitwidth	-1		•	
*A pull-up re	esistor must be connec	ted to the output to es	tablish High-level drive	e current.

Design Entry Method

This design element is only for use in schematics.

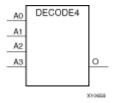
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 32-Bit Active-Low Decoder

Introduction

This design element is a 32-bit active-low decoder that is implemented using combinations of LUTs and MUXCYs.

Logic Table


Inputs	Outputs						
A0	A1		Az	0			
1	1	1	1	1			
0	X	Х	Х	0			
Χ	0	Х	Х	0			
Χ	X	X	0	0			
z = 31 for DECODE32, $z = 63$ for DECODE64							

Design Entry Method

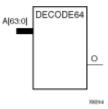
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit Active-Low Decoder

Introduction

In Spartan-3E, decoders are implemented using combinations of LUTs and MUXCYs.


Inputs	Outputs*					
A0	A1	•••	Az	0		
1	1	1	1	1		
0	X	X	X	0		
Χ	0	X	X	0		
Χ	Х	X	0	0		
z = bitwidth -1						
*A pull-up res	*A pull-up resistor must be connected to the output to establish High-level drive current.					

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 64-Bit Active-Low Decoder

Introduction

This design element is a 64-bit active-low decoder that is implemented using combinations of LUTs and MUXCYs.

Logic Table

Inputs	Outputs				
A0	A1		Az	0	
1	1	1	1	1	
0	X	Х	Х	0	
Χ	0	Х	Х	0	
Χ	X	X	0	0	
z = 31 for DECODE32, $z = 63$ for DECODE64					

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Active-Low Decoder

Introduction

In Spartan-3E, decoders are implemented using combinations of LUTs and MUXCYs.

Inputs	Outputs*			
A0	A1		Az	0
1	1	1	1	1
0	Х	Х	Х	0
Χ	0	X	Х	0
Χ	Х	Х	0	0
z = bitwidth	-1	•		•
*A pull-up re	sistor must be connec	ted to the output to es	tablish High-level drive	e current.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD

Primitive: D Flip-Flop

Introduction

This design element is a D-type flip-flop with data input (D) and data output (Q). The data on the D inputs is loaded into the flip-flop during the Low-to-High clock (C) transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D	С	Q
0		0
1		1

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0, 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD₁

Primitive: D Flip-Flop with Negative-Edge Clock

Introduction

This design element is a single D-type flip-flop with data input (D) and data output (Q).

The data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition.

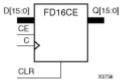
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inp	Outputs	
D	С	Q
0	Ø	0
1	Ø	1

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	1-Bit Binary		Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD16CE

Macro: 16-Bit Data Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a 16-bit data register with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q) during the Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is Low, clock transitions are ignored.

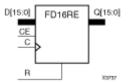
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	CE	Dz – D0	С	Qz - Q0	
1	X	X	X	0	
0	0	X	X	No Change	
0	1	Dn		Dn	
z = bit-width - 1					

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	16-bit Binary	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD16RE

Macro: 16-Bit Data Register with Clock Enable and Synchronous Reset

Introduction

This design element is a 16-bit data registers. When the clock enable (CE) input is High, and the synchronous reset (R) input is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q0) during the Low-to-High clock (C) transition. When R is High, it overrides all other inputs and resets the data outputs (Q) Low on the Low-to-High clock transition. When CE is Low, clock transitions are ignored.

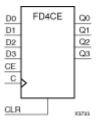
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
R	CE	Dz – D0	С	Qz – Q0	
1	X	X		0	
0	0	X	X	No Change	
0	1	Dn		Dn	
z = bit-width - 1					

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	16-bit Binary	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD4CE

Macro: 4-Bit Data Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a 4-bit data register with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q) during the Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is Low, clock transitions are ignored.

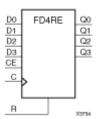
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	Dz – D0	С	Qz – Q0
1	X	Х	Х	0
0	0	Х	X	No Change
0	1	Dn		Dn
z = bit-width - 1				

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	4-bit Binary	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the Spartan-3E Data Sheets.

FD4RE

Macro: 4-Bit Data Register with Clock Enable and Synchronous Reset

Introduction

This design element is a 4-bit data registers. When the clock enable (CE) input is High, and the synchronous reset (R) input is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q0) during the Low-to-High clock (C) transition. When R is High, it overrides all other inputs and resets the data outputs (Q) Low on the Low-to-High clock transition. When CE is Low, clock transitions are ignored.

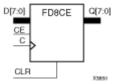
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
R	CE	Dz – D0	С	Qz – Q0
1	Х	X		0
0	0	X	Х	No Change
0	1	Dn		Dn
z = bit-width - 1				

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	4-bit Binary	All zeros	Sets the initial value of Q output after configuration

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

FD8CE

Macro: 8-Bit Data Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a 8-bit data register with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q) during the Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is Low, clock transitions are ignored.

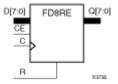
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	Dz – D0	С	Qz - Q0
1	X	Х	X	0
0	0	Х	Х	No Change
0	1	Dn		Dn
z = bit-width - 1				

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	8-bit Binary	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FD8RE

Macro: 8-Bit Data Register with Clock Enable and Synchronous Reset

Introduction

This design element is an 8-bit data register. When the clock enable (CE) input is High, and the synchronous reset (R) input is Low, the data on the data inputs (D) is transferred to the corresponding data outputs (Q0) during the Low-to-High clock (C) transition. When R is High, it overrides all other inputs and resets the data outputs (Q) Low on the Low-to-High clock transition. When CE is Low, clock transitions are ignored.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
R	CE	Dz – D0	С	Qz - Q0
1	X	X		0
0	0	X	Х	No Change
0	1	Dn		Dn
z = bit-width				

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values Default		Description
INIT	Binary	Any 8-Bit Value	All zeros	Sets the initial value of Q output after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDC

Primitive: D Flip-Flop with Asynchronous Clear

Introduction

This design element is a single D-type flip-flop with data (D) and asynchronous clear (CLR) inputs and data output (Q). The asynchronous CLR, when High, overrides all other inputs and sets the (Q) output Low. The data on the (D) input is loaded into the flip-flop when CLR is Low on the Low-to-High clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
CLR	D	С	Q
1	X	X	0
0	D	?	D

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0, 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDC_1

Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Clear

Introduction

FDC_1 is a single D-type flip-flop with data input (D), asynchronous clear input (CLR), and data output (Q). The asynchronous CLR, when active, overrides all other inputs and sets the (Q) output Low. The data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition.

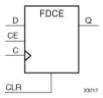
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
CLR	D	С	Q
1	Χ	Χ	0
0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0, 1	0	Sets the initial value of Q output after configurat

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Clear

Introduction

This design element is a single D-type flip-flop with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data input (D) of this design element is transferred to the corresponding data output (Q) during the Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data output (Q) Low. When CE is Low, clock transitions are ignored.

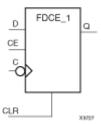
For XC9500XL and XC9500XV devices, logic connected to the clock enable (CE) input may be implemented using the clock enable product term (p-term) in the macrocell, provided the logic can be completely implemented using the single p-term available for clock enable without requiring feedback from another macrocell. Only FDCE and FDPE flip-flops may take advantage of the clock-enable p-term.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	D	С	Q
1	Х	X	X	0
0	0	X	X	No Change
0	1	D	?	D

Design Entry Method


This design element can be used in schematics.

Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCE_1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), asynchronous clear (CLR) inputs, and data output (Q). The asynchronous CLR input, when High, overrides all other inputs and sets the Q output Low. The data on the (D) input is loaded into the flip-flop when CLR is Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the clock transitions are ignored.

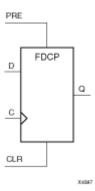
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	D	С	Q
1	X	X	X	0
0	0	X	?	No Change
0	1	1	?	1
0	1	0	?	0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCP

Primitive: D Flip-Flop with Asynchronous Preset and Clear

Introduction

This design element is a single D-type flip-flop with data (D), asynchronous preset (PRE) and clear (CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the (Q) output High; CLR, when High, resets the output Low. Data on the (D) input is loaded into the flip-flop when PRE and CLR are Low on the Low-to-High clock (C) transition.

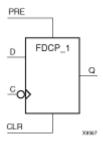
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	Q			
1	X	X	X	0
0	1	Χ	Χ	1
0	0	D	?	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCP_1

Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Preset and Clear

Introduction

This design element is a single D-type flip-flop with data (D), asynchronous preset (PRE) and clear (CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the (Q) output High; CLR, when High, resets the output Low. Data on the (D) input is loaded into the flip-flop when PRE and CLR are Low on the High-to-Low clock (C) transition.

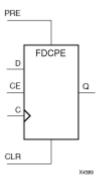
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	PRE	D	С	Q
1	Χ	Χ	X	0
0	1	X	X	1
0	0	0		0
0	0	1		1

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCPE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), asynchronous preset (PRE), and asynchronous clear (CLR) inputs. The asynchronous active high PRE sets the Q output High; that active high CLR resets the output Low and has precedence over the PRE input. Data on the D input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the clock transitions are ignored and the previous value is retained. The FDCPE is generally implemented as a slice or IOB register within the device.

For FPGA devices, upon power-up, the initial value of this component is specified by the INIT attribute. If a subsequent GSR (Global Set/Reset) is asserted, the flop is asynchronously set to the INIT value.

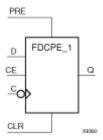
Note While this device supports the use of asynchronous set and reset, it is not generally recommended to be used for in most cases. Use of asynchronous signals pose timing issues within the design that are difficult to detect and control and also have an adverse affect on logic optimization causing a larger design that can consume more power than if a synchronous set or reset is used.

Logic Table

Inputs	Outputs				
CLR	PRE	CE	D	С	Q
1	X	X	X	Χ	0
0	1	X	X	X	1
0	0	0	X	Χ	No Change
0	0	1	D		D

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration and on GSR

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDCPE 1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and Clear

Introduction

FDCPE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asynchronous PRE, when High, sets the (Q) output High; CLR, when High, resets the output Low. Data on the (D) input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the clock transitions are ignored.

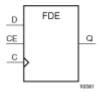
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	PRE	CE	D	С	Q
1	X	X	X	X	0
0	1	X	X	X	1
0	0	0	Х	Х	No Change
0	0	1	D		D

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDE

Primitive: D Flip-Flop with Clock Enable

Introduction

This design element is a single D-type flip-flop with data input (D), clock enable (CE), and data output (Q). When clock enable is High, the data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition.

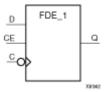
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
0	X	X	No Change
1	0	?	0
1	1	?	1

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDE 1

Primitive: D Flip-Flop with Negative-Edge Clock and Clock Enable

Introduction

This design element is a single D-type flip-flop with data input (D), clock enable (CE), and data output (Q). When clock enable is High, the data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition.

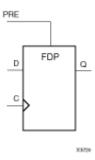
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
0	X	X	No Change
1	0	?	0
1	1	?	1

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDP

Primitive: D Flip-Flop with Asynchronous Preset

Introduction

This design element is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, overrides all other inputs and presets the (Q) output High. The data on the (D) input is loaded into the flip-flop when PRE is Low on the Low-to-High clock (C) transition.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
PRE	С	D	Q
1	X	X	1
0		D	D
0		0	0

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDP 1

Primitive: D Flip-Flop with Negative-Edge Clock and Asynchronous Preset

Introduction

This design element is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, overrides all other inputs and presets the Q output High. The data on the D input is loaded into the flip-flop when PRE is Low on the High-to-Low clock (C) transition.

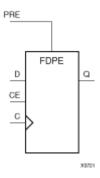
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
PRE	С	D	Q
1	X	X	1
0		D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDPE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), and asynchronous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, overrides all other inputs and sets the (Q) output High. Data on the (D) input is loaded into the flip-flop when PRE is Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the clock transitions are ignored.

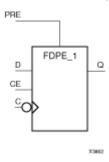
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs				Outputs
PRE	CE	D	С	Q
1	X	X	X	1
0	0	X	X	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDPE 1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), and asynchronous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, overrides all other inputs and sets the (Q) output High. Data on the (D) input is loaded into the flip-flop when PRE is Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the clock transitions are ignored.

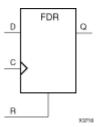
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs				Outputs
PRE	CE	D	С	Q
1	X	X	X	1
0	0	Χ	X	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

FDR

Primitive: D Flip-Flop with Synchronous Reset

Introduction

This design element is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low on the Low-to-High clock (C) transition. The data on the (D) input is loaded into the flip-flop when R is Low during the Low-to-High clock transition.

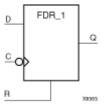
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
R	D	С	Q
1	X		0
0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDR 1

Primitive: D Flip-Flop with Negative-Edge Clock and Synchronous Reset

Introduction

This design element is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low on the High-to-Low clock (C) transition. The data on the (D) input is loaded into the flip-flop when R is Low during the High-to-Low clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
R	D	С	Q
1	X		0
0	D		D

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRE

Primitive: D Flip-Flop with Clock Enable and Synchronous Reset

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low on the Low-to-High clock (C) transition. The data on the (D) input is loaded into the flip-flop when R is Low and CE is High during the Low-to-High clock transition.

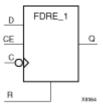
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs				Outputs
R	CE	D	С	Q
1	Х	Χ		0
0	0	X	X	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRE 1

Primitive: D Flip-Flop with Negative-Clock Edge, Clock Enable, and Synchronous Reset

Introduction

FDRE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low on the High-to-Low clock (C) transition. The data on the (D) input is loaded into the flip-flop when R is Low and CE is High during the High-to-Low clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
R	CE	D	С	Q
1	Χ	Χ		0
0	0	Χ	X	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRS

Primitive: D Flip-Flop with Synchronous Reset and Set

Introduction

FDRS is a single D-type flip-flop with data (D), synchronous set (S), and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low during the Low-to-High clock (C) transition. (Reset has precedence over Set.) When S is High and R is Low, the flip-flop is set, output High, during the Low-to-High clock transition. When R and S are Low, data on the (D) input is loaded into the flip-flop during the Low-to-High clock transition.

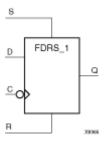
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
R	S	D	С	Q
1	Χ	Χ		0
0	1	Χ		1
0	0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRS 1

Primitive: D Flip-Flop with Negative-Clock Edge and Synchronous Reset and Set

Introduction

FDRS_1 is a single D-type flip-flop with data (D), synchronous set (S), and synchronous reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, overrides all other inputs and resets the (Q) output Low during the High-to-Low clock (C) transition. (Reset has precedence over Set.) When S is High and R is Low, the flip-flop is set, output High, during the High-to-Low clock transition. When R and S are Low, data on the (D) input is loaded into the flip-flop during the High-to-Low clock transition.

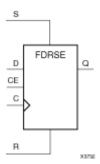
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
R	s	D	С	Q
1	Х	X		0
0	1	X		1
0	0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after config

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRSE

Primitive: D Flip-Flop with Synchronous Reset and Set and Clock Enable

Introduction

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S), clock enable (CE) inputs. The reset (R) input, when High, overrides all other inputs and resets the Q output Low during the Low-to-High clock transition. (Reset has precedence over Set.) When the set (S) input is High and R is Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. Data on the D input is loaded into the flip-flop when R and S are Low and CE is High during the Low-to-High clock transition.

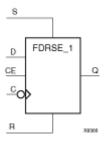
Upon power-up, the initial value of this component is specified by the INIT attribute. If a subsequent GSR (Global Set/Reset) is asserted, the flop is asynchronously set to the INIT value.

Logic Table

Inputs					Outputs
R	S	CE	D	С	Q
1	Χ	Χ	Χ		0
0	1	Χ	Χ		1
0	0	0	Χ	Χ	No Change
0	0	1	1		1
0	0	1	0		0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDRSE 1

Primitive: D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock Enable

Introduction

FDRSE_1 is a single D-type flip-flop with synchronous reset (R), synchronous set (S), and clock enable (CE) inputs and data output (Q). The reset (R) input, when High, overrides all other inputs and resets the (Q) output Low during the High-to-Low clock transition. (Reset has precedence over Set.) When the set (S) input is High and R is Low, the flip-flop is set, output High, during the High-to-Low clock (C) transition. Data on the (D) input is loaded into the flip-flop when (R) and (S) are Low and (CE) is High during the High-to-Low clock transition.

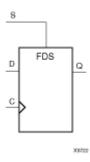
This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
R	S	CE	D	С	Q
1	X	Χ	Χ		0
0	1	Χ	Χ		1
0	0	0	Χ	Χ	No Change
0	0	1	D		D

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after config

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDS

Primitive: D Flip-Flop with Synchronous Set

Introduction

FDS is a single D-type flip-flop with data (D) and synchronous set (S) inputs and data output (Q). The synchronous set input, when High, sets the Q output High on the Low-to-High clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low during the Low-to-High clock (C) transition.

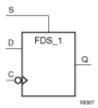
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
S	D	С	Q
1	X		1
0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after confi

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDS_1

Primitive: D Flip-Flop with Negative-Edge Clock and Synchronous Set

Introduction

FDS is a single D-type flip-flop with data (D) and synchronous set (S) inputs and data output (Q). The synchronous set input, when High, sets the Q output High on the Low-to-High clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low during the Low-to-High clock (C) transition.

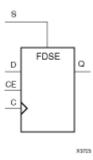
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
S	D	С	Q
1	Χ		1
0	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after co

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDSE

Primitive: D Flip-Flop with Clock Enable and Synchronous Set

Introduction

FDSE is a single D-type flip-flop with data (D), clock enable (CE), and synchronous set (S) inputs and data output (Q). The synchronous set (S) input, when High, overrides the clock enable (CE) input and sets the Q output High during the Low-to-High clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low and CE is High during the Low-to-High clock (C) transition.

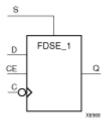
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
S	CE	D	С	Q
1	Х	Χ		1
0	0	X	Х	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configurati

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FDSE 1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Synchronous Set

Introduction

FDSE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous set (S) inputs and data output (Q). The synchronous set (S) input, when High, overrides the clock enable (CE) input and sets the Q output High during the High-to-Low clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low and CE is High during the High-to-Low clock (C) transition.

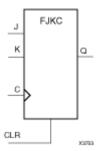
This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
S	CE	D	С	Q
1	Χ	Χ		1
0	0	X	X	No Change
0	1	D		D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	1-Bit Binary	0 or 1	0	Sets the initial value of Q output after configur

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKC

Macro: J-K Flip-Flop with Asynchronous Clear

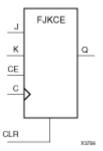
Introduction

This design element is a single J-K-type flip-flop with J, K, and asynchronous clear (CLR) inputs and data output (Q). The asynchronous clear (CLR) input, when High, overrides all other inputs and resets the Q output Low. When CLR is Low, the output responds to the state of the J and K inputs, as shown in the following logic table, during the Low-to-High clock (C) transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	J	K	С	Q
1	X	X	X	0
0	0	0		No Change
0	0	1		0
0	1	0		1
0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKCE

Macro: J-K Flip-Flop with Clock Enable and Asynchronous Clear

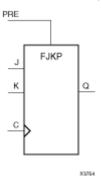
Introduction

This design element is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous clear (CLR) inputs and data output (Q). The asynchronous clear (CLR), when High, overrides all other inputs and resets the Q output Low. When CLR is Low and CE is High, Q responds to the state of the J and K inputs, as shown in the following logic table, during the Low-to-High clock transition. When CE is Low, the clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	CE	J	K	С	Q
1	X	X	X	X	0
0	0	X	X	X	No Change
0	1	0	0	X	No Change
0	1	0	1		0
0	1	1	0		1
0	1	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKP

Macro: J-K Flip-Flop with Asynchronous Preset

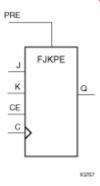
Introduction

This design element is a single J-K-type flip-flop with J, K, and asynchronous preset (PRE) inputs and data output (Q). The asynchronous preset (PRE) input, when High, overrides all other inputs and sets the (Q) output High. When (PRE) is Low, the (Q) output responds to the state of the J and K inputs, as shown in the following logic table, during the Low-to-High clock transition.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
PRE	J	K	С	Q
1	X	X	X	1
0	0	0	X	No Change
0	0	1		0
0	1	0		1
0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKPE

Macro: J-K Flip-Flop with Clock Enable and Asynchronous Preset

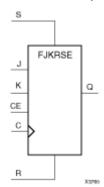
Introduction

This design element is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous preset (PRE) inputs and data output (Q). The asynchronous preset (PRE), when High, overrides all other inputs and sets the (Q) output High. When (PRE) is Low and (CE) is High, the (Q) output responds to the state of the J and K inputs, as shown in the logic table, during the Low-to-High clock (C) transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs					
PRE	CE	J	K	С	Q	
1	X	X	X	X	1	
0	0	X	X	X	No Change	
0	1	0	0	X	No Change	
0	1	0	1		0	
0	1	1	0		1	
0	1	1	1		Toggle	


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKRSE

Macro: J-K Flip-Flop with Clock Enable and Synchronous Reset and Set

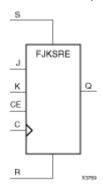
Introduction

This design element is a single J-K-type flip-flop with J, K, synchronous reset (R), synchronous set (S), and clock enable (CE) inputs and data output (Q). When synchronous reset (R) is High during the Low-to-High clock (C) transition, all other inputs are ignored and output (Q) is reset Low. When synchronous set (S) is High and (R) is Low, output (Q) is set High. When (R) and (S) are Low and (CE) is High, output (Q) responds to the state of the J and K inputs, according to the following logic table, during the Low-to-High clock (C) transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs
R	S	CE	J	K	С	Q
1	Х	X	Χ	Х		0
0	1	X	Χ	Х		1
0	0	0	Χ	Х	Х	No Change
0	0	1	0	0	Х	No Change
0	0	1	0	1		0
0	0	1	1	1		Toggle
0	0	1	1	0		1


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FJKSRE

Macro: J-K Flip-Flop with Clock Enable and Synchronous Set and Reset

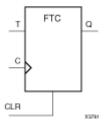
Introduction

This design element is a single J-K-type flip-flop with J, K, synchronous set (S), synchronous reset (R), and clock enable (CE) inputs and data output (Q). When synchronous set (S) is High during the Low-to-High clock (C) transition, all other inputs are ignored and output (Q) is set High. When synchronous reset (R) is High and (S) is Low, output (Q) is reset Low. When (S) and (R) are Low and (CE) is High, output (Q) responds to the state of the J and K inputs, as shown in the following logic table, during the Low-to-High clock (C) transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs					
S	R	CE	J	K	С	Q
1	Х	X	Х	X		1
0	1	X	Х	X		0
0	0	0	Х	X	X	No Change
0	0	1	0	0	X	No Change
0	0	1	0	1		0
0	0	1	1	0		1
0	0	1	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

FTC

Macro: Toggle Flip-Flop with Asynchronous Clear

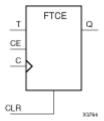
Introduction

This design element is a synchronous, resettable toggle flip-flop. The asynchronous clear (CLR) input, when High, overrides all other inputs and resets the data output (Q) Low. The (Q) output toggles, or changes state, when the toggle enable (T) input is High and (CLR) is Low during the Low-to-High clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
CLR	Т	С	Q
1	X	X	0
0	0	X	No Change
0	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTCE

Macro: Toggle Flip-Flop with Clock Enable and Asynchronous Clear

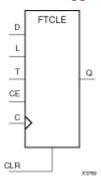
Introduction

This design element is a toggle flip-flop with toggle and clock enable and asynchronous clear. When the asynchronous clear (CLR) input is High, all other inputs are ignored and the data output (Q) is reset Low. When CLR is Low and toggle enable (T) and clock enable (CE) are High, Q output toggles, or changes state, during the Low-to-High clock (C) transition. When CE is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	Т	С	Q
1	X	X	X	0
0	0	X	X	No Change
0	1	0	X	No Change
0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTCLE

Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Clear

Introduction

This design element is a toggle/loadable flip-flop with toggle and clock enable and asynchronous clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored and output Q is reset Low. When load enable input (L) is High and CLR is Low, clock enable (CE) is overridden and the data on data input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition. When toggle enable (T) and CE are High and L and CLR are Low, output Q toggles, or changes state, during the Low- to-High clock transition. When CE is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs
CLR	L	CE	T	D	С	Q
1	Х	X	Χ	X	X	0
0	1	X	Χ	D		D
0	0	0	Χ	X	X	No Change
0	0	1	0	X	X	No Change
0	0	1	1	Х		Toggle

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTCLEX

Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Clear

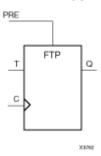
Introduction

This design element is a toggle/loadable flip-flop with toggle and clock enable and asynchronous clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored and output Q is reset Low. When load enable input (L) is High, CLR is Low, and CE is High, the data on data input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition. When toggle enable (T) and CE are High and L and CLR are Low, output Q toggles, or changes state, during the Low- to-High clock transition. When CE is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs
CLR	L	CE	T	D	С	Q
1	Х	X	Х	X	X	0
0	1	X	Х	D		D
0	0	0	Х	Х	Х	No Change
0	0	1	0	Х	Х	No Change
0	0	1	1	Х		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTP

Macro: Toggle Flip-Flop with Asynchronous Preset

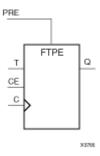
Introduction

This design element is a toggle flip-flop with toggle enable and asynchronous preset. When the asynchronous preset (PRE) input is High, all other inputs are ignored and output (Q) is set High. When toggle-enable input (T) is High and (PRE) is Low, output (Q) toggles, or changes state, during the Low-to-High clock (C) transition.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
PRE	T	С	Q
1	Χ	X	1
0	0	X	No Change
0	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTPE

Macro: Toggle Flip-Flop with Clock Enable and Asynchronous Preset

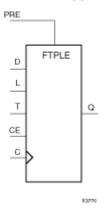
Introduction

This design element is a toggle flip-flop with toggle and clock enable and asynchronous preset. When the asynchronous preset (PRE) input is High, all other inputs are ignored and output (Q) is set High. When the toggle enable input (T) is High, clock enable (CE) is High, and (PRE) is Low, output (Q) toggles, or changes state, during the Low-to-High clock transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
PRE	CE	T	С	Q
1	X	Χ	X	1
0	0	Х	X	No Change
0	1	0	X	No Change
0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTPLE

Macro: Toggle/Loadable Flip-Flop with Clock Enable and Asynchronous Preset

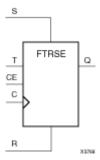
Introduction

This design element is a toggle/loadable flip-flop with toggle and clock enable and asynchronous preset. When the asynchronous preset input (PRE) is High, all other inputs are ignored and output (Q) is set High. When the load enable input (L) is High and (PRE) is Low, the clock enable (CE) is overridden and the data (D) is loaded into the flip-flop during the Low-to-High clock transition. When L and PRE are Low and toggle-enable input (T) and (CE) are High, output (Q) toggles, or changes state, during the Low-to-High clock transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						
PRE	L	CE	T	D	С	Q
1	Х	Х	Х	Х	Х	1
0	1	X	X	D	?	D
0	0	0	X	X	X	No Change
0	0	1	0	Х	Х	No Change
0	0	1	1	Х	?	Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTRSE

Macro: Toggle Flip-Flop with Clock Enable and Synchronous Reset and Set

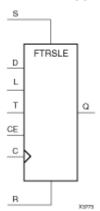
Introduction

This design element is a toggle flip-flop with toggle and clock enable and synchronous reset and set. When the synchronous reset input (R) is High, it overrides all other inputs and the data output (Q) is reset Low. When the synchronous set input (S) is High and (R) is Low, clock enable input (CE) is overridden and output (Q) is set High. (Reset has precedence over Set.) When toggle enable input (T) and (CE) are High and (R) and (S) are Low, output (Q) toggles, or changes state, during the Low-to-High clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
R	S	CE	Т	С	Q
1	X	X	X		0
0	1	X	X		1
0	0	0	X	Х	No Change
0	0	1	0	Х	No Change
0	0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTRSLE

Macro: Toggle/Loadable Flip-Flop with Clock Enable and Synchronous Reset and Set

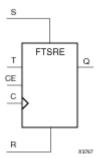
Introduction

This design element is a toggle/loadable flip-flop with toggle and clock enable and synchronous reset and set. The synchronous reset input (R), when High, overrides all other inputs and resets the data output (Q) Low. (Reset has precedence over Set.) When R is Low and synchronous set input (S) is High, the clock enable input (CE) is overridden and output Q is set High. When R and S are Low and load enable input (L) is High, CE is overridden and data on data input (D) is loaded into the flip-flop during the Low-to-High clock transition. When R, S, and L are Low, CE is High and T is High, output Q toggles, or changes state, during the Low-to-High clock transition. When CE is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs							Outputs
R	S	L	CE	T	D	С	Q
1	0	Χ	X	Χ	Χ		0
0	1	Χ	X	Χ	Χ		1
0	0	1	X	Χ	1		1
0	0	1	X	Χ	0		0
0	0	0	0	X	Χ	Χ	No Change
0	0	0	1	0	Х	Х	No Change
0	0	0	1	1	Х		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTSRE

Macro: Toggle Flip-Flop with Clock Enable and Synchronous Set and Reset

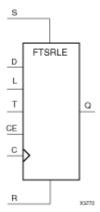
Introduction

This design element is a toggle flip-flop with toggle and clock enable and synchronous set and reset. The synchronous set input, when High, overrides all other inputs and sets data output (Q) High. (Set has precedence over Reset.) When synchronous reset input (R) is High and S is Low, clock enable input (CE) is overridden and output Q is reset Low. When toggle enable input (T) and CE are High and S and R are Low, output Q toggles, or changes state, during the Low-to-High clock transition. When CE is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
S	S R		Т	С	Q
1	X	X	X		1
0	1	X	X		0
0	0	0	X	X	No Change
0	0	1	0	Х	No Change
0	0	1	1		Toggle


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

FTSRLE

Macro: Toggle/Loadable Flip-Flop with Clock Enable and Synchronous Set and Reset

Introduction

This design element is a toggle/loadable flip-flop with toggle and clock enable and synchronous set and reset. The synchronous set input (S), when High, overrides all other inputs and sets data output (Q) High. (Set has precedence over Reset.) When synchronous reset (R) is High and (S) is Low, clock enable input (CE) is overridden and output (Q) is reset Low. When load enable input (L) is High and S and R are Low, CE is overridden and data on data input (D) is loaded into the flip-flop during the Low-to-High clock transition. When the toggle enable input (T) and (CE) are High and (S), (R), and (L) are Low, output (Q) toggles, or changes state, during the Low-to-High clock transition. When (CE) is Low, clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs							Outputs
s	R	L	CE	Т	D	С	Q
1	Х	Х	Х	Х	Х		1
0	1	Х	Х	Х	Х		0
0	0	1	Х	Х	1		1
0	0	1	Х	Χ	0		0
0	0	0	0	Х	Х	Х	No Change
0	0	0	1	0	Х	Х	No Change
0	0	0	1	1	X		Toggle

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

GND

Primitive: Ground-Connection Signal Tag

Introduction

The GND signal tag, or parameter, forces a net or input function to a Low logic level. A net tied to GND cannot have any other source.

When the logic-trimming software or fitter encounters a net or input function tied to GND, it removes any logic that is disabled by the GND signal. The GND signal is only implemented when the disabled logic cannot be removed.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: Input Buffer

Introduction

This design element is automatically inserted (inferred) by the synthesis tool to any signal directly connected to a top-level input or in-out port of the design. You should generally let the synthesis tool infer this buffer. However, it can be instantiated into the design if required. In order to do so, connect the input port (I) directly to the associated top-level input or in-out port, and connect the output port (O) to the logic sourced by that port. Modify any necessary generic maps (VHDL) or named parameter value assignment (Verilog) in order to change the default behavior of the component.

Usage

This design element can be used in schematics.

In general, this element is inferred by the synthesis tool for any specified top-level input port to the design. It is generally not necessary to specify them in the source code however if desired, they be manually instantiated by either copying the instantiation code from the ISE Libaries Guide HDL Template and paste it into the top-level entity/module of your code. It is recommended to always put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level input port of the design and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	DEFAULT	Sets the programmable I/O standard for the input.
IBUF_DELAY _VALUE	Binary	0 thru 12	0	Specifies the amount of additional delay to add to the non-registered path out of the IOB
IFD_DELAY _VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional delay to add to the registered path within the IOB

Note Consult the device user guide or databook for the allowed values and the default value.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Bit Input Buffer

IBUF16

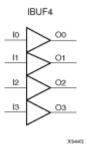
Introduction

Input Buffers isolate the internal circuit from the signals coming into the chip. This design element is contained in input/output blocks (IOBs) and allows the specification of the particular I/O Standard to configure the I/O. In general, an this element should be used for all single-ended data input or bidirectional pins.

Usage

This design element can be used in schematics.

In general, this element is inferred by the synthesis tool for any specified top-level input port to the design. It is generally not necessary to specify them in the source code however if desired, they be manually instantiated by either copying the instantiation code from the ISE Libaries Guide HDL Template and paste it into the top-level entity/module of your code. It is recommended to always put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level input port of the design and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	DEFAULT	Sets the programmable I/O standard for the input.
IBUF_DELAY _VALUE	Binary	0 thru 12	0	Specifies the amount of additional delay to add to the non-registered path out of the IOB
IFD_DELAY _VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional delay to add to the registered path within the IOB

Note Consult the device user guide or databook for the allowed values and the default value.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit Input Buffer

Introduction

Input Buffers isolate the internal circuit from the signals coming into the chip. This design element is contained in input/output blocks (IOBs) and allows the specification of the particular I/O Standard to configure the I/O. In general, an this element should be used for all single-ended data input or bidirectional pins.

Usage

This design element can be used in schematics.

In general, this element is inferred by the synthesis tool for any specified top-level input port to the design. It is generally not necessary to specify them in the source code however if desired, they be manually instantiated by either copying the instantiation code from the ISE Libaries Guide HDL Template and paste it into the top-level entity/module of your code. It is recommended to always put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level input port of the design and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	DEFAULT	Sets the programmable I/O standard for the input.
IBUF_DELAY _VALUE	Binary	0 thru 12	0	Specifies the amount of additional delay to add to the non-registered path out of the IOB
IFD_DELAY _VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional delay to add to the registered path within the IOB

Note Consult the device user guide or databook for the allowed values and the default value.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Input Buffer

IBUF8

Introduction

Input Buffers isolate the internal circuit from the signals coming into the chip. This design element is contained in input/output blocks (IOBs) and allows the specification of the particular I/O Standard to configure the I/O. In general, an this element should be used for all single-ended data input or bidirectional pins.

Usage

This design element can be used in schematics.

In general, this element is inferred by the synthesis tool for any specified top-level input port to the design. It is generally not necessary to specify them in the source code however if desired, they be manually instantiated by either copying the instantiation code from the ISE Libaries Guide HDL Template and paste it into the top-level entity/module of your code. It is recommended to always put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level input port of the design and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	DEFAULT	Sets the programmable I/O standard for the input.
IBUF_DELAY _VALUE	Binary	0 thru 12	0	Specifies the amount of additional delay to add to the non-registered path out of the IOB
IFD_DELAY _VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional delay to add to the registered path within the IOB

Note Consult the device user guide or databook for the allowed values and the default value.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IBUFDS

Primitive: Differential Signaling Input Buffer with Optional Delay

Introduction

This design element is an input buffer that supports low-voltage, differential signaling. In IBUFDS, a design level interface signal is represented as two distinct ports (I and IB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay to assist in the capturing of incoming data to the device.

Logic Table

Inputs		Outputs
Ι	IB	0
0	0	No Change
0	1	0
1	0	1
1	1	No Change

Design Entry Method

This design element can be used in schematics.

Put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level "master" input port of the design, the IB port to the top-level "slave" input port, and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	DEFAULT	Sets the programmable I/O standard
IBUF_DELAY_VALUE	Binary	0 thru 12	0	Specifies the amount of additional de the IOB
IFD_DELAY_VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional d the IOB
DIFF_TERM	Boolean	TRUE or FALSE	FALSE	Enables the built-in differential term

Note Consult the device user guide or databook for the allowed values and the default value.

For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

IBUFG

Primitive: Dedicated Input Clock Buffer

Introduction

The IBUFG is a dedicated input to the device which should be used to connect incoming clocks to the FPGA to the global clock routing resources. The IBUFG provides dedicated connections to the DCM_SP and BUFG providing the minimum amount of clock delay and jitter to the device. The IBUFG input can only be driven by the global clock pins. The IBUFG output can drive CLKIN of a DCM_SP, BUFG, or your choice of logic. The IBUFG can be routed to your choice of logic to allow the use of the dedicated clock pins for general logic.

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	"DEFAULT"	Sets the programmable I/O
IFD_DELAY_VALUE	Binary	AUTO, 0 thru 8	AUTO	Specifies the amount of add path within the IOB

Note Consult the device user guide or databook for the allowed values and the default value.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IBUFGDS

Primitive: Differential Signaling Dedicated Input Clock Buffer and Optional Delay

Introduction

This design element is a dedicated differential signaling input buffer for connection to the clock buffer (BUFG) or DCM. In IBUFGDS, a design-level interface signal is represented as two distinct ports (I and IB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay is to assist in the capturing of incoming data to the device.

Logic Table

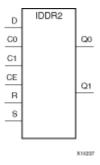
Inputs		Outputs
I	IB	0
0	0	No Change
0	1	0
1	0	1
1	1	No Change

Design Entry Method

This design element can be used in schematics.

Put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level "master" input port of the design, the IB port to the top-level "slave" input port and the O port to a DCM, BUFG or logic in which this input is to source. Some synthesis tools infer the BUFG automatically if necessary, when connecting an IBUFG to the clock resources of the FPGA. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Note Below	"DEFAULT"	Sets the program
IFD_DELAY_VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the an within the IOB.
DIFF_TERM	Boolean	TRUE or FALSE	FALSE	Enables the bui

Note Consult the device user guide or databook for the allowed values and the default value.

- See the Spartan-3E User Guide.
- See the Spartan-3E Data Sheets.

IDDR2

Primitive: Double Data Rate Input D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or Asynchronous Set/Reset

Introduction

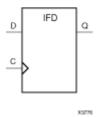
This design element is an input double data rate (DDR) register useful in capturing double data rate signals entering the FPGA. The IDDR2 requires two clocks to be connected to the component, C0 and C1, so that data is captured at the positive edge of both C0 and C1 clocks. The IDDR2 features an active high clock enable port, CE, which be used to suspend the operation of the registers, and both set and reset ports that be configured to be synchronous or asynchronous to the respective clocks. The IDDR2 has an optional alignment feature that allows both output data ports to the component to be aligned to a single clock.

Logic Table

Input	Input					Output	
S	R	CE	D	C0	C1	Q0	Q1
1	x	Х	x	x	х	INIT_Q0	INIT_Q1
0	1	х	x	x	х	not INIT_Q0	not INIT_Q1
0	0	0	x	x	х	No Change	No Change
0	0	1	D	Rising	х	D	No Change
0	0	1	D	x	Rising	No Change	D
Set/Rese	Set/Reset can be synchronous via SRTYPE value						

Design Entry Method

This design element can be used in schematics.


To change the default behavior of the IDDR2, modify attributes via the generic map (VHDL) or named parameter value assignment (Verilog) as a part of the instantiated component. The IDDR2 can be connected directly to a top-level input port in the design, where an appropriate input buffer can be inferred, or directly to an instantiated IBUF, IOBUF, IBUFDS or IOBUFDS. All inputs and outputs of this component should either be connected or properly tied off.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DDR_ALIGNMENT	String	NONE, "C0" or "C1"	NONE"	Sets the output alignment more for the DI makes the data available on the Q0 and Q1 corres-ponding C0 or C1 positive clock edge both Q0 and Q1 align to the positive edge the data on both Q0 and Q1 align to the po
INIT_Q0	Integer	0 or 1	0	Sets initial state of the Q0 output to 0 or 1.
INIT_Q1	Integer	0 or 1	0	Sets initial state of the Q1 output to 0 or 1.
SRTYPE	String	"SYNC" or "ASYNC"	"SYNC"	Specifies SYNC" or "ASYNC" set/reset.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

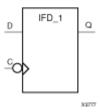
Macro: Input D Flip-Flop

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. The data on input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs	Outputs	
D	Q	
Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

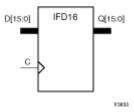
Macro: Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

Introduction

This design element is a D-type flip flop which is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D input also provides data input for the flip-flop, which synchronizes data entering the chip. The D input data is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D	С	Q
0		0
1		1

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

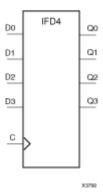
Macro: 16-Bit Input D Flip-Flop

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. The data on input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D C		Q
Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

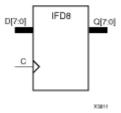
Macro: 4-Bit Input D Flip-Flop

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. The data on input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D	С	Q
Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Input D Flip-Flop

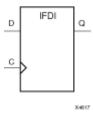
Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. The data on input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D	С	Q
Dn		Dn


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IFDI

Macro: Input D Flip-Flop (Asynchronous Preset)

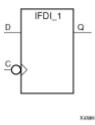
Introduction

This design element is a D-type flip-flop which is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input for the flip-flop, which synchronizes data entering the chip. The D input data is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D	С	Q
D		D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IFDI 1

Macro: Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

Introduction

The design element is a D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. The data on input (D) is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D	С	Q
0		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Input D Flip-Flop with Clock Enable

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D input provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the Low-to- High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When CE is Low, flip-flop outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	Dn	С	Qn
1	Dn		Dn
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

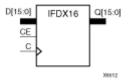
Macro: Input D Flip-Flop with Inverted Clock and Clock Enable

Introduction

This design element is a D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D input also provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When the CE pin is Low, the output (Q) does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Port Descriptions


Inputs		Outputs	
CE	D	С	Q
1	D		D
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

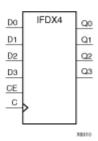
Macro: 16-Bit Input D Flip-Flops with Clock Enable

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D input provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the Low-to- High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When CE is Low, flip-flop outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs	
CE	Dn	С	Qn
1	Dn		Dn
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

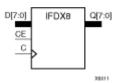
Macro: 4-Bit Input D Flip-Flop with Clock Enable

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D input provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the Low-to- High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When CE is Low, flip-flop outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
CE	Dn	С	Qn
1	Dn		Dn
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Input D Flip-Flop with Clock Enable

Introduction

This D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D input provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the Low-to- High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When CE is Low, flip-flop outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs	
CE	Dn	С	Qn
1	Dn		Dn
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IFDXI

Macro: Input D Flip-Flop with Clock Enable (Asynchronous Preset)

Introduction

The design element is a D-type flip-flop is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input for the flip-flop, which synchronizes data entering the chip. When CE is High, the data on input D is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When the CE pin is Low, the output (Q) does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
1	D		D
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IFDXI 1

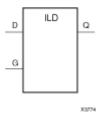
Macro: Input D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

Introduction

The design element is a D-type flip-flop that is contained in an input/output block (IOB). The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The (D) input provides data input for the flip-flop, which synchronizes data entering the chip. When (CE) is High, the data on input (D) is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at the output (Q). The clock input can be driven by internal logic or through another external pin. When the (CE) pin is Low, the output (Q) does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs	
CE	D	С	Q
1	D		D
0	X	Х	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

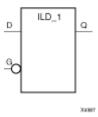
Macro: Transparent Input Data Latch

Introduction

This design element is a single, transparent data latch that holds transient data entering a chip. This latch is contained in an input/output block (IOB). The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data on the input (D) appears on the output (Q). Data on the D input during the High-to-Low G transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Output
G	D	Q
1	D	D
0	X	No Change
Ø	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch with Inverted Gate

Introduction

This design element is a transparent data latch that holds transient data entering a chip. When the gate input (G) is Low, data on the data input (D) appears on the data output (Q). Data on (D) during the Low-to-High (G) transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
0	D	D
1	X	D
	D	D

Usage

This component is inside the IOB. It cannot be directly inferred. The most common design practice is to infer a regular component and put an IOB=TRUE attribute on the component in the UCF file or in the code. For instance, to get an ILD_1, you would infer an ILD_1 and put the IOB = TRUE attribute on the component. Or, you could use the map option —pri 0 to pack all input registers into the IOBs.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

Introduction

These design elements are multiple transparent data latches that hold transient data entering a chip. The ILD latch is contained in an input/output block (IOB). The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data on the inputs (D) appears on the outputs (Q). Data on the D inputs during the High-to-Low G transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
G	D	Q
1	D	D
0	Х	No Change
Ø	D	D

Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

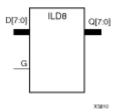
Macro: Transparent Input Data Latch

Introduction

These design elements are multiple transparent data latches that hold transient data entering a chip. The ILD latch is contained in an input/output block (IOB). The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data on the inputs (D) appears on the outputs (Q). Data on the D inputs during the High-to-Low G transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
G	D	Q
1	D	D
0	Х	No Change
Ø	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

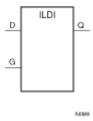
Introduction

These design elements are multiple transparent data latches that hold transient data entering a chip. The ILD latch is contained in an input/output block (IOB). The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data on the inputs (D) appears on the outputs (Q). Data on the D inputs during the High-to-Low G transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
1	D	D
0	Х	No Change
Ø	D	D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ILDI

Macro: Transparent Input Data Latch (Asynchronous Preset)

Introduction

This design element is a transparent data latch that holds transient data entering a chip. When the gate input (G) is High, data on the input (D) appears on the output (Q). Data on the D input during the High-to-Low G transition is stored in the latch.

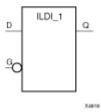
The ILDI is the input flip-flop master latch. It is possible to access two different outputs from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDI) corresponds to a falling edge-triggered flip-flop (IFDI_1). Similarly, a transparent Low latch (ILDI_1) corresponds to a rising edge-triggered flip-flop (IFDI).

The latch is asynchronously preset, output High, when power is applied.

For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
1	D	D
0	X	D
	D	D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ILDI 1

Macro: Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

Introduction

This design element is a transparent data latch that holds transient data entering a chip. When the gate input (G) is Low, data on the data input (D) appears on the data output (Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied.

For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
0	1	1
0	0	0
1	Х	D
	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

Introduction

This design element is single or multiple transparent data latches that holds transient data entering a chip. The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).

The ILDX is the input flip-flop master latch. Two outputs can be accessed from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corresponds to a rising edge-triggered flip-flop (IFDX)

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	X	No Change
1	1	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

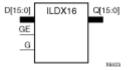
Macro: Transparent Input Data Latch with Inverted Gate

Introduction

This design element is a transparent data latch that holds transient data entering a chip. When the gate input (G) is Low, data on the data input (D) appears on the data output (Q). Data on D during the Low-to-High G transition is stored in the latch.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	1	X	No Change
1	0	1	1
1	0	0	0
1		D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

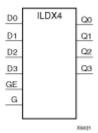
Introduction

This design element is single or multiple transparent data latches that holds transient data entering a chip. The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).

The ILDX is the input flip-flop master latch. Two outputs can be accessed from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corresponds to a rising edge-triggered flip-flop (IFDX)

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	X	No Change
1	1	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

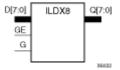
Introduction

This design element is single or multiple transparent data latches that holds transient data entering a chip. The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).

The ILDX is the input flip-flop master latch. Two outputs can be accessed from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corresponds to a rising edge-triggered flip-flop (IFDX)

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	X	No Change
1	1	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Transparent Input Data Latch

Introduction

This design element is single or multiple transparent data latches that holds transient data entering a chip. The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).

The ILDX is the input flip-flop master latch. Two outputs can be accessed from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corresponds to a rising edge-triggered flip-flop (IFDX)

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	X	No Change
1	1	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ILDXI

Macro: Transparent Input Data Latch (Asynchronous Preset)

Introduction

This design element is a transparent data latch that holds transient data entering a chip. When the gate input (G) is High, data on the input (D) appears on the output (Q). Data on the (D) input during the High-to-Low (G) transition is stored in the latch.

The ILDXI is the input flip-flop master latch. Two outputs can be accessed from the input flip-flop: one that responds to the level of the clock signal and another that responds to an edge of the clock signal. When using both outputs from the same input flip-flop, a transparent High latch (ILDXI) corresponds to a falling edge-triggered flip-flop (IFDXI_1). Similarly, a transparent Low latch (ILDXI_1) corresponds to a rising edge-triggered flip-flop (IFDXI). See the following figure for legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations.

The latch is asynchronously preset, output High, when power is applied.

For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	X	No Change
1	1	D	D
1		D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ILDXI_1

Macro: Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

Introduction

This design element is a transparent data latch that holds transient data entering a chip.

The latch is asynchronously preset, output High, when power is applied.

For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	1	X	No Change
1	0	D	D
1		D	D

Design Entry Method

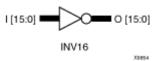
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: Inverter

INV T

Introduction


This design element is a single inverter that identifies signal inversions in a schematic.

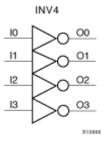
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16 Inverters

Introduction


This design element is a multiple inverter that identifies signal inversions in a schematic.

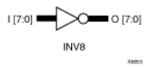
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Four Inverters

Introduction


This design element is a multiple inverter that identifies signal inversions in a schematic.

Design Entry Method

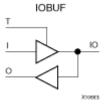
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Eight Inverters

Introduction

This design element is a multiple inverter that identifies signal inversions in a schematic.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IOBUF

Primitive: Bi-Directional Buffer

Introduction

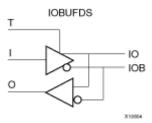
The design element is a bidirectional single-ended I/O Buffer used to connect internal logic to an external bidirectional pin.

Logic Table

Inputs		Bidirectional	Outputs
T	Ι	IO	0
1	X	Z	X
0	1	1	1
0	0	0	0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Selects output drive strength (mA) for the SelectIO buffers that use the LVTTL, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 interface I/O standard.
IOSTANDARD	String	"DEFAULT"	"DEFAULT"	Use to assign an I/O standard to an I/O primitive.
IBUF_DELAY _VALUE	Binary	0 thru 12	0	Specifies the amount of additional delay to add to the non-registered path out of the IOB
IFD_DELAY _VALUE	Binary	AUTO, 0 thru 6	AUTO	Specifies the amount of additional delay to add to the registered path within the IOB
SLEW	Integer	"SLOW","FAST"	"SLOW"	Sets the output rise and fall time.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

IOBUFDS

Primitive: 3-State Differential Signaling I/O Buffer with Active Low Output Enable

Introduction

The design element is a bidirectional buffer that supports low-voltage, differential signaling. For the IOBUFDS, a design level interface signal is represented as two distinct ports (IO and IOB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay is to assist in the capturing of incoming data to the device.

Logic Table

Inputs		Bidirectional		Outputs
I	Т	IO	IOB	0
X	1	Z	Z	No Change
0	0	0	1	0
I	0	1	0	1

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
IFD_DELAY_VAL	J E tring	"AUTO" or 0 to 6	"AUTO"	Specifies the amount of additional delay to add to the registered path within the IOB.
IOSTANDARD	String	"DEFAULT"	"DEFAULT"	Use to assign an I/O standard to an I/O primitive.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

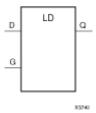
KEEPER

Primitive: KEEPER Symbol

Introduction

The design element is a weak keeper element that retains the value of the net connected to its bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER drives a weak/resistive 1 onto the net. If the net driver is then 3-stated, KEEPER continues to drive a weak/resistive 1 onto the net.

Design Entry Method


This design element can be used in schematics.

This element can be connected to a net in the following locations on a top-level schematic file:

- A net connected to an input IO Marker
- A net connected to both an output IO Marker and 3-statable IO element, such as an OBUFT

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

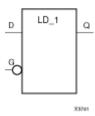
Primitive: Transparent Data Latch

Introduction

LD is a transparent data latch. The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
G	D	Q
1	D	D
0	X	No Change
	D	D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: Transparent Data Latch with Inverted Gate

Introduction

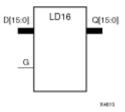
This design element is a transparent data latch with an inverted gate. The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is Low. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
0	D	D
1	X	No Change
?	D	D

Design Entry Method


This design element is only for use in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	1-Bit Binary	1-Bit Binary	1′b0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Multiple Transparent Data Latch

Introduction

This design element has 16 transparent data latches with a common gate enable (G). The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

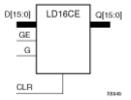
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
1	D	D
0	X	No Change
	Dn	Dn

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LD16CE

Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable

Introduction

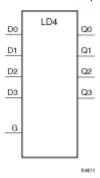
This design element has 16 transparent data latches with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) outputs Low. (Q) reflects the data (D) inputs while the gate (G) and gate enable (GE) are High, and (CLR) is Low. If (GE) is Low, data on (D) cannot be latched. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains Low.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	GE	G	Dn	Qn	
1	Х	X	X	0	
0	0	X	X	No Change	
0	1	1	Dn	Dn	
0	1	0	X	No Change	
0	1		Dn	Dn	
Dn = referenced input, for example, D0, D1, D2					
On = reference	ced output, for examp	le, O0, O1, O2			

Usage


This design element is supported for schematics only.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Multiple Transparent Data Latch

Introduction

This design element has four transparent data latches with a common gate enable (G). The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

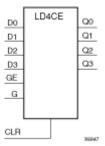
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
1	D	D
0	X	No Change
	Dn	Dn

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 4-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LD4CE

Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable

Introduction

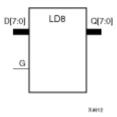
This design element has 4 transparent data latches with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) outputs Low. (Q) reflects the data (D) inputs while the gate (G) and gate enable (GE) are High, and (CLR) is Low. If (GE) is Low, data on (D) cannot be latched. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains Low.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	GE	G	Dn	Qn	
1	X	X	X	0	
0	0	X	X	No Change	
0	1	1	Dn	Dn	
0	1	0	X	No Change	
0	1		Dn	Dn	
Dn = referenced input, for example, D0, D1, D2					
Qn = reference	Qn = referenced output, for example, Q0, Q1, Q2				

Usage


This design element is supported for schematics only.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 4-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Multiple Transparent Data Latch

Introduction

This design element has 8 transparent data latches with a common gate enable (G). The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

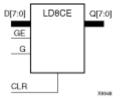
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
G	D	Q
1	D	D
0	Х	No Change
	Dn	Dn

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 8-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

LD8CE

Macro: Transparent Data Latch with Asynchronous Clear and Gate Enable

Introduction

This design element has 8 transparent data latches with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) outputs Low. (Q) reflects the data (D) inputs while the gate (G) and gate enable (GE) are High, and (CLR) is Low. If (GE) is Low, data on (D) cannot be latched. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains Low.

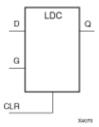
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	GE	G	Dn	Qn
1	Х	Х	X	0
0	0	Χ	X	No Change
0	1	1	Dn	Dn
0	1	0	X	No Change
0	1		Dn	Dn
Dn = referenced input, for example, D0, D1, D2				
On = reference	ced output, for examp	le, O0, O1, O2		

Usage

This design element is supported for schematics only.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	Any 8-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDC

Primitive: Transparent Data Latch with Asynchronous Clear

Introduction

This design element is a transparent data latch with asynchronous clear. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. (Q) reflects the data (D) input while the gate enable (G) input is High and (CLR) is Low. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains low.

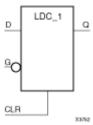
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs		
CLR	G	D	Q
1	X	X	0
0	1	D	D
0	0	X	No Change
0	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDC_1

Primitive: Transparent Data Latch with Asynchronous Clear and Inverted Gate

Introduction

This design element is a transparent data latch with asynchronous clear and inverted gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs (D and G) and resets the data (Q) output Low. (Q) reflects the data (D) input while the gate enable (G) input and CLR are Low. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High.

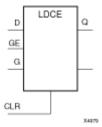
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CLR	G	D	Q
1	X	X	0
0	0	D	D
0	1	X	No Change
0	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the Spartan-3E Data Sheets.

LDCE

Primitive: Transparent Data Latch with Asynchronous Clear and Gate Enable

Introduction

This design element is a transparent data latch with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High and CLR is Low. If (GE) is Low, data on (D) cannot be latched. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains low.

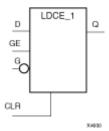
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	GE	G	D	Q
1	X	X	X	0
0	0	X	X	No Change
0	1	1	D	D
0	1	0	X	No Change
0	1	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDCE_1

Primitive: Transparent Data Latch with Asynchronous Clear, Gate Enable, and Inverted Gate

Introduction

This design element is a transparent data latch with asynchronous clear, gate enable, and inverted gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. (Q) reflects the data (D) input while the gate (G) input and (CLR) are Low and gate enable (GE) is High. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High or (GE) remains Low

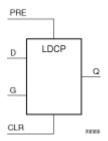
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	GE	G	D	Q
1	X	Χ	Χ	0
0	0	Х	Х	No Change
0	1	0	D	D
0	1	1	Х	No Change
0	1	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the Spartan-3E Data Sheets.

LDCP

Primitive: Transparent Data Latch with Asynchronous Clear and Preset

Introduction

The design element is a transparent data latch with data (D), asynchronous clear (CLR) and preset (PRE) inputs. When (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and (CLR) is low, it presets the data (Q) output High. (Q) reflects the data (D) input while the gate (G) input is High and (CLR) and PRE are Low. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

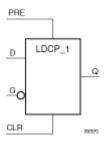
Inputs	Outputs			
CLR	PRE	G	D	Q
1	X	X	X	0
0	1	X	X	1
0	0	1	D	D
0	0	0	X	No Change
0	0		D	D

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

LDCP 1

Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Inverted Gate

Introduction

This design element is a transparent data latch with data (D), asynchronous clear (CLR), preset (PRE) inputs, and inverted gate (G). When (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. When (PRE) is High and (CLR) is Low, it presets the data (Q) output High. (Q) reflects the data (D) input while gate (G) input, (CLR), and (PRE) are Low. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

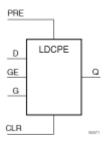
Inputs	Outputs			
CLR	PRE	G	D	Q
1	X	X	X	0
0	1	X	Х	1
0	0	0	D	D
0	0	1	X	No Change
0	0		D	D

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

LDCPE

Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

Introduction

This design element is a transparent data latch with data (D), asynchronous clear (CLR), asynchronous preset (PRE), and gate enable (GE). When (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. When (PRE) is High and (CLR) is Low, it presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High and (CLR) and PRE are Low. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as (G) or (GE) remains Low.

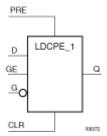
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs				
CLR	PRE	GE	G	D	Q
1	X	X	Х	X	0
0	1	X	X	X	1
0	0	0	X	X	No Change
0	0	1	1	0	0
0	0	1	1	1	1
0	0	1	0	X	No Change
0	0	1		D	D

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDCPE 1

Primitive: Transparent Data Latch with Asynchronous Clear and Preset, Gate Enable, and Inverted Gate

Introduction

This design element is a transparent data latch with data (D), asynchronous clear (CLR), asynchronous preset (PRE), gate enable (GE), and inverted gate (G). When (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and (CLR) is Low, it presets the data (Q) output High. (Q) reflects the data (D) input while gate enable (GE) is High and gate (G), (CLR), and (PRE) are Low. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) is High or (GE) is Low.

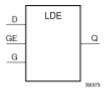
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Inputs				
CLR	PRE	GE	G	D	Q
1	X	X	X	X	0
0	1	X	X	X	1
0	0	0	X	X	No Change
0	0	1	0	D	D
0	0	1	1	X	No Change
0	0	1		D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDE

Primitive: Transparent Data Latch with Gate Enable

Introduction

This design element is a transparent data latch with data (D) and gate enable (GE) inputs. Output (Q) reflects the data (D) while the gate (G) input and gate enable (GE) are High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains Low.

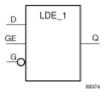
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	1	D	D
1	0	X	No Change
1	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

LDE 1

Primitive: Transparent Data Latch with Gate Enable and Inverted Gate

Introduction

This design element is a transparent data latch with data (D), gate enable (GE), and inverted gate (G). Output (Q) reflects the data (D) while the gate (G) input is Low and gate enable (GE) is High. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) is High or (GE) is Low.

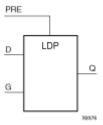
This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
GE	G	D	Q
0	X	X	No Change
1	0	D	D
1	1	X	No Change
1		D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDP

Primitive: Transparent Data Latch with Asynchronous Preset

Introduction

This design element is a transparent data latch with asynchronous preset (PRE). When the (PRE) input is High, it overrides the other inputs and presets the data (Q) output High. (Q) reflects the data (D) input while gate (G) input is High and (PRE) is Low. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains Low.

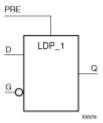
The latch is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

			Outputs
PRE	G	D	Q
1	X	Х	1
0	1	0	0
0	1	1	1
0	0	X	No Change
0		D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDP 1

Primitive: Transparent Data Latch with Asynchronous Preset and Inverted Gate

Introduction

This design element is a transparent data latch with asynchronous preset (PRE) and inverted gate (G). When the (PRE) input is High, it overrides the other inputs and presets the data (Q) output High. (Q) reflects the data (D) input while gate (G) input and (PRE) are Low. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High.

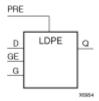
The latch is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
PRE	G	D	Q
1	X	X	1
0	0	D	D
0	1	X	No Change
0	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDPE

Primitive: Transparent Data Latch with Asynchronous Preset and Gate Enable

Introduction

This design element is a transparent data latch with asynchronous preset and gate enable. When the asynchronous preset (PRE) is High, it overrides the other input and presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) or (GE) remains Low.

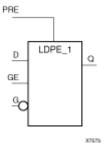
The latch is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
PRE	GE	G	D	Q
1	X	X	Χ	1
0	0	X	X	No Change
0	1	1	D	D
0	1	0	X	No Change
0	1	?	D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	INTEGER	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LDPE 1

Primitive: Transparent Data Latch with Asynchronous Preset, Gate Enable, and Inverted Gate

Introduction

This design element is a transparent data latch with asynchronous preset, gate enable, and inverted gate. When the asynchronous preset (PRE) is High, it overrides the other input and presets the data (Q) output High. (Q) reflects the data (D) input while the gate (G) and (PRE) are Low and gate enable (GE) is High. The data on the (D) input during the Low-to-High gate transition is stored in the latch. The data on the (Q) output remains unchanged as long as (G) remains High or (GE) remains Low.

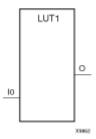
The latch is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs				Outputs
PRE	GE	G	D	Q
1	X	Х	Х	1
0	0	X	X	No Change
0	1	0	D	D
0	1	1	X	No Change
0	1		D	D

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Specifies the initial value upon power-up or the assertion of GSR for the (Q) port.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT1

Primitive: 1-Bit Look-Up-Table with General Output

Introduction

This design element is a 1-bit look-up-tables (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs				Outputs	
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 2-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT1 D

Primitive: 1-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 1-bit look-up-table (LUT) with two functionally identical outputs, O and LO. *LUTD_1* provides a look-up-table version of a buffer or inverter.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs	Outputs	
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	
INIT = bina	ary equivalent of the	hexadecimal numb	er assigned to the INIT attr	ibute.	

Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 2-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT1 L

Primitive: 1-Bit Look-Up-Table with Local Output

Introduction

This design element is a 1- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

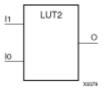
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs				Outputs	
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	
INIT = binary e	equivalent of the hex	adecimal number as	signed to the INIT attri	ibute.	


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 2-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT2

Primitive: 2-Bit Look-Up-Table with General Output

Introduction

This design element is a 2-bit look-up-table (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

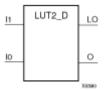
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs			
I2	I1	Ι0	0	LO		
0	0	0	INIT[0]	INIT[0]		
0	0	1	INIT[1]	INIT[1]		
0	1	0	INIT[2]	INIT[2]		
0	1	1	INIT[3]	INIT[3]		
1	0	0	INIT[4]	INIT[4]		
1	0	1	INIT[5]	INIT[5]		
1	1	0	INIT[6]	INIT[6]		
1	1	1	INIT[7]	INIT[7]		
INIT = binary equi	INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute.					


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT2 D

Primitive: 2-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 2-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

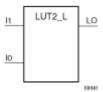
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs	Outputs	
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT2 L

Primitive: 2-Bit Look-Up-Table with Local Output

Introduction

This design element is a 2- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

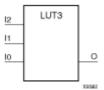
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs	
I2	I1	10	0	LO
0	0	0	INIT[0]	INIT[0]
0	0	1	INIT[1]	INIT[1]
0	1	0	INIT[2]	INIT[2]
0	1	1	INIT[3]	INIT[3]
1	0	0	INIT[4]	INIT[4]
1	0	1	INIT[5]	INIT[5]
1	1	0	INIT[6]	INIT[6]
1	1	1	INIT[7]	INIT[7]
INIT = binary equ	ivalent of the hexade	ecimal number assig	ned to the INIT attribute.	


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT3

Primitive: 3-Bit Look-Up-Table with General Output

Introduction

This design element is a 3-bit look-up-table (LUT) with general output (O). A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

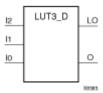
Logic Table

Inputs			Outputs		
I2	I1	Ι0	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	
INIT = binary equi	INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute.				

7 1

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT3 D

Primitive: 3-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 3-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

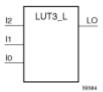
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs	Outputs	
I2	I1	10	0	LO
0	0	0	INIT[0]	INIT[0]
0	0	1	INIT[1]	INIT[1]
0	1	0	INIT[2]	INIT[2]
0	1	1	INIT[3]	INIT[3]
1	0	0	INIT[4]	INIT[4]
1	0	1	INIT[5]	INIT[5]
1	1	0	INIT[6]	INIT[6]
1	1	1	INIT[7]	INIT[7]
INIT = bin	ary equivalent of the	hexadecimal number	er assigned to the INIT attri	bute.


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT3 L

Primitive: 3-Bit Look-Up-Table with Local Output

Introduction

This design element is a 3- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

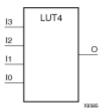
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs		
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	
INIT = binary equ	INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute.				


Design Entry Method

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT4

Primitive: 4-Bit Look-Up-Table with General Output

Introduction

This design element is a 4-bit look-up-tables (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

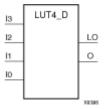
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs				Outputs		
I2	I1	10	0	LO		
0	0	0	INIT[0]	INIT[0]		
0	0	1	INIT[1]	INIT[1]		
0	1	0	INIT[2]	INIT[2]		
0	1	1	INIT[3]	INIT[3]		
1	0	0	INIT[4]	INIT[4]		
1	0	1	INIT[5]	INIT[5]		
1	1	0	INIT[6]	INIT[6]		
1	1	1	INIT[7]	INIT[7]		
INIT = binary e	INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute.					


Design Entry Method

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT4 D

Primitive: 4-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 4-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs	Outputs	
I2	I1	10	0	LO
0	0	0	INIT[0]	INIT[0]
0	0	1	INIT[1]	INIT[1]
0	1	0	INIT[2]	INIT[2]
0	1	1	INIT[3]	INIT[3]
1	0	0	INIT[4]	INIT[4]
1	0	1	INIT[5]	INIT[5]
1	1	0	INIT[6]	INIT[6]
1	1	1	INIT[7]	INIT[7]
INIT = bin	ary equivalent of the	hexadecimal numb	er assigned to the INIT attri	bute.

Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

LUT4 L

Primitive: 4-Bit Look-Up-Table with Local Output

Introduction

This design element is a 4- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

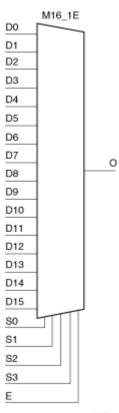
The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs			Outputs		
I2	I1	10	0	LO	
0	0	0	INIT[0]	INIT[0]	
0	0	1	INIT[1]	INIT[1]	
0	1	0	INIT[2]	INIT[2]	
0	1	1	INIT[3]	INIT[3]	
1	0	0	INIT[4]	INIT[4]	
1	0	1	INIT[5]	INIT[5]	
1	1	0	INIT[6]	INIT[6]	
1	1	1	INIT[7]	INIT[7]	
INIT = binary equ	INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute.				


Design Entry Method

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M16_1E

Macro: 16-to-1 Multiplexer with Enable

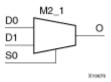
Introduction

This design element is a 16-to-1 multiplexer with enable. When the enable input (E) is High, the M16_1E multiplexer chooses one data bit from 16 sources (D15 - D0) under the control of the select inputs (S3 - S0). The output (O) reflects the state of the selected input as shown in the logic table. When (E) is Low, the output is Low.

Logic Table

Inputs	Inputs					
Е	S3	S2	S1	S0	D15-D0	0
0	X	X	Х	X	Х	0
1	0	0	0	0	D0	D0
1	0	0	0	1	D1	D1
1	0	0	1	0	D2	D2
1	0	0	1	1	D3	D3
· .						
1	1	1	0	0	D12	D12
1	1	1	0	1	D13	D13

Inputs					Outputs	
E	S3	S2	S1	S0	D15-D0	О
1	1	1	1	0	D14	D14
1	1	1	1	1	D15	D15


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M2_1

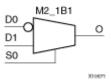
Macro: 2-to-1 Multiplexer

Introduction

This design element chooses one data bit from two sources (D1 or D0) under the control of the select input (S0). The output (O) reflects the state of the selected data input. When Low, S0 selects D0 and when High, S0 selects D1.

Logic Table

Inputs	Outputs		
S0	D1	D0	0
1	D1	X	D1
0	X	D0	D0


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M2_1B1

Macro: 2-to-1 Multiplexer with D0 Inverted

Introduction

This design element chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When S0 is Low, the output (O) reflects the inverted value of (D0). When S0 is High, (O) reflects the state of D1.

Logic Table

Inputs	Outputs		
S0	D1	D0	0
1	1	X	1
1	0	X	0
0	X	1	0
0	Χ	0	1

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M2_1B2

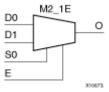
Macro: 2-to-1 Multiplexer with D0 and D1 Inverted

Introduction

This design element chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When S0 is Low, the output (O) reflects the inverted value of D0. When S0 is High, O reflects the inverted value of D1.

Logic Table

Inputs	Outputs		
S0	D1	D0	0
1	1	X	0
1	0	X	1
0	X	1	0
0	Χ	0	1


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M2_1E

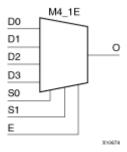
Macro: 2-to-1 Multiplexer with Enable

Introduction

This design element is a 2-to-1 multiplexer with enable. When the enable input (E) is High, the M2_1E chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When Low, S0 selects D0 and when High, S0 selects D1. When (E) is Low, the output is Low.

Logic Table

Inputs	Outputs			
Е	S0	D1	D0	0
0	X	X	Х	0
1	0	Х	1	1
1	0	Χ	0	0
1	1	1	Х	1
1	1	0	Х	0


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M4_1E

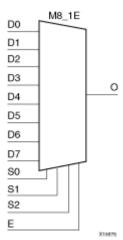
Macro: 4-to-1 Multiplexer with Enable

Introduction

This design element is a 4-to-1 multiplexer with enable. When the enable input (E) is High, the M4_1E multiplexer chooses one data bit from four sources (D3, D2, D1, or D0) under the control of the select inputs (S1 - S0). The output (O) reflects the state of the selected input as shown in the logic table. When (E) is Low, the output is Low.

Logic Table

Inputs	Inputs						Outputs
Е	S1	S0	D0	D1	D2	D3	0
0	Х	Х	Х	Х	Х	Х	0
1	0	0	D0	Х	Х	Х	D0
1	0	1	X	D1	Х	Х	D1
1	1	0	Х	Х	D2	Х	D2
1	1	1	Х	Х	Х	D3	D3


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

M8_1E

Macro: 8-to-1 Multiplexer with Enable

Introduction

This design element is an 8-to-1 multiplexer with enable. When the enable input (E) is High, the M8_1E multiplexer chooses one data bit from eight sources (D7 - D0) under the control of the select inputs (S2 - S0). The output (O) reflects the state of the selected input as shown in the logic table. When (E) is Low, the output is Low.

Logic Table

Inputs					Outputs
Е	S2	S 1	S0	D7-D0	0
0	X	X	X	X	0
1	0	0	0	D0	D0
1	0	0	1	D1	D1
1	0	1	0	D2	D2
1	0	1	1	D3	D3
1	1	0	0	D4	D4
1	1	0	1	D5	D5
1	1	1	0	D6	D6
1	1	1	1	D7	D7

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MULT AND

Primitive: Fast Multiplier AND

Introduction

The design element is an AND component located within the slice where the two inputs are shared with the 4-input LUT and the output drives into the carry logic. This added logic is especially useful for building fast and smaller multipliers however be used for other purposes as well. The I1 and I0 inputs must be connected to the I1 and I0 inputs of the associated LUT. The LO output must be connected to the DI input of the associated MUXCY, MUXCY_D, or MUXCY_L.

Logic Table

Inputs	Outputs	
I1	10	LO
0	0	0
0	1	0
1	0	0
1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MULT18X18

Primitive: 18 x 18 Signed Multiplier

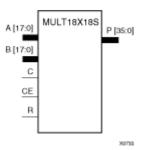
Introduction

MULT18X18 is a combinational signed 18-bit by 18-bit multiplier. The value represented in the 18-bit input A is multiplied by the value represented in the 18-bit input B. Output P is the 36-bit product of A and B.

Port Descriptions

Inputs	Output	
A	В	P
A	В	A x B

A, B, and P are two's complement.


Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MULT18X18S

Primitive: 18 x 18 Signed Multiplier - Registered Version

Introduction

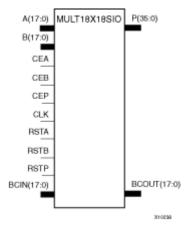
MULT18X18S is the registered version of the 18 x 18 signed multiplier with output P and inputs A, B, C, CE, and R. The registers are initialized to 0 after the GSR pulse.

The value represented in the 18-bit input A is multiplied by the value represented in the 18-bit input B. Output P is the 36-bit product of A and B.

Port Descriptions

Inputs	Output				
С	CE	Am	Bn	R	P
	X	X	X	1	0
	1	Am	Bn	0	AxB
X	0	Χ	X	0	No Change

A, B, and P are two's complement.


Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MULT18X18SIO

Primitive: 18×18 Cascadable Signed Multiplier with Optional Input and Output Registers, Clock Enable, and Synchronous Reset

Introduction

This design element is a 36-bit output, 18x18-bit input dedicated signed multiplier. This component can perform asynchronous multiplication operations when the attributes AREG, BREG and PREG are all set to 0. Alternatively, synchronous multiplication operations of different latency and performance characteristics can be performed when any combination of those attributes is set to 1. When using the multiplier in synchronous operation, the MULT18X18SIO features active high clock enables for each set of register banks in the multiplier, CEA, CEB and CEP, as well as synchronous resets, RSTA, RSTB, and RSTP. Multiple MULT18X18SIOs can be cascaded to create larger multiplication functions using the BCIN and BCOUT ports in combination with the B_INPUT attribute.

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Descriptions
AREG	Integer	0 or 1	1	Specifies the use of the input registers on the A port. A zero disables the use of the register; a one enables the register.
BREG	Integer	0 or 1	1	Specifies the use of the input registers on the B port. A zero disables the use of the register; a one enables the register.

Attribute	Туре	Allowed Values	Default	Descriptions
B_INPUT	String	"DIRECT" or "CASCADE"	"DIRECT"	Specifies whether the B port is connected to the general FPGA fabric, "DIRECT" or is connected to the BCOUT port of another MULT18X18SIO.
PREG	Integer	0 or 1	1	Specifies the use of the output registers of the multiplier. A zero disables the use of the register; a one enables the register.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXCY

Primitive: 2-to-1 Multiplexer for Carry Logic with General Output

Introduction

This design element is used to implement a 4-bit high-speed carry propagate function. One such function can be implemented per slice, for a total of 4 bits per configurable logic block (CLB) for Spartan-3A.

The direct input (DI) of a slice is connected to the (DI) input of the MUXCY. The carry in (CI) input of an LC is connected to the CI input of the MUXCY. The select input (S) of the MUXCY is driven by the output of the Look-Up Table (LUT) and configured as a MUX function. The carry out (O) of the MUXCY reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

The variants "MUXCY_D" and "MUXCY_L" provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	DI	CI	0
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXCY D

Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output

Introduction

This design element implements a 1-bit, high-speed carry propagate function. One such function can be implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_D. The select input (S) of the MUX is driven by the output of the Look-Up Table (LUT) and configured as an XOR function. The carry out (O and LO) of the MUXCY_D reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

Outputs O and LO are functionally identical. The O output is a general interconnect. See also "MUXCY" and "MUXCY_L".

Logic Table

Inputs		Outputs		
S	DI	CI	0	LO
0	1	X	1	1
0	0	Х	0	0
1	X	1	1	1
1	Х	0	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXCY_L

Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output

Introduction

This design element implements a 1-bit high-speed carry propagate function. One such function is implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_L. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_L. The select input (S) of the MUXCY_L is driven by the output of the Look-Up Table (LUT) and configured as an XOR function. The carry out (LO) of the MUXCY_L reflects the state of the selected input and implements the carry out function of each (LC). When Low, (S) selects DI; when High, (S) selects (CI).

See also "MUXCY" and "MUXCY_D."

Logic Table

Inputs			Outputs
S	DI	CI	LO
0	1	Χ	1
0	0	Χ	0
1	X	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF5

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF5_D" and "MUXF5_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	0
0	1	X	1
0	0	X	0
1	Х	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF5 D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice. See also "MUXF5" and "MUXF5_L"

Logic Table

Inputs			Outputs	
S	10	I1	0	LO
0	1	Χ	1	1
0	0	Χ	0	0
1	Χ	1	1	1
1	Х	0	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF5 L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The LO output connects to other inputs in the same CLB slice.

See also "MUXF5" and "MUXF5_D"

Logic Table

Inputs			Output
S	10	I1	LO
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF6

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in two slices for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF6_D" and "MUXF6_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	О
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

MUXF6 D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in a two slices for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs (O) and (LO) are functionally identical. The (O) output is a general interconnect. The (LO) output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Outputs	
S	10	I1	0	LO
0	1	X	1	1
0	0	Χ	0	0
1	X	1	1	1
1	Х	0	0	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF6 L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in a full, Virtex-5 CLB (two slices) for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the (CLB) are connected to the I0 and I1 inputs of the MUXF6. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Output
S	10	I1	LO
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

This design element can be used in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

MUXF7

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in a full Virtex-5 (four slices) for creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF7_D" and "MUXF7_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	О
0	IO	X	10
1	X	I1	I1
Х	0	0	0
Х	1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF7 D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in a full Virtex-5 CLB (four slices) for creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Outputs	
S	10	I1	0	LO
0	10	Χ	10	10
1	X	I1	I1	I1
X	0	0	0	0
X	1	1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF7 L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in a full Virtex-5 CLB (four slices) for creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs	Output		
S	10	I1	LO
0	10	X	I0
1	X	I1	I1
X	0	0	0
Χ	1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF8

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated Look-Up Tables, MUXF5s, MUXF6s, and MUXF7s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Logic Table

Inputs			Outputs
S	10	I1	0
0	10	X	IO
1	X	I1	I1
X	0	0	0
X	1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF8 D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated four Look-Up Tables and two MUXF8s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs		Outputs		
S	10	I1	0	LO
0	IO	Χ	IO	10
1	Х	I1	I1	I1
Х	0	0	0	0
X	1	1	1	1

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

MUXF8 L

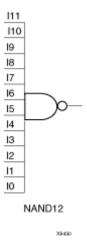
Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated four Look-Up Tables and two MUXF8s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table


Inputs			Output
S	10	I1	LO
0	I0	Χ	I0
1	X	I1	I1
X	0	0	0
X	1	1	1

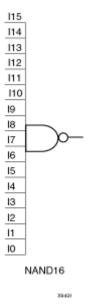
Design Entry Method

This design element can be used in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

Macro: 12- Input NAND Gate with Non-Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16- Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 2-Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

NAND2B1

Primitive: 2-Input NAND Gate with 1 Inverted and 1 Non-Inverted Inputs

NAND2B1

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NAND2B2

Primitive: 2-Input NAND Gate with Inverted Inputs

NAND2B2

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

Primitive: 3-Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NAND3B1

Primitive: 3-Input NAND Gate with 1 Inverted and 2 Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NAND3B2

Primitive: 3-Input NAND Gate with 2 Inverted and 1 Non-Inverted Inputs

NAND3B2

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NAND3B3

Primitive: 3-Input NAND Gate with Inverted Inputs

NAND3B3

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NAND Gate with 1 Inverted and 3 Non-Inverted Inputs

NAND4B1

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NAND Gate with 2 Inverted and 2 Non-Inverted Inputs

NAND4B2

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NAND Gate with 3 Inverted and 1 Non-Inverted Inputs

NAND4B3

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

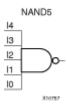
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NAND Gate with Inverted Inputs

NAND4B4

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

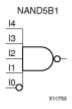
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NAND Gate with Non-Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NAND Gate with 1 Inverted and 4 Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NAND Gate with 2 Inverted and 3 Non-Inverted Inputs

NAND5B2

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

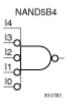
Primitive: 5-Input NAND Gate with 3 Inverted and 2 Non-Inverted Inputs

NAND5B3

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

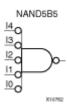
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NAND Gate with 4 Inverted and 1 Non-Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

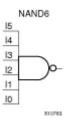
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NAND Gate with Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

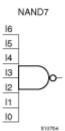
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 6-Input NAND Gate with Non-Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 7-Input NAND Gate with Non-Inverted Inputs

Introduction


NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

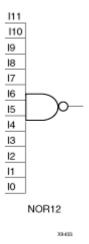
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 9-Input NAND Gate with Non-Inverted Inputs

Introduction

NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.


Design Entry Method

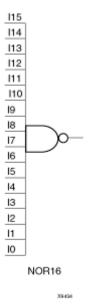
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR₁₂

Macro: 12-Input NOR Gate with Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Input NOR Gate with Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR₂

Primitive: 2-Input NOR Gate with Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR₂B₁

Primitive: 2-Input NOR Gate with 1 Inverted and 1 Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR₂B₂

Primitive: 2-Input NOR Gate with Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

NOR₃

Primitive: 3-Input NOR Gate with Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR3B1

Primitive: 3-Input NOR Gate with 1 Inverted and 2 Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR3B2

Primitive: 3-Input NOR Gate with 2 Inverted and 1 Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

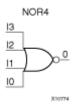
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

NOR3B3

Primitive: 3-Input NOR Gate with Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.


Design Entry Method

This design element is only for use in schematics.

Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NOR Gate with Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NOR Gate with 1 Inverted and 3 Non-Inverted Inputs

NOR4B1 |3 |2 |1 |0 |0

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NOR Gate with 2 Inverted and 2 Non-Inverted Inputs

NOR4B2 13 12 10 NOR4B2

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NOR Gate with 3 Inverted and 1 Non-Inverted Inputs

NOR4B3

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

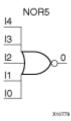
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input NOR Gate with Inverted Inputs

NOR4B4

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

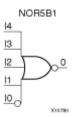
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

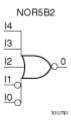
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with 1 Inverted and 4 Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

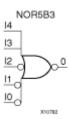
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with 2 Inverted and 3 Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

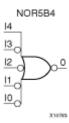
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with 3 Inverted and 2 Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

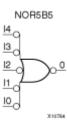
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with 4 Inverted and 1 Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

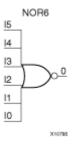
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input NOR Gate with Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

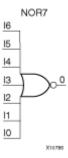
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 6-Input NOR Gate with Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

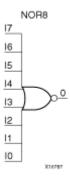
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 7-Input NOR Gate with Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

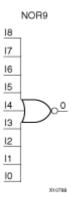
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Input NOR Gate with Non-Inverted Inputs

Introduction


NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 9-Input NOR Gate with Non-Inverted Inputs

Introduction

NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs, 12 inputs, and 16 inputs are available only with non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: Output Buffer

Introduction

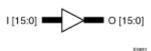
This design element is a simple output buffer used to drive output signals to the FPGA device pins that do not need to be 3-stated (constantly driven). Either an OBUF, OBUFT, OBUFDS, or OBUFTDS must be connected to every output port in the design.

This element isolates the internal circuit and provides drive current for signals leaving a chip. It exists in input/output blocks (IOB). Its output (O) is connected to an OPAD or an IOPAD. The interface standard used by this element is LVTTL. Also, this element has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

Port Descriptions

Signal Name	Direction	Size	Function
О	Output	1-bit	Output of OBUF to be connected directly to top-level output port.
I	Input	1-bit	Input of OBUF. Connect to the logic driving the output port.

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

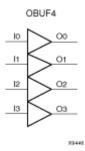
Macro: 16-Bit Output Buffer

OBUF16

Introduction

This design element is a multiple output buffer.

This element isolates the internal circuit and provides drive current for signals leaving a chip. It exists in input/output blocks (IOB). Its output (O) is connected to an OPAD or an IOPAD. The interface standard used by this element is LVTTL. Also, this element has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.


This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit Output Buffer

Introduction

This design element is a multiple output buffer.

This element isolates the internal circuit and provides drive current for signals leaving a chip. It exists in input/output blocks (IOB). Its output (O) is connected to an OPAD or an IOPAD. The interface standard used by this element is LVTTL. Also, this element has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Output Buffer

OBUF8

Xses

Introduction

This design element is a multiple output buffer.

This element isolates the internal circuit and provides drive current for signals leaving a chip. It exists in input/output blocks (IOB). Its output (O) is connected to an OPAD or an IOPAD. The interface standard used by this element is LVTTL. Also, this element has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OBUFDS

Primitive: Differential Signaling Output Buffer

Introduction

This design element is a single output buffer that supports low-voltage, differential signaling (1.8 v CMOS). OBUFDS isolates the internal circuit and provides drive current for signals leaving the chip. Its output is represented as two distinct ports (O and OB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET and MYNETB).

Logic Table

Inputs		Outputs
Ι	0	OB
0	0	1
1	1	0

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
IOSTANDAR	DString	"DEFAULT"	"DEFAULT"	Use to assign an I/O standard to an I/O primitive.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OBUFT

Primitive: 3-State Output Buffer with Active Low Output Enable

OBUFT

Introduction

This design element is a single, 3-state output buffer with input I, output O, and active-Low output enables (T). This element uses the LVTTL standard and has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the inputs of the buffers is transferred to the corresponding outputs. When T is High, the output is high impedance (off or Z state). OBUFTs are generally used when a single-ended output is needed with a 3-state capability, such as the case when building bidirectional I/O.

Logic Table

Inputs	Outputs	
Т	I	0
1	X	Z
0	I	F

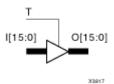
Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

For More Information


• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

OBUFT16

Macro: 16-Bit 3-State Output Buffer with Active Low Output Enable

OBUFT16

Introduction

This design element is a multiple, 3-state output buffer with input I, output O, and active-Low output enables (T). This element uses the LVTTL standard and has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

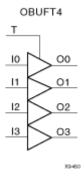
When T is Low, data on the inputs of the buffers is transferred to the corresponding outputs. When T is High, the output is high impedance (off or Z state). OBUFTs are generally used when a single-ended output is needed with a 3-state capability, such as the case when building bidirectional I/O.

Logic Table

Inputs		Outputs
T	I	0
1	X	Z
0	I	F

Design Entry Method

This design element is only for use in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OBUFT4

Macro: 4-Bit 3-State Output Buffers with Active-Low Output Enable

Introduction

This design element is a multiple, 3-state output buffer with input I, output O, and active-Low output enables (T). This element uses the LVTTL standard and has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the inputs of the buffers is transferred to the corresponding outputs. When T is High, the output is high impedance (off or Z state). OBUFTs are generally used when a single-ended output is needed with a 3-state capability, such as the case when building bidirectional I/O.

Logic Table

Inputs		Outputs
T	I	0
1	X	Z
0	I	F

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default Description	
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Specifies the output current drive strength of the I/O. It is suggested that you set this to the lowest setting tolerable for the design drive and timing requirements.
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OBUFT8

Macro: 8-Bit 3-State Output Buffers with Active-Low Output Enable

OBUFT8

Introduction

This design element is a multiple, 3-state output buffer with input I, output O, and active-Low output enables (T). This element uses the LVTTL standard and has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the inputs of the buffers is transferred to the corresponding outputs. When T is High, the output is high impedance (off or Z state). OBUFTs are generally used when a single-ended output is needed with a 3-state capability, such as the case when building bidirectional I/O.

Logic Table

Inputs		Outputs
T	I	0
1	X	Z
0	I	F

Design Entry Method

This design element is only for use in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	Specifies the output cur drive strength of the I/O suggested that you set the lowest setting tolerathe design drive and tir requirements.	
IOSTANDARD	String	Consult the product Data Sheet.	"DEFAULT"	Specifies the I/O standard to be used for this output.
SLEW	String	"SLOW" or "FAST"	"SLOW"	Specifies the slew rate of the output driver. Consult the product Data Sheet for recommendations of the best setting for this attribute.

For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

OBUFTDS

Primitive: 3-State Output Buffer with Differential Signaling, Active-Low Output Enable

Introduction

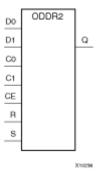
This design element is an output buffer that supports low-voltage, differential signaling. For the OBUFTDS, a design level interface signal is represented as two distinct ports (O and OB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N).

Logic Table

Inputs		Outputs	
I	T	0	OB
Χ	1	Z	Z
0	0	0	1
1	0	1	0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
IOSTANDARD	String	"DEFAULT"	"DEFAULT"	Use to assign an I/O standard to an I/O primitive.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ODDR2

Primitive: Dual Data Rate Output D Flip-Flop with Optional Data Alignment, Clock Enable and Programmable Synchronous or Asynchronous Set/Reset

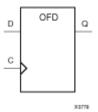
Introduction

The design element is an output double data rate (DDR) register useful in producing double data rate signals exiting the FPGA. The ODDR2 requires two clocks (C0 and C1) to be connected to the component so that data is provided at the positive edge of both clocks. The ODDR2 features an active high clock enable port, CE, which can be used to suspend the operation of the registers and both set and reset ports that can be configured to be synchronous or asynchronous to the respective clocks. The ODDR2 has an optional alignment feature, which allows data to be captured by a single clock and clocked out by two clocks.

Logic Table

Inputs					Outputs		
S	R	CE	D0	D1	C0	C1	0
1	Х	Χ	Χ	Х	X	Χ	1
0	1	Χ	Χ	Х	Х	Χ	not INIT
0	0	0	Χ	Х	Х	Χ	No Change
0	0	1	D0	Х	Rising	Χ	D0
0	0	1	Χ	D1	Х	Rising	D1
Set/Res	set can be sync	chronous via SI	RTYPE value	•	•	•	•

Design Entry Method


This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
DDR_ALIGN-MENT	String	"NONE", "C0" or "C1"	"NONE"	Sets the input capture behavior for the DDR register. "NONE" clocks in data to the D0 input on the positive transition of the C0 clock and D1 on the positive transition of the C1 clock. "C0" allows the input clocking of both D0 and D1 align to the positive edge of the C0 clock. "C1" allows the input clocking of both D0 and D1 align to the positive edge of the C0 clock. "C1" allows the input clocking of both D0 and D1 align to the positive edge of the C1 clock.
INIT	Integer	0 or 1	0	Sets initial state of the Q0 output to 0 or 1.
SRTYPE	String	"SYNC" or "ASYNC"	"SYNC"	Specifies "SYNC" or "ASYNC" set/reset.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Output D Flip-Flop

Introduction

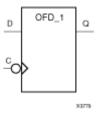
This design element is a single output D flip-flop.

The outputs are connected to OPADs or IOPADs. The data on the (D) inputs is loaded into the flip-flops during the Low-to-High clock (C) transition and appears on the (Q) outputs.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D C		Q
D		D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFD_1

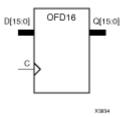
Macro: Output D Flip-Flop with Inverted Clock

Introduction

The design element is located in an input/output block (IOB). The output (Q) of the D flip-flop is connected to an OPAD or an IOPAD. The data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition and appears on the (Q) output.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D C		Q
D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Bit Output D Flip-Flop

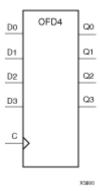
Introduction

This design element is a multiple output D flip-flop.

The outputs are connected to OPADs or IOPADs. The data on the (D) inputs is loaded into the flip-flops during the Low-to-High clock (C) transition and appears on the (Q) outputs.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D C		Q
D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit Output D Flip-Flop

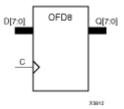
Introduction

This design element is a multiple output D flip-flop.

The outputs are connected to OPADs or IOPADs. The data on the (D) inputs is loaded into the flip-flops during the Low-to-High clock (C) transition and appears on the (Q) outputs.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D	С	Q
D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Output D Flip-Flop

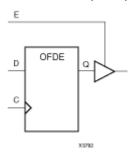
Introduction

This design element is a multiple output D flip-flop.

The outputs are connected to OPADs or IOPADs. The data on the (D) inputs is loaded into the flip-flops during the Low-to-High clock (C) transition and appears on the (Q) outputs.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs	
D C		Q	
D		D	

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

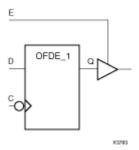
Macro: D Flip-Flop with Active-High Enable Output Buffers

Introduction

This is a single D flip-flop whose output is enabled by a 3-state buffer. The flip-flop data output (Q) is connected to the input of output buffer (OBUFE). The OBUFE output (O) is connected to an OPAD or IOPAD. The data on the data input (D) is loaded into the flip-flop during the Low-to-High clock (C) transition. When the active-High enable input (E) is High, the data on the flip-flop output (Q) appears on the OBUFE (O) output. When (E) is Low, the output is high impedance (Z state or Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Output	
Е	D	С	0
0	X	X	Z
1	Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

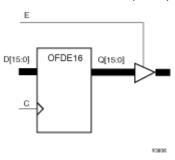
Macro: D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock

Introduction

This design element and its output buffer are located in an input/output block (IOB). The data output of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The output of the OBUFE is connected to an OPAD or an IOPAD. The data on the data input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-High enable input (E) is High, the data on the flip-flop output (Q) appears on the (O) output. When (E) is Low, the output is high impedance (Z state or Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
Е	D	С	0
0	X	X	Z
1	D		D

Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

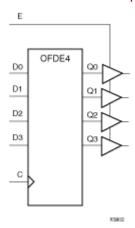
Macro: 16-Bit D Flip-Flop with Active-High Enable Output Buffers

Introduction

This is a multiple D flip-flop whose outputs are enabled by 3-state buffers. The flip-flop data outputs (Q) are connected to the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-High enable inputs (E) are High, the data on the flip-flop outputs (Q) appears on the OBUFE outputs (O). When (E) is Low, outputs are high impedance (Z state or Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs	
E	D	С	0
0	X	X	Z
1	Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

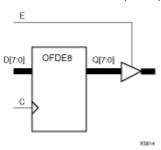
Macro: 4-Bit D Flip-Flop with Active-High Enable Output Buffers

Introduction

This is a multiple D flip-flop whose outputs are enabled by 3-state buffers. The flip-flop data outputs (Q) are connected to the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-High enable inputs (E) are High, the data on the flip-flop outputs (Q) appears on the OBUFE outputs (O). When (E) is Low, outputs are high impedance (Z state or Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
E	D	С	0
0	X	X	Z
1	Dn		Dn

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit D Flip-Flop with Active-High Enable Output Buffers

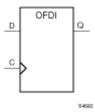
Introduction

This is a multiple D flip-flop whose outputs are enabled by 3-state buffers. The flip-flop data outputs (Q) are connected to the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-High enable inputs (E) are High, the data on the flip-flop outputs (Q) appears on the OBUFE outputs (O). When (E) is Low, outputs are high impedance (Z state or Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs	
E	D	С	0
0	X	X	Z
1	Dn		Dn


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDI

Macro: Output D Flip-Flop (Asynchronous Preset)

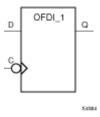
Introduction

The design element is contained in an input/output block (IOB). The output (Q) of the (D) flip-flop is connected to an OPAD or an IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q).

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs
D C		Q
D		D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDI_1

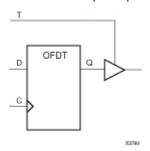
Macro: Output D Flip-Flop with Inverted Clock (Asynchronous Preset)

Introduction

This design element exists in an input/output block (IOB). The (D) flip-flop output (Q) is connected to an OPAD or an IOPAD. The data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition and appears on the (Q) output.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs		Outputs
D C		Q
D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: D Flip-Flop with Active-Low 3-State Output Buffer

Introduction

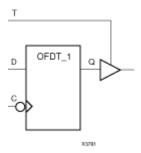
This design element is a single D flip-flops whose output is enabled by a 3-state buffer.

The data outputs (Q) of the flip-flops are connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-Low enable inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the (O) outputs. When (T) is High, outputs are high impedance (Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
T	D	С	0
1	X	Х	Z
0	D		D


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDT_1

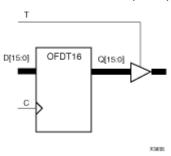
Macro: D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock

Introduction

The design element and its output buffer are located in an input/output block (IOB). The flip-flop data output (Q) is connected to the input of an output buffer (OBUFT). The OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the (O) output. When (T) is High, the output is high impedance (Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
T	D	С	0
1	X	X	Z
0	D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 16-Bit D Flip-Flop with Active-Low 3-State Output Buffers

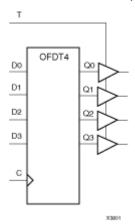
Introduction

This design element is a multiple D flip-flop whose output are enabled by 3-state buffers.

The data outputs (Q) of the flip-flops are connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-Low enable inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the (O) outputs. When (T) is High, outputs are high impedance (Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
T	D	С	0
1	X	Х	Z
0	D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 4-Bit D Flip-Flop with Active-Low 3-State Output Buffers

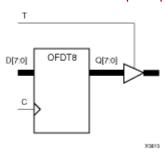
Introduction

This design element is a multiple D flip-flop whose output are enabled by 3-state buffers.

The data outputs (Q) of the flip-flops are connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-Low enable inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the (O) outputs. When (T) is High, outputs are high impedance (Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
T	D	С	0
1	X	Х	Z
0	D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit D Flip-Flop with Active-Low 3-State Output Buffers

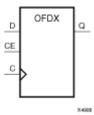
Introduction

This design element is a multiple D flip-flop whose output are enabled by 3-state buffers.

The data outputs (Q) of the flip-flops are connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected to OPADs or IOPADs. The data on the data inputs (D) is loaded into the flip-flops during the Low-to-High clock (C) transition. When the active-Low enable inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the (O) outputs. When (T) is High, outputs are high impedance (Off).

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
Т	D	С	0
1	X	Χ	Z
0	D		D

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: Output D Flip-Flop with Clock Enable

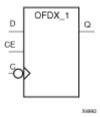
Introduction

This design element is a single output D flip-flop. The (Q) output is connected to OPAD or IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears on the (Q) output. When (CE) is Low, the flip-flop output does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
1	Dn		Dn
0	X	X	No change


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDX_1

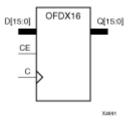
Macro: Output D Flip-Flop with Inverted Clock and Clock Enable

Introduction

The design element is located in an input/output block (IOB). The output (Q) of the (D) flip-flop is connected to an OPAD or an IOPAD. The data on the (D) input is loaded into the flip-flop during the High-to-Low clock (C) transition and appears on the (Q) output. When the (CE) pin is Low, the output (Q) does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
CE	D	С	Q
1	D		D
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

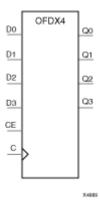
Macro: 16-Bit Output D Flip-Flop with Clock Enable

Introduction

This design element is a multiple output D flip-flop. The (Q) output is connected to OPAD or IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears on the (Q) output. When (CE) is Low, the flip-flop output does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
CE	D	С	Q
1	Dn		Dn
0	X	Χ	No change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

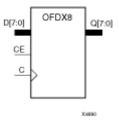
Macro: 4-Bit Output D Flip-Flop with Clock Enable

Introduction

This design element is a multiple output D flip-flop. The (Q) output is connected to OPAD or IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears on the (Q) output. When (CE) is Low, the flip-flop output does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table


Inputs			Outputs
CE	D	С	Q
1	Dn		Dn
0	X	X	No change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Bit Output D Flip-Flop with Clock Enable

Introduction

This design element is a multiple output D flip-flop. The (Q) output is connected to OPAD or IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears on the (Q) output. When (CE) is Low, the flip-flop output does not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
1	Dn		Dn
0	X	X	No change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDXI

Macro: Output D Flip-Flop with Clock Enable (Asynchronous Preset)

Introduction

The design element is contained in an input/output block (IOB). The output (Q) of the D flip-flop is connected to an OPAD or an IOPAD. The data on the (D) input is loaded into the flip-flop during the Low-to-High clock (C) transition and appears at the output (Q). When (CE) is Low, the output does not change

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
1	D		D
0	X	X	No Change

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OFDXI_1

Macro: Output D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

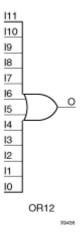
Introduction

The design element is located in an input/output block (IOB). The D flip-flop output (Q) is connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-flop during the High-to-Low clock (C) transition and appears on the Q output. When CE is Low, the output (Q) does not change.

This flip-flop is asynchronously preset, output High, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs			Outputs
CE	D	С	Q
1	D		D
0	X	X	No Change


Design Entry Method

This design element is only for use in schematics.

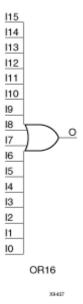
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR12

Macro: 12-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR16

Macro: 16-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR₂

Primitive: 2-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR2B1

Primitive: 2-Input OR Gate with 1 Inverted and 1 Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR2B2

Primitive: 2-Input OR Gate with Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 3-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR3B1

Primitive: 3-Input OR Gate with 1 Inverted and 2 Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR3B2

Primitive: 3-Input OR Gate with 2 Inverted and 1 Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

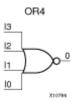
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

OR3B3

Primitive: 3-Input OR Gate with Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

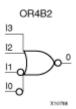
This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input OR Gate with 1 Inverted and 3 Non-Inverted Inputs

OR4R1

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

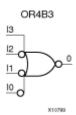
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input OR Gate with 2 Inverted and 2 Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

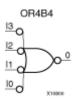
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input OR Gate with 3 Inverted and 1 Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

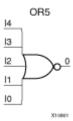
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input OR Gate with Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

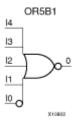
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

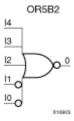
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with 1 Inverted and 4 Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

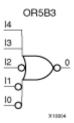
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with 2 Inverted and 3 Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with 3 Inverted and 2 Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

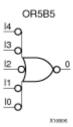
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with 4 Inverted and 1 Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

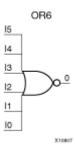
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input OR Gate with Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

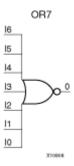
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 6-Input OR Gate with Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

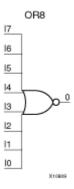
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 7-Input OR Gate with Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

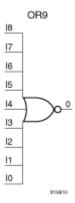
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Input OR Gate with Non-Inverted Inputs

Introduction


OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 9-Input OR Gate with Non-Inverted Inputs

Introduction

OR functions of up to five inputs are available in any combination of inverting and non-inverting inputs. OR functions of six to nine inputs, 12 inputs, and 16 inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

PULLDOWN

Primitive: Resistor to GND for Input Pads, Open-Drain, and 3-State Outputs

PULLDOWN

Introduction

This resistor element is connected to input, output, or bidirectional pads to guarantee a logic Low level for nodes that might float.

Design Entry Method

This design element can be used in schematics.

This element can be connected to a net in the following locations on a top-level schematic file:

- A net connected to an input IO Marker
- A net connected to both an output IO Marker and 3-statable IO element, such as an OBUFT

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

PULLUP

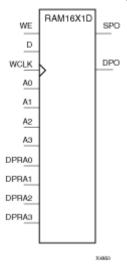
Primitive: Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

Introduction

This design element allows for an input, 3-state output or bi-directional port to be driven to a weak high value when not being driven by an internal or external source. This element establishes a High logic level for open-drain elements and macros when all the drivers are off.

Design Entry Method

This design element can be used in schematics.


This element can be connected to a net in the following locations on a top-level schematic file:

- A net connected to an input IO Marker
- A net connected to both an output IO Marker and 3-statable IO element, such as an OBUFT

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X1D

Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM

Introduction

This element is a 16-word by 1-bit static dual port random access memory with synchronous write capability. The device has two address ports: the read address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports are asynchronous. The read address controls the location of the data driven out of the output pin (DPO), and the write address controls the destination of a valid write transaction. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected.

When WE is High, any positive transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit write address. For predictable performance, write address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note The write process is not affected by the address on the read address port.

You can use the INIT attribute to directly specify an initial value. The value must be a hexadecimal number, for example, INIT=ABAC. If the INIT attribute is not specified, the RAM is initialized with all zeros.

Logic Table

Mode selection is shown in the following logic table:

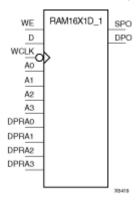
DPO
data_d

data_a = word addressed by bits A3-A0

data_d = word addressed by bits DPRA3-DPRA0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value		Initializes ROMs, RAMs, registers, and look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X1D 1

Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock

Introduction

This is a 16-word by 1-bit static dual port random access memory with synchronous write capability and negative-edge clock. The device has two separate address ports: the read address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports are asynchronous. The read address controls the location of the data driven out of the output pin (DPO), and the write address controls the destination of a valid write transaction.

When the write enable (WE) is set to Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit write address. For predictable performance, write address and data inputs must be stable before a High-to-Low WCLK transition. This RAM block assumes an active-High (WCLK). (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

You can initialize RAM16X1D 1 during configuration using the INIT attribute.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note The write process is not affected by the address on the read address port.

Logic Table

Mode selection is shown in the following logic table:

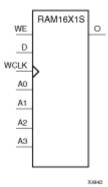
Inputs			Outputs	Outputs	
WE (mode)	WCLK	D	SPO	DPO	
0 (read)	X	X	data_a	data_d	
1 (read)	0	X	data_a	data_d	
1 (read)	1	X	data_a	data_d	
1 (write)		D	D	data_d	
1 (read)		X	data_a	data_d	

 $data_a = word addressed by bits A3 - A0$

data_d = word addressed by bits DPRA3-DPRA0

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X1S

Primitive: 16-Deep by 1-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 1-bit static random access memory with synchronous write capability. When the write enable (WE) is set Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High, any positive transition on WCLK loads the data on the data input (D) into the word selected by the 4-bit address (A3 – A0). This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM16X1S during configuration using the INIT attribute.

Logic Table

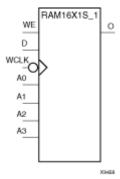
Inputs	Outputs		
WE(mode)	WCLK	D	0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D	D
1 (read)		X	Data
Data = word addresse	ed by bits A3 – A0	•	

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies initial contents of the RAM.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAM16X1S_1

Primitive: 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

This element is a 16-word by 1-bit static random access memory with synchronous write capability and negative-edge clock. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a High-to-Low WCLK transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

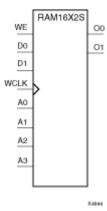
You can initialize this element during configuration using the INIT attribute.

Logic Table

Inputs	Outputs					
WE(mode)	WCLK	D	0			
0 (read)	X	X	Data			
1 (read)	0	X	Data			
1 (read)	1	X	Data			
1 (write)		D	D			
1 (read)		X	Data			
Data = word addresse	Data = word addressed by bits A3 – A0					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies initial contents of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X2S

Primitive: 16-Deep by 2-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D1 – D0) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O1 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can use the INIT_xx properties to specify the initial contents of a Virtex-4 wide RAM. INIT_00 initializes the RAM cells corresponding to the O0 output, INIT_01 initializes the cells corresponding to the O1 output, etc. For example, a RAM16X2S instance is initialized by INIT_00 and INIT_01 containing 4 hex characters each. A RAM16X8S instance is initialized by eight properties INIT_00 through INIT_07 containing 4 hex characters each. A RAM64x2S instance is completely initialized by two properties INIT_00 and INIT_01 containing 16 hex characters each.

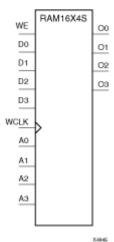
Except for Virtex-4 devices, the initial contents of this element cannot be specified directly.

Logic Table

Inputs	Outputs					
WE (mode)	WCLK	D1-D0	O1-O0			
0 (read)	X	X	Data			
1(read)	0	X	Data			
1(read)	1	X	Data			
1(write)		D1-D0	D1-D0			
1 (read)		X	Data			
Data = word addressed by	Data = word addressed by bits A3 – A0					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 to INIT_01	Hexadecimal	Any 16-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X4S

Primitive: 16-Deep by 4-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 4-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D3 – D0) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

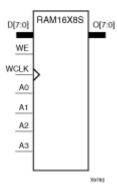
The signal output on the data output pins (O3 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs	Outputs		
WE (mode)	WCLK	D3 – D0	O3 – O0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D3-D0	D3-D0
1 (read)		X	Data
Data = word addressed	d by bits A3 – A0.	<u>.</u>	<u> </u>

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 to INIT_03	Hexadecimal	Any 16-Bit Value	All zeros	INIT for bit 0 of RAM

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM16X8S

Primitive: 16-Deep by 8-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 8-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on data inputs (D7 – D0) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

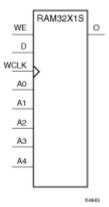
The signal output on the data output pins (O7 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs			Outputs	
WE (mode)	WCLK	D7-D0	O7-O0	
0 (read)	X	X	Data	
1 (read)	0	X	Data	
1 (read)	1	X	Data	
1 (write)		D7-D0	D7-D0	
1 (read)		X	Data	
Data = word addressed	by bits A3 – A0			

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_07	Hexadecimal	Any 16-Bit Value	0	Initializes ROMs, RAMs, registers, and look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM32X1S

Primitive: 32-Deep by 1-Wide Static Synchronous RAM

Introduction

The design element is a 32-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any positive transition on (WCLK) loads the data on the data input (D) into the word selected by the 5-bit address (A4 A0). For predictable performance, address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM32X1S during configuration using the INIT attribute.

Logic Table

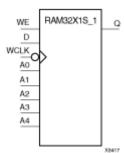
Inputs			Outputs
WE (Mode)	WCLK	D	О
0 (read)	X	Χ	Data
1 (read)	0	Χ	Data
1 (read)	1	Χ	Data
1 (write)		D	D
1 (read)		X	Data

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
INIT	Hexadecimal	Any 32-Bit Value	All zeros	Specifies initial contents of the RAM.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAM32X1S_1

Primitive: 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

The design element is a 32-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 5-bit address (A4 – A0). For predictable performance, address and data inputs must be stable before a High-to-Low (WCLK) transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM32X1S_1 during configuration using the INIT attribute.

Logic Table

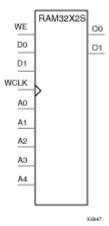
Inputs			Outputs	
WE (Mode)	WCLK	D	О	
0 (read)	X	X	Data	
1 (read)	0	X	Data	
1 (read)	1	X	Data	
1 (write)		D	D	
1 (read)		X	Data	
Data = word addressed by bits A4 – A0				

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Descriptions
INIT	Hexadecimal	Any 32-Bit Value	0	Initializes ROMs, RAMs, registers, and look-up tables.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAM32X2S

Primitive: 32-Deep by 2-Wide Static Synchronous RAM

Introduction

The design element is a 32-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any positive transition on (WCLK) loads the data on the data input (D1 D0) into the word selected by the 5-bit address (A4 A0). For predictable performance, address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block. The signal output on the data output pins (O1 O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

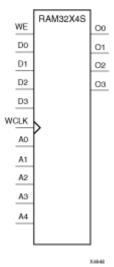
You can use the INIT_00 and INIT_01 properties to specify the initial contents of RAM32X2S as described in Specifying Initial Contents of a *SPARTAN3A* Wide RAM in the RAM16X2S section.

Logic Table

Inputs			Outputs	
WE (Mode)	WCLK	D	O0-O1	
0 (read)	X	X	Data	
1 (read)	0	X	Data	
1 (read)	1	X	Data	
1 (write)		D1-D0	D1-D0	
1 (read)		X	Data	
Data = word addressed by bits A4 A0				

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Descriptions
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM32X4S

Primitive: 32-Deep by 4-Wide Static Synchronous RAM

Introduction

This design element is a 32-word by 4-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data inputs (D3-D0) into the word selected by the 5-bit address (A4-A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O3-O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

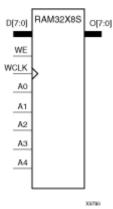
Logic Table

Inputs	Outputs		
WE	WCLK	D3-D0	O3-O0
0 (read)	X	Х	Data
1 (read)	0	Х	Data
1 (read)	1	Х	Data
1 (write)		D3-D0	D3-D0
1 (read)		Х	Data
Data = word addressed by	bits A4 A0	•	•

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.

Attribute	Type	Allowed Values	Default	Description
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.
INIT_02	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 2 of RAM.
INIT_03	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 3 of RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM32X8S

Primitive: 32-Deep by 8-Wide Static Synchronous RAM

Introduction

This design element is a 32-word by 8-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data inputs (D7 – D0) into the word selected by the 5-bit address (A4 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O7 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

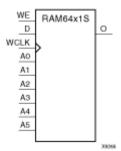
Logic Table

Inputs	Outputs		
WE (mode)	WCLK	D7-D0	O7-O0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D7-D0	D7-D0
1 (read)		Х	Data
Data = word addressed by bits .	A4 – A0	<u> </u>	<u>.</u>

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.
INIT_02	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 2 of RAM.

Attribute	Type	Allowed Values	Default	Description
INIT_03	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 3 of RAM.
INIT_04	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 4 of RAM.
INIT_05	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 5 of RAM.
INIT_06	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 6 of RAM.
INIT_07	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 7 of RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM64X1S

Primitive: 64-Deep by 1-Wide Static Synchronous RAM

Introduction

This design element is a 64-word by 1-bit static random access memory (RAM) with synchronous write capability. When the write enable is set Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High, any positive transition on WCLK loads the data on the data input (D) into the word selected by the 6-bit address (A5 - A0). This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can initialize this element during configuration using the INIT attribute.

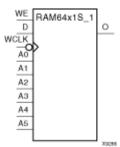
Logic Table

Mode selection is shown in the following logic table

Inputs			Outputs
WE (mode)	WCLK	D	О
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D	D
1 (read)		X	Data
Data = word addres	sed by bits A5 – A0		

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description		
INIT	Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.		

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAM64X1S 1

Primitive: 64-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

This design element is a 64-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 6-bit address (A5 – A0). For predictable performance, address and data inputs must be stable before a High-to-Low (WCLK) transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can initialize this element during configuration using the INIT attribute.

Logic Table

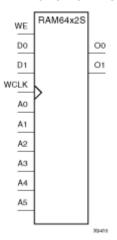
Inputs			Outputs
WE (mode)	WCLK	D	0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D	D
1 (read)		X	Data
Data = word addressed	by bits A5 – A0		

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	ype Allowed Values		Description		
INIT	Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.		


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAM64X2S

Primitive: 64-Deep by 2-Wide Static Synchronous RAM

Introduction

This design element is a 64-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D1 – D0) into the word selected by the 6-bit address (A5 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

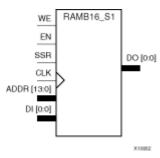
The signal output on the data output pins (O1 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins. You can use the INIT_00 and INIT_01 properties to specify the initial contents of this design element.

Logic Table

Inputs			Outputs
WE (mode)	WCLK	D0-D1	O0-O1
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)		D1-D0	D1-D0
1 (read)		X	Data
Data = word address	sed by bits A5 – A0		

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.
INIT_01	Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1

16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 1-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

				Inpu	ts			Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents		
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT	INIT	No Change	No Change	
0	0	X	Χ	X	Х	X	X	No Change	No Change	No Change	No Change	
0	1	1	0		Χ	Χ	Χ	SRVAL	SRVAL	No Change	No Change	
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0		addr	Χ	Х	RAM(addı)RAM(addr	No Change	No Change	

				Inpu	ts			Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents	
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata	

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE MODE=READ FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

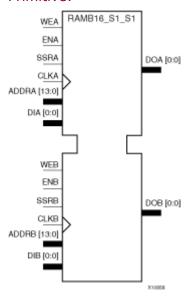
The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

	Data Cells		Parity	Cells			
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S1	16384 1				(13:0)	(0:0)	-

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary Any Hex Value		All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSFecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S1

Primitive:

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	,							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	DOPA RAM Cont	
									Data RAM	Parity RAM	
1	X	Х	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs	Inputs							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents	
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	Х	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs							Outputs				
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A					Port B					
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S1	16384 x 1	-	(13:0)	(0:0)	1	16384 x 1	1	(13:0)	(0:0)	-
(a) Depth x Widt	h									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	2 :	1 0
2	8192	\	15		14		13		12		11		10		9		8		7		6		5		4	3		2	1	(0
4	4096	\	7				6				5				4				3				2			1			0		
8	2048	\	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO	CHANGE and WRITE	MODE B=NO	CHANGE
VINITE IVIOUE 71-IVO	CITINOL and WINIL	MODL D-NO	CILITINOL

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No eChang	No eChang	No eChang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	·		DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

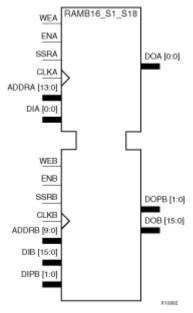
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAimy al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
1	Х	X	X	X	X	X	Х	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Contents Data Parity		
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	Х	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S18	16384 x 1	1	(13:0)	(0:0)	1	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a) Depth x Widt	h									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	Add	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 2	7 6	6 5	4	3 2	1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		1	C	
4	4096	<	7				6				5				4				3				2				1		(0		
8	2048	<	3								2								1							()					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB		No eChang	No eChang	No eChang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1		_	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1		_	DIA	DIB	DIPA	DIPB	X	Χ	X	X	X	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

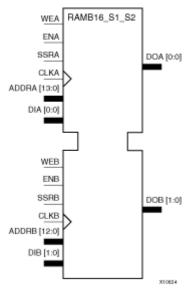
WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.

Attribute	Туре	Allowed Values	Default	Description
SRVAL_B	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_ S tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S2

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 2-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	5							Outputs					
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents		
										Data RAM	Parity RAM		
1	X	X	X	X	X	X	Х	INIT_A	INIT_A	No Change	No Change		
0	0	X	X	X	X	X	Х	No Change	No Change	No Change	No Change		
0	1	1	0		X	Х	Х	SRVAL_A	SRVAL_	ANo Change	No Change		
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata		
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ac	d x)o Change	No Change		

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S2	16384 x 1	-	(13:0)	(0:0)	-	8192 x 2	-	(12:0)	(1:0)	-
(a)Depth x Width	າ				-					

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	Add	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 2	7 (6 5	4	3 2	1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		1	C	
4	4096	<	7				6				5				4				3				2				1		(0		
8	2048	<	3								2								1							()					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No eChang	No eChang	No eChang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

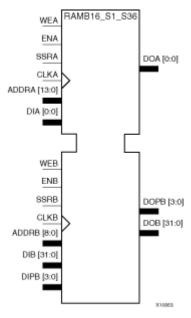
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	e Ainy al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainry al	All zeros	Specifies the initial contents of the parity portion of the RAM array.


Attribute	Type	Allowed Values	Default	Description
SIM_COLLISIC CHECK	N\$ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	e Ainy al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	.e Ainy al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_ S tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	,							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	Χ	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	X X		Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs	l							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3		ポ) M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S36	16384 x 1	-	(13:0)	(0:0)	-	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a) Depth x Widt	h									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	Add	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 2	7 (5 5	4	3 2	1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		1	Q	
4	4096	<	7				6				5				4				3				2			-	1			0	П	
8	2048	<	3								2								1							()				П	
16	1024	<	1																0												П	
32	512	<	0																												П	

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB		No eChang	No eChang	No eChang	X e	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	·		DIA	DIB	DIPA	DIPB	X	Χ	X	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

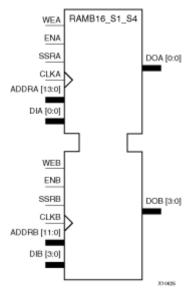
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	X	DIB	X	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	e Ainy al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	N\$ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexad	le Ainy al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.


Attribute	Type	Allowed Values	Default	Description
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_ S tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3					Outputs					
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents	
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Changel RAM (addr)2, pdata3	.,=>data	d R)AM(add =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3					Outputs					
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	Х	Х	Х	Х	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	Х	Х	Х	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs				
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents	
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata	

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A	Port B									
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S4	16384 x 1	-	(13:0)	(0:0)	-	4096 x 4	1	(11:0)	(3:0)	-
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	2 :	1 0
2	8192	\	15		14		13		12		11		10		9		8		7		6		5		4	3		2	1	(0
4	4096	\	7				6				5				4				3				2			1			0		
8	2048	\	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

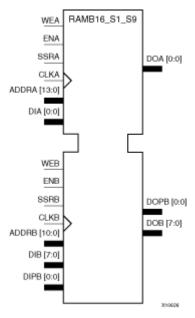
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAi ny al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	\\$ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexad	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Туре	Allowed Values	Default	Description
WRITE_MODE	_ S tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S1_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	Х	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	1,	d R) ⊉M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	3 2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3		2		1	C
4	4096	<	7				6				5				4				3				2			1			()	
8	2048	<	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No eChang	No eChang	No e Chang	X e	Х

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChang
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

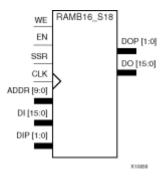
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	.eAimyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.e Ainy al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexad	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.e Ainny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	.eAimyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_Atring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode


Attribute	Туре	Allowed Values	Default	Description
				if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S18

16K-bit Data + 2K-bit Parity Memory, Single-Port Synchronous Block RAM with 18-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Inputs							Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents	
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	Χ	X	INIT	INIT	No Change	No Change
0	0	X	Χ	Χ	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		Χ	Χ	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0		addr	X	X	RAM(addı)RAM(addr	No Change	No Change

	Inputs							Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents		
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata	

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE MODE=READ FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

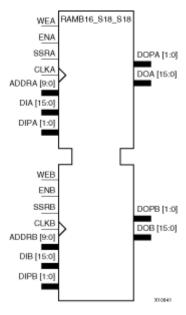
	Data Cells		Parity Cells				
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S18	1024	16	1024	2	(9:0)	(15:0)	(1:0)

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSFecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAMB16_S18_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3						•	Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d x)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	.,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		Χ	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	dR)&M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S18_S1	81024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a)Depth x Width	ì									

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S2	16384 x 1	-	(13:0)	(0:0)	-	8192 x 2	-	(12:0)	(1:0)	-
(a)Depth x Width	ı									·

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

			, ,																													
Data Wid	tlPort	Da	ta A	dd	res	ses	_													_				_		a			=			
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3	2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	,	3	2		1		C
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1							(0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X	No Chang	X	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB			No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	<u> </u>		Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	B No X Change		No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

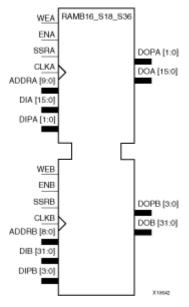
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No No ChangeCha	
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAi ny al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	e Ainy al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexad	le Ainy al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.


Attribute	Type	Allowed Values	Default	Description
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S18_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	5							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X	Х	X	INIT_A	INIT_A	No Change	No Change
0	0	X	Х	Х	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	Х	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d x)o Change	No Change

Inputs						Outputs					
GSR	ENA	SSRA	WEA	WEA CLKA ADDRADIA			DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	x x		Х	No Change	No Change	No Change	No Change
0	1	1	0		X X		X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr data		pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs	l					Outputs					
GSR	ENB	SSRB	WEB	CLKB	ADDRBDIB 1		DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3		ポ) M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A				Port B										
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus				
RAMB16_S18_S3	61024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)				
(a)Depth x Width	(a)Depth x Width													

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address	Mapping	for	Data
--------------	---------	-----	------

Data Wid	ta diPort Data Addresses																									
1	16384< 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															1 0										
2	8192	<	15		14		13		12		11		10		9	8	7	6	5	4	3	3	2		L	C
4	4096	<	7				6				5				4		3		2		1			()	
8	2048	<	3								2						1				0)				
16	1024	<	1														0									
32	512	<	0																							

Port Address Mapping for Parity

Parity Width	Port 1	Port Parity Addresses													
1	2048	< -	3				2				1				0
2	1024	< -	1								0				
4	512	< -	0												

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Change	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	No e Chang	No eChang	No e Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

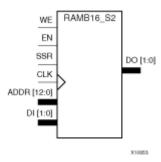
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainry al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2

16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

				Inpu	ts				(Outputs	
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT	INIT	No Change	No Change
0	0	X	X	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0		Χ	X	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0		addr	Χ	X	RAM(addı)RAM(addr	No Change	No Change

				Inpu	ts				(Outputs	
GSR	GSR EN SSR WE CLK ADDR DI DI						DIP	DO	DOP	RAM (Contents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE MODE=READ FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

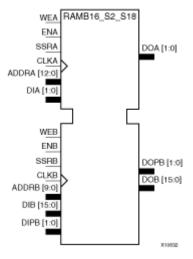
Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

	Data Cells		Parity Cells				
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S2	8192	2	-	-	(12:0)	(1:0)	-

Available Attributes


Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSF ecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	Х	X	X	Х	INIT_A	INIT_A	No Change	No Change
0	0	X	Х	Х	Х	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		Х	Х	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d x)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
									Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	Х	Х	Х	Х	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	Х	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	Х	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs				
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	- 		
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata	

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A					Port B									
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus				
RAMB16_S2_S18	8192 x 2	-	(12:0)	(1:0)	-	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)				
(a)Depth x Width	(a)Depth x Width													

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5 5	4 3	3 2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		L	C
4	4096	<	7				6				5				4				3				2			1			()	
8	2048	<	3								2								1							0)				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X	No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

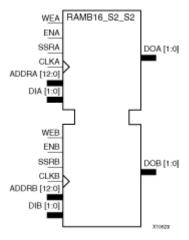
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAi ny al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	l\ tring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2_S2

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
1	Х	Х	X	X	X	X	Х	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs					
GSR	GSR ENA SSRA WEA CLKA ADDRADIA DIPA DOA DOPA RA							RAM Co	M Contents				
										Data RAM	Parity RAM		
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata		

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	Х	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	Х	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		Χ	Х	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs					
GSR	ENB	SSRB	WEB	CLKB ADDRBDIB DIPB DOB DOPB RAM Contents					ontents				
										Data RAM	Parity RAM		
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata		

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S2	8192 x 2	-	(12:0)	(1:0)	-	8192 x 2	1	(12:0)	(1:0)	-
(a)Depth x Width	(a)Depth x Width									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	2 :	1 0
2	8192	\	15		14		13		12		11		10		9		8		7		6		5		4	3		2	1	(0
4	4096	\	7				6				5				4				3				2			1			0		
8	2048	\	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X	No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

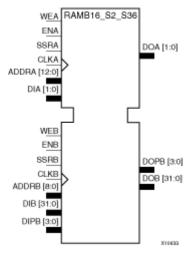
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Contents	
										Data RAM	Parity RAM
1	X	X	X	X	Χ	X	Χ	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	Χ	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	Х	Х	Х	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	Х	Х	Х	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		Χ	Х	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብዮ)Σ M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S36	8192 x 2	-	(12:0)	(1:0)	-	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address	Mapping	for	Data
--------------	---------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	' 6	5 5	4 3	3 2	1 0
2	8192	\	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2	1		C
4	4096	\	7				6				5				4				3				2			1	-		()	
8	2048	<	3								2								1							C)				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X e	No Change	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

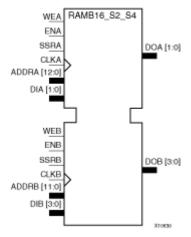
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	N <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	X	Х	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		Х	Х	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	х х		Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs	l							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3		ポ) M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B						
Design Element	Data Cells (a)	Parity Cells (a)	Address Bus	Data Bus	Parity Bus	Data Cells (a)	Parity Cells (a)	Address Bus	Data Bus	Parity Bus		
RAMB16_S2_S4	8192 x 2	-	(12:0)	(1:0)	-	4096 x 4	-	(11:0)	(3:0)	-		
(a) Depth x Width												

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

Data Wid	ata idtPort Data Addresses																														
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5 5	4 3	3 2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		L	C
4	4096	<	7				6				5				4				3				2			1			()	
8	2048	<	3								2								1							0)				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X	No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

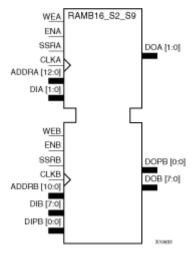
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	_		DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	N <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAiny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S2_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	Х	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	Х	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	Х	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S9	8192 x 2	-	(12:0)	(1:0)	-	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5 5	4 3	3 2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2		L	C
4	4096	<	7				6				5				4				3				2			1			()	
8	2048	<	3								2								1							0)				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAi ny al	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	\\$ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexad	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S36

16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 36-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

				Inpu	ts			OutputsDODOPRAM ContentsData RAMParity RAMINITINITNo ChangeNo ChangeNo ChangeNo ChangeNo Change						
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents			
										Data RAM	Parity RAM			
1	Χ	Χ	Χ	Χ	X	Χ	Х	INIT	INIT	No Change	No Change			
0	0	Χ	Χ	X	Х	X	Х			No Change	No Change			
0	1	1	0		X	Χ	X	SRVAL	SRVAL	No Change	No Change			
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata			
0	1	0	0		addr	Χ	Х	RAM(addı)RAM(addr	No Change	No Change			
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata			

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

				Inpu	ts				(Outputs			
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents		
									Data RAM Parity RA				

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

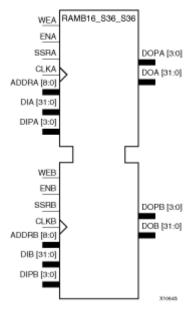
Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

	Data Cells		Parity Cells				
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S36	512	32	512	4	(8:0)	(31:0)	(3:0)

Available Attributes


Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSFecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S36_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with Two 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X X X		X	INIT_A	INIT_A	No Change	No Change
0	0	Х	Х	Х	Х	Х Х		No Change	No Change	No Change	No Change
0	1	1	0		Х	X	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr			RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	A WEA CLKA ADDRADIA DIPA DOA DO							RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs				
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents	
										Data RAM	Parity RAM	
1	X	X	Х	X	X X		Х	INIT_B	INIT_B	No Change	No Change	
0	0	X	Х	X	X X		Х	No Change	No Change	No Change	No Change	
0	1	1	0		Χ	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change	
0	1	1	1		addr data		pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata	
0	1	0	0		addr X		Х	RAM(addr)	RAM(ad	d N)o Change	No e Change	

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A					Port B						
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	
RAMB16_S36_S3	6512 x 32	512 x 4	(8:0)	(31:0)	(3:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)	
(a)Depth x Width											

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5 4	4 3	2	1 0
2	8192	<	15		14	:	13		12		11		10		9		8		7		6		5		4	3		2	1		C
4	4096	<	7				6				5				4				3				2			1			0		
8	2048	<	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Port Parity Addresses													
1	2048	< -	3				2				1				0
2	1024	< -	1								0				
4	512	< -	0												

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Х

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X e	No Change	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

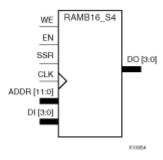
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainry al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16 S4

16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 4-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

				Inpu	ts				(Outputs	
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents
										Data RAM	Parity RAM
1	Χ	Χ	X	X	Χ	X	X	INIT	INIT	No Change	No Change
0	0	X	Χ	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		Χ	X	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0		addr	Χ	Χ	RAM(addı)RAM(addr	No Change	No Change

				Inpu	ts				(Outputs	
GSR	GSR EN SSR WE CLK ADDR DI DIP							DO	DOP	RAM (Contents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE MODE=READ FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

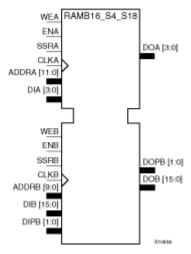
	Data Cells		Parity Cells				
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S4	4096	4	-	-	(11:0)	(3:0)	-

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSFecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAMB16_S4_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	Х	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	Х	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	x x		Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብኛ)Σ M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S18	4096 x 4	-	(11:0)	(3:0)	1	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	dd	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	3 2	1	0
2	8192	<	15		14	:	13		12		11		10		9		8		7		6		5		4	3		2	1		0	
4	4096	<	7				6				5				4				3				2			1			C)		
8	2048	<	3								2								1							0				П		
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Х

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X e	No Change	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

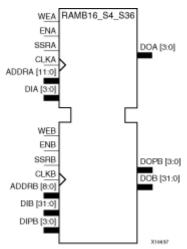
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainry al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S4_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA DOPA RAM Contents				
										Data RAM	Parity RAM	
1	Х	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change	
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change	
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change	
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata	
0	1	0	0		addr	X	X	RAM(addr)	RAM(ac	d N)o Change	No Change	

Inputs							Outputs					
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents	
										Data RAM	Parity RAM	
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB RAM Contents		
										Data RAM	Parity RAM
1	X	Х	X	X	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	Х	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs						Outputs					
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	1,	d R) ⊉M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A		Port B								
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S36	4096 x 4	-	(11:0)	(3:0)	1	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

10111	iuurcs	0 111	upp.	<i>"</i> "&.	joi	Dui	···																									
Data Wid	tlPort	Da	ta A	Add	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 2	7	6 5	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	7	2	1	C	
4	4096	<	7				6				5				4				3				2				1	Τ		0	\prod	
8	2048	<	3								2								1							(0	Τ			\prod	
16	1024	<	1																0													
32	512	<	0																									Τ			\prod	

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Х

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X	No Chang	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

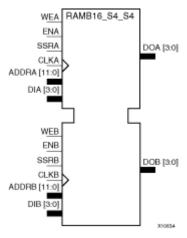
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	_		DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainry al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexad	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAi ny al	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S4_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
1	Х	Х	X	X	X	X	Х	INIT_A	INIT_A	No Change	No Change
0	0	Х	X	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R) AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(ad =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	X	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs	l							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3		ポ) M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S4	4096 x 4	-	(11:0)	(3:0)	-	4096 x 4	1	(11:0)	(3:0)	-
(a)Depth x Width	ı									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address M	apping	for	Data
----------------	--------	-----	------

1 011 2	inuics	<i>U</i> 1 V 1	wpp.	ng.	joi	Diii																										
Data Wid	tlPort	Da	ta A	dd	res	ses																										
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	7	5	4	3 2	1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2	T	1	q	
4	4096	<	7				6				5				4				3				2			1				0		
8	2048	<	3								2								1							0)	П	T	T		
16	1024	<	1																0												П	
32	512	<	0																									П		T		

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Х

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

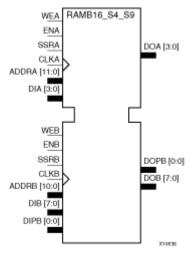
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	l\ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S4_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X X		Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	X X		Х	No Change	No Change	No Change	No Change
0	1	1	0		X X		Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr data		pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr X		Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A					Port B								
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus			
RAMB16_S4_S9	4096 x 4	-	(11:0)	(3:0)	-	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)			
(a)Depth x Width	(a)Depth x Width												

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address	Mapping	for	Data
--------------	---------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																				
1	16384< 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																									
2	8192	<	15		14		13		12		11		10		9	8	7	6	5	4	3	3	2	1	q	
4	4096	<	7				6				5				4		3		2			1		0		
8	2048	<	3								2						1				()				
16	1024	<	1														0									
32	512	<	0																							

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE MODE A and WRITE MODE B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM			No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

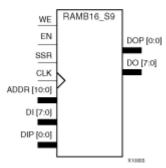
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexad	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	№ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.


Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ S tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16 S9

16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 9-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory.

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

				Inpu	ts				(Outputs	
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM (Contents
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	Χ	X	INIT	INIT	No Change	No Change
0	0	X	X	Χ	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		Χ	Χ	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1		addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0		addr	Χ	Х	RAM(addı)RAM(addr	No Change	No Change

				Inpu	ts				(Outputs	
GSR	GSR EN SSR WE CLK ADDR DI DIE							DO	DOP	RAM (Contents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE MODE=READ FIRST
- (c) WRITE_MODE=WRITE_FIRST

Initializing Memory Contents of a Single-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Single-Port RAMB16

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

The cell configuration for this element is listed in the following table.

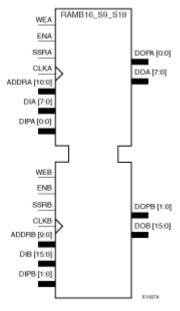
	Data Cells		Parity Cells				
Component	Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
RAMB16_S9	2048	8	2048	1	(10:0)	(7:0)	(0:0)

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST" "READ_FIRST" or "NO_CHANGE		RSFecifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.


For More Information

• See the *Spartan-3E User Guide*.

• See the *Spartan-3E Data Sheets*.

RAMB16_S9_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM Co	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	Х	Х	Х	INIT_B	INIT_B	No Change	No Change
0	0	Х	X	X	Х	Х	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብኛ)Σ M(add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S9_S18	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a) Depth x Widt	h									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5	4 3	3 2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2	1		C
4	4096	<	7				6				5				4				3				2			1			()	
8	2048	<	3								2								1							0					
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity .	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No eChang	No eChang	No eChang	X e	Х

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Х

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	DIB	X	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChang
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

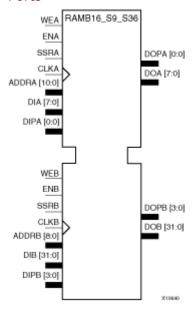
WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	 Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No eChange

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPE		Parity Ram
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	le Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	N <u>st</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.

Attribute	Type	Allowed Values	Default	Description
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_ B tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S9_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA RAM Contents		
										Data RAM	Parity RAM
1	X	X	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	X	X	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs						Outputs					
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Changel RAM (addr)2, pdata3	.,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	X	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	X	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		Χ	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	Х	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs						Outputs					
GSR	ENB	SSRB	WEB	CLKB	ADDR	RBDIB DIPB DOB DOPB RAM Conter				ontents	
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A	Port B									
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S9_S36	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	1									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address	Mapping	for	Data
--------------	---------	-----	------

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	' 6	5 5	4 3	3 2	1 0
2	8192	\	15		14		13		12		11		10		9		8		7		6		5		4	3	3	2	1		C
4	4096	\	7				6				5				4				3				2			1	-		()	
8	2048	<	3								2								1							C)				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Change	X e	No Change	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

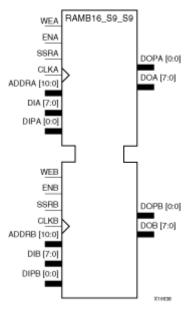
WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	l\ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ A tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

RAMB16_S9_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	1							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
1	X	Х	X	X	X	X	X	INIT_A	INIT_A	No Change	No Change
0	0	Χ	X	X	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0		X	X	X	SRVAL_A	SRVAL_	ANo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_A	SRVAL_	ARAM(ad =>data	d R)AM(ad =>pdata
0	1	0	0		addr	Х	Х	RAM(addr)	RAM(ac	d N)o Change	No Change

Inputs								Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDR	ADIA	DIPA	DOA	DOPA	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Changel RAM (addr)2, pdata3	.,=>data	d R)AM(add =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
1	X	X	Х	X	Х	X	Х	INIT_B	INIT_B	No Change	No Change
0	0	X	Х	X	Х	X	Х	No Change	No Change	No Change	No Change
0	1	1	0		X	X	Х	SRVAL_B	SRVAL_	BNo Change	No Change
0	1	1	1		addr	data	pdata	SRVAL_B	SRVAL_	BRAM(ad =>data	d R)AM(add =>pdata
0	1	0	0		addr	X	X	RAM(addr)	RAM(ad	d N)o Change	No Change

Inputs								Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDR	BDIB	DIPB	DOB	DOPB	RAM C	ontents
										Data RAM	Parity RAM
0	1	0	1		addr	data	pdata	No Change1, RAM (addr)2, data3	No Change RAM (addr)2, pdata3	,	ብ ርያ (add =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S9_S9	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)
(a)Depth x Width	ı									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Wid	tlPort	Da	ta A	dd	res	ses																									
1	1638	4<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	6	5 4	4 3	2	1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3		2	1		d
4	4096	<	7				6				5				4				3				2			1			0		\prod
8	2048	<	3								2								1							0					\prod
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port 1	Parity 2	Addres	sses						
1	2048	< -	3			2		1		0
2	1024	< -	1					0		
4	512	< -	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	X	No Chang	X e	No Chang	DIB e	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	No e Chang	No eChang	No e Chang	X e	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	No Chang	X e	No Chang	X e	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	No Chang	X e	No Change	X	X	X

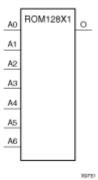
WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Chang	No eChange
1	0			DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1			DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

This design element can be used in schematics.

Available Attributes


Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/Hexac	.e Ainny al	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/Hexac	.eAinnyal	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/Hexac	.e Ainy al	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISIC CHECK	l\ <u>t</u> ring	"ALL", "NONE", "WARNING", or "GENERATE_X_O	"ALL" NLY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/Hexac	.eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/Hexac	eAinnyal	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	_ % tring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE	_Btring	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ROM128X1

Primitive: 128-Deep by 1-Wide ROM

Introduction

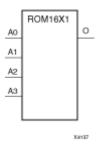
This design element is a 128-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 7-bit address (A6 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 32 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
10	I1	I2	I3	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 128-Bit Value	All zeros	Specifies the contents of the ROM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ROM16X1

Primitive: 16-Deep by 1-Wide ROM

Introduction

This design element is a 16-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 4-bit address (A3 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of four hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. For example, the INIT=10A7 parameter produces the data stream: 0001 0000 1010 0111 An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
10	I1	I2	I3	О
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

This design element can be used in schematics.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies the contents of the ROM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ROM256X1

Primitive: 256-Deep by 1-Wide ROM

Introduction

This design element is a 256-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 8-bit address (A7– A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 64 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H.

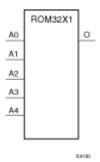
An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
I0	I1	I2	I3	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 256-Bit Value	All zeros	Specifies the contents of the ROM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ROM32X1

Primitive: 32-Deep by 1-Wide ROM

Introduction

This design element is a 32-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 5-bit address (A4 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of eight hexadecimal digits that are written into the ROM from the most-significant digit A=1FH to the least-significant digit A=00H.

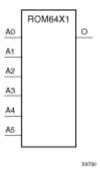
For example, the INIT=10A78F39 parameter produces the data stream: 0001 0000 1010 0111 1000 1111 0011 1001 An error occurs if the INIT=value is not specified.

Logic Table

		Output		
10	I1	I2	I3	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 32-Bit Value	All zeros	Specifies the contents of the ROM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

ROM64X1

Primitive: 64-Deep by 1-Wide ROM

Introduction

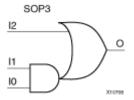
This design element is a 64-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 6-bit address (A5 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 16 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
10	I1	I2	I3	О
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 64-Bit Value	All zeros	Specifies the contents of the ROM.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

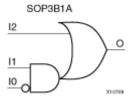
SOP3

Macro: Sum of Products

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.

Design Entry Method


This design element is only for use in schematics.

Available Attributes

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP3B1A

Macro: Sum of Products

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

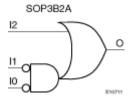
SOP3B1B

Macro: Sum of Products

SOP3B1B

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the Spartan-3E Data Sheets.

SOP3B2A

Macro: Sum of Products

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP3B2B

Macro: Sum of Products

SOP3B2B 2 0

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

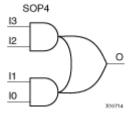
SOP3B3

Macro: Sum of Products

SOP3B3

Introduction

Three input Sum of Products (SOP) macros provide common logic functions by OR gating the output of one AND function with one direct input. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

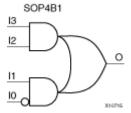
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

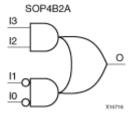
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4B1

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

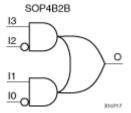
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4B2A

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

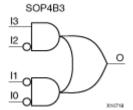
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4B2B

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

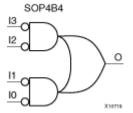
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4B3

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SOP4B4

Macro: Sum of Products

Introduction

Four input Sum of Products (SOP) macros provide common logic functions by OR gating the outputs of two AND functions. Variations of inverting and non-inverting inputs are available.


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16CE

Macro: 16-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel outputs (Q), and clock enable (CE) and asynchronous clear (CLR) inputs. The (CLR) input, when High, overrides all other inputs and resets the data outputs (Q) Low. When (CE) is High and (CLR) is Low, the data on the SLI input is loaded into the first bit of the shift register during the Low-to- High clock (C) transition and appears on the (Q0) output. During subsequent Low-to- High clock transitions, when (CE) is High and (CLR) is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (SLI Q0, Q0 Q1, Q1 Q2, and so forth). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (CLR) in parallel.

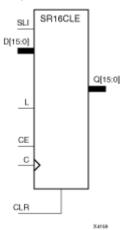
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs			
CLR	CE	SLI	C Q0		Qz - Q1
1	X	X	X	0	0
0	0	X	X	No Change	No Change
0 1		SLI		SLI	qn-1

z = bit width - 1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16CLE

Macro: 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and asynchronous clear (CLR). The register ignores clock transitions when (L) and (CE) are Low. The asynchronous (CLR), when High, overrides all other inputs and resets the data outputs (Q) Low. When (L) is High and (CLR) is Low, data on the Dn-D0 inputs is loaded into the corresponding Qn-Q0 bits of the register.

When (CE) is High and (L) and (CLR) are Low, data on the SLI input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent clock transitions, when (CE) is High and (L) and (CLR) are Low, the data shifts to the next highest bit position as new data is loaded into (Q)0 (for example, SLI Q0, Q0 Q1, and Q1 Q2).

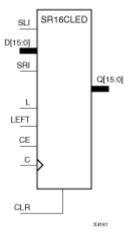
Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (CLR) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs			
CLR	L	CE	SLI	Dn – D0	С	Q0	Qz – Q1		
1	Х	Х	X	X	Х	0	0		
0	1	Х	X	Dn – D0		D0	Dn		
0	0	1	SLI	X		SLI	qn-1		
0	0	0	Х	Х	Х	No Change	No Change		
z = bitwidth -1									

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16CLED

Macro: 16-Bit Shift Register with Clock Enable and Asynchronous Clear

Introduction

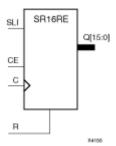
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q), and four control inputs: clock enable (CE), load enable (L), shift left/right (LEFT), and asynchronous clear (CLR). The register ignores clock transitions when (CE) and (L) are Low. The asynchronous clear, when High, overrides all other inputs and resets the data outputs (Qn) Low.

When (L) is High and (CLR) is Low, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register. When (CE) is High and (L) and (CLR) are Low, data is shifted right or left, depending on the state of the LEFT input. If LEFT is High, data on the SLI is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 or Q2) during subsequent clock transitions. If LEFT is Low, data on the SRI is loaded into the last (Q) output during the Low-to-High clock transition and shifted right during subsequent clock transitions. The logic tables indicate the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs								Outputs	Outputs			
CLR	L	CE	LEFT	SLI	SRI	D15 - D0	С	Q0	Q15	Q14 - Q1		
1	Х	Х	Х	Х	X	X	Х	0	0	0		
0	1	X	X	X	X	D15 - D0		D0	D15	Dn		
0	0	0	Х	Х	Х	Х	Х	No Change	No Change	No Change		
0	0	1	1	SLI	Х	Х		SLI	q14	qn-1		
0	0	1	0	Х	SRI	Х		q1	SRI	qn+1		
qn-1 or	qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition.											


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16RE

Macro: 16-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel outputs (Qn), clock enable (CE), and synchronous reset (R) inputs. The R input, when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low.

When (CE) is High and (R) is Low, the data on the (SLI) is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent Low-to-High clock transitions, when (CE) is High and R is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (for example, SLI Q0, Q0 Q1, and Q1 Q2). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (R) in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs			
R	CE	SLI	I C		Qz – Q1
1	X	X		0	0
0	0	Χ	X	No Change	No Change
0	1	SLI		SLI	qn-1

z = bitwidth -1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16RLE

Macro: 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and synchronous reset (R). The register ignores clock transitions when (L) and (CE) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, data on the (D) inputs is loaded into the corresponding Q bits of the register.

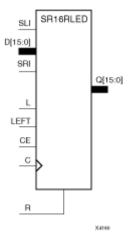
When (CE) is High and (L) and (R) are Low, data on the (SLI) input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the Q0 output. During subsequent clock transitions, when (CE) is High and (L) and (R) are Low, the data shifts to the next highest bit position as new data is loaded into Q0.

Registers can be cascaded by connecting the last Q output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (R) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs		
R	L CE SLI Dz – D0 C					Q0	Qz - Q1	
1	Χ	Х	X	X		0	0	
0	1	D0	Dn					
0	0	1	SLI	X		SLI	qn-1	
0	0	0	X	X	X	No Change	No Change	
z = bitwidth -1								
qn-1 = state of referenced output one setup time prior to active clock transition								


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR16RLED

Introduction

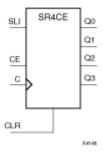
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q) and four control inputs — clock enable (CE), load enable (L), shift left/right (LEFT), and synchronous reset (R). The register ignores clock transitions when (CE) and (L) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register.

When (CE) is High and (L) and (R) are Low, data shifts right or left, depending on the state of the LEFT input. If LEFT is High, data on (SLI) is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 and Q2) during subsequent clock transitions. If LEFT is Low, data on the (SRI) is loaded into the last (Q) output during the Low-to-High clock transition and shifted right) during subsequent clock transitions. The logic tables below indicates the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Input	s							Outputs				
R	L	CE	LEFT	SLI	SRI	D15 - D0	С	Q0	Q15	Q14 - Q1		
1	Х	Х	Х	X	X	Х		0	0	0		
0	1	Х	Х	Х	Х	D15 - D0		D0	D15	Dn		
0	0	0	Х	Х	X	Х	Х	No Change	No Change	No Change		
0	0	1	1	SLI	Х	Х		SLI	q14	qn-1		
0	0	1	0	X	SRI	Х		q1	SRI	qn+1		
qn-1 o	qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition											


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR4CE

Macro: 4-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel outputs (Q), and clock enable (CE) and asynchronous clear (CLR) inputs. The (CLR) input, when High, overrides all other inputs and resets the data outputs (Q) Low. When (CE) is High and (CLR) is Low, the data on the SLI input is loaded into the first bit of the shift register during the Low-to- High clock (C) transition and appears on the (Q0) output. During subsequent Low-to- High clock transitions, when (CE) is High and (CLR) is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (SLI Q0, Q0 Q1, Q1 Q2, and so forth). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (CLR) in parallel.

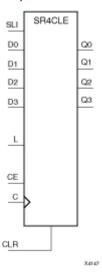
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs			
CLR	CE	SLI	GLI C		Qz – Q1
1	X	X	X	0	0
0	0	X	X	No Change	No Change
0	1	SLI		SLI	qn-1

z = bit width - 1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the Spartan-3E Data Sheets.

SR4CLE

Macro: 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and asynchronous clear (CLR). The register ignores clock transitions when (L) and (CE) are Low. The asynchronous (CLR), when High, overrides all other inputs and resets the data outputs (Q) Low. When (L) is High and (CLR) is Low, data on the Dn-D0 inputs is loaded into the corresponding Qn-Q0 bits of the register.

When (CE) is High and (L) and (CLR) are Low, data on the SLI input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent clock transitions, when (CE) is High and (L) and (CLR) are Low, the data shifts to the next highest bit position as new data is loaded into (Q)0 (for example, SLI Q0, Q0 Q1, and Q1 Q2).

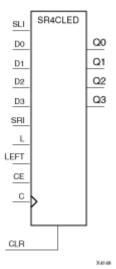
Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (CLR) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs	Outputs			
CLR	R L CE SLI Dn – D0 C				Q0	Qz – Q1				
1	X	Х	Х	X	Х	0	0			
0	1	Х	Х	Dn – D0		D0	Dn			
0	0	1	SLI	Х		SLI	qn-1			
0	0	0	Х	X	Х	No Change	No Change			
z = bitwic	z = bitwidth -1									

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR4CLED

Macro: 4-Bit Shift Register with Clock Enable and Asynchronous Clear

Introduction

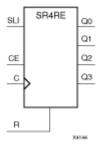
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q), and four control inputs: clock enable (CE), load enable (L), shift left/right (LEFT), and asynchronous clear (CLR). The register ignores clock transitions when (CE) and (L) are Low. The asynchronous clear, when High, overrides all other inputs and resets the data outputs (Qn) Low.

When (L) is High and (CLR) is Low, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register. When (CE) is High and (L) and (CLR) are Low, data is shifted right or left, depending on the state of the LEFT input. If LEFT is High, data on the SLI is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 or Q2) during subsequent clock transitions. If LEFT is Low, data on the SRI is loaded into the last (Q) output during the Low-to-High clock transition and shifted right during subsequent clock transitions. The logic tables indicate the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs								Outputs	Outputs			
CLR	L	CE	LEFT	SLI	SRI	D3 - D0	С	Q0	Q3	Q2-Q1		
1	Х	Х	Х	Х	X	X	Х	0	0	0		
0	1	Х	Х	Х	X	D3- D0		D0	D3	Dn		
0	0	0	Х	Х	X	Х	Х	No Change	No Change	No Change		
0	0	1	1	SLI	X	X		SLI	q2	qn-1		
0	0	1	0	Х	SRI	Х		q1	SRI	qn+1		
qn-1 an	qn-1 and $qn+1$ = state of referenced output one setup time prior to active clock transition.											


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR4RE

Macro: 4-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel outputs (Qn), clock enable (CE), and synchronous reset (R) inputs. The R input, when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low.

When (CE) is High and (R) is Low, the data on the (SLI) is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent Low-to-High clock transitions, when (CE) is High and R is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (for example, SLI Q0, Q0 Q1, and Q1 Q2). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (R) in parallel.

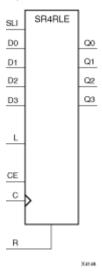
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs			
R	CE	SLI	С	Q0	Qz – Q1
1	X	X		0	0
0	0	X	X	No Change	No Change
0	1	SLI		SLI	qn-1

z = bitwidth -1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR4RLE

Macro: 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and synchronous reset (R). The register ignores clock transitions when (L) and (CE) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, data on the (D) inputs is loaded into the corresponding Q bits of the register.

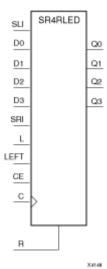
When (CE) is High and (L) and (R) are Low, data on the (SLI) input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the Q0 output. During subsequent clock transitions, when (CE) is High and (L) and (R) are Low, the data shifts to the next highest bit position as new data is loaded into Q0.

Registers can be cascaded by connecting the last Q output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (R) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs			
R	L	CE	SLI	Dz – D0	С	Q0	Qz - Q1		
1	Х	Х	Х	X		0	0		
0	1	Х	X	Dz – D0		D0	Dn		
0	0	1	SLI	X		SLI	qn-1		
0	0	0	X	X	X	No Change	No Change		
z = bitv	z = bitwidth -1								
qn-1 = :	qn-1 = state of referenced output one setup time prior to active clock transition								


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR4RLED

Macro: 4-Bit Shift Register with Clock Enable and Synchronous Reset

Introduction

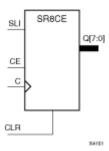
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q) and four control inputs — clock enable (CE), load enable (L), shift left/right (LEFT), and synchronous reset (R). The register ignores clock transitions when (CE) and (L) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register.

When (CE) is High and (L) and (R) are Low, data shifts right or left, depending on the state of the LEFT input. If LEFT is High, data on (SLI) is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 and Q2) during subsequent clock transitions. If LEFT is Low, data on the (SRI) is loaded into the last (Q) output during the Low-to-High clock transition and shifted right) during subsequent clock transitions. The logic tables below indicates the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Input	s							Outputs	Outputs			
R	L	CE	LEFT	SLI	SRI	D3 – D0	С	Q0	Q3	Q2-Q1		
1	Х	Х	Х	Х	Х	Х		0	0	0		
0	1	Х	Х	Х	Х	D3 – D0		D0	D3	Dn		
0	0	0	Х	X	Х	X	Х	No Change	No Change	No Change		
0	0	1	1	SLI	Х	Х		SLI	q2	qn-1		
0	0	1	0	Х	SRI	Х		q1	SRI	qn+1		
qn-1 c	qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition											


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR8CE

Macro: 8-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel outputs (Q), and clock enable (CE) and asynchronous clear (CLR) inputs. The (CLR) input, when High, overrides all other inputs and resets the data outputs (Q) Low. When (CE) is High and (CLR) is Low, the data on the SLI input is loaded into the first bit of the shift register during the Low-to- High clock (C) transition and appears on the (Q0) output. During subsequent Low-to- High clock transitions, when (CE) is High and (CLR) is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (SLI Q0, Q0 Q1, Q1 Q2, and so forth). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (CLR) in parallel.

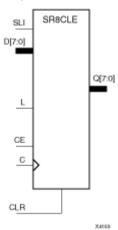
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs				Outputs		
CLR	CE	SLI	С	Q0	Qz - Q1	
1	X	X	X	0	0	
0	0	X	X	No Change	No Change	
0	1	SLI		SLI	qn-1	

z = bit width - 1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

SR8CLE

Macro: 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Asynchronous Clear

Introduction

This design element is a shift register with a shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and asynchronous clear (CLR). The register ignores clock transitions when (L) and (CE) are Low. The asynchronous (CLR), when High, overrides all other inputs and resets the data outputs (Q) Low. When (L) is High and (CLR) is Low, data on the Dn-D0 inputs is loaded into the corresponding Qn-Q0 bits of the register.

When (CE) is High and (L) and (CLR) are Low, data on the SLI input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent clock transitions, when (CE) is High and (L) and (CLR) are Low, the data shifts to the next highest bit position as new data is loaded into (Q)0 (for example, SLI Q0, Q0 Q1, and Q1 Q2).

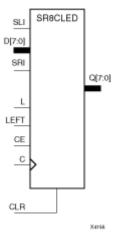
Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (CLR) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs						Outputs	Outputs		
CLR	L	CE	SLI	Dn – D0	С	Q0	Qz – Q1		
1	Х	Χ	X	X	X	0	0		
0	1	Χ	X	Dn – D0		D0	Dn		
0	0	1	SLI	X		SLI	qn-1		
0	0	0	Х	X	Х	No Change	No Change		
z = bitwidth -1									

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR8CLED

Introduction

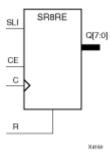
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q), and four control inputs: clock enable (CE), load enable (L), shift left/right (LEFT), and asynchronous clear (CLR). The register ignores clock transitions when (CE) and (L) are Low. The asynchronous clear, when High, overrides all other inputs and resets the data outputs (Qn) Low.

When (L) is High and (CLR) is Low, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register. When (CE) is High and (L) and (CLR) are Low, data is shifted right or left, depending on the state of the LEFT input. If LEFT is High, data on the SLI is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 or Q2) during subsequent clock transitions. If LEFT is Low, data on the SRI is loaded into the last (Q) output during the Low-to-High clock transition and shifted right during subsequent clock transitions. The logic tables indicate the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs							Outputs			
CLR	L	CE	LEFT	SLI	SRI	D7-D0	С	Q0	Q7	Q6-Q1
1	X	X	X	X	X	X	Х	0	0	0
0	1	X	X	X	X	D7 – D0		D0	D7	Dn
0	0	0	X	Х	X	X	X	No Change	No Change	No Change
0	0	1	1	SLI	Х	Х		SLI	q6	qn-1
0	0	1	0	Х	SRI	Х		q1	SRI	qn+1
qn-1 or $qn+1$ = state of referenced output one setup time prior to active clock transition.										


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR8RE

Macro: 8-Bit Serial-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel outputs (Qn), clock enable (CE), and synchronous reset (R) inputs. The R input, when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low.

When (CE) is High and (R) is Low, the data on the (SLI) is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the (Q0) output. During subsequent Low-to-High clock transitions, when (CE) is High and R is Low, data shifts to the next highest bit position as new data is loaded into (Q0) (for example, SLI Q0, Q0 Q1, and Q1 Q2). The register ignores clock transitions when (CE) is Low.

Registers can be cascaded by connecting the last (Q) output of one stage to the SLI input of the next stage and connecting clock, (CE), and (R) in parallel.

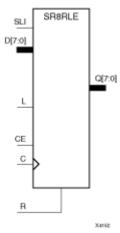
This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs		Outputs			
R	CE	SLI	С	Q0	Qz – Q1
1	X	X		0	0
0	0	X	X	No Change	No Change
0	1	SLI		SLI	qn-1

z = bitwidth -1

qn-1 = state of referenced output one setup time prior to active clock transition


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR8RLE

Macro: 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable and Synchronous Reset

Introduction

This design element is a shift register with shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control inputs: clock enable (CE), load enable (L), and synchronous reset (R). The register ignores clock transitions when (L) and (CE) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, data on the (D) inputs is loaded into the corresponding Q bits of the register.

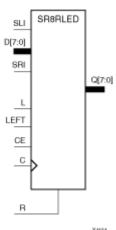
When (CE) is High and (L) and (R) are Low, data on the (SLI) input is loaded into the first bit of the shift register during the Low-to-High clock (C) transition and appears on the Q0 output. During subsequent clock transitions, when (CE) is High and (L) and (R) are Low, the data shifts to the next highest bit position as new data is loaded into Q0.

Registers can be cascaded by connecting the last Q output of one stage to the SLI input of the next stage and connecting clock, (CE), (L), and (R) inputs in parallel.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs							Outputs	
R	L	CE	SLI	Dz – D0	С	Q0	Qz - Q1	
1	Χ	Х	X	X		0	0	
0	1	Х	X	Dz – D0		D0	Dn	
0	0	1	SLI	X		SLI	qn-1	
0	0	0	X	X	X	No Change	No Change	
z = bitwidth -1								
qn-1 = state of referenced output one setup time prior to active clock transition								


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SR8RLED

Macro: 8-Bit Shift Register with Clock Enable and Synchronous Reset

Introduction

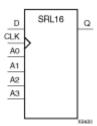
This design element is a shift register with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), parallel outputs (Q) and four control inputs — clock enable (CE), load enable (L), shift left/right (LEFT), and synchronous reset (R). The register ignores clock transitions when (CE) and (L) are Low. The synchronous (R), when High, overrides all other inputs during the Low-to-High clock (C) transition and resets the data outputs (Q) Low. When (L) is High and (R) is Low during the Low-to-High clock transition, the data on the (D) inputs is loaded into the corresponding (Q) bits of the register.

When (CE) is High and (L) and (R) are Low, data shifts right or left, depending on the state of the LEFT input. If LEFT is High, data on (SLI) is loaded into (Q0) during the Low-to-High clock transition and shifted left (for example, to Q1 and Q2) during subsequent clock transitions. If LEFT is Low, data on the (SRI) is loaded into the last (Q) output during the Low-to-High clock transition and shifted right) during subsequent clock transitions. The logic tables below indicates the state of the (Q) outputs under all input conditions.

This register is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP *architecture* symbol.

Logic Table

R		Inputs						Outputs		
	L	CE	LEFT	SLI	SRI	D7- D0	С	Q0	Q7	Q6-Q1
1	X	Х	Χ	Х	Х	Х		0	0	0
0	1	Х	Χ	Х	Х	D7 – D0		D0	D7	Dn
0	0	0	Х	Х	Х	Х	Х	No Change	No Change	No Change
0	0	1	1	SLI	Х	Х		SLI	q6	qn-1
0	0	1	0	Χ	SRI	Х		q1	SRI	qn+1


Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRL₁₆

Primitive: 16-Bit Shift Register Look-Up-Table (LUT)

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

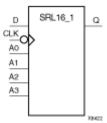
The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts to the next highest bit position while new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

Logic Table

Inputs	Output				
Am	CLK	D	Q		
Am	X	X	Q(Am)		
Am		D	Q(Am - 1)		
m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRL16 1

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

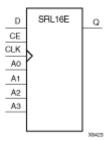
The data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

Logic Table

Inputs	Output				
Am	CLK	D	Q		
Am	X	X	Q(Am)		
Am		D	Q(Am - 1)		
m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRL16E

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

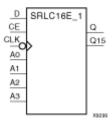
When CE is High, the data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions, when CE is High, data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. When CE is Low, the register ignores clock transitions.

Logic Table

Inputs	Output			
Am	CE	CLK	D	Q
Am	0	X	X	Q(Am)
Am	1		D	Q(Am - 1)
m= 0, 1, 2, 3		•	•	

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRL16E 1

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock Enable

Introduction

This design element is a shift register look up table (LUT) with clock enable (CE). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

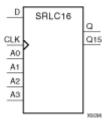
When CE is High, the data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions, when CE is High, data is shifted to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. When CE is Low, the register ignores clock transitions.

Logic Table

	Output			
Am	CE	CLK	D	Q
Am	0	Χ	X	Q(Am)
Am	1	Ø	D	Q(Am - 1)
m= 0, 1, 2, 3				

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	16-Bit Hexadecimal		Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRLC16

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry

Introduction

This design element is a shift register look-up table (LUT) with Carry. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

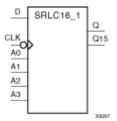
The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. The Q15 output is available for you in cascading to multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs	Output				
Am	CLK	D	Q		
Am	X	X	Q(Am)		
Am		D	Q(Am - 1)		
m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecima	l Any 16-Bit Valuel	All zeros	Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRLC16 1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Negative-Edge Clock

Introduction

This design element is a shift register look-up table (LUT) with carry and a negative-edge clock. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

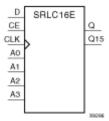
The Q15 output is available for your use in cascading multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs			Output			
Am	CLK	D	Q	Q15		
Am	X	X	Q(Am)	No Change		
Am		D	Q(Am - 1)	Q14		
m= 0, 1, 2, 3	m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecima	l Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRLC16E

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Clock Enable

Introduction

This design element is a shift register look-up table (LUT) with carry and clock enable. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. When CE is High, during subsequent Low-to-High clock transitions, data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

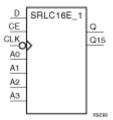
The Q15 output is available for you in cascading to multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs		Output			
Am	CLK	CE	D	Q	Q15
Am	X	0	Χ	Q(Am)	Q(15)
Am	X	1	Χ	Q(Am)	Q(15)
Am		1	D	Q(Am - 1)	Q15
m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value		Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

SRLC16E 1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry, Negative-Edge Clock, and Clock Enable

Introduction

This design element is a shift register look-up table (LUT) with carry, clock enable, and negative-edge clock. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts to the next highest bit position as new data is loaded when CE is High. The data appears on the Q output when the shift register length determined by the address inputs is reached.

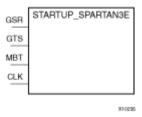
The Q15 output is available for your use in cascading multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs			Output			
Am	CE	CLK	D	Q	Q15	
Am	0	X	X	Q(Am)	No Change	
Am	1	X	X	Q(Am)	No Change	
Am	1		D	Q(Am -1)	Q14	
m= 0, 1, 2, 3	m= 0, 1, 2, 3					

Design Entry Method

This design element can be used in schematics.


Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecima	l Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

STARTUP_SPARTAN3E

Primitive: Spartan-3E User Interface to the GSR, GTS, Configuration Startup Sequence and Multi-Boot Trigger Circuitry

Introduction

This design element allows the connection of ports, or your circuitry, to control certain dedicated circuitry and routes within the FPGA. Signals connected the GSR port of this component can control the global set/reset (referred to as GSR) of the device. The GSR net connects to all registers in the device and places the registers into their initial value state. Connecting a signal to the GTS port connects to the dedicated route controlling the three-state outputs of every pin in the device. Connecting a clock signal to the CLK input allows the startup sequence after configuration to be synchronized to a user-defined clock. The MBT (Multi-Boot Trigger) pin allows the triggering of a new configuration when the device is properly set up for this feature.

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

VCC

Primitive: VCC-Connection Signal Tag

Introduction

This design element serves as a signal tag, or parameter, that forces a net or input function to a logic High level. A net tied to this element cannot have any other source.

When the placement and routing software encounters a net or input function tied to this element, it removes any logic that is disabled by the Vcc signal, which is only implemented when the disabled logic cannot be removed.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 2-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table

Input	Output
I0 Iz	0
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

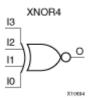
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 3-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	0
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

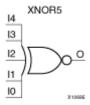
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	0
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

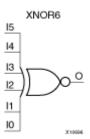
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	О
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

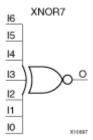
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 6-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	О
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

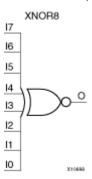
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 7-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	О
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

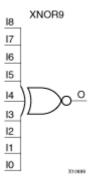
- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table


Input	Output
I0 Iz	О
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 9-Input XNOR Gate with Non-Inverted Inputs

Introduction

XNOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Logic Table

Input	Output
I0 Iz	0
Odd number of 1	0
Even number of 1	1

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 2-Input XOR Gate with Non-Inverted Inputs

Introduction

XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 3-Input XOR Gate with Non-Inverted Inputs

Introduction

XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

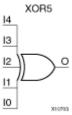
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 4-Input XOR Gate with Non-Inverted Inputs

Introduction


XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

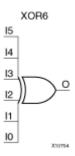
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Primitive: 5-Input XOR Gate with Non-Inverted Inputs

Introduction


XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

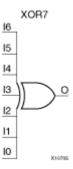
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 6-Input XOR Gate with Non-Inverted Inputs

Introduction


XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

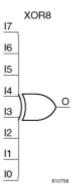
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 7-Input XOR Gate with Non-Inverted Inputs

Introduction


XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

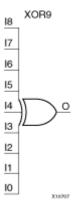
Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 8-Input XOR Gate with Non-Inverted Inputs

Introduction


XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

Macro: 9-Input XOR Gate with Non-Inverted Inputs

Introduction

XOR functions of up to nine inputs are available. All inputs are non-inverting. Because each input uses a CLB resource, replace functions with unused inputs with functions having the necessary number of inputs.

Design Entry Method

This design element is only for use in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

XORCY

Primitive: XOR for Carry Logic with General Output

Introduction

This design element is a special XOR with general O output that generates faster and smaller arithmetic functions. The XORCY primitive is a dedicated XOR function within the carry-chain logic of the slice. It allows for fast and efficient creation of arithmetic (add/subtract) or wide logic functions (large AND/OR gate).

Logic Table

Input		Output
LI	CI	0
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

This design element can be used in schematics.

- See the Spartan-3E User Guide.
- See the *Spartan-3E Data Sheets*.

XORCY_D

Primitive: XOR for Carry Logic with Dual Output

Introduction

This design element is a special XOR that generates faster and smaller arithmetic functions.

Logic Table

Input		Output
LI	CI	O and LO
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.

XORCY_L

Primitive: XOR for Carry Logic with Local Output

Introduction

This design element is a special XOR with local LO output that generates faster and smaller arithmetic functions.

Logic Table

Input		Output
LI	CI	LO
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

This design element can be used in schematics.

- See the *Spartan-3E User Guide*.
- See the *Spartan-3E Data Sheets*.