
Yosys Manual
Clifford Wolf

Abstract

Most of today’s digital design is done in HDL code (mostly Verilog or VHDL) and with the help of HDL
synthesis tools.

In special cases such as synthesis for coarse-grain cell libraries or when testing new synthesis algorithms
it might be necessary to write a custom HDL synthesis tool or add new features to an existing one. It
this cases the availability of a Free and Open Source (FOSS) synthesis tool that can be used as basis for
custom tools would be helpful.

In the absence of such a tool, the Yosys Open SYnthesis Suite (Yosys) was developped. This document
covers the design and implementation of this tool. At the moment the main focus of Yosys lies on the
high-level aspects of digital synthesis. The pre-existing FOSS logic-synthesis tool ABC is used by Yosys
to perform advanced gate-level optimizations.

An evaluation of Yosys based on real-world designs is included. It is shown that Yosys can be used as-is to
synthesize such designs. The results produced by Yosys in this tests where successflly verified using formal
verification and are comparable in quality to the results produced by a commercial synthesis tool.

This document was originally published as bachelor thesis at the Vienna University of Technology [Wol13].

2

Abbreviations

AIG And-Inverter-Graph
ASIC Application-Specific Integrated Circuit
AST Abstract Syntax Tree
BDD Binary Decicion Diagram
BLIF Berkeley Logic Interchange Format
EDA Electronic Design Automation
EDIF Electronic Design Interchange Format
ER Diagram Entity-Relationship Diagram
FOSS Free and Open-Source Software
FPGA Field-Programmable Gate Array
FSM Finite-state machine
HDL Hardware Description Language
LPM Library of Parameterized Modules
RTLIL RTL Intermediate Language
RTL Register Transfer Level
SAT Satisfiability Problem
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuit
YOSYS Yosys Open SYnthesis Suite

3

Contents

1 Introduction 11

1.1 History of Yosys . 11

1.2 Structure of this Document . 12

2 Basic Principles 13

2.1 Levels of Abstraction . 13

2.1.1 System Level . 14

2.1.2 High Level . 14

2.1.3 Behavioural Level . 14

2.1.4 Register-Transfer Level (RTL) . 15

2.1.5 Logical Gate Level . 15

2.1.6 Physical Gate Level . 16

2.1.7 Switch Level . 16

2.1.8 Yosys . 16

2.2 Features of Synthesizable Verilog . 16

2.2.1 Structural Verilog . 17

2.2.2 Expressions in Verilog . 17

2.2.3 Behavioural Modelling . 17

2.2.4 Functions and Tasks . 18

2.2.5 Conditionals, Loops and Generate-Statements . 18

2.2.6 Arrays and Memories . 19

2.3 Challenges in Digital Circuit Synthesis . 19

2.3.1 Standards Compliance . 19

2.3.2 Optimizations . 20

2.3.3 Technology Mapping . 20

2.4 Script-Based Synthesis Flows . 20

2.5 Methods from Compiler Design . 21

2.5.1 Lexing and Parsing . 21

2.5.2 Multi-Pass Compilation . 23

4

CONTENTS

3 Approach 24

3.1 Data- and Control-Flow . 24

3.2 Internal Formats in Yosys . 25

3.3 Typical Use Case . 25

4 Implementation Overview 27

4.1 Simplified Data Flow . 27

4.2 The RTL Intermediate Language . 28

4.2.1 RTLIL Identifiers . 29

4.2.2 RTLIL::Design and RTLIL::Module . 30

4.2.3 RTLIL::Cell and RTLIL::Wire . 30

4.2.4 RTLIL::SigSpec . 31

4.2.5 RTLIL::Process . 31

4.2.6 RTLIL::Memory . 33

4.3 Command Interface and Synthesis Scripts . 34

4.4 Source Tree and Build System . 34

5 Internal Cell Library 36

5.1 RTL Cells . 36

5.1.1 Unary Operators . 36

5.1.2 Binary Operators . 37

5.1.3 Multiplexers . 37

5.1.4 Registers . 38

5.1.5 Memories . 38

5.1.6 Finite State Machines . 41

5.2 Gates . 41

6 Programming Yosys Extensions 43

6.1 The “CodingReadme” File . 43

6.2 The “stubsnets” Example Module . 48

5

CONTENTS

7 The Verilog and AST Frontends 51

7.1 Transforming Verilog to AST . 51

7.1.1 The Verilog Preprocessor . 52

7.1.2 The Verilog Lexer . 52

7.1.3 The Verilog Parser . 52

7.2 Transforming AST to RTLIL . 53

7.2.1 AST Simplification . 53

7.2.2 Generating RTLIL . 55

7.3 Synthesizing Verilog always Blocks . 55

7.3.1 The ProcessGenerator Algorithm . 57

7.3.2 The proc pass . 60

7.4 Synthesizing Verilog Arrays . 60

7.5 Synthesizing Parametric Designs . 60

8 Optimizations 61

8.1 Simple Optimizations . 61

8.1.1 The opt_const pass . 61

8.1.2 The opt_muxtree pass . 62

8.1.3 The opt_reduce pass . 62

8.1.4 The opt_rmdff pass . 63

8.1.5 The opt_clean pass . 63

8.1.6 The opt_share pass . 63

8.2 FSM Extraction and Encoding . 63

8.2.1 FSM Detection . 64

8.2.2 FSM Extraction . 64

8.2.3 FSM Optimization . 65

8.2.4 FSM Recoding . 66

8.3 Logic Optimization . 66

9 Technology Mapping 67

9.1 Cell Substitution . 67

9.2 Subcircuit Substitution . 67

9.3 Gate-Level Technology Mapping . 68

A Auxiliary Libraries 69

A.1 SHA1 . 69

A.2 BigInt . 69

A.3 SubCircuit . 69

A.4 ezSAT . 69

6

CONTENTS

B Auxiliary Programs 70

B.1 yosys-config . 70

B.2 yosys-filterlib . 70

B.3 yosys-abc . 70

C Command Reference Manual 71

C.1 abc – use ABC for technology mapping . 71

C.2 add – add objects to the design . 73

C.3 aigmap – map logic to and-inverter-graph circuit . 74

C.4 alumacc – extract ALU and MACC cells . 74

C.5 cd – a shortcut for ’select -module <name>’ . 74

C.6 check – check for obvious problems in the design . 74

C.7 chparam – re-evaluate modules with new parameters . 75

C.8 clean – remove unused cells and wires . 75

C.9 connect – create or remove connections . 75

C.10 connwrappers – replace undef values with defined constants 76

C.11 copy – copy modules in the design . 76

C.12 cover – print code coverage counters . 76

C.13 delete – delete objects in the design . 77

C.14 design – save, restore and reset current design . 77

C.15 dff2dffe – transform $dff cells to $dffe cells . 78

C.16 dffinit – set INIT param on FF cells . 79

C.17 dfflibmap – technology mapping of flip-flops . 79

C.18 dffsr2dff – convert DFFSR cells to simpler FF cell types . 79

C.19 dump – print parts of the design in ilang format . 80

C.20 echo – turning echoing back of commands on and off . 80

C.21 edgetypes – list all types of edges in selection . 80

C.22 equiv_add – add a $equiv cell . 80

C.23 equiv_induct – proving $equiv cells using temporal induction 81

C.24 equiv_make – prepare a circuit for equivalence checking . 81

C.25 equiv_mark – mark equivalence checking regions . 82

C.26 equiv_miter – extract miter from equiv circuit . 82

C.27 equiv_purge – purge equivalence checking module . 82

C.28 equiv_remove – remove $equiv cells . 82

C.29 equiv_simple – try proving simple $equiv instances . 83

C.30 equiv_status – print status of equivalent checking module 83

C.31 equiv_struct – structural equivalence checking . 83

7

CONTENTS

C.32 eval – evaluate the circuit given an input . 84

C.33 expose – convert internal signals to module ports . 84

C.34 extract – find subcircuits and replace them with cells . 85

C.35 flatten – flatten design . 86

C.36 freduce – perform functional reduction . 87

C.37 fsm – extract and optimize finite state machines . 87

C.38 fsm_detect – finding FSMs in design . 88

C.39 fsm_expand – expand FSM cells by merging logic into it . 88

C.40 fsm_export – exporting FSMs to KISS2 files . 88

C.41 fsm_extract – extracting FSMs in design . 89

C.42 fsm_info – print information on finite state machines . 89

C.43 fsm_map – mapping FSMs to basic logic . 89

C.44 fsm_opt – optimize finite state machines . 89

C.45 fsm_recode – recoding finite state machines . 90

C.46 help – display help messages . 90

C.47 hierarchy – check, expand and clean up design hierarchy . 90

C.48 hilomap – technology mapping of constant hi- and/or lo-drivers 91

C.49 history – show last interactive commands . 92

C.50 ice40_ffinit – iCE40: handle FF init values . 92

C.51 ice40_ffssr – iCE40: merge synchronous set/reset into FF cells 92

C.52 ice40_opt – iCE40: perform simple optimizations . 92

C.53 iopadmap – technology mapping of i/o pads (or buffers) . 93

C.54 json – write design in JSON format . 93

C.55 log – print text and log files . 93

C.56 ls – list modules or objects in modules . 94

C.57 lut2mux – convert $lut to $_MUX_ . 94

C.58 maccmap – mapping macc cells . 94

C.59 memory – translate memories to basic cells . 94

C.60 memory_bram – map memories to block rams . 95

C.61 memory_collect – creating multi-port memory cells . 96

C.62 memory_dff – merge input/output DFFs into memories . 97

C.63 memory_map – translate multiport memories to basic cells 97

C.64 memory_share – consolidate memory ports . 97

C.65 memory_unpack – unpack multi-port memory cells . 97

C.66 miter – automatically create a miter circuit . 98

C.67 muxcover – cover trees of MUX cells with wider MUXes . 98

8

CONTENTS

C.68 nlutmap – map to LUTs of different sizes . 99

C.69 opt – perform simple optimizations . 99

C.70 opt_clean – remove unused cells and wires . 100

C.71 opt_const – perform const folding . 100

C.72 opt_muxtree – eliminate dead trees in multiplexer trees . 100

C.73 opt_reduce – simplify large MUXes and AND/OR gates . 101

C.74 opt_rmdff – remove DFFs with constant inputs . 101

C.75 opt_share – consolidate identical cells . 101

C.76 plugin – load and list loaded plugins . 102

C.77 pmuxtree – transform $pmux cells to trees of $mux cells . 102

C.78 prep – generic synthesis script . 102

C.79 proc – translate processes to netlists . 103

C.80 proc_arst – detect asynchronous resets . 103

C.81 proc_clean – remove empty parts of processes . 104

C.82 proc_dff – extract flip-flops from processes . 104

C.83 proc_dlatch – extract latches from processes . 104

C.84 proc_init – convert initial block to init attributes . 104

C.85 proc_mux – convert decision trees to multiplexers . 104

C.86 proc_rmdead – eliminate dead trees in decision trees . 104

C.87 qwp – quadratic wirelength placer . 105

C.88 read_blif – read BLIF file . 105

C.89 read_ilang – read modules from ilang file . 105

C.90 read_liberty – read cells from liberty file . 105

C.91 read_verilog – read modules from Verilog file . 106

C.92 rename – rename object in the design . 108

C.93 sat – solve a SAT problem in the circuit . 108

C.94 scatter – add additional intermediate nets . 111

C.95 scc – detect strongly connected components (logic loops) . 112

C.96 script – execute commands from script file . 112

C.97 select – modify and view the list of selected objects . 113

C.98 setattr – set/unset attributes on objects . 116

C.99 setparam – set/unset parameters on objects . 117

C.100setundef – replace undef values with defined constants . 117

C.101share – perform sat-based resource sharing . 117

C.102shell – enter interactive command mode . 118

C.103show – generate schematics using graphviz . 118

9

CONTENTS

C.104simplemap – mapping simple coarse-grain cells . 120

C.105singleton – create singleton modules . 120

C.106splice – create explicit splicing cells . 121

C.107splitnets – split up multi-bit nets . 121

C.108stat – print some statistics . 122

C.109submod – moving part of a module to a new submodule . 122

C.110synth – generic synthesis script . 123

C.111synth_greenpak4 – synthesis for GreenPAK4 FPGAs . 124

C.112synth_ice40 – synthesis for iCE40 FPGAs . 125

C.113synth_xilinx – synthesis for Xilinx FPGAs . 127

C.114tcl – execute a TCL script file . 128

C.115techmap – generic technology mapper . 129

C.116tee – redirect command output to file . 131

C.117test_abcloop – automatically test handling of loops in abc command 131

C.118test_autotb – generate simple test benches . 132

C.119test_cell – automatically test the implementation of a cell type 132

C.120torder – print cells in topological order . 133

C.121trace – redirect command output to file . 133

C.122tribuf – infer tri-state buffers . 134

C.123verific – load Verilog and VHDL designs using Verific . 134

C.124verilog_defaults – set default options for read_verilog . 134

C.125vhdl2verilog – importing VHDL designs using vhdl2verilog 135

C.126wreduce – reduce the word size of operations if possible . 135

C.127write_blif – write design to BLIF file . 136

C.128write_btor – write design to BTOR file . 137

C.129write_edif – write design to EDIF netlist file . 137

C.130write_file – write a text to a file . 137

C.131write_ilang – write design to ilang file . 137

C.132write_intersynth – write design to InterSynth netlist file . 138

C.133write_json – write design to a JSON file . 138

C.134write_smt2 – write design to SMT-LIBv2 file . 142

C.135write_smv – write design to SMV file . 144

C.136write_spice – write design to SPICE netlist file . 144

C.137write_verilog – write design to Verilog file . 145

D Application Notes 146

10

Chapter 1

Introduction

This document presents the Free and Open Source (FOSS) Verilog HDL synthesis tool “Yosys”. Its design
and implementation as well as its performance on real-world designs is discussed in this document.

1.1 History of Yosys

A Hardware Description Language (HDL) is a computer language used to describe circuits. A HDL
synthesis tool is a computer program that takes a formal description of a circuit written in an HDL as
input and generates a netlist that implements the given circuit as output.

Currently the most widely used and supported HDLs for digital circuits are Verilog [Ver06][Ver02] and
VHDL1 [VHD09][VHD04]. Both HDLs are used for test and verification purposes as well as logic synthesis,
resulting in a set of synthesizable and a set of non-synthesizable language features. In this document we
only look at the synthesizable subset of the language features.

In recent work on heterogeneous coarse-grain reconfigurable logic [WGS+12] the need for a custom application-
specific HDL synthesis tool emerged. It was soon realised that a synthesis tool that understood Verilog
or VHDL would be preferred over a synthesis tool for a custom HDL. Given an existing Verilog or VHDL
front end, the work for writing the necessary additional features and integrating them in an existing tool
can be estimated to be about the same as writing a new tool with support for a minimalistic custom HDL.

The proposed custom HDL synthesis tool should be licensed under a Free and Open Source Software
(FOSS) licence. So an existing FOSS Verilog or VHDL synthesis tool would have been needed as basis
to build upon. The main advantages of choosing Verilog or VHDL is the ability to synthesize existing
HDL code and to mitigate the requirement for circuit-designers to learn a new language. In order to
take full advantage of any existing FOSS Verilog or VHDL tool, such a tool would have to provide a
feature-complete implementation of the synthesizable HDL subset.

Basic RTL synthesis is a well understood field [HS96]. Lexing, parsing and processing of computer lan-
guages [ASU86] is a thoroughly researched field. All the information required to write such tools has
been openly available for a long time, and it is therefore likely that a FOSS HDL synthesis tool with a
feature-complete Verilog or VHDL front end must exist which can be used as a basis for a custom RTL
synthesis tool.

Due to the author’s preference for Verilog over VHDL it was decided early on to go for Verilog instead of
VHDL2. So the existing FOSS Verilog synthesis tools were evaluated (see App. ??). The results of this
evaluation are utterly devastating. Therefore a completely new Verilog synthesis tool was implemented
and is recommended as basis for custom synthesis tools. This is the tool that is discussed in this document.

1VHDL is an acronym for “VHSIC hardware description language” and VHSIC is an acronym for “Very-High-Speed
Integrated Circuits”.

2A quick investigation into FOSS VHDL tools yielded similar grim results for FOSS VHDL synthesis tools.

11

CHAPTER 1. INTRODUCTION

1.2 Structure of this Document

The structure of this document is as follows:

Chapter 1 is this introduction.

Chapter 2 covers a short introduction to the world of HDL synthesis. Basic principles and the terminology
are outlined in this chapter.

Chapter 3 gives the quickest possible outline to how the problem of implementing a HDL synthesis tool is
approached in the case of Yosys.

Chapter 4 contains a more detailed overview of the implementation of Yosys. This chapter covers the data
structures used in Yosys to represent a design in detail and is therefore recommended reading for everyone
who is interested in understanding the Yosys internals.

Chapter 5 covers the internal cell library used by Yosys. This is especially important knowledge for anyone
who wants to understand the intermediate netlists used internally by Yosys.

Chapter 6 gives a tour to the internal APIs of Yosys. This is recommended reading for everyone who
actually wants to read or write Yosys source code. The chapter concludes with an example loadable module
for Yosys.

Chapters 7, 8, and 9 cover three important pieces of the synthesis pipeline: The Verilog frontend, the
optimization passes and the technology mapping to the target architecture, respectively.

Chapter ?? covers the evaluation of the performance (correctness and quality) of Yosys on real-world input
data. The chapter concludes the main part of this document with conclusions and outlook to future work.

Various appendices, including a command reference manual (App. C) and an evaluation of pre-existing
FOSS Verilog synthesis tools (App. ??) complete this document.

12

Chapter 2

Basic Principles

This chapter contains a short introduction to the basic principles of digital circuit synthesis.

2.1 Levels of Abstraction

Digital circuits can be represented at different levels of abstraction. During the design process a circuit is
usually first specified using a higher level abstraction. Implementation can then be understood as finding a
functionally equivalent representation at a lower abstraction level. When this is done automatically using
software, the term synthesis is used.
So synthesis is the automatic conversion of a high-level representation of a circuit to a functionally equiv-
alent low-level representation of a circuit. Figure 2.1 lists the different levels of abstraction and how they
relate to different kinds of synthesis.
Regardless of the way a lower level representation of a circuit is obtained (synthesis or manual design),
the lower level representation is usually verified by comparing simulation results of the lower level and
the higher level representation 1. Therefore even if no synthesis is used, there must still be a simulatable
representation of the circuit in all levels to allow for verification of the design.

1In recent years formal equivalence checking also became an important verification method for validating RTL and lower
abstraction representation of the design.

System Level

High Level

Behavioral Level

Register-Transfer Level (RTL)

Logical Gate Level

Physical Gate Level

Switch Level

System Design

High Level Synthesis (HLS)

Behavioral Synthesis

RTL Synthesis

Logic Synthesis

Cell Library

Yosys

Figure 2.1: Different levels of abstraction and synthesis.

13

CHAPTER 2. BASIC PRINCIPLES

Note: The exact meaning of terminology such as “High-Level” is of course not fixed over time. For example
the HDL “ABEL” was first introduced in 1985 as “A High-Level Design Language for Programmable Logic
Devices” [LHBB85], but would not be considered a “High-Level Language” today.

2.1.1 System Level

The System Level abstraction of a system only looks at its biggest building blocks like CPUs and computing
cores. At this level the circuit is usually described using traditional programming languages like C/C++ or
Matlab. Sometimes special software libraries are used that are aimed at simulation circuits on the system
level, such as SystemC.

Usually no synthesis tools are used to automatically transform a system level representation of a circuit to
a lower-level representation. But system level design tools exist that can be used to connect system level
building blocks.

The IEEE 1685-2009 standard defines the IP-XACT file format that can be used to represent designs on
the system level and building blocks that can be used in such system level designs. [IP-10]

2.1.2 High Level

The high-level abstraction of a system (sometimes referred to as algorithmic level) is also often represented
using traditional programming languages, but with a reduced feature set. For example when representing
a design at the high level abstraction in C, pointers can only be used to mimic concepts that can be found
in hardware, such as memory interfaces. Full featured dynamic memory management is not allowed as it
has no corresponding concept in digital circuits.

Tools exist to synthesize high level code (usually in the form of C/C++/SystemC code with additional
metadata) to behavioural HDL code (usually in the form of Verilog or VHDL code). Aside from the many
commercial tools for high level synthesis there are also a number of FOSS tools for high level synthesis
[16] [19].

2.1.3 Behavioural Level

At the behavioural abstraction level a language aimed at hardware description such as Verilog or VHDL
is used to describe the circuit, but so-called behavioural modelling is used in at least part of the circuit
description. In behavioural modelling there must be a language feature that allows for imperative pro-
gramming to be used to describe data paths and registers. This is the always-block in Verilog and the
process-block in VHDL.

In behavioural modelling, code fragments are provided together with a sensitivity list; a list of signals and
conditions. In simulation, the code fragment is executed whenever a signal in the sensitivity list changes
its value or a condition in the sensitivity list is triggered. A synthesis tool must be able to transfer this
representation into an appropriate datapath followed by the appropriate types of register.

For example consider the following Verilog code fragment:

1 always @(posedge clk)
2 y <= a + b;

In simulation the statement y <= a + b is executed whenever a positive edge on the signal clk is detected.
The synthesis result however will contain an adder that calculates the sum a + b all the time, followed by
a d-type flip-flop with the adder output on its D-input and the signal y on its Q-output.

14

CHAPTER 2. BASIC PRINCIPLES

Usually the imperative code fragments used in behavioural modelling can contain statements for conditional
execution (if- and case-statements in Verilog) as well as loops, as long as those loops can be completely
unrolled.

Interestingly there seems to be no other FOSS Tool that is capable of performing Verilog or VHDL
behavioural syntheses besides Yosys (see App. ??).

2.1.4 Register-Transfer Level (RTL)

On the Register-Transfer Level the design is represented by combinatorial data paths and registers (usually
d-type flip flops). The following Verilog code fragment is equivalent to the previous Verilog example, but
is in RTL representation:

1 assign tmp = a + b; // combinatorial data path
2
3 always @(posedge clk) // register
4 y <= tmp;

A design in RTL representation is usually stored using HDLs like Verilog and VHDL. But only a very
limited subset of features is used, namely minimalistic always-blocks (Verilog) or process-blocks (VHDL)
that model the register type used and unconditional assignments for the datapath logic. The use of
HDLs on this level simplifies simulation as no additional tools are required to simulate a design in RTL
representation.

Many optimizations and analyses can be performed best at the RTL level. Examples include FSM detection
and optimization, identification of memories or other larger building blocks and identification of shareable
resources.

Note that RTL is the first abstraction level in which the circuit is represented as a graph of circuit elements
(registers and combinatorial cells) and signals. Such a graph, when encoded as list of cells and connections,
is called a netlist.

RTL synthesis is easy as each circuit node element in the netlist can simply be replaced with an equivalent
gate-level circuit. However, usually the term RTL synthesis does not only refer to synthesizing an RTL
netlist to a gate level netlist but also to performing a number of highly sophisticated optimizations within
the RTL representation, such as the examples listed above.

A number of FOSS tools exist that can perform isolated tasks within the domain of RTL synthesis steps.
But there seems to be no FOSS tool that covers a wide range of RTL synthesis operations.

2.1.5 Logical Gate Level

At the logical gate level the design is represented by a netlist that uses only cells from a small number
of single-bit cells, such as basic logic gates (AND, OR, NOT, XOR, etc.) and registers (usually D-Type
Flip-flops).

A number of netlist formats exists that can be used on this level, e.g. the Electronic Design Interchange
Format (EDIF), but for ease of simulation often a HDL netlist is used. The latter is a HDL file (Verilog
or VHDL) that only uses the most basic language constructs for instantiation and connecting of cells.

There are two challenges in logic synthesis: First finding opportunities for optimizations within the gate
level netlist and second the optimal (or at least good) mapping of the logic gate netlist to an equivalent
netlist of physically available gate types.

The simplest approach to logic synthesis is two-level logic synthesis, where a logic function is converted
into a sum-of-products representation, e.g. using a Karnaugh map. This is a simple approach, but has

15

CHAPTER 2. BASIC PRINCIPLES

exponential worst-case effort and cannot make efficient use of physical gates other than AND/NAND-,
OR/NOR- and NOT-Gates.

Therefore modern logic synthesis tools utilize much more complicated multi-level logic synthesis algorithms
[BHSV90]. Most of these algorithms convert the logic function to a Binary-Decision-Diagram (BDD) or
And-Inverter-Graph (AIG) and work from that representation. The former has the advantage that it has a
unique normalized form. The latter has much better worst case performance and is therefore better suited
for the synthesis of large logic functions.

Good FOSS tools exists for multi-level logic synthesis [27] [26] [28].

Yosys contains basic logic synthesis functionality but can also use ABC [27] for the logic synthesis step.
Using ABC is recommended.

2.1.6 Physical Gate Level

On the physical gate level only gates are used that are physically available on the target architecture. In
some cases this may only be NAND, NOR and NOT gates as well as D-Type registers. In other cases
this might include cells that are more complex than the cells used at the logical gate level (e.g. complete
half-adders). In the case of an FPGA-based design the physical gate level representation is a netlist of
LUTs with optional output registers, as these are the basic building blocks of FPGA logic cells.

For the synthesis tool chain this abstraction is usually the lowest level. In case of an ASIC-based design
the cell library might contain further information on how the physical cells map to individual switches
(transistors).

2.1.7 Switch Level

A switch level representation of a circuit is a netlist utilizing single transistors as cells. Switch level
modelling is possible in Verilog and VHDL, but is seldom used in modern designs, as in modern digital
ASIC or FPGA flows the physical gates are considered the atomic build blocks of the logic circuit.

2.1.8 Yosys

Yosys is a Verilog HDL synthesis tool. This means that it takes a behavioural design description as input
and generates an RTL, logical gate or physical gate level description of the design as output. Yosys’ main
strengths are behavioural and RTL synthesis. A wide range of commands (synthesis passes) exist within
Yosys that can be used to perform a wide range of synthesis tasks within the domain of behavioural, rtl
and logic synthesis. Yosys is designed to be extensible and therefore is a good basis for implementing
custom synthesis tools for specialised tasks.

2.2 Features of Synthesizable Verilog

The subset of Verilog [Ver06] that is synthesizable is specified in a separate IEEE standards document,
the IEEE standard 1364.1-2002 [Ver02]. This standard also describes how certain language constructs are
to be interpreted in the scope of synthesis.

This section provides a quick overview of the most important features of synthesizable Verilog, structured
in order of increasing complexity.

16

CHAPTER 2. BASIC PRINCIPLES

2.2.1 Structural Verilog

Structural Verilog (also known as Verilog Netlists) is a Netlist in Verilog syntax. Only the following
language constructs are used in this case:

• Constant values

• Wire and port declarations

• Static assignments of signals to other signals

• Cell instantiations

Many tools (especially at the back end of the synthesis chain) only support structural Verilog as input.
ABC is an example of such a tool. Unfortunately there is no standard specifying what Structural Verilog
actually is, leading to some confusion about what syntax constructs are supported in structural Verilog
when it comes to features such as attributes or multi-bit signals.

2.2.2 Expressions in Verilog

In all situations where Verilog accepts a constant value or signal name, expressions using arithmetic
operations such as +, - and *, boolean operations such as & (AND), | (OR) and ^ (XOR) and many others
(comparison operations, unary operator, etc.) can also be used.

During synthesis these operators are replaced by cells that implement the respective function.

Many FOSS tools that claim to be able to process Verilog in fact only support basic structural Verilog and
simple expressions. Yosys can be used to convert full featured synthesizable Verilog to this simpler subset,
thus enabling such applications to be used with a richer set of Verilog features.

2.2.3 Behavioural Modelling

Code that utilizes the Verilog always statement is using Behavioural Modelling. In behavioural modelling,
a circuit is described by means of imperative program code that is executed on certain events, namely any
change, a rising edge, or a falling edge of a signal. This is a very flexible construct during simulation but
is only synthesizable when one of the following is modelled:

• Asynchronous or latched logic
In this case the sensitivity list must contain all expressions that are used within the always block.
The syntax @* can be used for these cases. Examples of this kind include:

1 // asynchronous
2 always @* begin
3 if (add_mode)
4 y <= a + b;
5 else
6 y <= a - b;
7 end
8
9 // latched
10 always @* begin
11 if (!hold)
12 y <= a + b;
13 end

17

CHAPTER 2. BASIC PRINCIPLES

Note that latched logic is often considered bad style and in many cases just the result of sloppy HDL
design. Therefore many synthesis tools generate warnings whenever latched logic is generated.

• Synchronous logic (with optional synchronous reset)
This is logic with d-type flip-flops on the output. In this case the sensitivity list must only contain
the respective clock edge. Example:

1 // counter with synchronous reset
2 always @(posedge clk) begin
3 if (reset)
4 y <= 0;
5 else
6 y <= y + 1;
7 end

• Synchronous logic with asynchronous reset
This is logic with d-type flip-flops with asynchronous resets on the output. In this case the sensitivity
list must only contain the respective clock and reset edges. The values assigned in the reset branch
must be constant. Example:

1 // counter with asynchronous reset
2 always @(posedge clk, posedge reset) begin
3 if (reset)
4 y <= 0;
5 else
6 y <= y + 1;
7 end

Many synthesis tools support a wider subset of flip-flops that can be modelled using always-statements
(including Yosys). But only the ones listed above are covered by the Verilog synthesis standard and when
writing new designs one should limit herself or himself to these cases.

In behavioural modelling, blocking assignments (=) and non-blocking assignments (<=) can be used. The
concept of blocking vs. non-blocking assignment is one of the most misunderstood constructs in Verilog
[CI00].

The blocking assignment behaves exactly like an assignment in any imperative programming language,
while with the non-blocking assignment the right hand side of the assignment is evaluated immediately
but the actual update of the left hand side register is delayed until the end of the time-step. For example
the Verilog code a <= b; b <= a; exchanges the values of the two registers. See Sec. ?? for a more detailed
description of this behaviour.

2.2.4 Functions and Tasks

Verilog supports Functions and Tasks to bundle statements that are used in multiple places (similar to
Procedures in imperative programming). Both constructs can be implemented easily by substituting the
function/task-call with the body of the function or task.

2.2.5 Conditionals, Loops and Generate-Statements

Verilog supports if-else-statements and for-loops inside always-statements.

It also supports both features in generate-statements on the module level. This can be used to selectively
enable or disable parts of the module based on the module parameters (if-else) or to generate a set of
similar subcircuits (for).

18

CHAPTER 2. BASIC PRINCIPLES

While the if-else-statement inside an always-block is part of behavioural modelling, the three other cases
are (at least for a synthesis tool) part of a built-in macro processor. Therefore it must be possible for
the synthesis tool to completely unroll all loops and evaluate the condition in all if-else-statement in
generate-statements using const-folding.

Examples for this can be found in Fig. ?? and Fig. ?? in App. ??.

2.2.6 Arrays and Memories

Verilog supports arrays. This is in general a synthesizable language feature. In most cases arrays can be
synthesized by generating addressable memories. However, when complex or asynchronous access patterns
are used, it is not possible to model an array as memory. In these cases the array must be modelled using
individual signals for each word and all accesses to the array must be implemented using large multiplexers.

In some cases it would be possible to model an array using memories, but it is not desired. Consider the
following delay circuit:

1 module (clk, in_data, out_data);
2
3 parameter BITS = 8;
4 parameter STAGES = 4;
5
6 input clk;
7 input [BITS-1:0] in_data;
8 output [BITS-1:0] out_data;
9 reg [BITS-1:0] ffs [STAGES-1:0];

10
11 integer i;
12 always @(posedge clk) begin
13 ffs[0] <= in_data;
14 for (i = 1; i < STAGES; i = i+1)
15 ffs[i] <= ffs[i-1];
16 end
17
18 assign out_data = ffs[STAGES-1];
19
20 endmodule

This could be implemented using an addressable memory with STAGES input and output ports. A better
implementation would be to use a simple chain of flip-flops (a so-called shift register). This better imple-
mentation can either be obtained by first creating a memory-based implementation and then optimizing
it based on the static address signals for all ports or directly identifying such situations in the language
front end and converting all memory accesses to direct accesses to the correct signals.

2.3 Challenges in Digital Circuit Synthesis

This section summarizes the most important challenges in digital circuit synthesis. Tools can be charac-
terized by how well they address these topics.

2.3.1 Standards Compliance

The most important challenge is compliance with the HDL standards in question (in case of Verilog the
IEEE Standards 1364.1-2002 and 1364-2005). This can be broken down in two items:

19

CHAPTER 2. BASIC PRINCIPLES

• Completeness of implementation of the standard

• Correctness of implementation of the standard

Completeness is mostly important to guarantee compatibility with existing HDL code. Once a design has
been verified and tested, HDL designers are very reluctant regarding changes to the design, even if it is
only about a few minor changes to work around a missing feature in a new synthesis tool.

Correctness is crucial. In some areas this is obvious (such as correct synthesis of basic behavioural models).
But it is also crucial for the areas that concern minor details of the standard, such as the exact rules for
handling signed expressions, even when the HDL code does not target different synthesis tools. This is
because (unlike software source code that is only processed by compilers), in most design flows HDL code
is not only processed by the synthesis tool but also by one or more simulators and sometimes even a formal
verification tool. It is key for this verification process that all these tools use the same interpretation for
the HDL code.

2.3.2 Optimizations

Generally it is hard to give a one-dimensional description of how well a synthesis tool optimizes the design.
First of all because not all optimizations are applicable to all designs and all synthesis tasks. Some
optimizations work (best) on a coarse-grained level (with complex cells such as adders or multipliers) and
others work (best) on a fine-grained level (single bit gates). Some optimizations target area and others
target speed. Some work well on large designs while others don’t scale well and can only be applied to
small designs.

A good tool is capable of applying a wide range of optimizations at different levels of abstraction and gives
the designer control over which optimizations are performed (or skipped) and what the optimization goals
are.

2.3.3 Technology Mapping

Technology mapping is the process of converting the design into a netlist of cells that are available in the
target architecture. In an ASIC flow this might be the process-specific cell library provided by the fab. In
an FPGA flow this might be LUT cells as well as special function units such as dedicated multipliers. In
a coarse-grain flow this might even be more complex special function units.

An open and vendor independent tool is especially of interest if it supports a wide range of different types
of target architectures.

2.4 Script-Based Synthesis Flows

A digital design is usually started by implementing a high-level or system-level simulation of the desired
function. This description is then manually transformed (or re-implemented) into a synthesizable lower-
level description (usually at the behavioural level) and the equivalence of the two representations is verified
by simulating both and comparing the simulation results.

Then the synthesizable description is transformed to lower-level representations using a series of tools and
the results are again verified using simulation. This process is illustrated in Fig. 2.2.

In this example the System Level Model and the Behavioural Model are both manually written design
files. After the equivalence of system level model and behavioural model has been verified, the lower level
representations of the design can be generated using synthesis tools. Finally the RTL Model and the
Gate-Level Model are verified and the design process is finished.

20

CHAPTER 2. BASIC PRINCIPLES

System Level
Model

Behavioral
Model

RTL
Model

Gate-Level
Model

synthesis synthesis

verify verify verify

Figure 2.2: Typical design flow. Green boxes represent manually created models. Orange boxes represent
models generated by synthesis tools.

However, in any real-world design effort there will be multiple iterations for this design process. The reason
for this can be the late change of a design requirement or the fact that the analysis of a low-abstraction
model (e.g. gate-level timing analysis) revealed that a design change is required in order to meet the design
requirements (e.g. maximum possible clock speed).

Whenever the behavioural model or the system level model is changed their equivalence must be re-verified
by re-running the simulations and comparing the results. Whenever the behavioural model is changed the
synthesis must be re-run and the synthesis results must be re-verified.

In order to guarantee reproducibility it is important to be able to re-run all automatic steps in a design
project with a fixed set of settings easily. Because of this, usually all programs used in a synthesis flow can
be controlled using scripts. This means that all functions are available via text commands. When such a
tool provides a GUI, this is complementary to, and not instead of, a command line interface.

Usually a synthesis flow in an UNIX/Linux environment would be controlled by a shell script that calls all
required tools (synthesis and simulation/verification in this example) in the correct order. Each of these
tools would be called with a script file containing commands for the respective tool. All settings required
for the tool would be provided by these script files so that no manual interaction would be necessary. These
script files are considered design sources and should be kept under version control just like the source code
of the system level and the behavioural model.

2.5 Methods from Compiler Design

Some parts of synthesis tools involve problem domains that are traditionally known from compiler design.
This section addresses some of these domains.

2.5.1 Lexing and Parsing

The best known concepts from compiler design are probably lexing and parsing. These are two methods
that together can be used to process complex computer languages easily. [ASU86]

A lexer consumes single characters from the input and generates a stream of lexical tokens that consist of
a type and a value. For example the Verilog input “assign foo = bar + 42;” might be translated by the
lexer to the list of lexical tokens given in Tab. 2.1.

The lexer is usually generated by a lexer generator (e.g. flex [17]) from a description file that is using
regular expressions to specify the text pattern that should match the individual tokens.

The lexer is also responsible for skipping ignored characters (such as whitespace outside string constants
and comments in the case of Verilog) and converting the original text snippet to a token value.

Note that individual keywords use different token types (instead of a keyword type with different token
values). This is because the parser usually can only use the Token-Type to make a decision on the
grammatical role of a token.

21

CHAPTER 2. BASIC PRINCIPLES

Token-Type Token-Value
TOK_ASSIGN -
TOK_IDENTIFIER “foo”
TOK_EQ -
TOK_IDENTIFIER “bar”
TOK_PLUS -
TOK_NUMBER 42
TOK_SEMICOLON -

Table 2.1: Exemplary token list for the statement “assign foo = bar + 42;”.

The parser then transforms the list of tokens into a parse tree that closely resembles the productions from
the computer languages grammar. As the lexer, the parser is also typically generated by a code generator
(e.g. bison [18]) from a grammar description in Backus-Naur Form (BNF).

Let’s consider the following BNF (in Bison syntax):

1 assign_stmt: TOK_ASSIGN TOK_IDENTIFIER TOK_EQ expr TOK_SEMICOLON;
2 expr: TOK_IDENTIFIER | TOK_NUMBER | expr TOK_PLUS expr;

The parser converts the token list to the parse tree in Fig. 2.3. Note that the parse tree never actually exists
as a whole as data structure in memory. Instead the parser calls user-specified code snippets (so-called
reduce-functions) for all inner nodes of the parse tree in depth-first order.

In some very simple applications (e.g. code generation for stack machines) it is possible to perform the
task at hand directly in the reduce functions. But usually the reduce functions are only used to build an
in-memory data structure with the relevant information from the parse tree. This data structure is called
an abstract syntax tree (AST).

The exact format for the abstract syntax tree is application specific (while the format of the parse tree
and token list are mostly dictated by the grammar of the language at hand). Figure 2.4 illustrates what
an AST for the parse tree in Fig. 2.3 could look like.

Usually the AST is then converted into yet another representation that is more suitable for further process-
ing. In compilers this is often an assembler-like three-address-code intermediate representation. [ASU86]

assign_stmt

TOK_ASSIGN

TOK_IDENTIFIER

TOK_EQ

expr

TOK_SEMICOLON

expr TOK_PLUS expr

TOK_IDENTIFIER TOK_NUMBER

Figure 2.3: Example parse tree for the Verilog expression “assign foo = bar + 42;”.

22

CHAPTER 2. BASIC PRINCIPLES

ASSIGN

ID: foo PLUS

ID: bar CONST: 42

Figure 2.4: Example abstract syntax tree for the Verilog expression “assign foo = bar + 42;”.

2.5.2 Multi-Pass Compilation

Complex problems are often best solved when split up into smaller problems. This is certainly true for
compilers as well as for synthesis tools. The components responsible for solving the smaller problems can
be connected in two different ways: through Single-Pass Pipelining and by using Multiple Passes.

Traditionally a parser and lexer are connected using the pipelined approach: The lexer provides a function
that is called by the parser. This function reads data from the input until a complete lexical token has
been read. Then this token is returned to the parser. So the lexer does not first generate a complete list
of lexical tokens and then pass it to the parser. Instead they run concurrently and the parser can consume
tokens as the lexer produces them.

The single-pass pipelining approach has the advantage of lower memory footprint (at no time must the
complete design be kept in memory) but has the disadvantage of tighter coupling between the interacting
components.

Therefore single-pass pipelining should only be used when the lower memory footprint is required or the
components are also conceptually tightly coupled. The latter certainly is the case for a parser and its
lexer. But when data is passed between two conceptually loosely coupled components it is often beneficial
to use a multi-pass approach.

In the multi-pass approach the first component processes all the data and the result is stored in a in-
memory data structure. Then the second component is called with this data. This reduces complexity,
as only one component is running at a time. It also improves flexibility as components can be exchanged
easier.

Most modern compilers are multi-pass compilers.

23

Chapter 3

Approach

Yosys is a tool for synthesising (behavioural) Verilog HDL code to target architecture netlists. Yosys aims
at a wide range of application domains and thus must be flexible and easy to adapt to new tasks. This
chapter covers the general approach followed in the effort to implement this tool.

3.1 Data- and Control-Flow

The data- and control-flow of a typical synthesis tool is very similar to the data- and control-flow of
a typical compiler: different subsystems are called in a predetermined order, each consuming the data
generated by the last subsystem and generating the data for the next subsystem (see Fig. 3.1).

The first subsystem to be called is usually called a frontend. It does not process the data generated by
another subsystem but instead reads the user input—in the case of a HDL synthesis tool, the behavioural
HDL code.

The subsystems that consume data from previous subsystems and produce data for the next subsystems
(usually in the same or a similar format) are called passes.

The last subsystem that is executed transforms the data generated by the last pass into a suitable output
format and writes it to a disk file. This subsystem is usually called the backend.

In Yosys all frontends, passes and backends are directly available as commands in the synthesis script.
Thus the user can easily create a custom synthesis flow just by calling passes in the right order in a
synthesis script.

Fr
on

te
nd

Pa
ss

Pa
ss

Pa
ss

B
ac
ke
nd

HDL Internal Format(s) Netlist

High-Level Low-Level

Figure 3.1: General data- and control-flow of a synthesis tool

24

CHAPTER 3. APPROACH

3.2 Internal Formats in Yosys

Yosys uses two different internal formats. The first is used to store an abstract syntax tree (AST) of a
Verilog input file. This format is simply called AST and is generated by the Verilog Frontend. This data
structure is consumed by a subsystem called AST Frontend1. This AST Frontend then generates a design in
Yosys’ main internal format, the Register-Transfer-Level-Intermediate-Language (RTLIL) representation.
It does that by first performing a number of simplifications within the AST representation and then
generating RTLIL from the simplified AST data structure.

The RTLIL representation is used by all passes as input and outputs. This has the following advantages
over using different representational formats between different passes:

• The passes can be rearranged in a different order and passes can be removed or inserted.

• Passes can simply pass-thru the parts of the design they don’t change without the need to convert
between formats. In fact Yosys passes output the same data structure they received as input and
performs all changes in place.

• All passes use the same interface, thus reducing the effort required to understand a pass when reading
the Yosys source code, e.g. when adding additional features.

The RTLIL representation is basically a netlist representation with the following additional features:

• An internal cell library with fixed-function cells to represent RTL datapath and register cells as well
as logical gate-level cells (single-bit gates and registers).

• Support for multi-bit values that can use individual bits from wires as well as constant bits to
represent coarse-grain netlists.

• Support for basic behavioural constructs (if-then-else structures and multi-case switches with a sen-
sitivity list for updating the outputs).

• Support for multi-port memories.

The use of RTLIL also has the disadvantage of having a very powerful format between all passes, even
when doing gate-level synthesis where the more advanced features are not needed. In order to reduce
complexity for passes that operate on a low-level representation, these passes check the features used in
the input RTLIL and fail to run when unsupported high-level constructs are used. In such cases a pass that
transforms the higher-level constructs to lower-level constructs must be called from the synthesis script
first.

3.3 Typical Use Case

The following example script may be used in a synthesis flow to convert the behavioural Verilog code from
the input file design.v to a gate-level netlist synth.v using the cell library described by the Liberty file
[25] cells.lib:

1 # read input file to internal representation
2 read_verilog design.v
3
4 # convert high-level behavioral parts ("processes") to d-type flip-flops and muxes
5 proc

1In Yosys the term pass is only used to refer to commands that operate on the RTLIL data structure.

25

CHAPTER 3. APPROACH

6
7 # perform some simple optimizations
8 opt
9

10 # convert high-level memory constructs to d-type flip-flops and multiplexers
11 memory
12
13 # perform some simple optimizations
14 opt
15
16 # convert design to (logical) gate-level netlists
17 techmap
18
19 # perform some simple optimizations
20 opt
21
22 # map internal register types to the ones from the cell library
23 dfflibmap -liberty cells.lib
24
25 # use ABC to map remaining logic to cells from the cell library
26 abc -liberty cells.lib
27
28 # cleanup
29 opt
30
31 # write results to output file
32 write_verilog synth.v

A detailed description of the commands available in Yosys can be found in App. C.

26

Chapter 4

Implementation Overview

Yosys is an extensible open source hardware synthesis tool. It is aimed at designers who are looking for an
easily accessible, universal, and vendor-independent synthesis tool, as well as scientists who do research in
electronic design automation (EDA) and are looking for an open synthesis framework that can be used to
test algorithms on complex real-world designs.

Yosys can synthesize a large subset of Verilog 2005 and has been tested with a wide range of real-world
designs, including the OpenRISC 1200 CPU [23], the openMSP430 CPU [22], the OpenCores I2C master
[20] and the k68 CPU [21].

As of this writing a Yosys VHDL frontend is in development.

Yosys is written in C++ (using some features from the new C++11 standard). This chapter describes
some of the fundamental Yosys data structures. For the sake of simplicity the C++ type names used in
the Yosys implementation are used in this chapter, even though the chapter only explains the conceptual
idea behind it and can be used as reference to implement a similar system in any language.

4.1 Simplified Data Flow

Figure 4.1 shows the simplified data flow within Yosys. Rectangles in the figure represent program modules
and ellipses internal data structures that are used to exchange design data between the program modules.

Design data is read in using one of the frontend modules. The high-level HDL frontends for Verilog and
VHDL code generate an abstract syntax tree (AST) that is then passed to the AST frontend. Note that
both HDL frontends use the same AST representation that is powerful enough to cover the Verilog HDL
and VHDL language.

The AST Frontend then compiles the AST to Yosys’s main internal data format, the RTL Intermediate
Language (RTLIL). A more detailed description of this format is given in the next section.

There is also a text representation of the RTLIL data structure that can be parsed using the ILANG
Frontend.

The design data may then be transformed using a series of passes that all operate on the RTLIL represen-
tation of the design.

Finally the design in RTLIL representation is converted back to text by one of the backends, namely the
Verilog Backend for generating Verilog netlists and the ILANG Backend for writing the RTLIL data in
the same format that is understood by the ILANG Frontend.

With the exception of the AST Frontend, which is called by the high-level HDL frontends and can’t be
called directly by the user, all program modules are called by the user (usually using a synthesis script
that contains text commands for Yosys).

27

CHAPTER 4. IMPLEMENTATION OVERVIEW

Verilog Frontend VHDL Frontend ILANG Frontend

AST

AST Frontend

RTLIL Passes

Verilog Backend ILANG Backend Other Backends

Figure 4.1: Yosys simplified data flow (ellipses: data structures, rectangles: program modules)

By combining passes in different ways and/or adding additional passes to Yosys it is possible to adapt
Yosys to a wide range of applications. For this to be possible it is key that (1) all passes operate on the
same data structure (RTLIL) and (2) that this data structure is powerful enough to represent the design
in different stages of the synthesis.

4.2 The RTL Intermediate Language

All frontends, passes and backends in Yosys operate on a design in RTLIL1 representation. The only
exception are the high-level frontends that use the AST representation as an intermediate step before
generating RTLIL data.

In order to avoid reinventing names for the RTLIL classes, they are simply referred to by their full C++
name, i.e. including the RTLIL:: namespace prefix, in this document.

Figure 4.2 shows a simplified Entity-Relationship Diagram (ER Diagram) of RTLIL. In 1 : N relationships
the arrow points from the N side to the 1. For example one RTLIL::Design contains N (zero to many)
instances of RTLIL::Module. A two-pointed arrow indicates a 1 : 1 relationship.

The RTLIL::Design is the root object of the RTLIL data structure. There is always one “current design”
in memory which passes operate on, frontends add data to and backends convert to exportable formats.
But in some cases passes internally generate additional RTLIL::Design objects. For example when a pass
is reading an auxiliary Verilog file such as a cell library, it might create an additional RTLIL::Design object
and call the Verilog frontend with this other object to parse the cell library.

There is only one active RTLIL::Design object that is used by all frontends, passes and backends called
by the user, e.g. using a synthesis script. The RTLIL::Design then contains zero to many RTLIL::Module
objects. This corresponds to modules in Verilog or entities in VHDL. Each module in turn contains objects
from three different categories:

1The Language in RTL Intermediate Language refers to the fact, that RTLIL also has a text representation, usually
referred to as Intermediate Language (ILANG).

28

CHAPTER 4. IMPLEMENTATION OVERVIEW

RTLIL::Design RTLIL::Module
1 N

RTLIL::Process

RTLIL::Memory

RTLIL::Wire

RTLIL::Cell

RTLIL::CaseRule

RTLIL::SyncRule

RTLIL::SwitchRule

Figure 4.2: Simplified RTLIL Entity-Relationship Diagram

• RTLIL::Cell and RTLIL::Wire objects represent classical netlist data.

• RTLIL::Process objects represent the decision trees (if-then-else statements, etc.) and synchroniza-
tion declarations (clock signals and sensitivity) from Verilog always and VHDL process blocks.

• RTLIL::Memory objects represent addressable memories (arrays).

Usually the output of the synthesis procedure is a netlist, i.e. all RTLIL::Process and RTLIL::Memory
objects must be replaced by RTLIL::Cell and RTLIL::Wire objects by synthesis passes.

All features of the HDL that cannot be mapped directly to these RTLIL classes must be transformed to an
RTLIL-compatible representation by the HDL frontend. This includes Verilog-features such as generate-
blocks, loops and parameters.

The following sections contain a more detailed description of the different parts of RTLIL and rationale
behind some of the design decisions.

4.2.1 RTLIL Identifiers

All identifiers in RTLIL (such as module names, port names, signal names, cell types, etc.) follow the
following naming convention: they must either start with a backslash (\) or a dollar sign ($).

Identifiers starting with a backslash are public visible identifiers. Usually they originate from one of the
HDL input files. For example the signal name “\sig42” is most likely a signal that was declared using the
name “sig42” in an HDL input file. On the other hand the signal name “$sig42” is an auto-generated
signal name. The backends convert all identifiers that start with a dollar sign to identifiers that do not
collide with identifiers that start with a backslash.

This has three advantages:

• First, it is impossible that an auto-generated identifier collides with an identifier that was provided
by the user.

• Second, the information about which identifiers were originally provided by the user is always avail-
able which can help guide some optimizations. For example the “opt_rmunused” tries to preserve
signals with a user-provided name but doesn’t hesitate to delete signals that have auto-generated
names when they just duplicate other signals.

29

CHAPTER 4. IMPLEMENTATION OVERVIEW

• Third, the delicate job of finding suitable auto-generated public visible names is deferred to one
central location. Internally auto-generated names that may hold important information for Yosys
developers can be used without disturbing external tools. For example the Verilog backend assigns
names in the form _integer_.

In order to avoid programming errors, the RTLIL data structures check if all identifiers start with either
a backslash or a dollar sign and generate a runtime error if this rule is violated.

All RTLIL identifiers are case sensitive.

4.2.2 RTLIL::Design and RTLIL::Module

The RTLIL::Design object is basically just a container for RTLIL::Module objects. In addition to a list of
RTLIL::Module objects the RTLIL::Design also keeps a list of selected objects, i.e. the objects that passes
should operate on. In most cases the whole design is selected and therefore passes operate on the whole
design. But this mechanism can be useful for more complex synthesis jobs in which only parts of the design
should be affected by certain passes.

Besides the objects shown in the ER diagram in Fig. 4.2 an RTLIL::Module object contains the following
additional properties:

• The module name

• A list of attributes

• A list of connections between wires

• An optional frontend callback used to derive parametrized variations of the module

The attributes can be Verilog attributes imported by the Verilog frontend or attributes assigned by passes.
They can be used to store additional metadata about modules or just mark them to be used by certain
part of the synthesis script but not by others.

Verilog and VHDL both support parametric modules (known as “generic entities” in VHDL). The RTLIL
format does not support parametric modules itself. Instead each module contains a callback function into
the AST frontend to generate a parametrized variation of the RTLIL::Module as needed. This callback then
returns the auto-generated name of the parametrized variation of the module. (A hash over the parameters
and the module name is used to prohibit the same parametrized variation from being generated twice. For
modules with only a few parameters, a name directly containing all parameters is generated instead of a
hash string.)

4.2.3 RTLIL::Cell and RTLIL::Wire

A module contains zero to many RTLIL::Cell and RTLIL::Wire objects. Objects of these types are used
to model netlists. Usually the goal of all synthesis efforts is to convert all modules to a state where the
functionality of the module is implemented only by cells from a given cell library and wires to connect
these cells with each other. Note that module ports are just wires with a special property.

An RTLIL::Wire object has the following properties:

• The wire name

• A list of attributes

• A width (buses are just wires with a width > 1)

30

CHAPTER 4. IMPLEMENTATION OVERVIEW

• If the wire is a port: port number and direction (input/output/inout)

As with modules, the attributes can be Verilog attributes imported by the Verilog frontend or attributes
assigned by passes.

In Yosys, busses (signal vectors) are represented using a single wire object with a width > 1. So Yosys
does not convert signal vectors to individual signals. This makes some aspects of RTLIL more complex
but enables Yosys to be used for coarse grain synthesis where the cells of the target architecture operate
on entire signal vectors instead of single bit wires.

An RTLIL::Cell object has the following properties:

• The cell name and type

• A list of attributes

• A list of parameters (for parametric cells)

• Cell ports and the connections of ports to wires and constants

The connections of ports to wires are coded by assigning an RTLIL::SigSpec to each cell port. The
RTLIL::SigSpec data type is described in the next section.

4.2.4 RTLIL::SigSpec

A “signal” is everything that can be applied to a cell port. I.e.

• Any constant value of arbitrary bit-width
For example: 1337, 16’b0000010100111001, 1’b1, 1’bx

• All bits of a wire or a selection of bits from a wire
For example: mywire, mywire[24], mywire[15:8]

• Concatenations of the above
For example: {16’d1337, mywire[15:8]}

The RTLIL::SigSpec data type is used to represent signals. The RTLIL::Cell object contains one RTLIL::SigSpec
for each cell port.

In addition, connections between wires are represented using a pair of RTLIL::SigSpec objects. Such pairs
are needed in different locations. Therefore the type name RTLIL::SigSig was defined for such a pair.

4.2.5 RTLIL::Process

When a high-level HDL frontend processes behavioural code it splits it up into data path logic (e.g. the
expression a + b is replaced by the output of an adder that takes a and b as inputs) and an RTLIL::Process
that models the control logic of the behavioural code. Let’s consider a simple example:

1 module ff_with_en_and_async_reset(clock, reset, enable, d, q);
2 input clock, reset, enable, d;
3 output reg q;
4 always @(posedge clock, posedge reset)
5 if (reset)
6 q <= 0;
7 else if (enable)
8 q <= d;
9 endmodule

31

CHAPTER 4. IMPLEMENTATION OVERVIEW

In this example there is no data path and therefore the RTLIL::Module generated by the frontend only
contains a few RTLIL::Wire objects and an RTLIL::Process. The RTLIL::Process in ILANG syntax:

1 process $proc$ff_with_en_and_async_reset.v:4$1
2 assign $0\q[0:0] \q
3 switch \reset
4 case 1’1
5 assign $0\q[0:0] 1’0
6 case
7 switch \enable
8 case 1’1
9 assign $0\q[0:0] \d

10 case
11 end
12 end
13 sync posedge \clock
14 update \q $0\q[0:0]
15 sync posedge \reset
16 update \q $0\q[0:0]
17 end

This RTLIL::Process contains two RTLIL::SyncRule objects, two RTLIL::SwitchRule objects and five
RTLIL::CaseRule objects. The wire $0\q[0:0] is an automatically created wire that holds the next value
of \q. The lines 2 . . . 12 describe how $0\q[0:0] should be calculated. The lines 13 . . . 16 describe how the
value of $0\q[0:0] is used to update \q.

An RTLIL::Process is a container for zero or more RTLIL::SyncRule objects and exactly one RTLIL::CaseRule
object, which is called the root case.

An RTLIL::SyncRule object contains an (optional) synchronization condition (signal and edge-type) and
zero or more assignments (RTLIL::SigSig).

An RTLIL::CaseRule is a container for zero or more assignments (RTLIL::SigSig) and zero or more
RTLIL::SwitchRule objects. An RTLIL::SwitchRule objects is a container for zero or more RTLIL::CaseRule
objects.

In the above example the lines 2 . . . 12 are the root case. Here $0\q[0:0] is first assigned the old value \q
as default value (line 2). The root case also contains an RTLIL::SwitchRule object (lines 3 . . . 12). Such an
object is very similar to the C switch statement as it uses a control signal (\reset in this case) to determine
which of its cases should be active. The RTLIL::SwitchRule object then contains one RTLIL::CaseRule
object per case. In this example there is a case2 for \reset == 1 that causes $0\q[0:0] to be set (lines 4
and 5) and a default case that in turn contains a switch that sets $0\q[0:0] to the value of \d if \enable
is active (lines 6 . . . 11).

The lines 13 . . . 16 then cause \q to be updated whenever there is a positive clock edge on \clock or \reset.

In order to generate such a representation, the language frontend must be able to handle blocking and
nonblocking assignments correctly. However, the language frontend does not need to identify the correct
type of storage element for the output signal or generate multiplexers for the decision tree. This is done
by passes that work on the RTLIL representation. Therefore it is relatively easy to substitute these
steps with other algorithms that target different target architectures or perform optimizations or other
transformations on the decision trees before further processing them.

One of the first actions performed on a design in RTLIL representation in most synthesis scripts is identi-
fying asynchronous resets. This is usually done using the proc_arst pass. This pass transforms the above
example to the following RTLIL::Process:

2The syntax 1’1 in the ILANG code specifies a constant with a length of one bit (the first “1”), and this bit is a one (the
second “1”).

32

CHAPTER 4. IMPLEMENTATION OVERVIEW

1 process $proc$ff_with_en_and_async_reset.v:4$1
2 assign $0\q[0:0] \q
3 switch \enable
4 case 1’1
5 assign $0\q[0:0] \d
6 case
7 end
8 sync posedge \clock
9 update \q $0\q[0:0]

10 sync high \reset
11 update \q 1’0
12 end

This pass has transformed the outer RTLIL::SwitchRule into a modified RTLIL::SyncRule object for the
\reset signal. Further processing converts the RTLIL::Process into e.g. a d-type flip-flop with asynchronous
reset and a multiplexer for the enable signal:

1 cell $adff $procdff$6
2 parameter \ARST_POLARITY 1’1
3 parameter \ARST_VALUE 1’0
4 parameter \CLK_POLARITY 1’1
5 parameter \WIDTH 1
6 connect \ARST \reset
7 connect \CLK \clock
8 connect \D $0\q[0:0]
9 connect \Q \q

10 end
11 cell $mux $procmux$3
12 parameter \WIDTH 1
13 connect \A \q
14 connect \B \d
15 connect \S \enable
16 connect \Y $0\q[0:0]
17 end

Different combinations of passes may yield different results. Note that $adff and $mux are internal cell
types that still need to be mapped to cell types from the target cell library.

Some passes refuse to operate on modules that still contain RTLIL::Process objects as the presence of these
objects in a module increases the complexity. Therefore the passes to translate processes to a netlist of
cells are usually called early in a synthesis script. The proc pass calls a series of other passes that together
perform this conversion in a way that is suitable for most synthesis tasks.

4.2.6 RTLIL::Memory

For every array (memory) in the HDL code an RTLIL::Memory object is created. A memory object has
the following properties:

• The memory name

• A list of attributes

• The width of an addressable word

33

CHAPTER 4. IMPLEMENTATION OVERVIEW

• The size of the memory in number of words

All read accesses to the memory are transformed to $memrd cells and all write accesses to $memwr cells by the
language frontend. These cells consist of independent read- and write-ports to the memory. The \MEMID
parameter on these cells is used to link them together and to the RTLIL::Memory object they belong to.

The rationale behind using separate cells for the individual ports versus creating a large multiport memory
cell right in the language frontend is that the separate $memrd and $memwr cells can be consolidated using
resource sharing. As resource sharing is a non-trivial optimization problem where different synthesis tasks
can have different requirements it lends itself to do the optimisation in separate passes and merge the
RTLIL::Memory objects and $memrd and $memwr cells to multiport memory blocks after resource sharing is
completed.

The memory pass performs this conversion and can (depending on the options passed to it) transform the
memories directly to d-type flip-flops and address logic or yield multiport memory blocks (represented
using $mem cells).

See Sec. 5.1.5 for details about the memory cell types.

4.3 Command Interface and Synthesis Scripts

Yosys reads and processes commands from synthesis scripts, command line arguments and an interactive
command prompt. Yosys commands consist of a command name and an optional whitespace separated
list of arguments. Commands are terminated using the newline character or a semicolon (;). Empty lines
and lines starting with the hash sign (#) are ignored. See Sec. 3.3 for an example synthesis script.

The command help can be used to access the command reference manual.

Most commands can operate not only on the entire design but also specifically on selected parts of the
design. For example the command dump will print all selected objects in the current design while dump
foobar will only print the module foobar and dump * will print the entire design regardless of the current
selection.

The selection mechanism is very powerful. For example the command dump */t:$add %x:+[A] */w:* %i
will print all wires that are connected to the \A port of a $add cell. Detailed documentation of the select
framework can be found in the command reference for the select command.

4.4 Source Tree and Build System

The Yosys source tree is organized into the following top-level directories:

• backends/
This directory contains a subdirectory for each of the backend modules.

• frontends/
This directory contains a subdirectory for each of the frontend modules.

• kernel/
This directory contains all the core functionality of Yosys. This includes the functions and definitions
for working with the RTLIL data structures (rtlil.h and rtlil.cc), the main() function (driver.cc),
the internal framework for generating log messages (log.h and log.cc), the internal framework for
registering and calling passes (register.h and register.cc), some core commands that are not really
passes (select.cc, show.cc, . . .) and a couple of other small utility libraries.

34

CHAPTER 4. IMPLEMENTATION OVERVIEW

• passes/
This directory contains a subdirectory for each pass or group of passes. For example as of this
writing the directory passes/opt/ contains the code for seven passes: opt, opt_const, opt_muxtree,
opt_reduce, opt_rmdff, opt_rmunused and opt_share.

• techlibs/
This directory contains simulation models and standard implementations for the cells from the in-
ternal cell library.

• tests/
This directory contains a couple of test cases. Most of the smaller tests are executed automatically
when make test is called. The larger tests must be executed manually. Most of the larger tests require
downloading external HDL source code and/or external tools. The tests range from comparing
simulation results of the synthesized design to the original sources to logic equivalence checking of
entire CPU cores.

The top-level Makefile includes frontends/*/Makefile.inc, passes/*/Makefile.inc and
backends/*/Makefile.inc. So when extending Yosys it is enough to create a new directory in
frontends/, passes/ or backends/ with your sources and a Makefile.inc. The Yosys kernel automatically
detects all commands linked with Yosys. So it is not needed to add additional commands to a central list
of commands.

Good starting points for reading example source code to learn how to write passes are passes/opt/opt_rmdff.cc
and passes/opt/opt_share.cc.

See the top-level README file for a quick Getting Started guide and build instructions. The Yosys build
is based solely on Makefiles.

Users of the Qt Creator IDE can generate a QT Creator project file using make qtcreator. Users of the
Eclipse IDE can use the “Makefile Project with Existing Code” project type in the Eclipse “New Project”
dialog (only available after the CDT plugin has been installed) to create an Eclipse project in order to
programming extensions to Yosys or just browse the Yosys code base.

35

Chapter 5

Internal Cell Library

Most of the passes in Yosys operate on netlists, i.e. they only care about the RTLIL::Wire and RTLIL::Cell
objects in an RTLIL::Module. This chapter discusses the cell types used by Yosys to represent a behavioural
design internally.
This chapter is split in two parts. In the first part the internal RTL cells are covered. These cells are used
to represent the design on a coarse grain level. Like in the original HDL code on this level the cells operate
on vectors of signals and complex cells like adders exist. In the second part the internal gate cells are
covered. These cells are used to represent the design on a fine-grain gate-level. All cells from this category
operate on single bit signals.

5.1 RTL Cells

Most of the RTL cells closely resemble the operators available in HDLs such as Verilog or VHDL. Therefore
Verilog operators are used in the following sections to define the behaviour of the RTL cells.
Note that all RTL cells have parameters indicating the size of inputs and outputs. When passes modify
RTL cells they must always keep the values of these parameters in sync with the size of the signals
connected to the inputs and outputs.
Simulation models for the RTL cells can be found in the file techlibs/common/simlib.v in the Yosys source
tree.

5.1.1 Unary Operators

All unary RTL cells have one input port \A and one output port \Y. They also have the following parameters:

• \A_SIGNED
Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.

• \A_WIDTH
The width of the input port \A.

• \Y_WIDTH
The width of the output port \Y.

Table 5.1 lists all cells for unary RTL operators.
Note that $reduce_or and $reduce_bool actually represent the same logic function. But the HDL frontends
generate them in different situations. A $reduce_or cell is generated when the prefix | operator is being
used. A $reduce_bool cell is generated when a bit vector is used as a condition in an if-statement or
?:-expression.

36

CHAPTER 5. INTERNAL CELL LIBRARY

Verilog Cell Type
Y = ~A $not
Y = +A $pos
Y = -A $neg

Y = &A $reduce_and
Y = |A $reduce_or
Y = ^A $reduce_xor
Y = ~^A $reduce_xnor

Y = |A $reduce_bool
Y = !A $logic_not

Table 5.1: Cell types for unary operators with their corresponding Verilog expressions.

5.1.2 Binary Operators

All binary RTL cells have two input ports \A and \B and one output port \Y. They also have the following
parameters:

• \A_SIGNED
Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.

• \A_WIDTH
The width of the input port \A.

• \B_SIGNED
Set to a non-zero value if the input \B is signed and therefore should be sign-extended when needed.

• \B_WIDTH
The width of the input port \B.

• \Y_WIDTH
The width of the output port \Y.

Table 5.2 lists all cells for binary RTL operators.

5.1.3 Multiplexers

Multiplexers are generated by the Verilog HDL frontend for ?:-expressions. Multiplexers are also generated
by the proc pass to map the decision trees from RTLIL::Process objects to logic.
The simplest multiplexer cell type is $mux. Cells of this type have a \WIDTH parameter and data inputs \A
and \B and a data output \Y, all of the specified width. This cell also has a single bit control input \S. If
\S is 0 the value from the \A input is sent to the output, if it is 1 the value from the \B input is sent to
the output. So the $mux cell implements the function Y = S ? B : A.
The $pmux cell is used to multiplex between many inputs using a one-hot select signal. Cells of this type have
a \WIDTH and a \S_WIDTH parameter and inputs \A, \B, and \S and an output \Y. The \S input is \S_WIDTH
bits wide. The \A input and the output are both \WIDTH bits wide and the \B input is \WIDTH*\S_WIDTH
bits wide. When all bits of \S are zero, the value from \A input is sent to the output. If the n’th bit from
\S is set, the value n’th \WIDTH bits wide slice of the \B input is sent to the output. When more than one
bit from \S is set the output is undefined. Cells of this type are used to model “parallel cases” (defined by
using the parallel_case attribute or detected by an optimization).
Behavioural code with cascaded if-then-else- and case-statements usually results in trees of multiplexer
cells. Many passes (from various optimizations to FSM extraction) heavily depend on these multiplexer
trees to understand dependencies between signals. Therefore optimizations should not break these multi-
plexer trees (e.g. by replacing a multiplexer between a calculated signal and a constant zero with an $and
gate).

37

CHAPTER 5. INTERNAL CELL LIBRARY

Verilog Cell Type
Y = A & B $and
Y = A | B $or
Y = A ^ B $xor
Y = A ~^ B $xnor

Y = A << B $shl
Y = A >> B $shr
Y = A <<< B $sshl
Y = A >>> B $sshr

Y = A && B $logic_and
Y = A || B $logic_or

Y = A === B $eqx
Y = A !== B $nex

Verilog Cell Type
Y = A < B $lt
Y = A <= B $le
Y = A == B $eq
Y = A != B $ne
Y = A >= B $ge
Y = A > B $gt

Y = A + B $add
Y = A - B $sub
Y = A * B $mul
Y = A / B $div
Y = A % B $mod
Y = A ** B $pow

Table 5.2: Cell types for binary operators with their corresponding Verilog expressions.

5.1.4 Registers

D-Type Flip-Flops are represented by $dff cells. These cells have a clock port \CLK, an input port \D and
an output port \Q. The following parameters are available for $dff cells:

• \WIDTH
The width of input \D and output \Q.

• \CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1’b1 and on the negative edge if
this parameter is 1’b0.

D-Type Flip-Flops with asynchronous resets are represented by $adff cells. As the $dff cells they have
\CLK, \D and \Q ports. In addition they also have a single-bit \ARST input port for the reset pin and the
following additional two parameters:

• \ARST_POLARITY
The asynchronous reset is high-active if this parameter has the value 1’b1 and low-active if this
parameter is 1’b0.

• \ARST_VALUE
The state of \Q will be set to this value when the reset is active.

Note that the $adff cell can only be used when the reset value is constant.

Usually these cells are generated by the proc pass using the information in the designs RTLIL::Process
objects.

FIXME:
Add information about $sr cells (set-reset flip-flops) and d-type latches.

5.1.5 Memories

Memories are either represented using RTLIL::Memory objects and $memrd and $memwr cells or simply by
using $mem cells.

In the first alternative the RTLIL::Memory objects hold the general metadata for the memory (bit width,
size in number of words, etc.) and for each port a $memrd (read port) or $memwr (write port) cell is created.

38

CHAPTER 5. INTERNAL CELL LIBRARY

Having individual cells for read and write ports has the advantage that they can be consolidated using
resource sharing passes. In some cases this drastically reduces the number of required ports on the memory
cell.

The $memrd cells have a clock input \CLK, an enable input \EN, an address input \ADDR, and a data output
\DATA. They also have the following parameters:

• \MEMID
The name of the RTLIL::Memory object that is associated with this read port.

• \ABITS
The number of address bits (width of the \ADDR input port).

• \WIDTH
The number of data bits (width of the \DATA output port).

• \CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
the \CLK input is not used.

• \CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1’b1 and on the negative edge if
this parameter is 1’b0.

• \TRANSPARENT
If this parameter is set to 1’b1, a read and write to the same address in the same cycle will return
the new value. Otherwise the old value is returned.

The $memwr cells have a clock input \CLK, an enable input \EN (one enable bit for each data bit), an address
input \ADDR and a data input \DATA. They also have the following parameters:

• \MEMID
The name of the RTLIL::Memory object that is associated with this read port.

• \ABITS
The number of address bits (width of the \ADDR input port).

• \WIDTH
The number of data bits (width of the \DATA output port).

• \CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
the \CLK input is not used.

• \CLK_POLARITY
Clock is active on positive edge if this parameter has the value 1’b1 and on the negative edge if this
parameter is 1’b0.

• \PRIORITY
The cell with the higher integer value in this parameter wins a write conflict.

The HDL frontend models a memory using RTLIL::Memory objects and asynchronous $memrd and $memwr
cells. The memory pass (i.e. its various sub-passes) migrates $dff cells into the $memrd and $memwr cells
making them synchronous, then converts them to a single $mem cell and (optionally) maps this cell type to
$dff cells for the individual words and multiplexer-based address decoders for the read and write interfaces.
When the last step is disabled or not possible, a $mem cell is left in the design.

The $mem cell provides the following parameters:

39

CHAPTER 5. INTERNAL CELL LIBRARY

• \MEMID
The name of the original RTLIL::Memory object that became this $mem cell.

• \SIZE
The number of words in the memory.

• \ABITS
The number of address bits.

• \WIDTH
The number of data bits per word.

• \RD_PORTS
The number of read ports on this memory cell.

• \RD_CLK_ENABLE
This parameter is \RD_PORTS bits wide, containing a clock enable bit for each read port.

• \RD_CLK_POLARITY
This parameter is \RD_PORTS bits wide, containing a clock polarity bit for each read port.

• \RD_TRANSPARENT
This parameter is \RD_PORTS bits wide, containing a transparent bit for each read port.

• \WR_PORTS
The number of write ports on this memory cell.

• \WR_CLK_ENABLE
This parameter is \WR_PORTS bits wide, containing a clock enable bit for each write port.

• \WR_CLK_POLARITY
This parameter is \WR_PORTS bits wide, containing a clock polarity bit for each write port.

The $mem cell has the following ports:

• \RD_CLK
This input is \RD_PORTS bits wide, containing all clock signals for the read ports.

• \RD_EN
This input is \RD_PORTS bits wide, containing all enable signals for the read ports.

• \RD_ADDR
This input is \RD_PORTS*\ABITS bits wide, containing all address signals for the read ports.

• \RD_DATA
This input is \RD_PORTS*\WIDTH bits wide, containing all data signals for the read ports.

• \WR_CLK
This input is \WR_PORTS bits wide, containing all clock signals for the write ports.

• \WR_EN
This input is \WR_PORTS*\WIDTH bits wide, containing all enable signals for the write ports.

• \WR_ADDR
This input is \WR_PORTS*\ABITS bits wide, containing all address signals for the write ports.

• \WR_DATA
This input is \WR_PORTS*\WIDTH bits wide, containing all data signals for the write ports.

The techmap pass can be used to manually map $mem cells to specialized memory cells on the target
architecture, such as block ram resources on an FPGA.

40

CHAPTER 5. INTERNAL CELL LIBRARY

Verilog Cell Type
Y = ~A $_NOT_
Y = A & B $_AND_
Y = A | B $_OR_
Y = A ^ B $_XOR_
Y = S ? B : A $_MUX_

always @(negedge C) Q <= D $_DFF_N_
always @(posedge C) Q <= D $_DFF_P_

ClkEdge RstLvl RstV al Cell Type
negedge 0 0 $_DFF_NN0_
negedge 0 1 $_DFF_NN1_
negedge 1 0 $_DFF_NP0_
negedge 1 1 $_DFF_NP1_
posedge 0 0 $_DFF_PN0_
posedge 0 1 $_DFF_PN1_
posedge 1 0 $_DFF_PP0_
posedge 1 1 $_DFF_PP1_

Table 5.3: Cell types for gate level logic networks

5.1.6 Finite State Machines

FIXME:
Add a brief description of the $fsm cell type.

5.2 Gates

For gate level logic networks, fixed function single bit cells are used that do not provide any parameters.

Simulation models for these cells can be found in the file techlibs/common/simcells.v in the Yosys source
tree.

Table 5.3 lists all cell types used for gate level logic. The cell types $_NOT_, $_AND_, $_OR_, $_XOR_ and
$_MUX_ are used to model combinatorial logic. The cell types $_DFF_N_ and $_DFF_P_ represent d-type
flip-flops.

The cell types $_DFF_NN0_, $_DFF_NN1_, $_DFF_NP0_, $_DFF_NP1_, $_DFF_PN0_, $_DFF_PN1_, $_DFF_PP0_ and
$_DFF_PP1_ implement d-type flip-flops with asynchronous resets. The values in the table for these cell
types relate to the following Verilog code template, where RstEdge is posedge if RstLvl if 1, and negedge
otherwise.

always @(ClkEdge C, RstEdge R)
if (R == RstLvl)

Q <= RstV al;
else

Q <= D;

In most cases gate level logic networks are created from RTL networks using the techmap pass. The flip-flop
cells from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using
the dfflibmap pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via
ABC [27] using the abc pass.

FIXME:
Add information about $assert, $assume, and $equiv cells.

FIXME:
Add information about $slice and $concat cells.

FIXME:
Add information about $alu, $macc, $fa, and $lcu cells.

FIXME:
Add information about $dffe, $dffsr, $dlatch, and $dlatchsr cells.

41

CHAPTER 5. INTERNAL CELL LIBRARY

FIXME:
Add information about $_DFFE_??_, $_DFFSR_???_, $_DLATCH_?_, and $_DLATCHSR_???_ cells.

FIXME:
Add information about $_NAND_, $_NOR_, $_XNOR_, $_AOI3_, $_OAI3_, $_AOI4_, and $_OAI4_ cells.

42

Chapter 6

Programming Yosys Extensions

This chapter contains some bits and pieces of information about programming yosys extensions. Also
consult the section on programming in the “Yosys Presentation” (can be downloaded from the Yosys
website as PDF) and don’t be afraid to ask questions on the Yosys Subreddit.

6.1 The “CodingReadme” File

The following is an excerpt of the CodingReadme file from the Yosys source tree.

CodingReadme

7 Getting Started
8 ===============
9

10
11 Outline of a Yosys command
12 --------------------------
13
14 Here is a the C++ code for a "hello_world" Yosys command (hello.cc):
15
16 #include "kernel/yosys.h"
17
18 USING_YOSYS_NAMESPACE
19 PRIVATE_NAMESPACE_BEGIN
20
21 struct HelloWorldPass : public Pass {
22 HelloWorldPass() : Pass("hello_world") { }
23 virtual void execute(vector<string>, Design*) {
24 log("Hello World!\n");
25 }
26 } HelloWorldPass;
27
28 PRIVATE_NAMESPACE_END
29
30 This can be built into a Yosys module using the following command:
31
32 yosys-config --exec --cxx --cxxflags --ldflags -o hello.so -shared hello.cc --ldlibs
33

43

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

34 Or short:
35
36 yosys-config --build hello.so hello.cc
37
38 And then executed using the following command:
39
40 yosys -m hello.so -p hello_world
41
42
43 Yosys Data Structures
44 ---------------------
45
46 Here is a short list of data structures that you should make yourself familiar
47 with before you write C++ code for Yosys. The following data structures are all
48 defined when "kernel/yosys.h" is included and USING_YOSYS_NAMESPACE is used.
49
50 1. Yosys Container Classes
51
52 Yosys uses dict<K, T> and pool<T> as main container classes. dict<K, T> is
53 essentially a replacement for std::unordered_map<K, T> and pool<T> is a
54 replacement for std::unordered_set<T>. The main characteristics are:
55
56 - dict<K, T> and pool<T> are about 2x faster than the std containers
57
58 - references to elements in a dict<K, T> or pool<T> are invalidated by
59 insert and remove operations (similar to std::vector<T> on push_back()).
60
61 - some iterators are invalidated by erase(). specifically, iterators
62 that have not passed the erased element yet are invalidated. (erase()
63 itself returns valid iterator to the next element.)
64
65 - no iterators are invalidated by insert(). elements are inserted at
66 begin(). i.e. only a new iterator that starts at begin() will see the
67 inserted elements.
68
69 - the method .count(key, iterator) is like .count(key) but only
70 considers elements that can be reached via the iterator.
71
72 - iterators can be compared. it1 < it2 means that the position of t2
73 can be reached via t1 but not vice versa.
74
75 - the method .sort() can be used to sort the elements in the container
76 the container stays sorted until elements are added or removed.
77
78 - dict<K, T> and pool<T> will have the same order of iteration across
79 all compilers, standard libraries and architectures.
80
81 In addition to dict<K, T> and pool<T> there is also an idict<K> that
82 creates a bijective map from K to the integers. For example:
83
84 idict<string, 42> si;
85 log("%d\n", si("hello")); // will print 42
86 log("%d\n", si("world")); // will print 43
87 log("%d\n", si.at("world")); // will print 43

44

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

88 log("%d\n", si.at("dummy")); // will throw exception
89 log("%s\n", si[42].c_str())); // will print hello
90 log("%s\n", si[43].c_str())); // will print world
91 log("%s\n", si[44].c_str())); // will throw exception
92
93 It is not possible to remove elements from an idict.
94
95 Finally mfp<K> implements a merge-find set data structure (aka. disjoint-set or
96 union-find) over the type K ("mfp" = merge-find-promote).
97
98 2. Standard STL data types
99
100 In Yosys we use std::vector<T> and std::string whenever applicable. When
101 dict<K, T> and pool<T> are not suitable then std::map<K, T> and std::set<T>
102 are used instead.
103
104 The types std::vector<T> and std::string are also available as vector<T>
105 and string in the Yosys namespace.
106
107 3. RTLIL objects
108
109 The current design (essentially a collection of modules, each defined by a
110 netlist) is stored in memory using RTLIL object (declared in kernel/rtlil.h,
111 automatically included by kernel/yosys.h). You should glance over at least
112 the declarations for the following types in kernel/rtlil.h:
113
114 RTLIL::IdString
115 This is a handle for an identifier (e.g. cell or wire name).
116 It feels a lot like a std::string, but is only a single int
117 in size. (The actual string is stored in a global lookup
118 table.)
119
120 RTLIL::SigBit
121 A single signal bit. I.e. either a constant state (0, 1,
122 x, z) or a single bit from a wire.
123
124 RTLIL::SigSpec
125 Essentially a vector of SigBits.
126
127 RTLIL::Wire
128 RTLIL::Cell
129 The building blocks of the netlist in a module.
130
131 RTLIL::Module
132 RTLIL::Design
133 The module is a container with connected cells and wires
134 in it. The design is a container with modules in it.
135
136 All this types are also available without the RTLIL:: prefix in the Yosys
137 namespace.
138
139 4. SigMap and other Helper Classes
140
141 There are a couple of additional helper classes that are in wide use

45

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

142 in Yosys. Most importantly there is SigMap (declared in kernel/sigtools.h).
143
144 When a design has many wires in it that are connected to each other, then a
145 single signal bit can have multiple valid names. The SigMap object can be used
146 to map SigSpecs or SigBits to unique SigSpecs and SigBits that consistently
147 only use one wire from such a group of connected wires. For example:
148
149 SigBit a = module->addWire(NEW_ID);
150 SigBit b = module->addWire(NEW_ID);
151 module->connect(a, b);
152
153 log("%d\n", a == b); // will print 0
154
155 SigMap sigmap(module);
156 log("%d\n", sigmap(a) == sigmap(b)); // will print 1
157
158
159 Using the RTLIL Netlist Format
160 ------------------------------
161
162 In the RTLIL netlist format the cell ports contain SigSpecs that point to the
163 Wires. There are no references in the other direction. This has two direct
164 consequences:
165
166 (1) It is very easy to go from cells to wires but hard to go in the other way.
167
168 (2) There is no danger in removing cells from the netlists, but removing wires
169 can break the netlist format when there are still references to the wire
170 somewhere in the netlist.
171
172 The solution to (1) is easy: Create custom indexes that allow you to make fast
173 lookups for the wire-to-cell direction. You can either use existing generic
174 index structures to do that (such as the ModIndex class) or write your own
175 index. For many application it is simplest to construct a custom index. For
176 example:
177
178 SigMap sigmap(module);
179 dict<SigBit, Cell*> sigbit_to_driver_index;
180
181 for (auto cell : module->cells())
182 for (auto &conn : cell->connections())
183 if (cell->output(conn.first))
184 for (auto bit : sigmap(conn.second))
185 sigbit_to_driver_index[bit] = cell;
186
187 Regarding (2): There is a general theme in Yosys that you don’t remove wires
188 from the design. You can rename them, unconnect them, but you do not actually remove
189 the Wire object from the module. Instead you let the "clean" command take care
190 of the dangling wires. On the other hand it is safe to remove cells (as long as
191 you make sure this does not invalidate a custom index you are using in your code).
192
193
194 Example Code
195 ------------

46

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

196
197 The following yosys commands are a good starting point if you are looking for examples
198 of how to use the Yosys API:
199
200 manual/CHAPTER_Prog/stubnets.cc
201 manual/PRESENTATION_Prog/my_cmd.cc
202
203
204 Notes on the existing codebase
205 ------------------------------
206
207 For historical reasons not all parts of Yosys adhere to the current coding
208 style. When adding code to existing parts of the system, adhere to this guide
209 for the new code instead of trying to mimic the style of the surrounding code.
210
211
212
213 Coding Style
214 ============
215
216
217 Formatting of code
218 ------------------
219
220 - Yosys code is using tabs for indentation. Tabs are 8 characters.
221
222 - A continuation of a statement in the following line is indented by
223 two additional tabs.
224
225 - Lines are as long as you want them to be. A good rule of thumb is
226 to break lines at about column 150.
227
228 - Opening braces can be put on the same or next line as the statement
229 opening the block (if, switch, for, while, do). Put the opening brace
230 on its own line for larger blocks, especially blocks that contains
231 blank lines.
232
233 - Otherwise stick to the Linux Kernel Coding Style:
234 https://www.kernel.org/doc/Documentation/CodingStyle
235
236
237 C++ Language
238 -------------
239
240 Yosys is written in C++11. At the moment only constructs supported by
241 gcc 4.6 are allowed in Yosys code. This will change in future releases.
242
243 In general Yosys uses "int" instead of "size_t". To avoid compiler
244 warnings for implicit type casts, always use "GetSize(foobar)" instead
245 of "foobar.size()". (GetSize() is defined in kernel/yosys.h)
246
247 Use range-based for loops whenever applicable.

47

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

6.2 The “stubsnets” Example Module

The following is the complete code of the “stubsnets” example module. It is included in the Yosys source
distribution as manual/CHAPTER_Prog/stubnets.cc.

stubnets.cc

1 // This is free and unencumbered software released into the public domain.
2 //
3 // Anyone is free to copy, modify, publish, use, compile, sell, or
4 // distribute this software, either in source code form or as a compiled
5 // binary, for any purpose, commercial or non-commercial, and by any
6 // means.
7
8 #include "kernel/yosys.h"
9 #include "kernel/sigtools.h"

10
11 #include <string>
12 #include <map>
13 #include <set>
14
15 USING_YOSYS_NAMESPACE
16 PRIVATE_NAMESPACE_BEGIN
17
18 // this function is called for each module in the design
19 static void find_stub_nets(RTLIL::Design *design, RTLIL::Module *module, bool report_bits)
20 {
21 // use a SigMap to convert nets to a unique representation
22 SigMap sigmap(module);
23
24 // count how many times a single-bit signal is used
25 std::map<RTLIL::SigBit, int> bit_usage_count;
26
27 // count output lines for this module (needed only for summary output at the end)
28 int line_count = 0;
29
30 log("Looking for stub wires in module %s:\n", RTLIL::id2cstr(module->name));
31
32 // For all ports on all cells
33 for (auto &cell_iter : module->cells_)
34 for (auto &conn : cell_iter.second->connections())
35 {
36 // Get the signals on the port
37 // (use sigmap to get a uniqe signal name)
38 RTLIL::SigSpec sig = sigmap(conn.second);
39
40 // add each bit to bit_usage_count, unless it is a constant
41 for (auto &bit : sig)
42 if (bit.wire != NULL)
43 bit_usage_count[bit]++;
44 }
45
46 // for each wire in the module
47 for (auto &wire_iter : module->wires_)
48 {

48

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

49 RTLIL::Wire *wire = wire_iter.second;
50
51 // .. but only selected wires
52 if (!design->selected(module, wire))
53 continue;
54
55 // add +1 usage if this wire actually is a port
56 int usage_offset = wire->port_id > 0 ? 1 : 0;
57
58 // we will record which bits of the (possibly multi-bit) wire are stub signals
59 std::set<int> stub_bits;
60
61 // get a signal description for this wire and split it into separate bits
62 RTLIL::SigSpec sig = sigmap(wire);
63
64 // for each bit (unless it is a constant):
65 // check if it is used at least two times and add to stub_bits otherwise
66 for (int i = 0; i < GetSize(sig); i++)
67 if (sig[i].wire != NULL && (bit_usage_count[sig[i]] + usage_offset) < 2)
68 stub_bits.insert(i);
69
70 // continue if no stub bits found
71 if (stub_bits.size() == 0)
72 continue;
73
74 // report stub bits and/or stub wires, don’t report single bits
75 // if called with report_bits set to false.
76 if (GetSize(stub_bits) == GetSize(sig)) {
77 log(" found stub wire: %s\n", RTLIL::id2cstr(wire->name));
78 } else {
79 if (!report_bits)
80 continue;
81 log(" found wire with stub bits: %s [", RTLIL::id2cstr(wire->name));
82 for (int bit : stub_bits)
83 log("%s%d", bit == *stub_bits.begin() ? "" : ", ", bit);
84 log("]\n");
85 }
86
87 // we have outputted a line, increment summary counter
88 line_count++;
89 }
90
91 // report summary
92 if (report_bits)
93 log(" found %d stub wires or wires with stub bits.\n", line_count);
94 else
95 log(" found %d stub wires.\n", line_count);
96 }
97
98 // each pass contains a singleton object that is derived from Pass
99 struct StubnetsPass : public Pass {
100 StubnetsPass() : Pass("stubnets") { }
101 virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
102 {

49

CHAPTER 6. PROGRAMMING YOSYS EXTENSIONS

103 // variables to mirror information from passed options
104 bool report_bits = 0;
105
106 log_header("Executing STUBNETS pass (find stub nets).\n");
107
108 // parse options
109 size_t argidx;
110 for (argidx = 1; argidx < args.size(); argidx++) {
111 std::string arg = args[argidx];
112 if (arg == "-report_bits") {
113 report_bits = true;
114 continue;
115 }
116 break;
117 }
118
119 // handle extra options (e.g. selection)
120 extra_args(args, argidx, design);
121
122 // call find_stub_nets() for each module that is either
123 // selected as a whole or contains selected objects.
124 for (auto &it : design->modules_)
125 if (design->selected_module(it.first))
126 find_stub_nets(design, it.second, report_bits);
127 }
128 } StubnetsPass;
129
130 PRIVATE_NAMESPACE_END

Makefile

1 test: stubnets.so
2 yosys -ql test1.log -m ./stubnets.so test.v -p "stubnets"
3 yosys -ql test2.log -m ./stubnets.so test.v -p "opt; stubnets"
4 yosys -ql test3.log -m ./stubnets.so test.v -p "techmap; opt; stubnets -report_bits"
5 tail test1.log test2.log test3.log
6
7 stubnets.so: stubnets.cc
8 yosys-config --exec --cxx --cxxflags --ldflags -o $@ -shared $^ --ldlibs
9

10 clean:
11 rm -f test1.log test2.log test3.log
12 rm -f stubnets.so stubnets.d

test.v

1 module uut(in1, in2, in3, out1, out2);
2
3 input [8:0] in1, in2, in3;
4 output [8:0] out1, out2;
5
6 assign out1 = in1 + in2 + (in3 >> 4);
7
8 endmodule

50

Chapter 7

The Verilog and AST Frontends

This chapter provides an overview of the implementation of the Yosys Verilog and AST frontends. The
Verilog frontend reads Verilog-2005 code and creates an abstract syntax tree (AST) representation of the
input. This AST representation is then passed to the AST frontend that converts it to RTLIL data, as
illustrated in Fig. 7.1.

7.1 Transforming Verilog to AST

The Verilog frontend converts the Verilog sources to an internal AST representation that closely resem-
bles the structure of the original Verilog code. The Verilog frontend consists of three components, the
Preprocessor, the Lexer and the Parser.

The source code to the Verilog frontend can be found in frontends/verilog/ in the Yosys source tree.

Verilog Source

Verilog Frontend

AST

AST Frontend

RTLIL

Preprocessor

Lexer

Parser

Simplifier

RTLIL Generator

Figure 7.1: Simplified Verilog to RTLIL data flow

51

CHAPTER 7. THE VERILOG AND AST FRONTENDS

7.1.1 The Verilog Preprocessor

The Verilog preprocessor scans over the Verilog source code and interprets some of the Verilog compiler
directives such as ‘include, ‘define and ‘ifdef.

It is implemented as a C++ function that is passed a file descriptor as input and returns the pre-processed
Verilog code as a std::string.

The source code to the Verilog Preprocessor can be found in frontends/verilog/preproc.cc in the Yosys
source tree.

7.1.2 The Verilog Lexer

The Verilog Lexer is written using the lexer generator flex [17]. Its source code can be found in
frontends/verilog/lexer.l in the Yosys source tree. The lexer does little more than identifying all key-
words and literals recognised by the Yosys Verilog frontend.

The lexer keeps track of the current location in the Verilog source code using some global variables. These
variables are used by the constructor of AST nodes to annotate each node with the source code location
it originated from.

Finally the lexer identifies and handles special comments such as “//synopsys translate_off” and
“//synopsys full_case”. (It is recommended to use ‘ifdef constructs instead of the Synsopsys trans-
late_on/off comments and attributes such as (* full_case *) over “//synopsys full_case” whenever
possible.)

7.1.3 The Verilog Parser

The Verilog Parser is written using the parser generator bison [18]. Its source code can be found in
frontends/verilog/parser.y in the Yosys source tree.

It generates an AST using the AST::AstNode data structure defined in frontends/ast/ast.h. An AST::AstNode
object has the following properties:

• The node type
This enum (AST::AstNodeType) specifies the role of the node. Table 7.1 contains a list of all node
types.

• The child nodes
This is a list of pointers to all children in the abstract syntax tree.

• Attributes
As almost every AST node might have Verilog attributes assigned to it, the AST::AstNode has direct
support for attributes. Note that the attribute values are again AST nodes.

• Node content
Each node might have additional content data. A series of member variables exist to hold such
data. For example the member std::string str can hold a string value and is used e.g. in the
AST_IDENTIFIER node type to store the identifier name.

• Source code location
Each AST::AstNode is automatically annotated with the current source code location by the AST::AstNode
constructor. It is stored in the std::string filename and int linenum member variables.

The AST::AstNode constructor can be called with up to two child nodes that are automatically added to
the list of child nodes for the new object. This simplifies the creation of AST nodes for simple expressions
a bit. For example the bison code for parsing multiplications:

52

CHAPTER 7. THE VERILOG AND AST FRONTENDS

1 basic_expr ’*’ attr basic_expr {
2 $$ = new AstNode(AST_MUL, $1, $4);
3 append_attr($$, $3);
4 } |

The generated AST data structure is then passed directly to the AST frontend that performs the actual
conversion to RTLIL.

Note that the Yosys command read_verilog provides the options -yydebug and -dump_ast that can be used
to print the parse tree or abstract syntax tree respectively.

7.2 Transforming AST to RTLIL

The AST Frontend converts a set of modules in AST representation to modules in RTLIL representation
and adds them to the current design. This is done in two steps: simplification and RTLIL generation.

The source code to the AST frontend can be found in frontends/ast/ in the Yosys source tree.

7.2.1 AST Simplification

A full-featured AST is too complex to be transformed into RTLIL directly. Therefore it must first be
brought into a simpler form. This is done by calling the AST::AstNode::simplify()method of all AST_MODULE
nodes in the AST. This initiates a recursive process that performs the following transformations on the
AST data structure:

AST Node Type Corresponding Verilog Construct
AST_NONE This Node type should never be used.
AST_DESIGN This node type is used for the top node of the AST

tree. It has no corresponding Verilog construct.
AST_MODULE, AST_TASK, AST_FUNCTION module, task and function

AST_WIRE input, output, wire, reg and integer

AST_MEMORY Verilog Arrays
AST_AUTOWIRE Created by the simplifier when an undeclared signal

name is used.
AST_PARAMETER, AST_LOCALPARAM parameter and localparam

AST_PARASET Parameter set in cell instantiation
AST_ARGUMENT Port connection in cell instantiation
AST_RANGE Bit-Index in a signal or element index in array
AST_CONSTANT A literal value
AST_CELLTYPE The type of cell in cell instantiation
AST_IDENTIFIER An Identifier (signal name in expression or

cell/task/etc. name in other contexts)
AST_PREFIX Construct an identifier in the form

<prefix>[<index>].<suffix> (used only in
advanced generate constructs)

AST_FCALL, AST_TCALL Call to function or task
AST_TO_SIGNED, AST_TO_UNSIGNED The $signed() and $unsigned() functions

Table 7.1: AST node types with their corresponding Verilog constructs.
(continued on next page)

53

CHAPTER 7. THE VERILOG AND AST FRONTENDS

AST Node Type Corresponding Verilog Construct
AST_CONCAT AST_REPLICATE The {...} and {...{...}} operators
AST_BIT_NOT, AST_BIT_AND, AST_BIT_OR,
AST_BIT_XOR, AST_BIT_XNOR

The bitwise operators
~, &, |, ^ and ~^

AST_REDUCE_AND, AST_REDUCE_OR,
AST_REDUCE_XOR, AST_REDUCE_XNOR

The unary reduction operators
~, &, |, ^ and ~^

AST_REDUCE_BOOL Conversion from multi-bit value to boolean value
(equivalent to AST_REDUCE_OR)

AST_SHIFT_LEFT, AST_SHIFT_RIGHT,
AST_SHIFT_SLEFT, AST_SHIFT_SRIGHT

The shift operators
<<, >>, <<< and >>>

AST_LT, AST_LE, AST_EQ, AST_NE, AST_GE,
AST_GT

The relational operators
<, <=, ==, !=, >= and >

AST_ADD, AST_SUB, AST_MUL, AST_DIV, AST_MOD,
AST_POW

The binary operators
+, -, *, /, % and **

AST_POS, AST_NEG The prefix operators + and -

AST_LOGIC_AND, AST_LOGIC_OR, AST_LOGIC_NOT The logic operators &&, || and !

AST_TERNARY The ternary ?:-operator
AST_MEMRD AST_MEMWR Read and write memories. These nodes are

generated by the AST simplifier for writes/reads
to/from Verilog arrays.

AST_ASSIGN An assign statement
AST_CELL A cell instantiation
AST_PRIMITIVE A primitive cell (and, nand, or, etc.)
AST_ALWAYS, AST_INITIAL Verilog always- and initial-blocks
AST_BLOCK A begin-end-block
AST_ASSIGN_EQ. AST_ASSIGN_LE Blocking (=) and nonblocking (<=) assignments

within an always- or initial-block
AST_CASE. AST_COND, AST_DEFAULT The case (if) statements, conditions within a case

and the default case respectively
AST_FOR A for-loop with an always- or initial-block
AST_GENVAR, AST_GENBLOCK, AST_GENFOR,
AST_GENIF

The genvar and generate keywords and for and if
within a generate block.

AST_POSEDGE, AST_NEGEDGE, AST_EDGE Event conditions for always blocks.

Table 7.1: AST node types with their corresponding Verilog constructs.
(continuation from previous page)

• Inline all task and function calls.

• Evaluate all generate-statements and unroll all for-loops.

• Perform const folding where it is necessary (e.g. in the value part of AST_PARAMETER, AST_LOCALPARAM,
AST_PARASET and AST_RANGE nodes).

• Replace AST_PRIMITIVE nodes with appropriate AST_ASSIGN nodes.

• Replace dynamic bit ranges in the left-hand-side of assignments with AST_CASE nodes with AST_COND
children for each possible case.

• Detect array access patterns that are too complicated for the RTLIL::Memory abstraction and replace
them with a set of signals and cases for all reads and/or writes.

• Otherwise replace array accesses with AST_MEMRD and AST_MEMWR nodes.

In addition to these transformations, the simplifier also annotates the AST with additional information
that is needed for the RTLIL generator, namely:

54

CHAPTER 7. THE VERILOG AND AST FRONTENDS

• All ranges (width of signals and bit selections) are not only const folded but (when a constant value
is found) are also written to member variables in the AST_RANGE node.

• All identifiers are resolved and all AST_IDENTIFIER nodes are annotated with a pointer to the AST
node that contains the declaration of the identifier. If no declaration has been found, an AST_AUTOWIRE
node is created and used for the annotation.

This produces an AST that is fairly easy to convert to the RTLIL format.

7.2.2 Generating RTLIL

After AST simplification, the AST::AstNode::genRTLIL() method of each AST_MODULE node in the AST is
called. This initiates a recursive process that generates equivalent RTLIL data for the AST data.

The AST::AstNode::genRTLIL() method returns an RTLIL::SigSpec structure. For nodes that represent
expressions (operators, constants, signals, etc.), the cells needed to implement the calculation described by
the expression are created and the resulting signal is returned. That way it is easy to generate the circuits
for large expressions using depth-first recursion. For nodes that do not represent an expression (such as
AST_CELL), the corresponding circuit is generated and an empty RTLIL::SigSpec is returned.

7.3 Synthesizing Verilog always Blocks

For behavioural Verilog code (code utilizing always- and initial-blocks) it is necessary to also generate
RTLIL::Process objects. This is done in the following way:

• Whenever AST::AstNode::genRTLIL() encounters an always- or initial-block, it creates an instance
of AST_INTERNAL::ProcessGenerator. This object then generates the RTLIL::Process object for the
block. It also calls AST::AstNode::genRTLIL() for all right-hand-side expressions contained within
the block.

• First the AST_INTERNAL::ProcessGenerator creates a list of all signals assigned within the block. It
then creates a set of temporary signals using the naming scheme $<number>\<original_name> for
each of the assigned signals.

• Then an RTLIL::Process is created that assigns all intermediate values for each left-hand-side signal
to the temporary signal in its RTLIL::CaseRule/RTLIL::SwitchRule tree.

• Finally a RTLIL::SyncRule is created for the RTLIL::Process that assigns the temporary signals for
the final values to the actual signals.

• Calls to AST::AstNode::genRTLIL() are generated for right hand sides as needed. When blocking
assignments are used, AST::AstNode::genRTLIL() is configured using global variables to use the tem-
porary signals that hold the correct intermediate values whenever one of the previously assigned
signals is used in an expression.

Unfortunately the generation of a correct RTLIL::CaseRule/RTLIL::SwitchRule tree for behavioural code
is a non-trivial task. The AST frontend solves the problem using the approach described on the following
pages. The following example illustrates what the algorithm is supposed to do. Consider the following
Verilog code:

55

CHAPTER 7. THE VERILOG AND AST FRONTENDS

1 always @(posedge clock) begin
2 out1 = in1;
3 if (in2)
4 out1 = !out1;
5 out2 <= out1;
6 if (in3)
7 out2 <= out2;
8 if (in4)
9 if (in5)

10 out3 <= in6;
11 else
12 out3 <= in7;
13 out1 = out1 ^ out2;
14 end

This is translated by the Verilog and AST frontends into the following RTLIL code (attributes, cell
parameters and wire declarations not included):

1 cell $logic_not $logic_not$<input>:4$2
2 connect \A \in1
3 connect \Y $logic_not$<input>:4$2_Y
4 end
5 cell $xor xor<input>:13$3
6 connect \A $1\out1[0:0]
7 connect \B \out2
8 connect \Y xor<input>:13$3_Y
9 end

10 process $proc$<input>:1$1
11 assign $0\out3[0:0] \out3
12 assign $0\out2[0:0] $1\out1[0:0]
13 assign $0\out1[0:0] xor<input>:13$3_Y
14 switch \in2
15 case 1’1
16 assign $1\out1[0:0] $logic_not$<input>:4$2_Y
17 case
18 assign $1\out1[0:0] \in1
19 end
20 switch \in3
21 case 1’1
22 assign $0\out2[0:0] \out2
23 case
24 end
25 switch \in4
26 case 1’1
27 switch \in5
28 case 1’1
29 assign $0\out3[0:0] \in6
30 case
31 assign $0\out3[0:0] \in7
32 end
33 case
34 end
35 sync posedge \clock
36 update \out1 $0\out1[0:0]

56

CHAPTER 7. THE VERILOG AND AST FRONTENDS

37 update \out2 $0\out2[0:0]
38 update \out3 $0\out3[0:0]
39 end

Note that the two operators are translated into separate cells outside the generated process. The signal
out1 is assigned using blocking assignments and therefore out1 has been replaced with a different signal
in all expressions after the initial assignment. The signal out2 is assigned using nonblocking assignments
and therefore is not substituted on the right-hand-side expressions.

The RTLIL::CaseRule/RTLIL::SwitchRule tree must be interpreted the following way:

• On each case level (the body of the process is the root case), first the actions on this level are
evaluated and then the switches within the case are evaluated. (Note that the last assignment on
line 13 of the Verilog code has been moved to the beginning of the RTLIL process to line 13 of the
RTLIL listing.)
I.e. the special cases deeper in the switch hierarchy override the defaults on the upper levels. The
assignments in lines 12 and 22 of the RTLIL code serve as an example for this.
Note that in contrast to this, the order within the RTLIL::SwitchRule objects within a RTLIL::CaseRule
is preserved with respect to the original AST and Verilog code.

• The whole RTLIL::CaseRule/RTLIL::SwitchRule tree describes an asynchronous circuit. I.e. the de-
cision tree formed by the switches can be seen independently for each assigned signal. Whenever
one assigned signal changes, all signals that depend on the changed signals are to be updated. For
example the assignments in lines 16 and 18 in the RTLIL code in fact influence the assignment in
line 12, even though they are in the “wrong order”.

The only synchronous part of the process is in the RTLIL::SyncRule object generated at line 35 in the RTLIL
code. The sync rule is the only part of the process where the original signals are assigned. The synchroniza-
tion event from the original Verilog code has been translated into the synchronization type (posedge) and
signal (\clock) for the RTLIL::SyncRule object. In the case of this simple example the RTLIL::SyncRule ob-
ject is later simply transformed into a set of d-type flip-flops and the RTLIL::CaseRule/RTLIL::SwitchRule
tree to a decision tree using multiplexers.

In more complex examples (e.g. asynchronous resets) the part of the RTLIL::CaseRule/RTLIL::SwitchRule
tree that describes the asynchronous reset must first be transformed to the correct RTLIL::SyncRule objects.
This is done by the proc_adff pass.

7.3.1 The ProcessGenerator Algorithm

The AST_INTERNAL::ProcessGenerator uses the following internal state variables:

• subst_rvalue_from and subst_rvalue_to
These two variables hold the replacement pattern that should be used by AST::AstNode::genRTLIL()
for signals with blocking assignments. After initialization of AST_INTERNAL::ProcessGenerator these
two variables are empty.

• subst_lvalue_from and subst_lvalue_to
These two variables contain the mapping from left-hand-side signals (\<name>) to the current
temporary signal for the same thing (initially $0\<name>).

• current_case
A pointer to a RTLIL::CaseRule object. Initially this is the root case of the generated RTLIL::Process.

57

CHAPTER 7. THE VERILOG AND AST FRONTENDS

As the algorithm runs these variables are continuously modified as well as pushed to the stack and later
restored to their earlier values by popping from the stack.

On startup the ProcessGenerator generates a new RTLIL::Process object with an empty root case and
initializes its state variables as described above. Then the RTLIL::SyncRule objects are created using
the synchronization events from the AST_ALWAYS node and the initial values of subst_lvalue_from and
subst_lvalue_to. Then the AST for this process is evaluated recursively.

During this recursive evaluation, three different relevant types of AST nodes can be discovered: AST_ASSIGN_LE
(nonblocking assignments), AST_ASSIGN_EQ (blocking assignments) and AST_CASE (if or case statement).

7.3.1.1 Handling of Nonblocking Assignments

When an AST_ASSIGN_LE node is discovered, the following actions are performed by the ProcessGenerator:

• The left-hand-side is evaluated using AST::AstNode::genRTLIL() and mapped to a temporary signal
name using subst_lvalue_from and subst_lvalue_to.

• The right-hand-side is evaluated using AST::AstNode::genRTLIL(). For this call, the values of subst_rvalue_from
and subst_rvalue_to are used to map blocking-assigned signals correctly.

• Remove all assignments to the same left-hand-side as this assignment from the current_case and all
cases within it.

• Add the new assignment to the current_case.

7.3.1.2 Handling of Blocking Assignments

When an AST_ASSIGN_EQ node is discovered, the following actions are performed by the ProcessGenerator:

• Perform all the steps that would be performed for a nonblocking assignment (see above).

• Remove the found left-hand-side (before lvalue mapping) from subst_rvalue_from and also remove
the respective bits from subst_rvalue_to.

• Append the found left-hand-side (before lvalue mapping) to subst_rvalue_from and append the found
right-hand-side to subst_rvalue_to.

7.3.1.3 Handling of Cases and if-Statements

When an AST_CASE node is discovered, the following actions are performed by the ProcessGenerator:

• The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
pushed to the stack.

• A new RTLIL::SwitchRule object is generated, the selection expression is evaluated using
AST::AstNode::genRTLIL() (with the use of subst_rvalue_from and subst_rvalue_to) and added to
the RTLIL::SwitchRule object and the object is added to the current_case.

• All lvalues assigned to within the AST_CASE node using blocking assignments are collected and saved
in the local variable this_case_eq_lvalue.

• New temporary signals are generated for all signals in this_case_eq_lvalue and stored in
this_case_eq_ltemp.

58

CHAPTER 7. THE VERILOG AND AST FRONTENDS

• The signals in this_case_eq_lvalue are mapped using subst_rvalue_from and subst_rvalue_to and
the resulting set of signals is stored in this_case_eq_rvalue.

Then the following steps are performed for each AST_COND node within the AST_CASE node:

• Set subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to to the values that
have been pushed to the stack.

• Remove this_case_eq_lvalue from subst_lvalue_from/subst_lvalue_to.

• Append this_case_eq_lvalue to subst_lvalue_from and append this_case_eq_ltemp to
subst_lvalue_to.

• Push the value of current_case.

• Create a new RTLIL::CaseRule. Set current_case to the new object and add the new object to the
RTLIL::SwitchRule created above.

• Add an assignment from this_case_eq_rvalue to this_case_eq_ltemp to the new current_case.

• Evaluate the compare value for this case using AST::AstNode::genRTLIL() (with the use of
subst_rvalue_from and subst_rvalue_to) modify the new current_case accordingly.

• Recursion into the children of the AST_COND node.

• Restore current_case by popping the old value from the stack.

Finally the following steps are performed:

• The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
popped from the stack.

• The signals from this_case_eq_lvalue are removed from the subst_rvalue_from/subst_rvalue_to-
pair.

• The value of this_case_eq_lvalue is appended to subst_rvalue_from and the value of
this_case_eq_ltemp is appended to subst_rvalue_to.

• Map the signals in this_case_eq_lvalue using subst_lvalue_from/subst_lvalue_to.

• Remove all assignments to signals in this_case_eq_lvalue in current_case and all cases within it.

• Add an assignment from this_case_eq_ltemp to this_case_eq_lvalue to current_case.

7.3.1.4 Further Analysis of the Algorithm for Cases and if-Statements

With respect to nonblocking assignments the algorithm is easy: later assignments invalidate earlier assign-
ments. For each signal assigned using nonblocking assignments exactly one temporary variable is generated
(with the $0-prefix) and this variable is used for all assignments of the variable.

Note how all the _eq_-variables become empty when no blocking assignments are used and many of the
steps in the algorithm can then be ignored as a result of this.

For a variable with blocking assignments the algorithm shows the following behaviour: First a new tem-
porary variable is created. This new temporary variable is then registered as the assignment target for all
assignments for this variable within the cases for this AST_CASE node. Then for each case the new tempo-
rary variable is first assigned the old temporary variable. This assignment is overwritten if the variable is
actually assigned in this case and is kept as a default value otherwise.

59

CHAPTER 7. THE VERILOG AND AST FRONTENDS

This yields an RTLIL::CaseRule that assigns the new temporary variable in all branches. So when all cases
have been processed a final assignment is added to the containing block that assigns the new temporary
variable to the old one. Note how this step always overrides a previous assignment to the old temporary vari-
able. Other than nonblocking assignments, the old assignment could still have an effect somewhere in the
design, as there have been calls to AST::AstNode::genRTLIL() with a subst_rvalue_from/subst_rvalue_to-
tuple that contained the right-hand-side of the old assignment.

7.3.2 The proc pass

The ProcessGenerator converts a behavioural model in AST representation to a behavioural model in
RTLIL::Process representation. The actual conversion from a behavioural model to an RTL representation
is performed by the proc pass and the passes it launches:

• proc_clean and proc_rmdead
These two passes just clean up the RTLIL::Process structure. The proc_clean pass removes empty
parts (eg. empty assignments) from the process and proc_rmdead detects and removes unreachable
branches from the process’s decision trees.

• proc_arst
This pass detects processes that describe d-type flip-flops with asynchronous resets and rewrites the
process to better reflect what they are modelling: Before this pass, an asynchronous reset has two
edge-sensitive sync rules and one top-level RTLIL::SwitchRule for the reset path. After this pass the
sync rule for the reset is level-sensitive and the top-level RTLIL::SwitchRule has been removed.

• proc_mux
This pass converts the RTLIL::CaseRule/RTLIL::SwitchRule-tree to a tree of multiplexers per written
signal. After this, the RTLIL::Process structure only contains the RTLIL::SyncRules that describe
the output registers.

• proc_dff
This pass replaces the RTLIL::SyncRules to d-type flip-flops (with asynchronous resets if necessary).

• proc_clean
A final call to proc_clean removes the now empty RTLIL::Process objects.

Performing these last processing steps in passes instead of in the Verilog frontend has two important
benefits:
First it improves the transparency of the process. Everything that happens in a separate pass is easier to
debug, as the RTLIL data structures can be easily investigated before and after each of the steps.
Second it improves flexibility. This scheme can easily be extended to support other types of storage-
elements, such as sr-latches or d-latches, without having to extend the actual Verilog frontend.

7.4 Synthesizing Verilog Arrays

FIXME:
Add some information on the generation of $memrd and $memwr cells and how they are processed in the
memory pass.

7.5 Synthesizing Parametric Designs

FIXME:
Add some information on the RTLIL::Module::derive() method and how it is used to synthesize para-
metric modules via the hierarchy pass.

60

Chapter 8

Optimizations

Yosys employs a number of optimizations to generate better and cleaner results. This chapter outlines
these optimizations.

8.1 Simple Optimizations

The Yosys pass opt runs a number of simple optimizations. This includes removing unused signals and
cells and const folding. It is recommended to run this pass after each major step in the synthesis script. At
the time of this writing the opt pass executes the following passes that each perform a simple optimization:

• Once at the beginning of opt:

– opt_const

– opt_share -nomux

• Repeat until result is stable:

– opt_muxtree

– opt_reduce

– opt_share

– opt_rmdff

– opt_clean

– opt_const

The following section describes each of the opt_* passes.

8.1.1 The opt_const pass

This pass performs const folding on the internal combinational cell types described in Chap. 5. This means
a cell with all constant inputs is replaced with the constant value this cell drives. In some cases this pass
can also optimize cells with some constant inputs.

Table 8.1 shows the replacement rules used for optimizing an $_AND_ gate. The first three rules implement
the obvious const folding rules. Note that ‘any’ might include dynamic values calculated by other parts of
the circuit. The following three lines propagate undef (X) states. These are the only three cases in which
it is allowed to propagate an undef according to Sec. 5.1.10 of IEEE Std. 1364-2005 [Ver06].

61

CHAPTER 8. OPTIMIZATIONS

A-Input B-Input Replacement
any 0 0
0 any 0
1 1 1

X/Z X/Z X
1 X/Z X

X/Z 1 X
any X/Z 0
X/Z any 0

a 1 a
1 b b

Table 8.1: Const folding rules for $_AND_ cells as used in opt_const.

The next two lines assume the value 0 for undef states. These two rules are only used if no other substi-
tutions are possible in the current module. If other substitutions are possible they are performed first, in
the hope that the ‘any’ will change to an undef value or a 1 and therefore the output can be set to undef.

The last two lines simply replace an $_AND_ gate with one constant-1 input with a buffer.

Besides this basic const folding the opt_const pass can replace 1-bit wide $eq and $ne cells with buffers or
not-gates if one input is constant.

The opt_const pass is very conservative regarding optimizing $mux cells, as these cells are often used to
model decision-trees and breaking these trees can interfere with other optimizations.

8.1.2 The opt_muxtree pass

This pass optimizes trees of multiplexer cells by analyzing the select inputs. Consider the following simple
example:

1 module uut(a, y);
2 input a;
3 output [1:0] y = a ? (a ? 1 : 2) : 3;
4 endmodule

The output can never be 2, as this would require a to be 1 for the outer multiplexer and 0 for the inner
multiplexer. The opt_muxtree pass detects this contradiction and replaces the inner multiplexer with a
constant 1, yielding the logic for y = a ? 1 : 3.

8.1.3 The opt_reduce pass

This is a simple optimization pass that identifies and consolidates identical input bits to $reduce_and and
$reduce_or cells. It also sorts the input bits to ease identification of shareable $reduce_and and $reduce_or
cells in other passes.

This pass also identifies and consolidates identical inputs to multiplexer cells. In this case the new shared
select bit is driven using a $reduce_or cell that combines the original select bits.

Lastly this pass consolidates trees of $reduce_and cells and trees of $reduce_or cells to single large
$reduce_and or $reduce_or cells.

These three simple optimizations are performed in a loop until a stable result is produced.

62

CHAPTER 8. OPTIMIZATIONS

8.1.4 The opt_rmdff pass

This pass identifies single-bit d-type flip-flops ($_DFF_*, $dff, and $adff cells) with a constant data input
and replaces them with a constant driver.

8.1.5 The opt_clean pass

This pass identifies unused signals and cells and removes them from the design. It also creates an
\unused_bits attribute on wires with unused bits. This attribute can be used for debugging or by other
optimization passes.

8.1.6 The opt_share pass

This pass performs trivial resource sharing. This means that this pass identifies cells with identical inputs
and replaces them with a single instance of the cell.

The option -nomux can be used to disable resource sharing for multiplexer cells ($mux and $pmux. This
can be useful as it prevents multiplexer trees to be merged, which might prevent opt_muxtree to identify
possible optimizations.

8.2 FSM Extraction and Encoding

The fsm pass performs finite-state-machine (FSM) extraction and recoding. The fsm pass simply executes
the following other passes:

• Identify and extract FSMs:

– fsm_detect

– fsm_extract

• Basic optimizations:

– fsm_opt

– opt_clean

– fsm_opt

• Expanding to nearby gate-logic (if called with -expand):

– fsm_expand

– opt_clean

– fsm_opt

• Re-code FSM states (unless called with -norecode):

– fsm_recode

• Print information about FSMs:

– fsm_info

• Export FSMs in KISS2 file format (if called with -export):

– fsm_export

63

CHAPTER 8. OPTIMIZATIONS

• Map FSMs to RTL cells (unless called with -nomap):

– fsm_map

The fsm_detect pass identifies FSM state registers and marks them using the \fsm_encoding= "auto" at-
tribute. The fsm_extract extracts all FSMs marked using the \fsm_encoding attribute (unless \fsm_encoding
is set to "none") and replaces the corresponding RTL cells with a $fsm cell. All other fsm_* passes operate
on these $fsm cells. The fsm_map call finally replaces the $fsm cells with RTL cells.

Note that these optimizations operate on an RTL netlist. I.e. the fsm pass should be executed after the
proc pass has transformed all RTLIL::Process objects to RTL cells.

The algorithms used for FSM detection and extraction are influenced by a more general reported technique
[STGR10].

8.2.1 FSM Detection

The fsm_detect pass identifies FSM state registers. It sets the \fsm_encoding= "auto" attribute on any
(multi-bit) wire that matches the following description:

• Does not already have the \fsm_encoding attribute.

• Is not an output of the containing module.

• Is driven by single $dff or $adff cell.

• The \D-Input of this $dff or $adff cell is driven by a multiplexer tree that only has constants or the
old state value on its leaves.

• The state value is only used in the said multiplexer tree or by simple relational cells that compare
the state value to a constant (usually $eq cells).

This heuristic has proven to work very well. It is possible to overwrite it by setting \fsm_encoding= "auto"
on registers that should be considered FSM state registers and setting \fsm_encoding= "none" on registers
that match the above criteria but should not be considered FSM state registers.

8.2.2 FSM Extraction

The fsm_extract pass operates on all state signals marked with the \fsm_encoding (!= "none") attribute.
For each state signal the following information is determined:

• The state registers

• The asynchronous reset state if the state registers use asynchronous reset

• All states and the control input signals used in the state transition functions

• The control output signals calculated from the state signals and control inputs

• A table of all state transitions and corresponding control inputs- and outputs

64

CHAPTER 8. OPTIMIZATIONS

The state registers (and asynchronous reset state, if applicable) is simply determined by identifying the
driver for the state signal.

From there the $mux-tree driving the state register inputs is recursively traversed. All select inputs are
control signals and the leaves of the $mux-tree are the states. The algorithm fails if a non-constant leaf
that is not the state signal itself is found.

The list of control outputs is initialized with the bits from the state signal. It is then extended by adding
all values that are calculated by cells that compare the state signal with a constant value.

In most cases this will cover all uses of the state register, thus rendering the state encoding arbitrary. If
however a design uses e.g. a single bit of the state value to drive a control output directly, this bit of the
state signal will be transformed to a control output of the same value.

Finally, a transition table for the FSM is generated. This is done by using the ConstEval C++ helper class
(defined in kernel/consteval.h) that can be used to evaluate parts of the design. The ConstEval class can
be asked to calculate a given set of result signals using a set of signal-value assignments. It can also be
passed a list of stop-signals that abort the ConstEval algorithm if the value of a stop-signal is needed in
order to calculate the result signals.

The fsm_extract pass uses the ConstEval class in the following way to create a transition table. For each
state:

1. Create a ConstEval object for the module containing the FSM

2. Add all control inputs to the list of stop signals

3. Set the state signal to the current state

4. Try to evaluate the next state and control output

5. If step 4 was not successful:

• Recursively goto step 4 with the offending stop-signal set to 0.
• Recursively goto step 4 with the offending stop-signal set to 1.

6. If step 4 was successful: Emit transition

Finally a $fsm cell is created with the generated transition table and added to the module. This new cell
is connected to the control signals and the old drivers for the control outputs are disconnected.

8.2.3 FSM Optimization

The fsm_opt pass performs basic optimizations on $fsm cells (not including state recoding). The following
optimizations are performed (in this order):

• Unused control outputs are removed from the $fsm cell. The attribute \unused_bits (that is usually
set by the opt_clean pass) is used to determine which control outputs are unused.

• Control inputs that are connected to the same driver are merged.

• When a control input is driven by a control output, the control input is removed and the transition
table altered to give the same performance without the external feedback path.

• Entries in the transition table that yield the same output and only differ in the value of a single
control input bit are merged and the different bit is removed from the sensitivity list (turned into a
don’t-care bit).

• Constant inputs are removed and the transition table is altered to give an unchanged behaviour.

• Unused inputs are removed.

65

CHAPTER 8. OPTIMIZATIONS

8.2.4 FSM Recoding

The fsm_recode pass assigns new bit pattern to the states. Usually this also implies a change in the width
of the state signal. At the moment of this writing only one-hot encoding with all-zero for the reset state
is supported.

The fsm_recode pass can also write a text file with the changes performed by it that can be used when
verifying designs synthesized by Yosys using Synopsys Formality [24].

8.3 Logic Optimization

Yosys can perform multi-level combinational logic optimization on gate-level netlists using the external
program ABC [27]. The abc pass extracts the combinational gate-level parts of the design, passes it
through ABC, and re-integrates the results. The abc pass can also be used to perform other operations
using ABC, such as technology mapping (see Sec. 9.3 for details).

66

Chapter 9

Technology Mapping

Previous chapters outlined how HDL code is transformed into an RTL netlist. The RTL netlist is still
based on abstract coarse-grain cell types like arbitrary width adders and even multipliers. This chapter
covers how an RTL netlist is transformed into a functionally equivalent netlist utilizing the cell types
available in the target architecture.

Technology mapping is often performed in two phases. In the first phase RTL cells are mapped to an
internal library of single-bit cells (see Sec. 5.2). In the second phase this netlist of internal gate types is
transformed to a netlist of gates from the target technology library.

When the target architecture provides coarse-grain cells (such as block ram or ALUs), these must be
mapped to directly form the RTL netlist, as information on the coarse-grain structure of the design is lost
when it is mapped to bit-width gate types.

9.1 Cell Substitution

The simplest form of technology mapping is cell substitution, as performed by the techmap pass. This pass,
when provided with a Verilog file that implements the RTL cell types using simpler cells, simply replaces
the RTL cells with the provided implementation.

When no map file is provided, techmap uses a built-in map file that maps the Yosys RTL cell types to the in-
ternal gate library used by Yosys. The curious reader may find this map file as techlibs/common/techmap.v
in the Yosys source tree.

Additional features have been added to techmap to allow for conditional mapping of cells (see help techmap
or Sec. C.115). This can for example be useful if the target architecture supports hardware multipliers for
certain bit-widths but not for others.

A usual synthesis flow would first use the techmap pass to directly map some RTL cells to coarse-grain cells
provided by the target architecture (if any) and then use techmap with the built-in default file to map the
remaining RTL cells to gate logic.

9.2 Subcircuit Substitution

Sometimes the target architecture provides cells that are more powerful than the RTL cells used by Yosys.
For example a cell in the target architecture that can calculate the absolute-difference of two numbers does
not match any single RTL cell type but only combinations of cells.

67

CHAPTER 9. TECHNOLOGY MAPPING

For these cases Yosys provides the extract pass that can match a given set of modules against a design
and identify the portions of the design that are identical (i.e. isomorphic subcircuits) to any of the given
modules. These matched subcircuits are then replaced by instances of the given modules.

The extract pass also finds basic variations of the given modules, such as swapped inputs on commutative
cell types.

In addition to this the extract pass also has limited support for frequent subcircuit mining, i.e. the process
of finding recurring subcircuits in the design. This has a few applications, including the design of new
coarse-grain architectures [GW13].

The hard algorithmic work done by the extract pass (solving the isomorphic subcircuit problem and
frequent subcircuit mining) is performed using the SubCircuit library that can also be used stand-alone
without Yosys (see Sec. A.3).

9.3 Gate-Level Technology Mapping

On the gate-level the target architecture is usually described by a “Liberty file”. The Liberty file format is
an industry standard format that can be used to describe the behaviour and other properties of standard
library cells [25].

Mapping a design utilizing the Yosys internal gate library (e.g. as a result of mapping it to this represen-
tation using the techmap pass) is performed in two phases.

First the register cells must be mapped to the registers that are available on the target architectures. The
target architecture might not provide all variations of d-type flip-flops with positive and negative clock
edge, high-active and low-active asynchronous set and/or reset, etc. Therefore the process of mapping the
registers might add additional inverters to the design and thus it is important to map the register cells
first.

Mapping of the register cells may be performed by using the dfflibmap pass. This pass expects a Liberty
file as argument (using the -liberty option) and only uses the register cells from the Liberty file.

Secondly the combinational logic must be mapped to the target architecture. This is done using the
external program ABC [27] via the abc pass by using the -liberty option to the pass. Note that in this
case only the combinatorial cells are used from the cell library.

Occasionally Liberty files contain trade secrets (such as sensitive timing information) that cannot be shared
freely. This complicates processes such as reporting bugs in the tools involved. When the information in
the Liberty file used by Yosys and ABC are not part of the sensitive information, the additional tool
yosys-filterlib (see Sec. B.2) can be used to strip the sensitive information from the Liberty file.

68

Appendix A

Auxiliary Libraries

The Yosys source distribution contains some auxiliary libraries that are bundled with Yosys.

A.1 SHA1

The files in libs/sha1/ provide a public domain SHA1 implementation written by Steve Reid, Bruce
Guenter, and Volker Grabsch. It is used for generating unique names when specializing parameterized
modules.

A.2 BigInt

The files in libs/bigint/ provide a library for performing arithmetic with arbitrary length integers. It is
written by Matt McCutchen [29].

The BigInt library is used for evaluating constant expressions, e.g. using the ConstEval class provided in
kernel/consteval.h.

A.3 SubCircuit

The files in libs/subcircuit provide a library for solving the subcircuit isomorphism problem. It is written
by Clifford Wolf and based on the Ullmann Subgraph Isomorphism Algorithm [Ull76]. It is used by the
extract pass (see help extract or Sec. C.34).

A.4 ezSAT

The files in libs/ezsat provide a library for simplifying generating CNF formulas for SAT solvers. It also
contains bindings of MiniSAT. The ezSAT library is written by Clifford Wolf. It is used by the sat pass
(see help sat or Sec. C.93).

69

Appendix B

Auxiliary Programs

Besides the main yosys executable, the Yosys distribution contains a set of additional helper programs.

B.1 yosys-config

The yosys-config tool (an auto-generated shell-script) can be used to query compiler options and other
information needed for building loadable modules for Yosys. FIXME: See Sec. 6 for details.

B.2 yosys-filterlib

The yosys-filterlib tool is a small utility that can be used to strip or extract information from a Liberty
file. See Sec. 9.3 for details.

B.3 yosys-abc

This is a unmodified copy of ABC [27]. Not all versions of Yosys work with all versions of ABC. So Yosys
comes with its own yosys-abc to avoid compatibility issues between the two.

70

Appendix C

Command Reference Manual

C.1 abc – use ABC for technology mapping

1 abc [options] [selection]
2
3 This pass uses the ABC tool [1] for technology mapping of yosys’s internal gate
4 library to a target architecture.
5
6 -exe <command>
7 use the specified command name instead of "yosys-abc" to execute ABC.
8 This can e.g. be used to call a specific version of ABC or a wrapper.
9

10 -script <file>
11 use the specified ABC script file instead of the default script.
12
13 if <file> starts with a plus sign (+), then the rest of the filename
14 string is interpreted as the command string to be passed to ABC. The
15 leading plus sign is removed and all commas (,) in the string are
16 replaced with blanks before the string is passed to ABC.
17
18 if no -script parameter is given, the following scripts are used:
19
20 for -liberty without -constr:
21 strash; scorr; ifraig; retime {D}; strash; dch -f; map {D}
22
23 for -liberty with -constr:
24 strash; scorr; ifraig; retime {D}; strash; dch -f; map {D};
25 buffer; upsize {D}; dnsize {D}; stime -p
26
27 for -lut:
28 strash; scorr; ifraig; retime; strash; dch -f; if
29
30 otherwise:
31 strash; scorr; ifraig; retime; strash; dch -f; map
32
33 -fast
34 use different default scripts that are slightly faster (at the cost
35 of output quality):

71

APPENDIX C. COMMAND REFERENCE MANUAL

36
37 for -liberty without -constr:
38 retime {D}; map {D}
39
40 for -liberty with -constr:
41 retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p
42
43 for -lut:
44 retime; if
45
46 otherwise:
47 retime; map
48
49 -liberty <file>
50 generate netlists for the specified cell library (using the liberty
51 file format).
52
53 -constr <file>
54 pass this file with timing constraints to ABC. use with -liberty.
55
56 a constr file contains two lines:
57 set_driving_cell <cell_name>
58 set_load <floating_point_number>
59
60 the set_driving_cell statement defines which cell type is assumed to
61 drive the primary inputs and the set_load statement sets the load in
62 femtofarads for each primary output.
63
64 -D <picoseconds>
65 set delay target. the string {D} in the default scripts above is
66 replaced by this option when used, and an empty string otherwise.
67
68 -lut <width>
69 generate netlist using luts of (max) the specified width.
70
71 -lut <w1>:<w2>
72 generate netlist using luts of (max) the specified width <w2>. All
73 luts with width <= <w1> have constant cost. for luts larger than <w1>
74 the area cost doubles with each additional input bit. the delay cost
75 is still constant for all lut widths.
76
77 -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
78 generate netlist using luts. Use the specified costs for luts with 1,
79 2, 3, .. inputs.
80
81 -g type1,type2,...
82 Map the the specified list of gate types. Supported gates types are:
83 AND, NAND, OR, NOR, XOR, XNOR, MUX, AOI3, OAI3, AOI4, OAI4.
84 (The NOT gate is always added to this list automatically.)
85
86 -dff
87 also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
88 clock domains are automatically partitioned in clock domains and each
89 domain is passed through ABC independently.

72

APPENDIX C. COMMAND REFERENCE MANUAL

90
91 -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
92 use only the specified clock domain. this is like -dff, but only FF
93 cells that belong to the specified clock domain are used.
94
95 -keepff
96 set the "keep" attribute on flip-flop output wires. (and thus preserve
97 them, for example for equivalence checking.)
98
99 -nocleanup
100 when this option is used, the temporary files created by this pass
101 are not removed. this is useful for debugging.
102
103 -showtmp
104 print the temp dir name in log. usually this is suppressed so that the
105 command output is identical across runs.
106
107 -markgroups
108 set a ’abcgroup’ attribute on all objects created by ABC. The value of
109 this attribute is a unique integer for each ABC process started. This
110 is useful for debugging the partitioning of clock domains.
111
112 When neither -liberty nor -lut is used, the Yosys standard cell library is
113 loaded into ABC before the ABC script is executed.
114
115 This pass does not operate on modules with unprocessed processes in it.
116 (I.e. the ’proc’ pass should be used first to convert processes to netlists.)
117
118 [1] http://www.eecs.berkeley.edu/~alanmi/abc/

C.2 add – add objects to the design

1 add <command> [selection]
2
3 This command adds objects to the design. It operates on all fully selected
4 modules. So e.g. ’add -wire foo’ will add a wire foo to all selected modules.
5
6
7 add {-wire|-input|-inout|-output} <name> <width> [selection]
8
9 Add a wire (input, inout, output port) with the given name and width. The

10 command will fail if the object exists already and has different properties
11 than the object to be created.
12
13
14 add -global_input <name> <width> [selection]
15
16 Like ’add -input’, but also connect the signal between instances of the
17 selected modules.

73

APPENDIX C. COMMAND REFERENCE MANUAL

C.3 aigmap – map logic to and-inverter-graph circuit

1 aigmap [options] [selection]
2
3 Replace all logic cells with circuits made of only $_AND_ and
4 $_NOT_ cells.
5
6 -nand
7 Enable creation of $_NAND_ cells

C.4 alumacc – extract ALU and MACC cells

1 alumacc [selection]
2
3 This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
4 and $macc cells.

C.5 cd – a shortcut for ’select -module <name>’

1 cd <modname>
2
3 This is just a shortcut for ’select -module <modname>’.
4
5
6 cd <cellname>
7
8 When no module with the specified name is found, but there is a cell
9 with the specified name in the current module, then this is equivalent

10 to ’cd <celltype>’.
11
12 cd ..
13
14 This is just a shortcut for ’select -clear’.

C.6 check – check for obvious problems in the design

1 check [options] [selection]
2
3 This pass identifies the following problems in the current design:
4
5 - combinatorial loops
6
7 - two or more conflicting drivers for one wire
8
9 - used wires that do not have a driver

10
11 When called with -noinit then this command also checks for wires which have

74

APPENDIX C. COMMAND REFERENCE MANUAL

12 the ’init’ attribute set.
13
14 When called with -assert then the command will produce an error if any
15 problems are found in the current design.

C.7 chparam – re-evaluate modules with new parameters

1 chparam [-set name value]... [selection]
2
3 Re-evaluate the selected modules with new parameters. String values must be
4 passed in double quotes (").
5
6
7 chparam -list [selection]
8
9 List the available parameters of the selected modules.

C.8 clean – remove unused cells and wires

1 clean [options] [selection]
2
3 This is identical to ’opt_clean’, but less verbose.
4
5 When commands are separated using the ’;;’ token, this command will be executed
6 between the commands.
7
8 When commands are separated using the ’;;;’ token, this command will be executed
9 in -purge mode between the commands.

C.9 connect – create or remove connections

1 connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>
2
3 Create a connection. This is equivalent to adding the statement ’assign
4 <lhs-expr> = <rhs-expr>;’ to the Verilog input. Per default, all existing
5 drivers for <lhs-expr> are unconnected. This can be overwritten by using
6 the -nounset option.
7
8
9 connect [-nomap] -unset <expr>

10
11 Unconnect all existing drivers for the specified expression.
12
13
14 connect [-nomap] -port <cell> <port> <expr>
15
16 Connect the specified cell port to the specified cell port.

75

APPENDIX C. COMMAND REFERENCE MANUAL

17
18
19 Per default signal alias names are resolved and all signal names are mapped
20 the the signal name of the primary driver. Using the -nomap option deactivates
21 this behavior.
22
23 The connect command operates in one module only. Either only one module must
24 be selected or an active module must be set using the ’cd’ command.
25
26 This command does not operate on module with processes.

C.10 connwrappers – replace undef values with defined constants

1 connwrappers [options] [selection]
2
3 Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
4 in wrapper cells with a (larger) constant port size. I.e. the upper bits
5 of the wrapper output are signed/unsigned bit extended. This command uses this
6 knowledge to rewire the inputs of the driven cells to match the output of
7 the driving cell.
8
9 -signed <cell_type> <port_name> <width_param>

10 -unsigned <cell_type> <port_name> <width_param>
11 consider the specified signed/unsigned wrapper output
12
13 -port <cell_type> <port_name> <width_param> <sign_param>
14 use the specified parameter to decide if signed or unsigned
15
16 The options -signed, -unsigned, and -port can be specified multiple times.

C.11 copy – copy modules in the design

1 copy old_name new_name
2
3 Copy the specified module. Note that selection patterns are not supported
4 by this command.

C.12 cover – print code coverage counters

1 cover [options] [pattern]
2
3 Print the code coverage counters collected using the cover() macro in the Yosys
4 C++ code. This is useful to figure out what parts of Yosys are utilized by a
5 test bench.
6
7 -q
8 Do not print output to the normal destination (console and/or log file)

76

APPENDIX C. COMMAND REFERENCE MANUAL

9
10 -o file
11 Write output to this file, truncate if exists.
12
13 -a file
14 Write output to this file, append if exists.
15
16 -d dir
17 Write output to a newly created file in the specified directory.
18
19 When one or more pattern (shell wildcards) are specified, then only counters
20 matching at least one pattern are printed.
21
22
23 It is also possible to instruct Yosys to print the coverage counters on program
24 exit to a file using environment variables:
25
26 YOSYS_COVER_DIR="{dir-name}" yosys {args}
27
28 This will create a file (with an auto-generated name) in this
29 directory and write the coverage counters to it.
30
31 YOSYS_COVER_FILE="{file-name}" yosys {args}
32
33 This will append the coverage counters to the specified file.
34
35
36 Hint: Use the following AWK command to consolidate Yosys coverage files:
37
38 gawk ’{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
39 printf "%-60s %10d %s\n", p[i], c[i], i; }’ {files} | sort -k3
40
41
42 Coverage counters are only available in Yosys for Linux.

C.13 delete – delete objects in the design

1 delete [selection]
2
3 Deletes the selected objects. This will also remove entire modules, if the
4 whole module is selected.
5
6
7 delete {-input|-output|-port} [selection]
8
9 Does not delete any object but removes the input and/or output flag on the

10 selected wires, thus ’deleting’ module ports.

C.14 design – save, restore and reset current design

77

APPENDIX C. COMMAND REFERENCE MANUAL

1 design -reset
2
3 Clear the current design.
4
5
6 design -save <name>
7
8 Save the current design under the given name.
9

10
11 design -stash <name>
12
13 Save the current design under the given name and then clear the current design.
14
15
16 design -push
17
18 Push the current design to the stack and then clear the current design.
19
20
21 design -pop
22
23 Reset the current design and pop the last design from the stack.
24
25
26 design -load <name>
27
28 Reset the current design and load the design previously saved under the given
29 name.
30
31
32 design -copy-from <name> [-as <new_mod_name>] <selection>
33
34 Copy modules from the specified design into the current one. The selection is
35 evaluated in the other design.
36
37
38 design -copy-to <name> [-as <new_mod_name>] [selection]
39
40 Copy modules from the current design into the specified one.

C.15 dff2dffe – transform $dff cells to $dffe cells

1 dff2dffe [options] [selection]
2
3 This pass transforms $dff cells driven by a tree of multiplexers with one or
4 more feedback paths to $dffe cells. It also works on gate-level cells such as
5 $_DFF_P_, $_DFF_N_ and $_MUX_.
6
7 -unmap
8 operate in the opposite direction: replace $dffe cells with combinations

78

APPENDIX C. COMMAND REFERENCE MANUAL

9 of $dff and $mux cells. the options below are ignore in unmap mode.
10
11 -direct <internal_gate_type> <external_gate_type>
12 map directly to external gate type. <internal_gate_type> can
13 be any internal gate-level FF cell (except $_DFFE_??_). the
14 <external_gate_type> is the cell type name for a cell with an
15 identical interface to the <internal_gate_type>, except it
16 also has an high-active enable port ’E’.
17 Usually <external_gate_type> is an intermediate cell type
18 that is then translated to the final type using ’techmap’.
19
20 -direct-match <pattern>
21 like -direct for all DFF cell types matching the expression.
22 this will use $__DFFE_* as <external_gate_type> matching the
23 internal gate type $_DFF_*_, except for $_DFF_[NP]_, which is
24 converted to $_DFFE_[NP]_.

C.16 dffinit – set INIT param on FF cells

1 dffinit [options] [selection]
2
3 This pass sets an FF cell parameter to the the initial value of the net it
4 drives. (This is primarily used in FPGA flows.)
5
6 -ff <cell_name> <output_port> <init_param>
7 operate on the specified cell type. this option can be used
8 multiple times.

C.17 dfflibmap – technology mapping of flip-flops

1 dfflibmap [-prepare] -liberty <file> [selection]
2
3 Map internal flip-flop cells to the flip-flop cells in the technology
4 library specified in the given liberty file.
5
6 This pass may add inverters as needed. Therefore it is recommended to
7 first run this pass and then map the logic paths to the target technology.
8
9 When called with -prepare, this command will convert the internal FF cells

10 to the internal cell types that best match the cells found in the given
11 liberty file.

C.18 dffsr2dff – convert DFFSR cells to simpler FF cell types

1 dffsr2dff [options] [selection]
2
3 This pass converts DFFSR cells ($dffsr, $_DFFSR_???_) and ADFF cells ($adff,
4 $_DFF_???_) to simpler FF cell types when any of the set/reset inputs is unused.

79

APPENDIX C. COMMAND REFERENCE MANUAL

C.19 dump – print parts of the design in ilang format

1 dump [options] [selection]
2
3 Write the selected parts of the design to the console or specified file in
4 ilang format.
5
6 -m
7 also dump the module headers, even if only parts of a single
8 module is selected
9

10 -n
11 only dump the module headers if the entire module is selected
12
13 -o <filename>
14 write to the specified file.
15
16 -a <filename>
17 like -outfile but append instead of overwrite

C.20 echo – turning echoing back of commands on and off

1 echo on
2
3 Print all commands to log before executing them.
4
5
6 echo off
7
8 Do not print all commands to log before executing them. (default)

C.21 edgetypes – list all types of edges in selection

1 edgetypes [options] [selection]
2
3 This command lists all unique types of ’edges’ found in the selection. An ’edge’
4 is a 4-tuple of source and sink cell type and port name.

C.22 equiv_add – add a $equiv cell

1 equiv_add [-try] gold_sig gate_sig
2
3 This command adds an $equiv cell for the specified signals.
4
5
6 equiv_add [-try] -cell gold_cell gate_cell
7
8 This command adds $equiv cells for the ports of the specified cells.

80

APPENDIX C. COMMAND REFERENCE MANUAL

C.23 equiv_induct – proving $equiv cells using temporal induc-
tion

1 equiv_induct [options] [selection]
2
3 Uses a version of temporal induction to prove $equiv cells.
4
5 Only selected $equiv cells are proven and only selected cells are used to
6 perform the proof.
7
8 -undef
9 enable modelling of undef states

10
11 -seq <N>
12 the max. number of time steps to be considered (default = 4)
13
14 This command is very effective in proving complex sequential circuits, when
15 the internal state of the circuit quickly propagates to $equiv cells.
16
17 However, this command uses a weak definition of ’equivalence’: This command
18 proves that the two circuits will not diverge after they produce equal
19 outputs (observable points via $equiv) for at least <N> cycles (the <N>
20 specified via -seq).
21
22 Combined with simulation this is very powerful because simulation can give
23 you confidence that the circuits start out synced for at least <N> cycles
24 after reset.

C.24 equiv_make – prepare a circuit for equivalence checking

1 equiv_make [options] gold_module gate_module equiv_module
2
3 This creates a module annotated with $equiv cells from two presumably
4 equivalent modules. Use commands such as ’equiv_simple’ and ’equiv_status’
5 to work with the created equivalent checking module.
6
7 -inames
8 Also match cells and wires with $... names.
9

10 -blacklist <file>
11 Do not match cells or signals that match the names in the file.
12
13 -encfile <file>
14 Match FSM encodings using the description from the file.
15 See ’help fsm_recode’ for details.
16
17 Note: The circuit created by this command is not a miter (with something like
18 a trigger output), but instead uses $equiv cells to encode the equivalence
19 checking problem. Use ’miter -equiv’ if you want to create a miter circuit.

81

APPENDIX C. COMMAND REFERENCE MANUAL

C.25 equiv_mark – mark equivalence checking regions

1 equiv_mark [options] [selection]
2
3 This command marks the regions in an equivalence checking module. Region 0 is
4 the proven part of the circuit. Regions with higher numbers are connected
5 unproven subcricuits. The integer attribute ’equiv_region’ is set on all
6 wires and cells.

C.26 equiv_miter – extract miter from equiv circuit

1 equiv_miter [options] miter_module [selection]
2
3 This creates a miter module for further analysis of the selected $equiv cells.
4
5 -trigger
6 Create a trigger output
7
8 -cmp
9 Create cmp_* outputs for individual unproven $equiv cells

10
11 -assert
12 Create a $assert cell for each unproven $equiv cell
13
14 -undef
15 Create compare logic that handles undefs correctly

C.27 equiv_purge – purge equivalence checking module

1 equiv_purge [options] [selection]
2
3 This command removes the proven part of an equivalence checking module, leaving
4 only the unproven segments in the design. This will also remove and add module
5 ports as needed.

C.28 equiv_remove – remove $equiv cells

1 equiv_remove [options] [selection]
2
3 This command removes the selected $equiv cells. If neither -gold nor -gate is
4 used then only proven cells are removed.
5
6 -gold
7 keep gold circuit
8
9 -gate

10 keep gate circuit

82

APPENDIX C. COMMAND REFERENCE MANUAL

C.29 equiv_simple – try proving simple $equiv instances

1 equiv_simple [options] [selection]
2
3 This command tries to prove $equiv cells using a simple direct SAT approach.
4
5 -v
6 verbose output
7
8 -undef
9 enable modelling of undef states

10
11 -nogroup
12 disabling grouping of $equiv cells by output wire
13
14 -seq <N>
15 the max. number of time steps to be considered (default = 1)

C.30 equiv_status – print status of equivalent checking module

1 equiv_status [options] [selection]
2
3 This command prints status information for all selected $equiv cells.
4
5 -assert
6 produce an error if any unproven $equiv cell is found

C.31 equiv_struct – structural equivalence checking

1 equiv_struct [options] [selection]
2
3 This command adds additional $equiv cells based on the assumption that the
4 gold and gate circuit are structurally equivalent. Note that this can introduce
5 bad $equiv cells in cases where the netlists are not structurally equivalent,
6 for example when analyzing circuits with cells with commutative inputs. This
7 command will also de-duplicate gates.
8
9 -fwd

10 by default this command performans forward sweeps until nothing can
11 be merged by forwards sweeps, then backward sweeps until forward
12 sweeps are effective again. with this option set only forward sweeps
13 are performed.
14
15 -fwonly <cell_type>
16 add the specified cell type to the list of cell types that are only
17 merged in forward sweeps and never in backward sweeps. $equiv is in
18 this list automatically.
19
20 -icells

83

APPENDIX C. COMMAND REFERENCE MANUAL

21 by default, the internal RTL and gate cell types are ignored. add
22 this option to also process those cell types with this command.
23
24 -maxiter <N>
25 maximum number of iterations to run before aborting

C.32 eval – evaluate the circuit given an input

1 eval [options] [selection]
2
3 This command evaluates the value of a signal given the value of all required
4 inputs.
5
6 -set <signal> <value>
7 set the specified signal to the specified value.
8
9 -set-undef

10 set all unspecified source signals to undef (x)
11
12 -table <signal>
13 create a truth table using the specified input signals
14
15 -show <signal>
16 show the value for the specified signal. if no -show option is passed
17 then all output ports of the current module are used.

C.33 expose – convert internal signals to module ports

1 expose [options] [selection]
2
3 This command exposes all selected internal signals of a module as additional
4 outputs.
5
6 -dff
7 only consider wires that are directly driven by register cell.
8
9 -cut

10 when exposing a wire, create an input/output pair and cut the internal
11 signal path at that wire.
12
13 -shared
14 only expose those signals that are shared among the selected modules.
15 this is useful for preparing modules for equivalence checking.
16
17 -evert
18 also turn connections to instances of other modules to additional
19 inputs and outputs and remove the module instances.
20
21 -evert-dff
22 turn flip-flops to sets of inputs and outputs.

84

APPENDIX C. COMMAND REFERENCE MANUAL

23
24 -sep <separator>
25 when creating new wire/port names, the original object name is suffixed
26 with this separator (default: ’.’) and the port name or a type
27 designator for the exposed signal.

C.34 extract – find subcircuits and replace them with cells

1 extract -map <map_file> [options] [selection]
2 extract -mine <out_file> [options] [selection]
3
4 This pass looks for subcircuits that are isomorphic to any of the modules
5 in the given map file and replaces them with instances of this modules. The
6 map file can be a Verilog source file (*.v) or an ilang file (*.il).
7
8 -map <map_file>
9 use the modules in this file as reference. This option can be used

10 multiple times.
11
12 -map %<design-name>
13 use the modules in this in-memory design as reference. This option can
14 be used multiple times.
15
16 -verbose
17 print debug output while analyzing
18
19 -constports
20 also find instances with constant drivers. this may be much
21 slower than the normal operation.
22
23 -nodefaultswaps
24 normally builtin port swapping rules for internal cells are used per
25 default. This turns that off, so e.g. ’a^b’ does not match ’b^a’
26 when this option is used.
27
28 -compat <needle_type> <haystack_type>
29 Per default, the cells in the map file (needle) must have the
30 type as the cells in the active design (haystack). This option
31 can be used to register additional pairs of types that should
32 match. This option can be used multiple times.
33
34 -swap <needle_type> <port1>,<port2>[,...]
35 Register a set of swappable ports for a needle cell type.
36 This option can be used multiple times.
37
38 -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
39 Register a valid permutation of swappable ports for a needle
40 cell type. This option can be used multiple times.
41
42 -cell_attr <attribute_name>
43 Attributes on cells with the given name must match.
44

85

APPENDIX C. COMMAND REFERENCE MANUAL

45 -wire_attr <attribute_name>
46 Attributes on wires with the given name must match.
47
48 -ignore_parameters
49 Do not use parameters when matching cells.
50
51 -ignore_param <cell_type> <parameter_name>
52 Do not use this parameter when matching cells.
53
54 This pass does not operate on modules with unprocessed processes in it.
55 (I.e. the ’proc’ pass should be used first to convert processes to netlists.)
56
57 This pass can also be used for mining for frequent subcircuits. In this mode
58 the following options are to be used instead of the -map option.
59
60 -mine <out_file>
61 mine for frequent subcircuits and write them to the given ilang file
62
63 -mine_cells_span <min> <max>
64 only mine for subcircuits with the specified number of cells
65 default value: 3 5
66
67 -mine_min_freq <num>
68 only mine for subcircuits with at least the specified number of matches
69 default value: 10
70
71 -mine_limit_matches_per_module <num>
72 when calculating the number of matches for a subcircuit, don’t count
73 more than the specified number of matches per module
74
75 -mine_max_fanout <num>
76 don’t consider internal signals with more than <num> connections
77
78 The modules in the map file may have the attribute ’extract_order’ set to an
79 integer value. Then this value is used to determine the order in which the pass
80 tries to map the modules to the design (ascending, default value is 0).
81
82 See ’help techmap’ for a pass that does the opposite thing.

C.35 flatten – flatten design

1 flatten [selection]
2
3 This pass flattens the design by replacing cells by their implementation. This
4 pass is very similar to the ’techmap’ pass. The only difference is that this
5 pass is using the current design as mapping library.
6
7 Cells and/or modules with the ’keep_hierarchy’ attribute set will not be
8 flattened by this command.

86

APPENDIX C. COMMAND REFERENCE MANUAL

C.36 freduce – perform functional reduction

1 freduce [options] [selection]
2
3 This pass performs functional reduction in the circuit. I.e. if two nodes are
4 equivalent, they are merged to one node and one of the redundant drivers is
5 disconnected. A subsequent call to ’clean’ will remove the redundant drivers.
6
7 -v, -vv
8 enable verbose or very verbose output
9

10 -inv
11 enable explicit handling of inverted signals
12
13 -stop <n>
14 stop after <n> reduction operations. this is mostly used for
15 debugging the freduce command itself.
16
17 -dump <prefix>
18 dump the design to <prefix>_<module>_<num>.il after each reduction
19 operation. this is mostly used for debugging the freduce command.
20
21 This pass is undef-aware, i.e. it considers don’t-care values for detecting
22 equivalent nodes.
23
24 All selected wires are considered for rewiring. The selected cells cover the
25 circuit that is analyzed.

C.37 fsm – extract and optimize finite state machines

1 fsm [options] [selection]
2
3 This pass calls all the other fsm_* passes in a useful order. This performs
4 FSM extraction and optimization. It also calls opt_clean as needed:
5
6 fsm_detect unless got option -nodetect
7 fsm_extract
8
9 fsm_opt

10 opt_clean
11 fsm_opt
12
13 fsm_expand if got option -expand
14 opt_clean if got option -expand
15 fsm_opt if got option -expand
16
17 fsm_recode unless got option -norecode
18
19 fsm_info
20
21 fsm_export if got option -export
22 fsm_map unless got option -nomap

87

APPENDIX C. COMMAND REFERENCE MANUAL

23
24 Options:
25
26 -expand, -norecode, -export, -nomap
27 enable or disable passes as indicated above
28
29 -encoding type
30 -fm_set_fsm_file file
31 -encfile file
32 passed through to fsm_recode pass

C.38 fsm_detect – finding FSMs in design

1 fsm_detect [selection]
2
3 This pass detects finite state machines by identifying the state signal.
4 The state signal is then marked by setting the attribute ’fsm_encoding’
5 on the state signal to "auto".
6
7 Existing ’fsm_encoding’ attributes are not changed by this pass.
8
9 Signals can be protected from being detected by this pass by setting the

10 ’fsm_encoding’ attribute to "none".

C.39 fsm_expand – expand FSM cells by merging logic into it

1 fsm_expand [selection]
2
3 The fsm_extract pass is conservative about the cells that belong to a finite
4 state machine. This pass can be used to merge additional auxiliary gates into
5 the finite state machine.

C.40 fsm_export – exporting FSMs to KISS2 files

1 fsm_export [-noauto] [-o filename] [-origenc] [selection]
2
3 This pass creates a KISS2 file for every selected FSM. For FSMs with the
4 ’fsm_export’ attribute set, the attribute value is used as filename, otherwise
5 the module and cell name is used as filename. If the parameter ’-o’ is given,
6 the first exported FSM is written to the specified filename. This overwrites
7 the setting as specified with the ’fsm_export’ attribute. All other FSMs are
8 exported to the default name as mentioned above.
9

10 -noauto
11 only export FSMs that have the ’fsm_export’ attribute set
12
13 -o filename

88

APPENDIX C. COMMAND REFERENCE MANUAL

14 filename of the first exported FSM
15
16 -origenc
17 use binary state encoding as state names instead of s0, s1, ...

C.41 fsm_extract – extracting FSMs in design

1 fsm_extract [selection]
2
3 This pass operates on all signals marked as FSM state signals using the
4 ’fsm_encoding’ attribute. It consumes the logic that creates the state signal
5 and uses the state signal to generate control signal and replaces it with an
6 FSM cell.
7
8 The generated FSM cell still generates the original state signal with its
9 original encoding. The ’fsm_opt’ pass can be used in combination with the

10 ’opt_clean’ pass to eliminate this signal.

C.42 fsm_info – print information on finite state machines

1 fsm_info [selection]
2
3 This pass dumps all internal information on FSM cells. It can be useful for
4 analyzing the synthesis process and is called automatically by the ’fsm’
5 pass so that this information is included in the synthesis log file.

C.43 fsm_map – mapping FSMs to basic logic

1 fsm_map [selection]
2
3 This pass translates FSM cells to flip-flops and logic.

C.44 fsm_opt – optimize finite state machines

1 fsm_opt [selection]
2
3 This pass optimizes FSM cells. It detects which output signals are actually
4 not used and removes them from the FSM. This pass is usually used in
5 combination with the ’opt_clean’ pass (see also ’help fsm’).

89

APPENDIX C. COMMAND REFERENCE MANUAL

C.45 fsm_recode – recoding finite state machines

1 fsm_recode [options] [selection]
2
3 This pass reassign the state encodings for FSM cells. At the moment only
4 one-hot encoding and binary encoding is supported.
5 -encoding <type>
6 specify the encoding scheme used for FSMs without the
7 ’fsm_encoding’ attribute or with the attribute set to ‘auto’.
8
9 -fm_set_fsm_file <file>

10 generate a file containing the mapping from old to new FSM encoding
11 in form of Synopsys Formality set_fsm_* commands.
12
13 -encfile <file>
14 write the mappings from old to new FSM encoding to a file in the
15 following format:
16
17 .fsm <module_name> <state_signal>
18 .map <old_bitpattern> <new_bitpattern>

C.46 help – display help messages

1 help list all commands
2 help <command> print help message for given command
3 help -all print complete command reference
4
5 help -cells list all cell types
6 help <celltype> print help message for given cell type
7 help <celltype>+ print verilog code for given cell type

C.47 hierarchy – check, expand and clean up design hierarchy

1 hierarchy [-check] [-top <module>]
2 hierarchy -generate <cell-types> <port-decls>
3
4 In parametric designs, a module might exists in several variations with
5 different parameter values. This pass looks at all modules in the current
6 design an re-runs the language frontends for the parametric modules as
7 needed.
8
9 -check

10 also check the design hierarchy. this generates an error when
11 an unknown module is used as cell type.
12
13 -purge_lib
14 by default the hierarchy command will not remove library (blackbox)
15 modules. use this option to also remove unused blackbox modules.
16

90

APPENDIX C. COMMAND REFERENCE MANUAL

17 -libdir <directory>
18 search for files named <module_name>.v in the specified directory
19 for unknown modules and automatically run read_verilog for each
20 unknown module.
21
22 -keep_positionals
23 per default this pass also converts positional arguments in cells
24 to arguments using port names. this option disables this behavior.
25
26 -nokeep_asserts
27 per default this pass sets the "keep" attribute on all modules
28 that directly or indirectly contain one or more $assert cells. this
29 option disables this behavior.
30
31 -top <module>
32 use the specified top module to built a design hierarchy. modules
33 outside this tree (unused modules) are removed.
34
35 when the -top option is used, the ’top’ attribute will be set on the
36 specified top module. otherwise a module with the ’top’ attribute set
37 will implicitly be used as top module, if such a module exists.
38
39 -auto-top
40 automatically determine the top of the design hierarchy and mark it.
41
42 In -generate mode this pass generates blackbox modules for the given cell
43 types (wildcards supported). For this the design is searched for cells that
44 match the given types and then the given port declarations are used to
45 determine the direction of the ports. The syntax for a port declaration is:
46
47 {i|o|io}[@<num>]:<portname>
48
49 Input ports are specified with the ’i’ prefix, output ports with the ’o’
50 prefix and inout ports with the ’io’ prefix. The optional <num> specifies
51 the position of the port in the parameter list (needed when instantiated
52 using positional arguments). When <num> is not specified, the <portname> can
53 also contain wildcard characters.
54
55 This pass ignores the current selection and always operates on all modules
56 in the current design.

C.48 hilomap – technology mapping of constant hi- and/or lo-
drivers

1 hilomap [options] [selection]
2
3 Map constants to ’tielo’ and ’tiehi’ driver cells.
4
5 -hicell <celltype> <portname>
6 Replace constant hi bits with this cell.
7
8 -locell <celltype> <portname>

91

APPENDIX C. COMMAND REFERENCE MANUAL

9 Replace constant lo bits with this cell.
10
11 -singleton
12 Create only one hi/lo cell and connect all constant bits
13 to that cell. Per default a separate cell is created for
14 each constant bit.

C.49 history – show last interactive commands

1 history
2
3 This command prints all commands in the shell history buffer. This are
4 all commands executed in an interactive session, but not the commands
5 from executed scripts.

C.50 ice40_ffinit – iCE40: handle FF init values

1 ice40_ffinit [options] [selection]
2
3 Remove zero init values for FF output signals. Add inverters to implement
4 nonzero init values.

C.51 ice40_ffssr – iCE40: merge synchronous set/reset into FF
cells

1 ice40_ffssr [options] [selection]
2
3 Merge synchronous set/reset $_MUX_ cells into iCE40 FFs.

C.52 ice40_opt – iCE40: perform simple optimizations

1 ice40_opt [options] [selection]
2
3 This command executes the following script:
4
5 do
6 <ice40 specific optimizations>
7 opt_const -mux_undef -undriven [-full]
8 opt_share
9 opt_rmdff

10 opt_clean
11 while <changed design>

92

APPENDIX C. COMMAND REFERENCE MANUAL

C.53 iopadmap – technology mapping of i/o pads (or buffers)

1 iopadmap [options] [selection]
2
3 Map module inputs/outputs to PAD cells from a library. This pass
4 can only map to very simple PAD cells. Use ’techmap’ to further map
5 the resulting cells to more sophisticated PAD cells.
6
7 -inpad <celltype> <portname>[:<portname>]
8 Map module input ports to the given cell type with the
9 given output port name. if a 2nd portname is given, the

10 signal is passed through the pad call, using the 2nd
11 portname as input.
12
13 -outpad <celltype> <portname>[:<portname>]
14 -inoutpad <celltype> <portname>[:<portname>]
15 Similar to -inpad, but for output and inout ports.
16
17 -widthparam <param_name>
18 Use the specified parameter name to set the port width.
19
20 -nameparam <param_name>
21 Use the specified parameter to set the port name.
22
23 -bits
24 create individual bit-wide buffers even for ports that
25 are wider. (the default behavior is to create word-wide
26 buffers using -widthparam to set the word size on the cell.)

C.54 json – write design in JSON format

1 json [options] [selection]
2
3 Write a JSON netlist of all selected objects.
4
5 -o <filename>
6 write to the specified file.
7
8 -aig
9 also include AIG models for the different gate types

10
11 See ’help write_json’ for a description of the JSON format used.

C.55 log – print text and log files

1 log string
2
3 Print the given string to the screen and/or the log file. This is useful for TCL
4 scripts, because the TCL command "puts" only goes to stdout but not to

93

APPENDIX C. COMMAND REFERENCE MANUAL

5 logfiles.
6
7 -stdout
8 Print the output to stdout too. This is useful when all Yosys is executed
9 with a script and the -q (quiet operation) argument to notify the user.

10
11 -stderr
12 Print the output to stderr too.
13
14 -nolog
15 Don’t use the internal log() command. Use either -stdout or -stderr,
16 otherwise no output will be generated at all.
17
18 -n
19 do not append a newline

C.56 ls – list modules or objects in modules

1 ls [selection]
2
3 When no active module is selected, this prints a list of modules.
4
5 When an active module is selected, this prints a list of objects in the module.

C.57 lut2mux – convert $lut to $_MUX_

1 lut2mux [options] [selection]
2
3 This pass converts $lut cells to $_MUX_ gates.

C.58 maccmap – mapping macc cells

1 maccmap [-unmap] [selection]
2
3 This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
4 is used then the $macc cell is mapped to $add, $sub, etc. cells instead.

C.59 memory – translate memories to basic cells

1 memory [-nomap] [-nordff] [-bram <bram_rules>] [selection]
2
3 This pass calls all the other memory_* passes in a useful order:
4
5 memory_dff [-nordff]
6 opt_clean

94

APPENDIX C. COMMAND REFERENCE MANUAL

7 memory_share
8 opt_clean
9 memory_collect

10 memory_bram -rules <bram_rules> (when called with -bram)
11 memory_map (skipped if called with -nomap)
12
13 This converts memories to word-wide DFFs and address decoders
14 or multiport memory blocks if called with the -nomap option.

C.60 memory_bram – map memories to block rams

1 memory_bram -rules <rule_file> [selection]
2
3 This pass converts the multi-port $mem memory cells into block ram instances.
4 The given rules file describes the available resources and how they should be
5 used.
6
7 The rules file contains a set of block ram description and a sequence of match
8 rules. A block ram description looks like this:
9

10 bram RAMB1024X32 # name of BRAM cell
11 init 1 # set to ’1’ if BRAM can be initialized
12 abits 10 # number of address bits
13 dbits 32 # number of data bits
14 groups 2 # number of port groups
15 ports 1 1 # number of ports in each group
16 wrmode 1 0 # set to ’1’ if this groups is write ports
17 enable 4 1 # number of enable bits
18 transp 0 2 # transparent (for read ports)
19 clocks 1 2 # clock configuration
20 clkpol 2 2 # clock polarity configuration
21 endbram
22
23 For the option ’transp’ the value 0 means non-transparent, 1 means transparent
24 and a value greater than 1 means configurable. All groups with the same
25 value greater than 1 share the same configuration bit.
26
27 For the option ’clocks’ the value 0 means non-clocked, and a value greater
28 than 0 means clocked. All groups with the same value share the same clock
29 signal.
30
31 For the option ’clkpol’ the value 0 means negative edge, 1 means positive edge
32 and a value greater than 1 means configurable. All groups with the same value
33 greater than 1 share the same configuration bit.
34
35 Using the same bram name in different bram blocks will create different variants
36 of the bram. Verilog configuration parameters for the bram are created as needed.
37
38 It is also possible to create variants by repeating statements in the bram block
39 and appending ’@<label>’ to the individual statements.
40
41 A match rule looks like this:

95

APPENDIX C. COMMAND REFERENCE MANUAL

42
43 match RAMB1024X32
44 max waste 16384 # only use this bram if <= 16k ram bits are unused
45 min efficiency 80 # only use this bram if efficiency is at least 80%
46 endmatch
47
48 It is possible to match against the following values with min/max rules:
49
50 words number of words in memory in design
51 abits number of address bits on memory in design
52 dbits number of data bits on memory in design
53 wports number of write ports on memory in design
54 rports number of read ports on memory in design
55 ports number of ports on memory in design
56 bits number of bits in memory in design
57 dups number of duplications for more read ports
58
59 awaste number of unused address slots for this match
60 dwaste number of unused data bits for this match
61 bwaste number of unused bram bits for this match
62 waste total number of unused bram bits (bwaste*dups)
63 efficiency ... total percentage of used and non-duplicated bits
64
65 acells number of cells in ’address-direction’
66 dcells number of cells in ’data-direction’
67 cells total number of cells (acells*dcells*dups)
68
69 The interface for the created bram instances is derived from the bram
70 description. Use ’techmap’ to convert the created bram instances into
71 instances of the actual bram cells of your target architecture.
72
73 A match containing the command ’or_next_if_better’ is only used if it
74 has a higher efficiency than the next match (and the one after that if
75 the next also has ’or_next_if_better’ set, and so forth).
76
77 A match containing the command ’make_transp’ will add external circuitry
78 to simulate ’transparent read’, if necessary.
79
80 A match containing the command ’make_outreg’ will add external flip-flops
81 to implement synchronous read ports, if necessary.
82
83 A match containing the command ’shuffle_enable A’ will re-organize
84 the data bits to accommodate the enable pattern of port A.

C.61 memory_collect – creating multi-port memory cells

1 memory_collect [selection]
2
3 This pass collects memories and memory ports and creates generic multiport
4 memory cells.

96

APPENDIX C. COMMAND REFERENCE MANUAL

C.62 memory_dff – merge input/output DFFs into memories

1 memory_dff [options] [selection]
2
3 This pass detects DFFs at memory ports and merges them into the memory port.
4 I.e. it consumes an asynchronous memory port and the flip-flops at its
5 interface and yields a synchronous memory port.
6
7 -nordfff
8 do not merge registers on read ports

C.63 memory_map – translate multiport memories to basic cells

1 memory_map [selection]
2
3 This pass converts multiport memory cells as generated by the memory_collect
4 pass to word-wide DFFs and address decoders.

C.64 memory_share – consolidate memory ports

1 memory_share [selection]
2
3 This pass merges share-able memory ports into single memory ports.
4
5 The following methods are used to consolidate the number of memory ports:
6
7 - When write ports are connected to async read ports accessing the same
8 address, then this feedback path is converted to a write port with
9 byte/part enable signals.

10
11 - When multiple write ports access the same address then this is converted
12 to a single write port with a more complex data and/or enable logic path.
13
14 - When multiple write ports are never accessed at the same time (a SAT
15 solver is used to determine this), then the ports are merged into a single
16 write port.
17
18 Note that in addition to the algorithms implemented in this pass, the $memrd
19 and $memwr cells are also subject to generic resource sharing passes (and other
20 optimizations) such as opt_share.

C.65 memory_unpack – unpack multi-port memory cells

1 memory_unpack [selection]
2
3 This pass converts the multi-port $mem memory cells into individual $memrd and
4 $memwr cells. It is the counterpart to the memory_collect pass.

97

APPENDIX C. COMMAND REFERENCE MANUAL

C.66 miter – automatically create a miter circuit

1 miter -equiv [options] gold_name gate_name miter_name
2
3 Creates a miter circuit for equivalence checking. The gold- and gate- modules
4 must have the same interfaces. The miter circuit will have all inputs of the
5 two source modules, prefixed with ’in_’. The miter circuit has a ’trigger’
6 output that goes high if an output mismatch between the two source modules is
7 detected.
8
9 -ignore_gold_x

10 a undef (x) bit in the gold module output will match any value in
11 the gate module output.
12
13 -make_outputs
14 also route the gold- and gate-outputs to ’gold_*’ and ’gate_*’ outputs
15 on the miter circuit.
16
17 -make_outcmp
18 also create a cmp_* output for each gold/gate output pair.
19
20 -make_assert
21 also create an ’assert’ cell that checks if trigger is always low.
22
23 -flatten
24 call ’flatten; opt_const -keepdc -undriven;;’ on the miter circuit.
25
26
27 miter -assert [options] module [miter_name]
28
29 Creates a miter circuit for property checking. All input ports are kept,
30 output ports are discarded. An additional output ’trigger’ is created that
31 goes high when an assert is violated. Without a miter_name, the existing
32 module is modified.
33
34 -make_outputs
35 keep module output ports.
36
37 -flatten
38 call ’flatten; opt_const -keepdc -undriven;;’ on the miter circuit.

C.67 muxcover – cover trees of MUX cells with wider MUXes

1 muxcover [options] [selection]
2
3 Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells
4
5 -mux4, -mux8, -mux16
6 Use the specified types of MUXes. If none of those options are used,
7 the effect is the same as if all of them where used.
8
9 -nodecode

98

APPENDIX C. COMMAND REFERENCE MANUAL

10 Do not insert decoder logic. This reduces the number of possible
11 substitutions, but guarantees that the resulting circuit is not
12 less efficient than the original circuit.

C.68 nlutmap – map to LUTs of different sizes

1 nlutmap [options] [selection]
2
3 This pass uses successive calls to ’abc’ to map to an architecture. That
4 provides a small number of differently sized LUTs.
5
6 -luts N_1,N_2,N_3,...
7 The number of LUTs with 1, 2, 3, ... inputs that are
8 available in the target architecture.
9

10 Excess logic that does not fit into the specified LUTs is mapped back
11 to generic logic gates ($_AND_, etc.).

C.69 opt – perform simple optimizations

1 opt [options] [selection]
2
3 This pass calls all the other opt_* passes in a useful order. This performs
4 a series of trivial optimizations and cleanups. This pass executes the other
5 passes in the following order:
6
7 opt_const [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
8 opt_share [-share_all] -nomux
9

10 do
11 opt_muxtree
12 opt_reduce [-fine] [-full]
13 opt_share [-share_all]
14 opt_rmdff
15 opt_clean [-purge]
16 opt_const [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
17 while <changed design>
18
19 When called with -fast the following script is used instead:
20
21 do
22 opt_const [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
23 opt_share [-share_all]
24 opt_rmdff
25 opt_clean [-purge]
26 while <changed design in opt_rmdff>
27
28 Note: Options in square brackets (such as [-keepdc]) are passed through to
29 the opt_* commands when given to ’opt’.

99

APPENDIX C. COMMAND REFERENCE MANUAL

C.70 opt_clean – remove unused cells and wires

1 opt_clean [options] [selection]
2
3 This pass identifies wires and cells that are unused and removes them. Other
4 passes often remove cells but leave the wires in the design or reconnect the
5 wires but leave the old cells in the design. This pass can be used to clean up
6 after the passes that do the actual work.
7
8 This pass only operates on completely selected modules without processes.
9

10 -purge
11 also remove internal nets if they have a public name

C.71 opt_const – perform const folding

1 opt_const [options] [selection]
2
3 This pass performs const folding on internal cell types with constant inputs.
4
5 -mux_undef
6 remove ’undef’ inputs from $mux, $pmux and $_MUX_ cells
7
8 -mux_bool
9 replace $mux cells with inverters or buffers when possible

10
11 -undriven
12 replace undriven nets with undef (x) constants
13
14 -clkinv
15 optimize clock inverters by changing FF types
16
17 -fine
18 perform fine-grain optimizations
19
20 -full
21 alias for -mux_undef -mux_bool -undriven -fine
22
23 -keepdc
24 some optimizations change the behavior of the circuit with respect to
25 don’t-care bits. for example in ’a+0’ a single x-bit in ’a’ will cause
26 all result bits to be set to x. this behavior changes when ’a+0’ is
27 replaced by ’a’. the -keepdc option disables all such optimizations.

C.72 opt_muxtree – eliminate dead trees in multiplexer trees

1 opt_muxtree [selection]
2
3 This pass analyzes the control signals for the multiplexer trees in the design

100

APPENDIX C. COMMAND REFERENCE MANUAL

4 and identifies inputs that can never be active. It then removes this dead
5 branches from the multiplexer trees.
6
7 This pass only operates on completely selected modules without processes.

C.73 opt_reduce – simplify large MUXes and AND/OR gates

1 opt_reduce [options] [selection]
2
3 This pass performs two interlinked optimizations:
4
5 1. it consolidates trees of large AND gates or OR gates and eliminates
6 duplicated inputs.
7
8 2. it identifies duplicated inputs to MUXes and replaces them with a single
9 input with the original control signals OR’ed together.

10
11 -fine
12 perform fine-grain optimizations
13
14 -full
15 alias for -fine

C.74 opt_rmdff – remove DFFs with constant inputs

1 opt_rmdff [selection]
2
3 This pass identifies flip-flops with constant inputs and replaces them with
4 a constant driver.

C.75 opt_share – consolidate identical cells

1 opt_share [options] [selection]
2
3 This pass identifies cells with identical type and input signals. Such cells
4 are then merged to one cell.
5
6 -nomux
7 Do not merge MUX cells.
8
9 -share_all

10 Operate on all cell types, not just built-in types.

101

APPENDIX C. COMMAND REFERENCE MANUAL

C.76 plugin – load and list loaded plugins

1 plugin [options]
2
3 Load and list loaded plugins.
4
5 -i <plugin_filename>
6 Load (install) the specified plugin.
7
8 -a <alias_name>
9 Register the specified alias name for the loaded plugin

10
11 -l
12 List loaded plugins

C.77 pmuxtree – transform $pmux cells to trees of $mux cells

1 pmuxtree [options] [selection]
2
3 This pass transforms $pmux cells to a trees of $mux cells.

C.78 prep – generic synthesis script

1 prep [options]
2
3 This command runs a conservative RTL synthesis. A typical application for this
4 is the preparation stage of a verification flow. This command does not operate
5 on partly selected designs.
6
7 -top <module>
8 use the specified module as top module (default=’top’)
9

10 -nordff
11 passed to ’memory_dff’. prohibits merging of FFs into memory read ports
12
13 -run <from_label>[:<to_label>]
14 only run the commands between the labels (see below). an empty
15 from label is synonymous to ’begin’, and empty to label is
16 synonymous to the end of the command list.
17
18
19 The following commands are executed by this synthesis command:
20
21 begin:
22 hierarchy -check [-top <top>]
23
24 prep:
25 proc
26 opt_const

102

APPENDIX C. COMMAND REFERENCE MANUAL

27 opt_clean
28 check
29 opt -keepdc
30 wreduce
31 memory_dff [-nordff]
32 opt_clean
33 memory_collect
34 opt -keepdc -fast
35
36 check:
37 stat
38 check

C.79 proc – translate processes to netlists

1 proc [options] [selection]
2
3 This pass calls all the other proc_* passes in the most common order.
4
5 proc_clean
6 proc_rmdead
7 proc_init
8 proc_arst
9 proc_mux

10 proc_dlatch
11 proc_dff
12 proc_clean
13
14 This replaces the processes in the design with multiplexers,
15 flip-flops and latches.
16
17 The following options are supported:
18
19 -global_arst [!]<netname>
20 This option is passed through to proc_arst.

C.80 proc_arst – detect asynchronous resets

1 proc_arst [-global_arst [!]<netname>] [selection]
2
3 This pass identifies asynchronous resets in the processes and converts them
4 to a different internal representation that is suitable for generating
5 flip-flop cells with asynchronous resets.
6
7 -global_arst [!]<netname>
8 In modules that have a net with the given name, use this net as async
9 reset for registers that have been assign initial values in their

10 declaration (’reg foobar = constant_value;’). Use the ’!’ modifier for
11 active low reset signals. Note: the frontend stores the default value
12 in the ’init’ attribute on the net.

103

APPENDIX C. COMMAND REFERENCE MANUAL

C.81 proc_clean – remove empty parts of processes

1 proc_clean [selection]
2
3 This pass removes empty parts of processes and ultimately removes a process
4 if it contains only empty structures.

C.82 proc_dff – extract flip-flops from processes

1 proc_dff [selection]
2
3 This pass identifies flip-flops in the processes and converts them to
4 d-type flip-flop cells.

C.83 proc_dlatch – extract latches from processes

1 proc_dlatch [selection]
2
3 This pass identifies latches in the processes and converts them to
4 d-type latches.

C.84 proc_init – convert initial block to init attributes

1 proc_init [selection]
2
3 This pass extracts the ’init’ actions from processes (generated from Verilog
4 ’initial’ blocks) and sets the initial value to the ’init’ attribute on the
5 respective wire.

C.85 proc_mux – convert decision trees to multiplexers

1 proc_mux [selection]
2
3 This pass converts the decision trees in processes (originating from if-else
4 and case statements) to trees of multiplexer cells.

C.86 proc_rmdead – eliminate dead trees in decision trees

1 proc_rmdead [selection]
2
3 This pass identifies unreachable branches in decision trees and removes them.

104

APPENDIX C. COMMAND REFERENCE MANUAL

C.87 qwp – quadratic wirelength placer

1 qwp [options] [selection]
2
3 This command runs quadratic wirelength placement on the selected modules and
4 annotates the cells in the design with ’qwp_position’ attributes.
5
6 -ltr
7 Add left-to-right constraints: constrain all inputs on the left border
8 outputs to the right border.
9

10 -alpha
11 Add constraints for inputs/outputs to be placed in alphanumerical
12 order along the y-axis (top-to-bottom).
13
14 -grid N
15 Number of grid divisions in x- and y-direction. (default=16)
16
17 -dump <html_file_name>
18 Dump a protocol of the placement algorithm to the html file.
19
20 Note: This implementation of a quadratic wirelength placer uses exact
21 dense matrix operations. It is only a toy-placer for small circuits.

C.88 read_blif – read BLIF file

1 read_blif [filename]
2
3 Load modules from a BLIF file into the current design.

C.89 read_ilang – read modules from ilang file

1 read_ilang [filename]
2
3 Load modules from an ilang file to the current design. (ilang is a text
4 representation of a design in yosys’s internal format.)

C.90 read_liberty – read cells from liberty file

1 read_liberty [filename]
2
3 Read cells from liberty file as modules into current design.
4
5 -lib
6 only create empty blackbox modules
7
8 -ignore_redef

105

APPENDIX C. COMMAND REFERENCE MANUAL

9 ignore re-definitions of modules. (the default behavior is to
10 create an error message.)
11
12 -ignore_miss_func
13 ignore cells with missing function specification of outputs
14
15 -ignore_miss_dir
16 ignore cells with a missing or invalid direction
17 specification on a pin
18
19 -setattr <attribute_name>
20 set the specified attribute (to the value 1) on all loaded modules

C.91 read_verilog – read modules from Verilog file

1 read_verilog [options] [filename]
2
3 Load modules from a Verilog file to the current design. A large subset of
4 Verilog-2005 is supported.
5
6 -sv
7 enable support for SystemVerilog features. (only a small subset
8 of SystemVerilog is supported)
9

10 -formal
11 enable support for assert() and assume() from SystemVerilog
12 replace the implicit -D SYNTHESIS with -D FORMAL
13
14 -dump_ast1
15 dump abstract syntax tree (before simplification)
16
17 -dump_ast2
18 dump abstract syntax tree (after simplification)
19
20 -dump_vlog
21 dump ast as Verilog code (after simplification)
22
23 -yydebug
24 enable parser debug output
25
26 -nolatches
27 usually latches are synthesized into logic loops
28 this option prohibits this and sets the output to ’x’
29 in what would be the latches hold condition
30
31 this behavior can also be achieved by setting the
32 ’nolatches’ attribute on the respective module or
33 always block.
34
35 -nomem2reg
36 under certain conditions memories are converted to registers
37 early during simplification to ensure correct handling of

106

APPENDIX C. COMMAND REFERENCE MANUAL

38 complex corner cases. this option disables this behavior.
39
40 this can also be achieved by setting the ’nomem2reg’
41 attribute on the respective module or register.
42
43 This is potentially dangerous. Usually the front-end has good
44 reasons for converting an array to a list of registers.
45 Prohibiting this step will likely result in incorrect synthesis
46 results.
47
48 -mem2reg
49 always convert memories to registers. this can also be
50 achieved by setting the ’mem2reg’ attribute on the respective
51 module or register.
52
53 -nomeminit
54 do not infer $meminit cells and instead convert initialized
55 memories to registers directly in the front-end.
56
57 -ppdump
58 dump Verilog code after pre-processor
59
60 -nopp
61 do not run the pre-processor
62
63 -nodpi
64 disable DPI-C support
65
66 -lib
67 only create empty blackbox modules. This implies -DBLACKBOX.
68
69 -noopt
70 don’t perform basic optimizations (such as const folding) in the
71 high-level front-end.
72
73 -icells
74 interpret cell types starting with ’$’ as internal cell types
75
76 -ignore_redef
77 ignore re-definitions of modules. (the default behavior is to
78 create an error message.)
79
80 -defer
81 only read the abstract syntax tree and defer actual compilation
82 to a later ’hierarchy’ command. Useful in cases where the default
83 parameters of modules yield invalid or not synthesizable code.
84
85 -noautowire
86 make the default of ‘default_nettype be "none" instead of "wire".
87
88 -setattr <attribute_name>
89 set the specified attribute (to the value 1) on all loaded modules
90
91 -Dname[=definition]

107

APPENDIX C. COMMAND REFERENCE MANUAL

92 define the preprocessor symbol ’name’ and set its optional value
93 ’definition’
94
95 -Idir
96 add ’dir’ to the directories which are used when searching include
97 files
98
99 The command ’verilog_defaults’ can be used to register default options for
100 subsequent calls to ’read_verilog’.
101
102 Note that the Verilog frontend does a pretty good job of processing valid
103 verilog input, but has not very good error reporting. It generally is
104 recommended to use a simulator (for example Icarus Verilog) for checking
105 the syntax of the code, rather than to rely on read_verilog for that.

C.92 rename – rename object in the design

1 rename old_name new_name
2
3 Rename the specified object. Note that selection patterns are not supported
4 by this command.
5
6
7 rename -enumerate [-pattern <pattern>] [selection]
8
9 Assign short auto-generated names to all selected wires and cells with private

10 names. The -pattern option can be used to set the pattern for the new names.
11 The character % in the pattern is replaced with a integer number. The default
12 pattern is ’_%_’.
13
14 rename -hide [selection]
15
16 Assign private names (the ones with $-prefix) to all selected wires and cells
17 with public names. This ignores all selected ports.
18
19 rename -top new_name
20
21 Rename top module.

C.93 sat – solve a SAT problem in the circuit

1 sat [options] [selection]
2
3 This command solves a SAT problem defined over the currently selected circuit
4 and additional constraints passed as parameters.
5
6 -all
7 show all solutions to the problem (this can grow exponentially, use
8 -max <N> instead to get <N> solutions)
9

108

APPENDIX C. COMMAND REFERENCE MANUAL

10 -max <N>
11 like -all, but limit number of solutions to <N>
12
13 -enable_undef
14 enable modeling of undef value (aka ’x-bits’)
15 this option is implied by -set-def, -set-undef et. cetera
16
17 -max_undef
18 maximize the number of undef bits in solutions, giving a better
19 picture of which input bits are actually vital to the solution.
20
21 -set <signal> <value>
22 set the specified signal to the specified value.
23
24 -set-def <signal>
25 add a constraint that all bits of the given signal must be defined
26
27 -set-any-undef <signal>
28 add a constraint that at least one bit of the given signal is undefined
29
30 -set-all-undef <signal>
31 add a constraint that all bits of the given signal are undefined
32
33 -set-def-inputs
34 add -set-def constraints for all module inputs
35
36 -show <signal>
37 show the model for the specified signal. if no -show option is
38 passed then a set of signals to be shown is automatically selected.
39
40 -show-inputs, -show-outputs, -show-ports
41 add all module (input/output) ports to the list of shown signals
42
43 -show-regs, -show-public, -show-all
44 show all registers, show signals with ’public’ names, show all signals
45
46 -ignore_div_by_zero
47 ignore all solutions that involve a division by zero
48
49 -ignore_unknown_cells
50 ignore all cells that can not be matched to a SAT model
51
52 The following options can be used to set up a sequential problem:
53
54 -seq <N>
55 set up a sequential problem with <N> time steps. The steps will
56 be numbered from 1 to N.
57
58 note: for large <N> it can be significantly faster to use
59 -tempinduct-baseonly -maxsteps <N> instead of -seq <N>.
60
61 -set-at <N> <signal> <value>
62 -unset-at <N> <signal>
63 set or unset the specified signal to the specified value in the

109

APPENDIX C. COMMAND REFERENCE MANUAL

64 given timestep. this has priority over a -set for the same signal.
65
66 -set-assumes
67 set all assumptions provided via $assume cells
68
69 -set-def-at <N> <signal>
70 -set-any-undef-at <N> <signal>
71 -set-all-undef-at <N> <signal>
72 add undef constraints in the given timestep.
73
74 -set-init <signal> <value>
75 set the initial value for the register driving the signal to the value
76
77 -set-init-undef
78 set all initial states (not set using -set-init) to undef
79
80 -set-init-def
81 do not force a value for the initial state but do not allow undef
82
83 -set-init-zero
84 set all initial states (not set using -set-init) to zero
85
86 -dump_vcd <vcd-file-name>
87 dump SAT model (counter example in proof) to VCD file
88
89 -dump_json <json-file-name>
90 dump SAT model (counter example in proof) to a WaveJSON file.
91
92 -dump_cnf <cnf-file-name>
93 dump CNF of SAT problem (in DIMACS format). in temporal induction
94 proofs this is the CNF of the first induction step.
95
96 The following additional options can be used to set up a proof. If also -seq
97 is passed, a temporal induction proof is performed.
98
99 -tempinduct
100 Perform a temporal induction proof. In a temporal induction proof it is
101 proven that the condition holds forever after the number of time steps
102 specified using -seq.
103
104 -tempinduct-def
105 Perform a temporal induction proof. Assume an initial state with all
106 registers set to defined values for the induction step.
107
108 -tempinduct-baseonly
109 Run only the basecase half of temporal induction (requires -maxsteps)
110
111 -tempinduct-inductonly
112 Run only the induction half of temporal induction
113
114 -tempinduct-skip <N>
115 Skip the first <N> steps of the induction proof.
116
117 note: this will assume that the base case holds for <N> steps.

110

APPENDIX C. COMMAND REFERENCE MANUAL

118 this must be proven independently with "-tempinduct-baseonly
119 -maxsteps <N>". Use -initsteps if you just want to set a
120 minimal induction length.
121
122 -prove <signal> <value>
123 Attempt to proof that <signal> is always <value>.
124
125 -prove-x <signal> <value>
126 Like -prove, but an undef (x) bit in the lhs matches any value on
127 the right hand side. Useful for equivalence checking.
128
129 -prove-asserts
130 Prove that all asserts in the design hold.
131
132 -prove-skip <N>
133 Do not enforce the prove-condition for the first <N> time steps.
134
135 -maxsteps <N>
136 Set a maximum length for the induction.
137
138 -initsteps <N>
139 Set initial length for the induction.
140 This will speed up the search of the right induction length
141 for deep induction proofs.
142
143 -stepsize <N>
144 Increase the size of the induction proof in steps of <N>.
145 This will speed up the search of the right induction length
146 for deep induction proofs.
147
148 -timeout <N>
149 Maximum number of seconds a single SAT instance may take.
150
151 -verify
152 Return an error and stop the synthesis script if the proof fails.
153
154 -verify-no-timeout
155 Like -verify but do not return an error for timeouts.
156
157 -falsify
158 Return an error and stop the synthesis script if the proof succeeds.
159
160 -falsify-no-timeout
161 Like -falsify but do not return an error for timeouts.

C.94 scatter – add additional intermediate nets

1 scatter [selection]
2
3 This command adds additional intermediate nets on all cell ports. This is used
4 for testing the correct use of the SigMap helper in passes. If you don’t know
5 what this means: don’t worry -- you only need this pass when testing your own

111

APPENDIX C. COMMAND REFERENCE MANUAL

6 extensions to Yosys.
7
8 Use the opt_clean command to get rid of the additional nets.

C.95 scc – detect strongly connected components (logic loops)

1 scc [options] [selection]
2
3 This command identifies strongly connected components (aka logic loops) in the
4 design.
5
6 -expect <num>
7 expect to find exactly <num> SSCs. A different number of SSCs will
8 produce an error.
9

10 -max_depth <num>
11 limit to loops not longer than the specified number of cells. This
12 can e.g. be useful in identifying small local loops in a module that
13 implements one large SCC.
14
15 -nofeedback
16 do not count cells that have their output fed back into one of their
17 inputs as single-cell scc.
18
19 -all_cell_types
20 Usually this command only considers internal non-memory cells. With
21 this option set, all cells are considered. For unknown cells all ports
22 are assumed to be bidirectional ’inout’ ports.
23
24 -set_attr <name> <value>
25 -set_cell_attr <name> <value>
26 -set_wire_attr <name> <value>
27 set the specified attribute on all cells and/or wires that are part of
28 a logic loop. the special token {} in the value is replaced with a
29 unique identifier for the logic loop.
30
31 -select
32 replace the current selection with a selection of all cells and wires
33 that are part of a found logic loop

C.96 script – execute commands from script file

1 script <filename> [<from_label>:<to_label>]
2
3 This command executes the yosys commands in the specified file.
4
5 The 2nd argument can be used to only execute the section of the
6 file between the specified labels. An empty from label is synonymous
7 for the beginning of the file and an empty to label is synonymous
8 for the end of the file.

112

APPENDIX C. COMMAND REFERENCE MANUAL

9
10 If only one label is specified (without ’:’) then only the block
11 marked with that label (until the next label) is executed.

C.97 select – modify and view the list of selected objects

1 select [-add | -del | -set <name>] {-read <filename> | <selection>}
2 select [-assert-none | -assert-any] {-read <filename> | <selection>}
3 select [-list | -write <filename> | -count | -clear]
4 select -module <modname>
5
6 Most commands use the list of currently selected objects to determine which part
7 of the design to operate on. This command can be used to modify and view this
8 list of selected objects.
9

10 Note that many commands support an optional [selection] argument that can be
11 used to override the global selection for the command. The syntax of this
12 optional argument is identical to the syntax of the <selection> argument
13 described here.
14
15 -add, -del
16 add or remove the given objects to the current selection.
17 without this options the current selection is replaced.
18
19 -set <name>
20 do not modify the current selection. instead save the new selection
21 under the given name (see @<name> below). to save the current selection,
22 use "select -set <name> %"
23
24 -assert-none
25 do not modify the current selection. instead assert that the given
26 selection is empty. i.e. produce an error if any object matching the
27 selection is found.
28
29 -assert-any
30 do not modify the current selection. instead assert that the given
31 selection is non-empty. i.e. produce an error if no object matching
32 the selection is found.
33
34 -assert-count N
35 do not modify the current selection. instead assert that the given
36 selection contains exactly N objects.
37
38 -list
39 list all objects in the current selection
40
41 -write <filename>
42 like -list but write the output to the specified file
43
44 -read <filename>
45 read the specified file (written by -write)
46

113

APPENDIX C. COMMAND REFERENCE MANUAL

47 -count
48 count all objects in the current selection
49
50 -clear
51 clear the current selection. this effectively selects the whole
52 design. it also resets the selected module (see -module). use the
53 command ’select *’ to select everything but stay in the current module.
54
55 -none
56 create an empty selection. the current module is unchanged.
57
58 -module <modname>
59 limit the current scope to the specified module.
60 the difference between this and simply selecting the module
61 is that all object names are interpreted relative to this
62 module after this command until the selection is cleared again.
63
64 When this command is called without an argument, the current selection
65 is displayed in a compact form (i.e. only the module name when a whole module
66 is selected).
67
68 The <selection> argument itself is a series of commands for a simple stack
69 machine. Each element on the stack represents a set of selected objects.
70 After this commands have been executed, the union of all remaining sets
71 on the stack is computed and used as selection for the command.
72
73 Pushing (selecting) object when not in -module mode:
74
75 <mod_pattern>
76 select the specified module(s)
77
78 <mod_pattern>/<obj_pattern>
79 select the specified object(s) from the module(s)
80
81 Pushing (selecting) object when in -module mode:
82
83 <obj_pattern>
84 select the specified object(s) from the current module
85
86 A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
87 matching module names, or one of the following:
88
89 A:<pattern>, A:<pattern>=<pattern>
90 all modules with an attribute matching the given pattern
91 in addition to = also <, <=, >=, and > are supported
92
93 An <obj_pattern> can be an object name, wildcard expression, or one of
94 the following:
95
96 w:<pattern>
97 all wires with a name matching the given wildcard pattern
98
99 i:<pattern>, o:<pattern>, x:<pattern>
100 all inputs (i:), outputs (o:) or any ports (x:) with matching names

114

APPENDIX C. COMMAND REFERENCE MANUAL

101
102 s:<size>, s:<min>:<max>
103 all wires with a matching width
104
105 m:<pattern>
106 all memories with a name matching the given pattern
107
108 c:<pattern>
109 all cells with a name matching the given pattern
110
111 t:<pattern>
112 all cells with a type matching the given pattern
113
114 p:<pattern>
115 all processes with a name matching the given pattern
116
117 a:<pattern>
118 all objects with an attribute name matching the given pattern
119
120 a:<pattern>=<pattern>
121 all objects with a matching attribute name-value-pair.
122 in addition to = also <, <=, >=, and > are supported
123
124 r:<pattern>, r:<pattern>=<pattern>
125 cells with matching parameters. also with <, <=, >= and >.
126
127 n:<pattern>
128 all objects with a name matching the given pattern
129 (i.e. ’n:’ is optional as it is the default matching rule)
130
131 @<name>
132 push the selection saved prior with ’select -set <name> ...’
133
134 The following actions can be performed on the top sets on the stack:
135
136 %
137 push a copy of the current selection to the stack
138
139 %%
140 replace the stack with a union of all elements on it
141
142 %n
143 replace top set with its invert
144
145 %u
146 replace the two top sets on the stack with their union
147
148 %i
149 replace the two top sets on the stack with their intersection
150
151 %d
152 pop the top set from the stack and subtract it from the new top
153
154 %D

115

APPENDIX C. COMMAND REFERENCE MANUAL

155 like %d but swap the roles of two top sets on the stack
156
157 %c
158 create a copy of the top set from the stack and push it
159
160 %x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
161 expand top set <num1> num times according to the specified rules.
162 (i.e. select all cells connected to selected wires and select all
163 wires connected to selected cells) The rules specify which cell
164 ports to use for this. the syntax for a rule is a ’-’ for exclusion
165 and a ’+’ for inclusion, followed by an optional comma separated
166 list of cell types followed by an optional comma separated list of
167 cell ports in square brackets. a rule can also be just a cell or wire
168 name that limits the expansion (is included but does not go beyond).
169 select at most <num2> objects. a warning message is printed when this
170 limit is reached. When ’*’ is used instead of <num1> then the process
171 is repeated until no further object are selected.
172
173 %ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
174 %co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
175 similar to %x, but only select input (%ci) or output cones (%co)
176
177 %xe[...] %cie[...] %coe
178 like %x, %ci, and %co but only consider combinatorial cells
179
180 %a
181 expand top set by selecting all wires that are (at least in part)
182 aliases for selected wires.
183
184 %s
185 expand top set by adding all modules that implement cells in selected
186 modules
187
188 %m
189 expand top set by selecting all modules that contain selected objects
190
191 %M
192 select modules that implement selected cells
193
194 %C
195 select cells that implement selected modules
196
197 %R[<num>]
198 select <num> random objects from top selection (default 1)
199
200 Example: the following command selects all wires that are connected to a
201 ’GATE’ input of a ’SWITCH’ cell:
202
203 select */t:SWITCH %x:+[GATE] */t:SWITCH %d

C.98 setattr – set/unset attributes on objects

116

APPENDIX C. COMMAND REFERENCE MANUAL

1 setattr [-mod] [-set name value | -unset name]... [selection]
2
3 Set/unset the given attributes on the selected objects. String values must be
4 passed in double quotes (").
5
6 When called with -mod, this command will set and unset attributes on modules
7 instead of objects within modules.

C.99 setparam – set/unset parameters on objects

1 setparam [-set name value | -unset name]... [selection]
2
3 Set/unset the given parameters on the selected cells. String values must be
4 passed in double quotes (").

C.100 setundef – replace undef values with defined constants

1 setundef [options] [selection]
2
3 This command replaced undef (x) constants with defined (0/1) constants.
4
5 -undriven
6 also set undriven nets to constant values
7
8 -zero
9 replace with bits cleared (0)

10
11 -one
12 replace with bits set (1)
13
14 -random <seed>
15 replace with random bits using the specified integer als seed
16 value for the random number generator.

C.101 share – perform sat-based resource sharing

1 share [options] [selection]
2
3 This pass merges shareable resources into a single resource. A SAT solver
4 is used to determine if two resources are share-able.
5
6 -force
7 Per default the selection of cells that is considered for sharing is
8 narrowed using a list of cell types. With this option all selected
9 cells are considered for resource sharing.

10

117

APPENDIX C. COMMAND REFERENCE MANUAL

11 IMPORTANT NOTE: If the -all option is used then no cells with internal
12 state must be selected!
13
14 -aggressive
15 Per default some heuristics are used to reduce the number of cells
16 considered for resource sharing to only large resources. This options
17 turns this heuristics off, resulting in much more cells being considered
18 for resource sharing.
19
20 -fast
21 Only consider the simple part of the control logic in SAT solving, resulting
22 in much easier SAT problems at the cost of maybe missing some opportunities
23 for resource sharing.
24
25 -limit N
26 Only perform the first N merges, then stop. This is useful for debugging.

C.102 shell – enter interactive command mode

1 shell
2
3 This command enters the interactive command mode. This can be useful
4 in a script to interrupt the script at a certain point and allow for
5 interactive inspection or manual synthesis of the design at this point.
6
7 The command prompt of the interactive shell indicates the current
8 selection (see ’help select’):
9

10 yosys>
11 the entire design is selected
12
13 yosys*>
14 only part of the design is selected
15
16 yosys [modname]>
17 the entire module ’modname’ is selected using ’select -module modname’
18
19 yosys [modname]*>
20 only part of current module ’modname’ is selected
21
22 When in interactive shell, some errors (e.g. invalid command arguments)
23 do not terminate yosys but return to the command prompt.
24
25 This command is the default action if nothing else has been specified
26 on the command line.
27
28 Press Ctrl-D or type ’exit’ to leave the interactive shell.

C.103 show – generate schematics using graphviz

118

APPENDIX C. COMMAND REFERENCE MANUAL

1 show [options] [selection]
2
3 Create a graphviz DOT file for the selected part of the design and compile it
4 to a graphics file (usually SVG or PostScript).
5
6 -viewer <viewer>
7 Run the specified command with the graphics file as parameter.
8
9 -format <format>

10 Generate a graphics file in the specified format.
11 Usually <format> is ’svg’ or ’ps’.
12
13 -lib <verilog_or_ilang_file>
14 Use the specified library file for determining whether cell ports are
15 inputs or outputs. This option can be used multiple times to specify
16 more than one library.
17
18 note: in most cases it is better to load the library before calling
19 show with ’read_verilog -lib <filename>’. it is also possible to
20 load liberty files with ’read_liberty -lib <filename>’.
21
22 -prefix <prefix>
23 generate <prefix>.* instead of ~/.yosys_show.*
24
25 -color <color> <object>
26 assign the specified color to the specified object. The object can be
27 a single selection wildcard expressions or a saved set of objects in
28 the @<name> syntax (see "help select" for details).
29
30 -label <text> <object>
31 assign the specified label text to the specified object. The object can
32 be a single selection wildcard expressions or a saved set of objects in
33 the @<name> syntax (see "help select" for details).
34
35 -colors <seed>
36 Randomly assign colors to the wires. The integer argument is the seed
37 for the random number generator. Change the seed value if the colored
38 graph still is ambiguous. A seed of zero deactivates the coloring.
39
40 -colorattr <attribute_name>
41 Use the specified attribute to assign colors. A unique color is
42 assigned to each unique value of this attribute.
43
44 -width
45 annotate busses with a label indicating the width of the bus.
46
47 -signed
48 mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
49 cell parameter) with an asterisk next to the port name.
50
51 -stretch
52 stretch the graph so all inputs are on the left side and all outputs
53 (including inout ports) are on the right side.
54

119

APPENDIX C. COMMAND REFERENCE MANUAL

55 -pause
56 wait for the use to press enter to before returning
57
58 -enum
59 enumerate objects with internal ($-prefixed) names
60
61 -long
62 do not abbreviate objects with internal ($-prefixed) names
63
64 -notitle
65 do not add the module name as graph title to the dot file
66
67 When no <format> is specified, ’dot’ is used. When no <format> and <viewer> is
68 specified, ’xdot’ is used to display the schematic.
69
70 The generated output files are ’~/.yosys_show.dot’ and ’~/.yosys_show.<format>’,
71 unless another prefix is specified using -prefix <prefix>.
72
73 Yosys on Windows and YosysJS use different defaults: The output is written
74 to ’show.dot’ in the current directory and new viewer is launched.

C.104 simplemap – mapping simple coarse-grain cells

1 simplemap [selection]
2
3 This pass maps a small selection of simple coarse-grain cells to yosys gate
4 primitives. The following internal cell types are mapped by this pass:
5
6 $not, $pos, $and, $or, $xor, $xnor
7 $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
8 $logic_not, $logic_and, $logic_or, $mux, $tribuf
9 $sr, $dff, $dffsr, $adff, $dlatch

C.105 singleton – create singleton modules

1 singleton [selection]
2
3 By default, a module that is instantiated by several other modules is only
4 kept once in the design. This preserves the original modularity of the design
5 and reduces the overall size of the design in memory. But it prevents certain
6 optimizations and other operations on the design. This pass creates singleton
7 modules for all selected cells. The created modules are marked with the
8 ’singleton’ attribute.
9

10 This commands only operates on modules that by themself have the ’singleton’
11 attribute set (the ’top’ module is a singleton implicitly).

120

APPENDIX C. COMMAND REFERENCE MANUAL

C.106 splice – create explicit splicing cells

1 splice [options] [selection]
2
3 This command adds $slice and $concat cells to the design to make the splicing
4 of multi-bit signals explicit. This for example is useful for coarse grain
5 synthesis, where dedicated hardware is needed to splice signals.
6
7 -sel_by_cell
8 only select the cell ports to rewire by the cell. if the selection
9 contains a cell, than all cell inputs are rewired, if necessary.

10
11 -sel_by_wire
12 only select the cell ports to rewire by the wire. if the selection
13 contains a wire, than all cell ports driven by this wire are wired,
14 if necessary.
15
16 -sel_any_bit
17 it is sufficient if the driver of any bit of a cell port is selected.
18 by default all bits must be selected.
19
20 -wires
21 also add $slice and $concat cells to drive otherwise unused wires.
22
23 -no_outputs
24 do not rewire selected module outputs.
25
26 -port <name>
27 only rewire cell ports with the specified name. can be used multiple
28 times. implies -no_output.
29
30 -no_port <name>
31 do not rewire cell ports with the specified name. can be used multiple
32 times. can not be combined with -port <name>.
33
34 By default selected output wires and all cell ports of selected cells driven
35 by selected wires are rewired.

C.107 splitnets – split up multi-bit nets

1 splitnets [options] [selection]
2
3 This command splits multi-bit nets into single-bit nets.
4
5 -format char1[char2[char3]]
6 the first char is inserted between the net name and the bit index, the
7 second char is appended to the netname. e.g. -format () creates net
8 names like ’mysignal(42)’. the 3rd character is the range separation
9 character when creating multi-bit wires. the default is ’[]:’.

10
11 -ports
12 also split module ports. per default only internal signals are split.

121

APPENDIX C. COMMAND REFERENCE MANUAL

13
14 -driver
15 don’t blindly split nets in individual bits. instead look at the driver
16 and split nets so that no driver drives only part of a net.

C.108 stat – print some statistics

1 stat [options] [selection]
2
3 Print some statistics (number of objects) on the selected portion of the
4 design.
5
6 -top <module>
7 print design hierarchy with this module as top. if the design is fully
8 selected and a module has the ’top’ attribute set, this module is used
9 default value for this option.

10
11 -liberty <liberty_file>
12 use cell area information from the provided liberty file
13
14 -width
15 annotate internal cell types with their word width.
16 e.g. $add_8 for an 8 bit wide $add cell.

C.109 submod – moving part of a module to a new submodule

1 submod [-copy] [selection]
2
3 This pass identifies all cells with the ’submod’ attribute and moves them to
4 a newly created module. The value of the attribute is used as name for the
5 cell that replaces the group of cells with the same attribute value.
6
7 This pass can be used to create a design hierarchy in flat design. This can
8 be useful for analyzing or reverse-engineering a design.
9

10 This pass only operates on completely selected modules with no processes
11 or memories.
12
13
14 submod -name <name> [-copy] [selection]
15
16 As above, but don’t use the ’submod’ attribute but instead use the selection.
17 Only objects from one module might be selected. The value of the -name option
18 is used as the value of the ’submod’ attribute above.
19
20 By default the cells are ’moved’ from the source module and the source module
21 will use an instance of the new module after this command is finished. Call
22 with -copy to not modify the source module.

122

APPENDIX C. COMMAND REFERENCE MANUAL

C.110 synth – generic synthesis script

1 synth [options]
2
3 This command runs the default synthesis script. This command does not operate
4 on partly selected designs.
5
6 -top <module>
7 use the specified module as top module (default=’top’)
8
9 -encfile <file>

10 passed to ’fsm_recode’ via ’fsm’
11
12 -nofsm
13 do not run FSM optimization
14
15 -noabc
16 do not run abc (as if yosys was compiled without ABC support)
17
18 -noalumacc
19 do not run ’alumacc’ pass. i.e. keep arithmetic operators in
20 their direct form ($add, $sub, etc.).
21
22 -nordff
23 passed to ’memory’. prohibits merging of FFs into memory read ports
24
25 -run <from_label>[:<to_label>]
26 only run the commands between the labels (see below). an empty
27 from label is synonymous to ’begin’, and empty to label is
28 synonymous to the end of the command list.
29
30
31 The following commands are executed by this synthesis command:
32
33 begin:
34 hierarchy -check [-top <top>]
35
36 coarse:
37 proc
38 opt_const
39 opt_clean
40 check
41 opt
42 wreduce
43 alumacc
44 share
45 opt
46 fsm
47 opt -fast
48 memory -nomap
49 opt_clean
50
51 fine:
52 opt -fast -full

123

APPENDIX C. COMMAND REFERENCE MANUAL

53 memory_map
54 opt -full
55 techmap
56 opt -fast
57 abc -fast
58 opt -fast
59
60 check:
61 hierarchy -check
62 stat
63 check

C.111 synth_greenpak4 – synthesis for GreenPAK4 FPGAs

1 synth_greenpak4 [options]
2
3 This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.
4
5 -top <module>
6 use the specified module as top module (default=’top’)
7
8 -blif <file>
9 write the design to the specified BLIF file. writing of an output file

10 is omitted if this parameter is not specified.
11
12 -edif <file>
13 write the design to the specified edif file. writing of an output file
14 is omitted if this parameter is not specified.
15
16 -run <from_label>:<to_label>
17 only run the commands between the labels (see below). an empty
18 from label is synonymous to ’begin’, and empty to label is
19 synonymous to the end of the command list.
20
21 -noflatten
22 do not flatten design before synthesis
23
24 -retime
25 run ’abc’ with -dff option
26
27
28 The following commands are executed by this synthesis command:
29
30 begin:
31 read_verilog -lib +/greenpak4/cells_sim.v
32 hierarchy -check -top <top>
33
34 flatten: (unless -noflatten)
35 proc
36 flatten
37 tribuf -logic
38

124

APPENDIX C. COMMAND REFERENCE MANUAL

39 coarse:
40 synth -run coarse
41
42 fine:
43 opt -fast -mux_undef -undriven -fine
44 memory_map
45 opt -undriven -fine
46 techmap
47 dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
48 opt -fast
49 abc -dff (only if -retime)
50
51 map_luts:
52 nlutmap -luts 0,8,16,2
53 clean
54
55 map_cells:
56 techmap -map +/greenpak4/cells_map.v
57 clean
58
59 check:
60 hierarchy -check
61 stat
62 check -noinit
63
64 blif:
65 write_blif -gates -attr -param <file-name>
66
67 edif:
68 write_edif <file-name>

C.112 synth_ice40 – synthesis for iCE40 FPGAs

1 synth_ice40 [options]
2
3 This command runs synthesis for iCE40 FPGAs. This work is experimental.
4
5 -top <module>
6 use the specified module as top module (default=’top’)
7
8 -blif <file>
9 write the design to the specified BLIF file. writing of an output file

10 is omitted if this parameter is not specified.
11
12 -edif <file>
13 write the design to the specified edif file. writing of an output file
14 is omitted if this parameter is not specified.
15
16 -run <from_label>:<to_label>
17 only run the commands between the labels (see below). an empty
18 from label is synonymous to ’begin’, and empty to label is
19 synonymous to the end of the command list.

125

APPENDIX C. COMMAND REFERENCE MANUAL

20
21 -noflatten
22 do not flatten design before synthesis
23
24 -retime
25 run ’abc’ with -dff option
26
27 -nocarry
28 do not use SB_CARRY cells in output netlist
29
30 -nobram
31 do not use SB_RAM40_4K* cells in output netlist
32
33 -abc2
34 run two passes of ’abc’ for slightly improved logic density
35
36
37 The following commands are executed by this synthesis command:
38
39 begin:
40 read_verilog -lib +/ice40/cells_sim.v
41 hierarchy -check -top <top>
42
43 flatten: (unless -noflatten)
44 proc
45 flatten
46 tribuf -logic
47
48 coarse:
49 synth -run coarse
50
51 bram: (skip if -nobram)
52 memory_bram -rules +/ice40/brams.txt
53 techmap -map +/ice40/brams_map.v
54
55 fine:
56 opt -fast -mux_undef -undriven -fine
57 memory_map
58 opt -undriven -fine
59 techmap -map +/techmap.v [-map +/ice40/arith_map.v]
60 abc -dff (only if -retime)
61 ice40_opt
62
63 map_ffs:
64 dffsr2dff
65 dff2dffe -direct-match $_DFF_*
66 techmap -map +/ice40/cells_map.v
67 opt_const -mux_undef
68 simplemap
69 ice40_ffinit
70 ice40_ffssr
71 ice40_opt -full
72
73 map_luts:

126

APPENDIX C. COMMAND REFERENCE MANUAL

74 abc (only if -abc2)
75 ice40_opt (only if -abc2)
76 abc -lut 4
77 clean
78
79 map_cells:
80 techmap -map +/ice40/cells_map.v
81 clean
82
83 check:
84 hierarchy -check
85 stat
86 check -noinit
87
88 blif:
89 write_blif -gates -attr -param <file-name>
90
91 edif:
92 write_edif <file-name>

C.113 synth_xilinx – synthesis for Xilinx FPGAs

1 synth_xilinx [options]
2
3 This command runs synthesis for Xilinx FPGAs. This command does not operate on
4 partly selected designs. At the moment this command creates netlists that are
5 compatible with 7-Series Xilinx devices.
6
7 -top <module>
8 use the specified module as top module
9

10 -edif <file>
11 write the design to the specified edif file. writing of an output file
12 is omitted if this parameter is not specified.
13
14 -run <from_label>:<to_label>
15 only run the commands between the labels (see below). an empty
16 from label is synonymous to ’begin’, and empty to label is
17 synonymous to the end of the command list.
18
19 -flatten
20 flatten design before synthesis
21
22 -retime
23 run ’abc’ with -dff option
24
25
26 The following commands are executed by this synthesis command:
27
28 begin:
29 read_verilog -lib +/xilinx/cells_sim.v
30 read_verilog -lib +/xilinx/brams_bb.v

127

APPENDIX C. COMMAND REFERENCE MANUAL

31 read_verilog -lib +/xilinx/drams_bb.v
32 hierarchy -check -top <top>
33
34 flatten: (only if -flatten)
35 proc
36 flatten
37
38 coarse:
39 synth -run coarse
40
41 bram:
42 memory_bram -rules +/xilinx/brams.txt
43 techmap -map +/xilinx/brams_map.v
44
45 dram:
46 memory_bram -rules +/xilinx/drams.txt
47 techmap -map +/xilinx/drams_map.v
48
49 fine:
50 opt -fast -full
51 memory_map
52 dffsr2dff
53 dff2dffe
54 opt -full
55 techmap -map +/techmap.v -map +/xilinx/arith_map.v
56 opt -fast
57
58 map_luts:
59 abc -luts 2:2,3,6:5,10,20 [-dff]
60 clean
61
62 map_cells:
63 techmap -map +/xilinx/cells_map.v
64 dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT
65 clean
66
67 check:
68 hierarchy -check
69 stat
70 check -noinit
71
72 edif: (only if -edif)
73 write_edif <file-name>

C.114 tcl – execute a TCL script file

1 tcl <filename>
2
3 This command executes the tcl commands in the specified file.
4 Use ’yosys cmd’ to run the yosys command ’cmd’ from tcl.
5
6 The tcl command ’yosys -import’ can be used to import all yosys

128

APPENDIX C. COMMAND REFERENCE MANUAL

7 commands directly as tcl commands to the tcl shell. The yosys
8 command ’proc’ is wrapped using the tcl command ’procs’ in order
9 to avoid a name collision with the tcl builtin command ’proc’.

C.115 techmap – generic technology mapper

1 techmap [-map filename] [selection]
2
3 This pass implements a very simple technology mapper that replaces cells in
4 the design with implementations given in form of a Verilog or ilang source
5 file.
6
7 -map filename
8 the library of cell implementations to be used.
9 without this parameter a builtin library is used that

10 transforms the internal RTL cells to the internal gate
11 library.
12
13 -map %<design-name>
14 like -map above, but with an in-memory design instead of a file.
15
16 -extern
17 load the cell implementations as separate modules into the design
18 instead of inlining them.
19
20 -max_iter <number>
21 only run the specified number of iterations.
22
23 -recursive
24 instead of the iterative breadth-first algorithm use a recursive
25 depth-first algorithm. both methods should yield equivalent results,
26 but may differ in performance.
27
28 -autoproc
29 Automatically call "proc" on implementations that contain processes.
30
31 -assert
32 this option will cause techmap to exit with an error if it can’t map
33 a selected cell. only cell types that end on an underscore are accepted
34 as final cell types by this mode.
35
36 -D <define>, -I <incdir>
37 this options are passed as-is to the Verilog frontend for loading the
38 map file. Note that the Verilog frontend is also called with the
39 ’-ignore_redef’ option set.
40
41 When a module in the map file has the ’techmap_celltype’ attribute set, it will
42 match cells with a type that match the text value of this attribute. Otherwise
43 the module name will be used to match the cell.
44
45 When a module in the map file has the ’techmap_simplemap’ attribute set, techmap
46 will use ’simplemap’ (see ’help simplemap’) to map cells matching the module.

129

APPENDIX C. COMMAND REFERENCE MANUAL

47
48 When a module in the map file has the ’techmap_maccmap’ attribute set, techmap
49 will use ’maccmap’ (see ’help maccmap’) to map cells matching the module.
50
51 When a module in the map file has the ’techmap_wrap’ attribute set, techmap
52 will create a wrapper for the cell and then run the command string that the
53 attribute is set to on the wrapper module.
54
55 All wires in the modules from the map file matching the pattern _TECHMAP_*
56 or *._TECHMAP_* are special wires that are used to pass instructions from
57 the mapping module to the techmap command. At the moment the following special
58 wires are supported:
59
60 _TECHMAP_FAIL_
61 When this wire is set to a non-zero constant value, techmap will not
62 use this module and instead try the next module with a matching
63 ’techmap_celltype’ attribute.
64
65 When such a wire exists but does not have a constant value after all
66 _TECHMAP_DO_* commands have been executed, an error is generated.
67
68 _TECHMAP_DO_*
69 This wires are evaluated in alphabetical order. The constant text value
70 of this wire is a yosys command (or sequence of commands) that is run
71 by techmap on the module. A common use case is to run ’proc’ on modules
72 that are written using always-statements.
73
74 When such a wire has a non-constant value at the time it is to be
75 evaluated, an error is produced. That means it is possible for such a
76 wire to start out as non-constant and evaluate to a constant value
77 during processing of other _TECHMAP_DO_* commands.
78
79 A _TECHMAP_DO_* command may start with the special token ’CONSTMAP; ’.
80 in this case techmap will create a copy for each distinct configuration
81 of constant inputs and shorted inputs at this point and import the
82 constant and connected bits into the map module. All further commands
83 are executed in this copy. This is a very convenient way of creating
84 optimized specializations of techmap modules without using the special
85 parameters described below.
86
87 A _TECHMAP_DO_* command may start with the special token ’RECURSION; ’.
88 then techmap will recursively replace the cells in the module with their
89 implementation. This is not affected by the -max_iter option.
90
91 It is possible to combine both prefixes to ’RECURSION; CONSTMAP; ’.
92
93 In addition to this special wires, techmap also supports special parameters in
94 modules in the map file:
95
96 _TECHMAP_CELLTYPE_
97 When a parameter with this name exists, it will be set to the type name
98 of the cell that matches the module.
99
100 _TECHMAP_CONSTMSK_<port-name>_

130

APPENDIX C. COMMAND REFERENCE MANUAL

101 _TECHMAP_CONSTVAL_<port-name>_
102 When this pair of parameters is available in a module for a port, then
103 former has a 1-bit for each constant input bit and the latter has the
104 value for this bit. The unused bits of the latter are set to undef (x).
105
106 _TECHMAP_BITS_CONNMAP_
107 _TECHMAP_CONNMAP_<port-name>_
108 For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
109 exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
110 N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
111 bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
112 This can be used to detect shorted inputs.
113
114 When a module in the map file has a parameter where the according cell in the
115 design has a port, the module from the map file is only used if the port in
116 the design is connected to a constant value. The parameter is then set to the
117 constant value.
118
119 A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
120 of the cell that is being replaced.
121
122 See ’help extract’ for a pass that does the opposite thing.
123
124 See ’help flatten’ for a pass that does flatten the design (which is
125 essentially techmap but using the design itself as map library).

C.116 tee – redirect command output to file

1 tee [-q] [-o logfile|-a logfile] cmd
2
3 Execute the specified command, optionally writing the commands output to the
4 specified logfile(s).
5
6 -q
7 Do not print output to the normal destination (console and/or log file)
8
9 -o logfile

10 Write output to this file, truncate if exists.
11
12 -a logfile
13 Write output to this file, append if exists.

C.117 test_abcloop – automatically test handling of loops in abc
command

1 test_abcloop [options]
2
3 Test handling of logic loops in ABC.
4

131

APPENDIX C. COMMAND REFERENCE MANUAL

5 -n {integer}
6 create this number of circuits and test them (default = 100).
7
8 -s {positive_integer}
9 use this value as rng seed value (default = unix time).

C.118 test_autotb – generate simple test benches

1 test_autotb [options] [filename]
2
3 Automatically create primitive Verilog test benches for all modules in the
4 design. The generated testbenches toggle the input pins of the module in
5 a semi-random manner and dumps the resulting output signals.
6
7 This can be used to check the synthesis results for simple circuits by
8 comparing the testbench output for the input files and the synthesis results.
9

10 The backend automatically detects clock signals. Additionally a signal can
11 be forced to be interpreted as clock signal by setting the attribute
12 ’gentb_clock’ on the signal.
13
14 The attribute ’gentb_constant’ can be used to force a signal to a constant
15 value after initialization. This can e.g. be used to force a reset signal
16 low in order to explore more inner states in a state machine.
17
18 -n <int>
19 number of iterations the test bench should run (default = 1000)

C.119 test_cell – automatically test the implementation of a cell
type

1 test_cell [options] {cell-types}
2
3 Tests the internal implementation of the given cell type (for example ’$add’)
4 by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..
5
6 Run with ’all’ instead of a cell type to run the test on all supported
7 cell types. Use for example ’all /$add’ for all cell types except $add.
8
9 -n {integer}

10 create this number of cell instances and test them (default = 100).
11
12 -s {positive_integer}
13 use this value as rng seed value (default = unix time).
14
15 -f {ilang_file}
16 don’t generate circuits. instead load the specified ilang file.
17
18 -w {filename_prefix}

132

APPENDIX C. COMMAND REFERENCE MANUAL

19 don’t test anything. just generate the circuits and write them
20 to ilang files with the specified prefix
21
22 -map {filename}
23 pass this option to techmap.
24
25 -simlib
26 use "techmap -map +/simlib.v -max_iter 2 -autoproc"
27
28 -aigmap
29 instead of calling "techmap", call "aigmap"
30
31 -muxdiv
32 when creating test benches with dividers, create an additional mux
33 to mask out the division-by-zero case
34
35 -script {script_file}
36 instead of calling "techmap", call "script {script_file}".
37
38 -const
39 set some input bits to random constant values
40
41 -nosat
42 do not check SAT model or run SAT equivalence checking
43
44 -noeval
45 do not check const-eval models
46
47 -v
48 print additional debug information to the console
49
50 -vlog {filename}
51 create a Verilog test bench to test simlib and write_verilog

C.120 torder – print cells in topological order

1 torder [options] [selection]
2
3 This command prints the selected cells in topological order.
4
5 -stop <cell_type> <cell_port>
6 do not use the specified cell port in topological sorting
7
8 -noautostop
9 by default Q outputs of internal FF cells and memory read port outputs

10 are not used in topological sorting. this option deactivates that.

C.121 trace – redirect command output to file

133

APPENDIX C. COMMAND REFERENCE MANUAL

1 trace cmd
2
3 Execute the specified command, logging all changes the command performs on
4 the design in real time.

C.122 tribuf – infer tri-state buffers

1 tribuf [options] [selection]
2
3 This pass transforms $mux cells with ’z’ inputs to tristate buffers.
4
5 -merge
6 merge multiple tri-state buffers driving the same net
7 into a single buffer.
8
9 -logic

10 convert tri-state buffers that do not drive output ports
11 to non-tristate logic. this option implies -merge.

C.123 verific – load Verilog and VHDL designs using Verific

1 verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv} <verilog-file>..
2
3 Load the specified Verilog/SystemVerilog files into Verific.
4
5
6 verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008} <vhdl-file>..
7
8 Load the specified VHDL files into Verific.
9

10
11 verific -import [-gates] {-all | <top-module>..}
12
13 Elaborate the design for the specified top modules, import to Yosys and
14 reset the internal state of Verific. A gate-level netlist is created
15 when called with -gates.
16
17 Visit http://verific.com/ for more information on Verific.

C.124 verilog_defaults – set default options for read_verilog

1 verilog_defaults -add [options]
2
3 Add the specified options to the list of default options to read_verilog.
4
5

134

APPENDIX C. COMMAND REFERENCE MANUAL

6 verilog_defaults -clear
7 Clear the list of Verilog default options.
8
9

10 verilog_defaults -push verilog_defaults -pop
11 Push or pop the list of default options to a stack. Note that -push does
12 not imply -clear.

C.125 vhdl2verilog – importing VHDL designs using vhdl2verilog

1 vhdl2verilog [options] <vhdl-file>..
2
3 This command reads VHDL source files using the ’vhdl2verilog’ tool and the
4 Yosys Verilog frontend.
5
6 -out <out_file>
7 do not import the vhdl2verilog output. instead write it to the
8 specified file.
9

10 -vhdl2verilog_dir <directory>
11 do use the specified vhdl2verilog installation. this is the directory
12 that contains the setup_env.sh file. when this option is not present,
13 it is assumed that vhdl2verilog is in the PATH environment variable.
14
15 -top <top-entity-name>
16 The name of the top entity. This option is mandatory.
17
18 The following options are passed as-is to vhdl2verilog:
19
20 -arch <architecture_name>
21 -unroll_generate
22 -nogenericeval
23 -nouniquify
24 -oldparser
25 -suppress <list>
26 -quiet
27 -nobanner
28 -mapfile <file>
29
30 vhdl2verilog can be obtained from:
31 http://www.edautils.com/vhdl2verilog.html

C.126 wreduce – reduce the word size of operations if possible

1 wreduce [options] [selection]
2
3 This command reduces the word size of operations. For example it will replace
4 the 32 bit adders in the following code with adders of more appropriate widths:
5
6 module test(input [3:0] a, b, c, output [7:0] y);

135

APPENDIX C. COMMAND REFERENCE MANUAL

7 assign y = a + b + c + 1;
8 endmodule

C.127 write_blif – write design to BLIF file

1 write_blif [options] [filename]
2
3 Write the current design to an BLIF file.
4
5 -top top_module
6 set the specified module as design top module
7
8 -buf <cell-type> <in-port> <out-port>
9 use cells of type <cell-type> with the specified port names for buffers

10
11 -unbuf <cell-type> <in-port> <out-port>
12 replace buffer cells with the specified name and port names with
13 a .names statement that models a buffer
14
15 -true <cell-type> <out-port>
16 -false <cell-type> <out-port>
17 -undef <cell-type> <out-port>
18 use the specified cell types to drive nets that are constant 1, 0, or
19 undefined. when ’-’ is used as <cell-type>, then <out-port> specifies
20 the wire name to be used for the constant signal and no cell driving
21 that wire is generated.
22
23 The following options can be useful when the generated file is not going to be
24 read by a BLIF parser but a custom tool. It is recommended to not name the output
25 file *.blif when any of this options is used.
26
27 -icells
28 do not translate Yosys’s internal gates to generic BLIF logic
29 functions. Instead create .subckt or .gate lines for all cells.
30
31 -gates
32 print .gate instead of .subckt lines for all cells that are not
33 instantiations of other modules from this design.
34
35 -conn
36 do not generate buffers for connected wires. instead use the
37 non-standard .conn statement.
38
39 -attr
40 use the non-standard .attr statement to write cell attributes
41
42 -param
43 use the non-standard .param statement to write cell parameters
44
45 -cname
46 use the non-standard .cname statement to write cell names
47

136

APPENDIX C. COMMAND REFERENCE MANUAL

48 -blackbox
49 write blackbox cells with .blackbox statement.
50
51 -impltf
52 do not write definitions for the $true, $false and $undef wires.

C.128 write_btor – write design to BTOR file

1 write_btor [filename]
2
3 Write the current design to an BTOR file.

C.129 write_edif – write design to EDIF netlist file

1 write_edif [options] [filename]
2
3 Write the current design to an EDIF netlist file.
4
5 -top top_module
6 set the specified module as design top module
7
8 Unfortunately there are different "flavors" of the EDIF file format. This
9 command generates EDIF files for the Xilinx place&route tools. It might be

10 necessary to make small modifications to this command when a different tool
11 is targeted.

C.130 write_file – write a text to a file

1 write_file [options] output_file [input_file]
2
3 Write the text from the input file to the output file.
4
5 -a
6 Append to output file (instead of overwriting)
7
8
9 Inside a script the input file can also can a here-document:

10
11 write_file hello.txt <<EOT
12 Hello World!
13 EOT

C.131 write_ilang – write design to ilang file

137

APPENDIX C. COMMAND REFERENCE MANUAL

1 write_ilang [filename]
2
3 Write the current design to an ’ilang’ file. (ilang is a text representation
4 of a design in yosys’s internal format.)
5
6 -selected
7 only write selected parts of the design.

C.132 write_intersynth – write design to InterSynth netlist file

1 write_intersynth [options] [filename]
2
3 Write the current design to an ’intersynth’ netlist file. InterSynth is
4 a tool for Coarse-Grain Example-Driven Interconnect Synthesis.
5
6 -notypes
7 do not generate celltypes and conntypes commands. i.e. just output
8 the netlists. this is used for postsilicon synthesis.
9

10 -lib <verilog_or_ilang_file>
11 Use the specified library file for determining whether cell ports are
12 inputs or outputs. This option can be used multiple times to specify
13 more than one library.
14
15 -selected
16 only write selected modules. modules must be selected entirely or
17 not at all.
18
19 http://www.clifford.at/intersynth/

C.133 write_json – write design to a JSON file

1 write_json [options] [filename]
2
3 Write a JSON netlist of the current design.
4
5 -aig
6 include AIG models for the different gate types
7
8
9 The general syntax of the JSON output created by this command is as follows:

10
11 {
12 "modules": {
13 <module_name>: {
14 "ports": {
15 <port_name>: <port_details>,
16 ...
17 },

138

APPENDIX C. COMMAND REFERENCE MANUAL

18 "cells": {
19 <cell_name>: <cell_details>,
20 ...
21 },
22 "netnames": {
23 <net_name>: <net_details>,
24 ...
25 }
26 }
27 },
28 "models": {
29 ...
30 },
31 }
32
33 Where <port_details> is:
34
35 {
36 "direction": <"input" | "output" | "inout">,
37 "bits": <bit_vector>
38 }
39
40 And <cell_details> is:
41
42 {
43 "hide_name": <1 | 0>,
44 "type": <cell_type>,
45 "parameters": {
46 <parameter_name>: <parameter_value>,
47 ...
48 },
49 "attributes": {
50 <attribute_name>: <attribute_value>,
51 ...
52 },
53 "port_directions": {
54 <port_name>: <"input" | "output" | "inout">,
55 ...
56 },
57 "connections": {
58 <port_name>: <bit_vector>,
59 ...
60 },
61 }
62
63 And <net_details> is:
64
65 {
66 "hide_name": <1 | 0>,
67 "bits": <bit_vector>
68 }
69
70 The "hide_name" fields are set to 1 when the name of this cell or net is
71 automatically created and is likely not of interest for a regular user.

139

APPENDIX C. COMMAND REFERENCE MANUAL

72
73 The "port_directions" section is only included for cells for which the
74 interface is known.
75
76 Module and cell ports and nets can be single bit wide or vectors of multiple
77 bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
78 values referenced above are vectors of this integers. Signal bits that are
79 connected to a constant driver are denoted as string "0" or "1" instead of
80 a number.
81
82 For example the following Verilog code:
83
84 module test(input x, y);
85 (* keep *) foo #(.P(42), .Q(1337))
86 foo_inst (.A({x, y}), .B({y, x}), .C({4’d10, {4{x}}}));
87 endmodule
88
89 Translates to the following JSON output:
90
91 {
92 "modules": {
93 "test": {
94 "ports": {
95 "x": {
96 "direction": "input",
97 "bits": [2]
98 },
99 "y": {
100 "direction": "input",
101 "bits": [3]
102 }
103 },
104 "cells": {
105 "foo_inst": {
106 "hide_name": 0,
107 "type": "foo",
108 "parameters": {
109 "Q": 1337,
110 "P": 42
111 },
112 "attributes": {
113 "keep": 1,
114 "src": "test.v:2"
115 },
116 "connections": {
117 "C": [2, 2, 2, 2, "0", "1", "0", "1"],
118 "B": [2, 3],
119 "A": [3, 2]
120 }
121 }
122 },
123 "netnames": {
124 "y": {
125 "hide_name": 0,

140

APPENDIX C. COMMAND REFERENCE MANUAL

126 "bits": [3],
127 "attributes": {
128 "src": "test.v:1"
129 }
130 },
131 "x": {
132 "hide_name": 0,
133 "bits": [2],
134 "attributes": {
135 "src": "test.v:1"
136 }
137 }
138 }
139 }
140 }
141 }
142
143 The models are given as And-Inverter-Graphs (AIGs) in the following form:
144
145 "models": {
146 <model_name>: [
147 /* 0 */ [<node-spec>],
148 /* 1 */ [<node-spec>],
149 /* 2 */ [<node-spec>],
150 ...
151],
152 ...
153 },
154
155 The following node-types may be used:
156
157 ["port", <portname>, <bitindex>, <out-list>]
158 - the value of the specified input port bit
159
160 ["nport", <portname>, <bitindex>, <out-list>]
161 - the inverted value of the specified input port bit
162
163 ["and", <node-index>, <node-index>, <out-list>]
164 - the ANDed value of the speciefied nodes
165
166 ["nand", <node-index>, <node-index>, <out-list>]
167 - the inverted ANDed value of the speciefied nodes
168
169 ["true", <out-list>]
170 - the constant value 1
171
172 ["false", <out-list>]
173 - the constant value 0
174
175 All nodes appear in topological order. I.e. only nodes with smaller indices
176 are referenced by "and" and "nand" nodes.
177
178 The optional <out-list> at the end of a node specification is a list of
179 output portname and bitindex pairs, specifying the outputs driven by this node.

141

APPENDIX C. COMMAND REFERENCE MANUAL

180
181 For example, the following is the model for a 3-input 3-output $reduce_and cell
182 inferred by the following code:
183
184 module test(input [2:0] in, output [2:0] out);
185 assign in = &out;
186 endmodule
187
188 "$reduce_and:3U:3": [
189 /* 0 */ ["port", "A", 0],
190 /* 1 */ ["port", "A", 1],
191 /* 2 */ ["and", 0, 1],
192 /* 3 */ ["port", "A", 2],
193 /* 4 */ ["and", 2, 3, "Y", 0],
194 /* 5 */ ["false", "Y", 1, "Y", 2]
195]
196
197 Future version of Yosys might add support for additional fields in the JSON
198 format. A program processing this format must ignore all unkown fields.

C.134 write_smt2 – write design to SMT-LIBv2 file

1 write_smt2 [options] [filename]
2
3 Write a SMT-LIBv2 [1] description of the current design. For a module with name
4 ’<mod>’ this will declare the sort ’<mod>_s’ (state of the module) and the
5 functions operating on that state.
6
7 The ’<mod>_s’ sort represents a module state. Additional ’<mod>_n’ functions
8 are provided that can be used to access the values of the signals in the module.
9 Only ports, and signals with the ’keep’ attribute set are made available via

10 such functions. Without the -bv option, multi-bit wires are exported as
11 separate functions of type Bool for the individual bits. With the -bv option
12 multi-bit wires are exported as single functions of type BitVec.
13
14 The ’<mod>_t’ function evaluates to ’true’ when the given pair of states
15 describes a valid state transition.
16
17 The ’<mod>_a’ function evaluates to ’true’ when the given state satisfies
18 the asserts in the module.
19
20 The ’<mod>_u’ function evaluates to ’true’ when the given state satisfies
21 the assumptions in the module.
22
23 The ’<mod>_i’ function evaluates to ’true’ when the given state conforms
24 to the initial state.
25
26 -verbose
27 this will print the recursive walk used to export the modules.
28
29 -bv
30 enable support for BitVec (FixedSizeBitVectors theory). with this

142

APPENDIX C. COMMAND REFERENCE MANUAL

31 option set multi-bit wires are represented using the BitVec sort and
32 support for coarse grain cells (incl. arithmetic) is enabled.
33
34 -mem
35 enable support for memories (via ArraysEx theory). this option
36 also implies -bv. only $mem cells without merged registers in
37 read ports are supported. call "memory" with -nordff to make sure
38 that no registers are merged into $mem read ports. ’<mod>_m’ functions
39 will be generated for accessing the arrays that are used to represent
40 memories.
41
42 -regs
43 also create ’<mod>_n’ functions for all registers.
44
45 -wires
46 also create ’<mod>_n’ functions for all public wires.
47
48 -tpl <template_file>
49 use the given template file. the line containing only the token ’%%’
50 is replaced with the regular output of this command.
51
52 [1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
53 R. Cok’s tutorial: http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
54
55 ---
56
57 Example:
58
59 Consider the following module (test.v). We want to prove that the output can
60 never transition from a non-zero value to a zero value.
61
62 module test(input clk, output reg [3:0] y);
63 always @(posedge clk)
64 y <= (y << 1) | ^y;
65 endmodule
66
67 For this proof we create the following template (test.tpl).
68
69 ; we need QF_UFBV for this poof
70 (set-logic QF_UFBV)
71
72 ; insert the auto-generated code here
73 %%
74
75 ; declare two state variables s1 and s2
76 (declare-fun s1 () test_s)
77 (declare-fun s2 () test_s)
78
79 ; state s2 is the successor of state s1
80 (assert (test_t s1 s2))
81
82 ; we are looking for a model with y non-zero in s1
83 (assert (distinct (|test_n y| s1) #b0000))
84

143

APPENDIX C. COMMAND REFERENCE MANUAL

85 ; we are looking for a model with y zero in s2
86 (assert (= (|test_n y| s2) #b0000))
87
88 ; is there such a model?
89 (check-sat)
90
91 The following yosys script will create a ’test.smt2’ file for our proof:
92
93 read_verilog test.v
94 hierarchy -check; proc; opt; check -assert
95 write_smt2 -bv -tpl test.tpl test.smt2
96
97 Running ’cvc4 test.smt2’ will print ’unsat’ because y can never transition
98 from non-zero to zero in the test design.

C.135 write_smv – write design to SMV file

1 write_smv [options] [filename]
2
3 Write an SMV description of the current design.
4
5 -verbose
6 this will print the recursive walk used to export the modules.
7
8 -tpl <template_file>
9 use the given template file. the line containing only the token ’%%’

10 is replaced with the regular output of this command.
11
12 THIS COMMAND IS UNDER CONSTRUCTION

C.136 write_spice – write design to SPICE netlist file

1 write_spice [options] [filename]
2
3 Write the current design to an SPICE netlist file.
4
5 -big_endian
6 generate multi-bit ports in MSB first order
7 (default is LSB first)
8
9 -neg net_name

10 set the net name for constant 0 (default: Vss)
11
12 -pos net_name
13 set the net name for constant 1 (default: Vdd)
14
15 -nc_prefix
16 prefix for not-connected nets (default: _NC)
17
18 -top top_module

144

APPENDIX C. COMMAND REFERENCE MANUAL

19 set the specified module as design top module

C.137 write_verilog – write design to Verilog file

1 write_verilog [options] [filename]
2
3 Write the current design to a Verilog file.
4
5 -norename
6 without this option all internal object names (the ones with a dollar
7 instead of a backslash prefix) are changed to short names in the
8 format ’_<number>_’.
9

10 -noattr
11 with this option no attributes are included in the output
12
13 -attr2comment
14 with this option attributes are included as comments in the output
15
16 -noexpr
17 without this option all internal cells are converted to Verilog
18 expressions.
19
20 -blackboxes
21 usually modules with the ’blackbox’ attribute are ignored. with
22 this option set only the modules with the ’blackbox’ attribute
23 are written to the output file.
24
25 -selected
26 only write selected modules. modules must be selected entirely or
27 not at all.

145

Appendix D

Application Notes

This appendix contains copies of the Yosys application notes.

• Yosys AppNote 010: Converting Verilog to BLIF .Page 147

• Yosys AppNote 011: Interactive Design Investigation . Page 150

• Yosys AppNote 012: Converting Verilog to BTOR . Page 159

146

1

Yosys Application Note 010:
Converting Verilog to BLIF

Clifford Wolf
November 2013

Abstract—Verilog-2005 is a powerful Hardware Description Language
(HDL) that can be used to easily create complex designs from small HDL
code. It is the preferred method of design entry for many designers1.

The Berkeley Logic Interchange Format (BLIF) [6] is a simple file
format for exchanging sequential logic between programs. It is easy to
generate and easy to parse and is therefore the preferred method of
design entry for many authors of logic synthesis tools.

Yosys [1] is a feature-rich Open-Source Verilog synthesis tool that can
be used to bridge the gap between the two file formats. It implements
most of Verilog-2005 and thus can be used to import modern behavioral
Verilog designs into BLIF-based design flows without dependencies on
proprietary synthesis tools.

The scope of Yosys goes of course far beyond Verilog logic synthesis.
But it is a useful and important feature and this Application Note will
focus on this aspect of Yosys.

I. INSTALLATION

Yosys written in C++ (using features from C++11) and is tested on
modern Linux. It should compile fine on most UNIX systems with a
C++11 compiler. The README file contains useful information on
building Yosys and its prerequisites.

Yosys is a large and feature-rich program with a couple of
dependencies. It is, however, possible to deactivate some of the
dependencies in the Makefile, resulting in features in Yosys becoming
unavailable. When problems with building Yosys are encountered, a
user who is only interested in the features of Yosys that are discussed
in this Application Note may deactivate TCL, Qt and MiniSAT support
in the Makefile and may opt against building yosys-abc.

This Application Note is based on GIT Rev. e216e0e from 2013-
11-23 of Yosys [1]. The Verilog sources used for the examples are
taken from yosys-bigsim [2], a collection of real-world designs used
for regression testing Yosys.

II. GETTING STARTED

We start our tour with the Navré processor from yosys-bigsim.
The Navré processor [3] is an Open Source AVR clone. It is a single
module (softusb_navre) in a single design file (softusb_navre.v).
It also is using only features that map nicely to the BLIF format, for
example it only uses synchronous resets.

Converting softusb_navre.v to softusb_navre.blif could not be
easier:

1 yosys -o softusb_navre.blif -S softusb_navre.v

Listing 1. Calling Yosys without script file

Behind the scenes Yosys is controlled by synthesis scripts that exe-
cute commands that operate on Yosys’ internal state. For example, the
-o softusb_navre.blif option just adds the command write_blif

softusb_navre.blif to the end of the script. Likewise a file on the
command line – softusb_navre.v in this case – adds the command
read_verilog softusb_navre.v to the beginning of the synthesis
script. In both cases the file type is detected from the file extension.

1The other half prefers VHDL, a very different but – of course – equally
powerful language.

Finally the option -S instantiates a built-in default synthesis script.
Instead of using -S one could also specify the synthesis commands
for the script on the command line using the -p option, either using
individual options for each command or by passing one big command
string with a semicolon-separated list of commands. But in most cases
it is more convenient to use an actual script file.

III. USING A SYNTHESIS SCRIPT

With a script file we have better control over Yosys. The following
script file replicates what the command from the last section did:

1 read_verilog softusb_navre.v

2 hierarchy

3 proc; opt; memory; opt; techmap; opt

4 write_blif softusb_navre.blif

Listing 2. softusb_navre.ys

The first and last line obviously read the Verilog file and write the
BLIF file.

The 2nd line checks the design hierarchy and instantiates
parametrized versions of the modules in the design, if necessary. In
the case of this simple design this is a no-op. However, as a general
rule a synthesis script should always contain this command as first
command after reading the input files.

The 3rd line does most of the actual work:
• The command opt is the Yosys’ built-in optimizer. It can

perform some simple optimizations such as const-folding and
removing unconnected parts of the design. It is common practice
to call opt after each major step in the synthesis procedure.
In cases where too much optimization is not appreciated (for
example when analyzing a design), it is recommended to call
clean instead of opt.

• The command proc converts processes (Yosys’ internal repre-
sentation of Verilog always- and initial-blocks) to circuits of
multiplexers and storage elements (various types of flip-flops).

• The command memory converts Yosys’ internal representations
of arrays and array accesses to multi-port block memories, and
then maps this block memories to address decoders and flip-
flops, unless the option -nomap is used, in which case the
multi-port block memories stay in the design and can then be
mapped to architecture-specific memory primitives using other
commands.

• The command techmap turns a high-level circuit with coarse
grain cells such as wide adders and multipliers to a fine-grain
circuit of simple logic primitives and single-bit storage elements.
The command does that by substituting the complex cells by
circuits of simpler cells. It is possible to provide a custom set
of rules for this process in the form of a Verilog source file, as
we will see in the next section.

Now Yosys can be run with the filename of the synthesis script as
argument:

1 yosys softusb_navre.ys

Listing 3. Calling Yosys with script file

Now that we are using a synthesis script we can easily modify how
Yosys synthesizes the design. The first thing we should customize is
the call to the hierarchy command:

147

2

Whenever it is known that there are no implicit blackboxes in
the design, i.e. modules that are referenced but are not defined, the
hierarchy command should be called with the -check option. This
will then cause synthesis to fail when implicit blackboxes are found
in the design.

The 2nd thing we can improve regarding the hierarchy command
is that we can tell it the name of the top level module of the design
hierarchy. It will then automatically remove all modules that are not
referenced from this top level module.

For many designs it is also desired to optimize the encodings for
the finite state machines (FSMs) in the design. The fsm command
finds FSMs, extracts them, performs some basic optimizations and
then generate a circuit from the extracted and optimized description.
It would also be possible to tell the fsm command to leave the FSMs
in their extracted form, so they can be further processed using custom
commands. But in this case we don’t want that.

So now we have the final synthesis script for generating a BLIF
file for the Navré CPU:

1 read_verilog softusb_navre.v

2 hierarchy -check -top softusb_navre

3 proc; opt; memory; opt; fsm; opt; techmap; opt

4 write_blif softusb_navre.blif

Listing 4. softusb_navre.ys (improved)

IV. ADVANCED EXAMPLE: THE AMBER23 ARMV2A CPU

Our 2nd example is the Amber23 [4] ARMv2a CPU. Once again
we base our example on the Verilog code that is included in yosys-
bigsim [2].

The problem with this core is that it contains no dedicated reset
logic. Instead the coding techniques shown in Listing 6 are used to
define reset values for the global asynchronous reset in an FPGA
implementation. This design can not be expressed in BLIF as it is.
Instead we need to use a synthesis script that transforms this form to
synchronous resets that can be expressed in BLIF.

1 read_verilog a23_alu.v

2 read_verilog a23_barrel_shift_fpga.v

3 read_verilog a23_barrel_shift.v

4 read_verilog a23_cache.v

5 read_verilog a23_coprocessor.v

6 read_verilog a23_core.v

7 read_verilog a23_decode.v

8 read_verilog a23_execute.v

9 read_verilog a23_fetch.v

10 read_verilog a23_multiply.v

11 read_verilog a23_ram_register_bank.v

12 read_verilog a23_register_bank.v

13 read_verilog a23_wishbone.v

14 read_verilog generic_sram_byte_en.v

15 read_verilog generic_sram_line_en.v

16 hierarchy -check -top a23_core

17 add -global_input globrst 1

18 proc -global_arst globrst

19 techmap -map adff2dff.v

20 opt; memory; opt; fsm; opt; techmap

21 write_blif amber23.blif

Listing 5. amber23.ys

1 reg [7:0] a = 13, b;

2 initial b = 37;

Listing 6. Implicit coding of global asynchronous resets

(Note that there is no problem if this coding techniques are used
to model ROM, where the register is initialized using this syntax but
is never updated otherwise.)

Listing 5 shows the synthesis script for the Amber23 core. In
line 17 the add command is used to add a 1-bit wide global input
signal with the name globrst. That means that an input with that
name is added to each module in the design hierarchy and then all
module instantiations are altered so that this new signal is connected
throughout the whole design hierarchy.

In line 18 the proc command is called. But in this script the signal
name globrst is passed to the command as a global reset signal for
resetting the registers to their assigned initial values.

Finally in line 19 the techmap command is used to replace all
instances of flip-flops with asynchronous resets with flip-flops with
synchronous resets. The map file used for this is shown in Listing 7.
Note how the techmap_celltype attribute is used in line 1 to tell
the techmap command which cells to replace in the design, how
the _TECHMAP_FAIL_ wire in lines 15 and 16 (which evaluates to a
constant value) determines if the parameter set is compatible with
this replacement circuit, and how the _TECHMAP_DO_ wire in line 13
provides a mini synthesis-script to be used to process this cell.

V. VERIFICATION OF THE AMBER23 CPU

The BLIF file for the Amber23 core, generated using Listings 5
and 7 and the version of the Amber23 RTL source that is bundled
with yosys-bigsim, was verified using the test-bench from yosys-
bigsim. It successfully executed the program shown in Listing 8 in
the test-bench.

1 (* techmap_celltype = "$adff" *)

2 module adff2dff (CLK, ARST, D, Q);

3
4 parameter WIDTH = 1;

5 parameter CLK_POLARITY = 1;

6 parameter ARST_POLARITY = 1;

7 parameter ARST_VALUE = 0;

8
9 input CLK, ARST;

10 input [WIDTH-1:0] D;

11 output reg [WIDTH-1:0] Q;

12
13 wire [1023:0] _TECHMAP_DO_ = "proc";

14
15 wire _TECHMAP_FAIL_ =

16 !CLK_POLARITY || !ARST_POLARITY;

17
18 always @(posedge CLK)

19 if (ARST)

20 Q <= ARST_VALUE;

21 else

22 Q <= D;

23
24 endmodule

Listing 7. adff2dff.v

148

3

1 #include <stdint.h>

2 #include <stdbool.h>

3
4 #define BITMAP_SIZE 64

5 #define OUTPORT 0x10000000

6
7 static uint32_t bitmap[BITMAP_SIZE/32];

8
9 static void bitmap_set(uint32_t idx) { bitmap[idx/32] |= 1 << (idx % 32); }

10 static bool bitmap_get(uint32_t idx) { return (bitmap[idx/32] & (1 << (idx % 32))) != 0; }

11 static void output(uint32_t val) { *((volatile uint32_t*)OUTPORT) = val; }

12
13 int main() {

14 uint32_t i, j, k;

15 output(2);

16 for (i = 0; i < BITMAP_SIZE; i++) {

17 if (bitmap_get(i)) continue;

18 output(3+2*i);

19 for (j = 2*(3+2*i);; j += 3+2*i) {

20 if (j%2 == 0) continue;

21 k = (j-3)/2;

22 if (k >= BITMAP_SIZE) break;

23 bitmap_set(k);

24 }

25 }

26 output(0);

27 return 0;

28 }

Listing 8. Test program for the Amber23 CPU (Sieve of Eratosthenes). Compiled using GCC 4.6.3 for ARM with -Os -marm -march=armv2a
-mno-thumb-interwork -ffreestanding, linked with --fix-v4bx set and booted with a custom setup routine written in ARM assembler.

For simulation the BLIF file was converted back to Verilog using
ABC [5]. So this test includes the successful transformation of the
BLIF file into ABC’s internal format as well.

The only thing left to write about the simulation itself is that it
probably was one of the most energy inefficient and time consuming
ways of successfully calculating the first 31 primes the author has
ever conducted.

VI. LIMITATIONS

At the time of this writing Yosys does not support multi-
dimensional memories, does not support writing to individual bits
of array elements, does not support initialization of arrays with
$readmemb and $readmemh, and has only limited support for tristate
logic, to name just a few limitations.

That being said, Yosys can synthesize an overwhelming majority
of real-world Verilog RTL code. The remaining cases can usually be
modified to be compatible with Yosys quite easily.

The various designs in yosys-bigsim are a good place to look for
examples of what is within the capabilities of Yosys.

VII. CONCLUSION

Yosys is a feature-rich Verilog-2005 synthesis tool. It has many
uses, but one is to provide an easy gateway from high-level Verilog
code to low-level logic circuits.

The command line option -S can be used to quickly synthesize
Verilog code to BLIF files without a hassle.

With custom synthesis scripts it becomes possible to easily perform
high-level optimizations, such as re-encoding FSMs. In some extreme
cases, such as the Amber23 ARMv2 CPU, the more advanced Yosys

features can be used to change a design to fit a certain need without
actually touching the RTL code.

REFERENCES

[1] Clifford Wolf. The Yosys Open SYnthesis Suite.
http://www.clifford.at/yosys/

[2] yosys-bigsim, a collection of real-world Verilog designs for regression
testing purposes.
https://github.com/cliffordwolf/yosys-bigsim

[3] Sebastien Bourdeauducq. Navré AVR clone (8-bit RISC).
http://opencores.org/project,navre

[4] Conor Santifort. Amber ARM-compatible core.
http://opencores.org/project,amber

[5] Berkeley Logic Synthesis and Verification Group. ABC: A System for
Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/~alanmi/abc/

[6] Berkeley Logic Interchange Format (BLIF)
http://vlsi.colorado.edu/~vis/blif.ps

149

1

Yosys Application Note 011:
Interactive Design Investigation

Clifford Wolf
Original Version December 2013

Abstract—Yosys [1] can be a great environment for building custom
synthesis flows. It can also be an excellent tool for teaching and learning
Verilog based RTL synthesis. In both applications it is of great importance
to be able to analyze the designs it produces easily.

This Yosys application note covers the generation of circuit diagrams
with the Yosys show command, the selection of interesting parts of
the circuit using the select command, and briefly discusses advanced
investigation commands for evaluating circuits and solving SAT problems.

I. INSTALLATION AND PREREQUISITES

This Application Note is based on the Yosys [1] GIT Rev. 2b90ba1
from 2013-12-08. The README file covers how to install Yosys. The
show command requires a working installation of GraphViz [2] and
[3] for generating the actual circuit diagrams.

II. OVERVIEW

This application note is structured as follows:
Sec. III introduces the show command and explains the symbols

used in the circuit diagrams generated by it.
Sec. IV introduces additional commands used to navigate in the

design, select portions of the design, and print additional information
on the elements in the design that are not contained in the circuit
diagrams.

Sec. V introduces commands to evaluate the design and solve SAT
problems within the design.

Sec. VI concludes the document and summarizes the key points.

III. INTRODUCTION TO THE show COMMAND

The show command generates a circuit diagram for the design in its
current state. Various options can be used to change the appearance
of the circuit diagram, set the name and format for the output file,
and so forth. When called without any special options, it saves the
circuit diagram in a temporary file and launches xdot to display the
diagram. Subsequent calls to show re-use the xdot instance (if still
running).

1 $ cat example.ys

2 read_verilog example.v

3 show -pause

4 proc

5 show -pause

6 opt

7 show -pause

8
9 $ cat example.v

10 module example(input clk, a, b, c,

11 output reg [1:0] y);

12 always @(posedge clk)

13 if (c)

14 y <= c ? a + b : 2’d0;

15 endmodule

Figure 1. Yosys script with show commands and example design

A. A simple circuit

Fig. 1 shows a simple synthesis script and a Verilog file that
demonstrate the usage of show in a simple setting. Note that show

is called with the -pause option, that halts execution of the Yosys
script until the user presses the Enter key. The show -pause command
also allows the user to enter an interactive shell to further investigate
the circuit before continuing synthesis.

So this script, when executed, will show the design after each of
the three synthesis commands. The generated circuit diagrams are
shown in Fig. 2.

The first diagram (from top to bottom) shows the design directly
after being read by the Verilog front-end. Input and output ports are
displayed as octagonal shapes. Cells are displayed as rectangles with
inputs on the left and outputs on the right side. The cell labels are
two lines long: The first line contains a unique identifier for the cell
and the second line contains the cell type. Internal cell types are
prefixed with a dollar sign. The Yosys manual contains a chapter on
the internal cell library used in Yosys.

Constants are shown as ellipses with the constant value as label.
The syntax <bit_width>’<bits> is used for for constants that are
not 32-bit wide and/or contain bits that are not 0 or 1 (i.e. x or z).
Ordinary 32-bit constants are written using decimal numbers.

Single-bit signals are shown as thin arrows pointing from the driver
to the load. Signals that are multiple bits wide are shown as think
arrows.

Finally processes are shown in boxes with round corners. Processes
are Yosys’ internal representation of the decision-trees and synchro-
nization events modelled in a Verilog always-block. The label reads
PROC followed by a unique identifier in the first line and contains the
source code location of the original always-block in the 2nd line.
Note how the multiplexer from the ?:-expression is represented as a
$mux cell but the multiplexer from the if-statement is yet still hidden
within the process.

a
A

B
$2

$add Y

b

c

A

B

S

$3
$mux Y

PROC $1
example.v:3

clk

y

2'00

a
A

B
$2

$add Y

b

c

A

B

S

$3
$mux Y

BUF

clk CLK

D
$7

$dff Q

yA

B

S

$5
$mux Y

2'00

BUF $0\y[1:0]

a
A

B
$2

$add Y

b

c

A

B

S

$5
$mux Y

clk CLK

D
$7

$dff Q

y

Figure 2. Output of the three show commands from Fig. 1

150

2

The proc command transforms the process from the first diagram
into a multiplexer and a d-type flip-flip, which brings us to the 2nd
diagram.

The Rhombus shape to the right is a dangling wire. (Wire nodes are
only shown if they are dangling or have “public” names, for example
names assigned from the Verilog input.) Also note that the design now
contains two instances of a BUF-node. This are artefacts left behind by
the proc-command. It is quite usual to see such artefacts after calling
commands that perform changes in the design, as most commands
only care about doing the transformation in the least complicated
way, not about cleaning up after them. The next call to clean (or
opt, which includes clean as one of its operations) will clean up this
artefacts. This operation is so common in Yosys scripts that it can
simply be abbreviated with the ;; token, which doubles as separator
for commands. Unless one wants to specifically analyze this artefacts
left behind some operations, it is therefore recommended to always
call clean before calling show.

In this script we directly call opt as next step, which finally leads
us to the 3rd diagram in Fig. 2. Here we see that the opt command
not only has removed the artifacts left behind by proc, but also
determined correctly that it can remove the first $mux cell without
changing the behavior of the circuit.

B. Break-out boxes for signal vectors

As has been indicated by the last example, Yosys is can manage
signal vectors (aka. multi-bit wires or buses) as native objects. This
provides great advantages when analyzing circuits that operate on
wide integers. But it also introduces some additional complexity when
the individual bits of of a signal vector are accessed. The example
show in Fig. 3 and 4 demonstrates how such circuits are visualized
by the show command.

a

0:0 - 1:1

1:1 - 0:0

1:0 - 3:2

1:0 - 1:0b
c

1:0 - 3:2

1:0 - 1:0d

e 1:0 - 3:2

1:0 - 1:0

f

x

y

A $2
$neg Y 3:0 - 7:4

A $1
$not Y

3:2 - 1:0

1:0 - 3:2

3:0 - 11:8

Figure 3. Output of yosys -p ’proc; opt; show’ splice.v

1 module splice_demo(a, b, c, d, e, f, x, y);

2
3 input [1:0] a, b, c, d, e, f;

4 output [1:0] x = {a[0], a[1]};

5
6 output [11:0] y;

7 assign {y[11:4], y[1:0], y[3:2]} =

8 {a, b, -{c, d}, ~{e, f}};

9
10 endmodule

Figure 4. splice.v

a

A

B

Y

$g0
NOR

A

Y
$g2
NOT

b A

Y
$g1
NOT

y

1:1 - 0:0

1:1 - 0:0

0:0 - 0:0

A

B

Y

$g3
NOR

A

B

Y

$g4
NOR

$n4

$n5

$n6_1

a

A

B
$g0

NOR Y

A $g2
NOT Y

b

A $g1
NOT Y

y[0]

y[1]

A

B
$g4

NOR Y
A

B
$g3

NOR Y

Figure 5. Effects of splitnets command and of providing a cell library.
(The circuit is a half-adder built from simple CMOS gates.)

The key elements in understanding this circuit diagram are
of course the boxes with round corners and rows labeled
<MSB_LEFT>:<LSB_LEFT> - <MSB_RIGHT>:<LSB_RIGHT>. Each of this
boxes has one signal per row on one side and a common signal for
all rows on the other side. The <MSB>:<LSB> tuples specify which
bits of the signals are broken out and connected. So the top row of
the box connecting the signals a and x indicates that the bit 0 (i.e.
the range 0:0) from signal a is connected to bit 1 (i.e. the range 1:1)
of signal x.

Lines connecting such boxes together and lines connecting such
boxes to cell ports have a slightly different look to emphasise that
they are not actual signal wires but a necessity of the graphical
representation. This distinction seems like a technicality, until one
wants to debug a problem related to the way Yosys internally
represents signal vectors, for example when writing custom Yosys
commands.

C. Gate level netlists

Finally Fig. 5 shows two common pitfalls when working with
designs mapped to a cell library. The top figure has two problems:
First Yosys did not have access to the cell library when this diagram
was generated, resulting in all cell ports defaulting to being inputs.
This is why all ports are drawn on the left side the cells are awkwardly
arranged in a large column. Secondly the two-bit vector y requires
breakout-boxes for its individual bits, resulting in an unnecessary
complex diagram.

151

3

For the 2nd diagram Yosys has been given a description of the cell
library as Verilog file containing blackbox modules. There are two
ways to load cell descriptions into Yosys: First the Verilog file for
the cell library can be passed directly to the show command using the
-lib <filename> option. Secondly it is possible to load cell libraries
into the design with the read_verilog -lib <filename> command.
The 2nd method has the great advantage that the library only needs
to be loaded once and can then be used in all subsequent calls to the
show command.

In addition to that, the 2nd diagram was generated after splitnet
-ports was run on the design. This command splits all signal vectors
into individual signal bits, which is often desirable when looking at
gate-level circuits. The -ports option is required to also split module
ports. Per default the command only operates on interior signals.

D. Miscellaneous notes

Per default the show command outputs a temporary dot file and
launches xdot to display it. The options -format, -viewer and
-prefix can be used to change format, viewer and filename prefix.
Note that the pdf and ps format are the only formats that support
plotting multiple modules in one run.

In densely connected circuits it is sometimes hard to keep track
of the individual signal wires. For this cases it can be useful to call
show with the -colors <integer> argument, which randomly assigns
colors to the nets. The integer (> 0) is used as seed value for the
random color assignments. Sometimes it is necessary it try some
values to find an assignment of colors that looks good.

The command help show prints a complete listing of all options
supported by the show command.

IV. NAVIGATING THE DESIGN

Plotting circuit diagrams for entire modules in the design brings
us only helps in simple cases. For complex modules the generated
circuit diagrams are just stupidly big and are no help at all. In such
cases one first has to select the relevant portions of the circuit.

In addition to what to display one also needs to carefully decide
when to display it, with respect to the synthesis flow. In general it
is a good idea to troubleshoot a circuit in the earliest state in which
a problem can be reproduced. So if, for example, the internal state
before calling the techmap command already fails to verify, it is better
to troubleshoot the coarse-grain version of the circuit before techmap

than the gate-level circuit after techmap.

Note: It is generally recommended to verify the internal state of a
design by writing it to a Verilog file using write_verilog -noexpr

and using the simulation models from simlib.v and simcells.v from
the Yosys data directory (as printed by yosys-config --datdir).

A. Interactive Navigation

Once the right state within the synthesis flow for debugging the
circuit has been identified, it is recommended to simply add the shell

command to the matching place in the synthesis script. This command
will stop the synthesis at the specified moment and go to shell mode,
where the user can interactively enter commands.

For most cases, the shell will start with the whole design selected
(i.e. when the synthesis script does not already narrow the selection).
The command ls can now be used to create a list of all modules.
The command cd can be used to switch to one of the modules (type
cd .. to switch back). Now the ls command lists the objects within
that module. Fig. 6 demonstrates this using the design from Fig. 1.

There is a thing to note in Fig. 6: We can see that the cell names
from Fig. 2 are just abbreviations of the actual cell names, namely

1 yosys> ls

2
3 1 modules:

4 example

5
6 yosys> cd example

7
8 yosys [example]> ls

9
10 7 wires:

11 $0\y[1:0]

12 addexample.v:5$2_Y

13 a

14 b

15 c

16 clk

17 y

18
19 3 cells:

20 addexample.v:5$2

21 $procdff$7

22 $procmux$5

Figure 6. Demonstration of ls and cd using example.v from Fig. 1

the part after the last dollar-sign. Most auto-generated names (the
ones starting with a dollar sign) are rather long and contains some
additional information on the origin of the named object. But in most
cases those names can simply be abbreviated using the last part.

Usually all interactive work is done with one module selected using
the cd command. But it is also possible to work from the design-
context (cd ..). In this case all object names must be prefixed with
<module_name>/. For example a*/b* would refer to all objects whose
names start with b from all modules whose names start with a.

The dump command can be used to print all information about an
object. For example dump $2 will print Fig. 7. This can for example
be useful to determine the names of nets connected to cells, as the
net-names are usually suppressed in the circuit diagram if they are
auto-generated.

For the remainder of this document we will assume that the
commands are run from module-context and not design-context.

B. Working with selections

When a module is selected using the cd command, all commands
(with a few exceptions, such as the read_* and write_* commands)
operate only on the selected module. This can also be useful for

1 attribute \src "example.v:5"

2 cell $add addexample.v:5$2

3 parameter \A_SIGNED 0

4 parameter \A_WIDTH 1

5 parameter \B_SIGNED 0

6 parameter \B_WIDTH 1

7 parameter \Y_WIDTH 2

8 connect \A \a

9 connect \B \b

10 connect \Y addexample.v:5$2_Y

11 end

Figure 7. Output of dump $2 using the design from Fig. 1 and Fig. 2

152

4

a
A

B
$2

$add Y

b

$2_Y

Figure 8. Output of show after select $2 or select t:$add (see also Fig. 2)

synthesis scripts where different synthesis strategies should be applied
to different modules in the design.

But for most interactive work we want to further narrow the set of
selected objects. This can be done using the select command.

For example, if the command select $2 is executed, a subsequent
show command will yield the diagram shown in Fig. 8. Note that
the nets are now displayed in ellipses. This indicates that they are
not selected, but only shown because the diagram contains a cell
that is connected to the net. This of course makes no difference for
the circuit that is shown, but it can be a useful information when
manipulating selections.

Objects can not only be selected by their name but also by other
properties. For example select t:$add will select all cells of type
$add. In this case this is also yields the diagram shown in Fig. 8.

The output of help select contains a complete syntax reference
for matching different properties.

Many commands can operate on explicit selections. For example
the command dump t:$add will print information on all $add cells
in the active module. Whenever a command has [selection] as last
argument in its usage help, this means that it will use the engine
behind the select command to evaluate additional arguments and
use the resulting selection instead of the selection created by the last
select command.

Normally the select command overwrites a previous selection.
The commands select -add and select -del can be used to add
or remove objects from the current selection.

The command select -clear can be used to reset the selection to
the default, which is a complete selection of everything in the current
module.

C. Operations on selections

The select command is actually much more powerful than it might
seem on the first glimpse. When it is called with multiple arguments,
each argument is evaluated and pushed separately on a stack. After
all arguments have been processed it simply creates the union of all

1 module foobaraddsub(a, b, c, d, fa, fs, ba, bs);

2 input [7:0] a, b, c, d;

3 output [7:0] fa, fs, ba, bs;

4 assign fa = a + (* foo *) b;

5 assign fs = a - (* foo *) b;

6 assign ba = c + (* bar *) d;

7 assign bs = c - (* bar *) d;

8 endmodule

Figure 9. Test module for operations on selections

1 module sumprod(a, b, c, sum, prod);

2
3 input [7:0] a, b, c;

4 output [7:0] sum, prod;

5
6 {* sumstuff *}

7 assign sum = a + b + c;

8 {* *}

9
10 assign prod = a * b * c;

11
12 endmodule

Figure 10. Another test module for operations on selections

elements on the stack. So the following command will select all $add
cells and all objects with the foo attribute set:

select t:$add a:foo

(Try this with the design shown in Fig. 9. Use the select -list

command to list the current selection.)
In many cases simply adding more and more stuff to the selection

is an ineffective way of selecting the interesting part of the design.
Special arguments can be used to combine the elements on the stack.
For example the %i arguments pops the last two elements from the
stack, intersects them, and pushes the result back on the stack. So
the following command will select all $add cells that have the foo

attribute set:

select t:$add a:foo %i

The listing in Fig. 10 uses the Yosys non-standard {* ... *}

syntax to set the attribute sumstuff on all cells generated by the first
assign statement. (This works on arbitrary large blocks of Verilog
code an can be used to mark portions of code for analysis.)

Selecting a:sumstuff in this module will yield the circuit diagram
shown in Fig. 11. As only the cells themselves are selected, but not
the temporary wire $1_Y, the two adders are shown as two disjunct
parts. This can be very useful for global signals like clock and reset
signals: just unselect them using a command such as select -del

clk rst and each cell using them will get its own net label.

a
A

B
$1

$add Y

b

$1_Y

$1_Y
A

B
$2

$add Y

c

sum

Figure 11. Output of show a:sumstuff on Fig. 10

153

5

a
A

B
$1

$add Y

b

c

A

B
$2

$add Y sum

Figure 12. Output of show a:sumstuff %x on Fig. 10

In this case however we would like to see the cells connected
properly. This can be achieved using the %x action, that broadens the
selection, i.e. for each selected wire it selects all cells connected to
the wire and vice versa. So show a:sumstuff %x yields the diagram
shown in Fig. 12.

D. Selecting logic cones

Fig. 12 shows what is called the input cone of sum, i.e. all cells
and signals that are used to generate the signal sum. The %ci action
can be used to select the input cones of all object in the top selection
in the stack maintained by the select command.

As the %x action, this commands broadens the selection by one
“step”. But this time the operation only works against the direction
of data flow. That means, wires only select cells via output ports and
cells only select wires via input ports.

Fig. 13 show the sequence of diagrams generated by the following
commands:

show prod

show prod %ci

show prod %ci %ci

show prod %ci %ci %ci

When selecting many levels of logic, repeating %ci over and over
again can be a bit dull. So there is a shortcut for that: the number of
iterations can be appended to the action. So for example the action
%ci3 is identical to performing the %ci action three times.

The action %ci* performs the %ci action over and over again until
it has no effect anymore.

In most cases there are certain cell types and/or ports that should
not be considered for the %ci action, or we only want to follow
certain cell types and/or ports. This can be achieved using additional
patterns that can be appended to the %ci action.

Lets consider the design from Fig. 14. It serves no purpose
other than being a non-trivial circuit for demonstrating some of the
advanced Yosys features. We synthesize the circuit using proc; opt;

memory; opt and change to the memdemo module with cd memdemo.
If we type show now we see the diagram shown in Fig. 15.

But maybe we are only interested in the tree of multiplexers that
select the output value. In order to get there, we would start by just
showing the output signal and its immediate predecessors:

show y %ci2

From this we would learn that y is driven by a $dff cell, that y is
connected to the output port Q, that the clk signal goes into the CLK

input port of the cell, and that the data comes from a auto-generated
wire into the input D of the flip-flop cell.

As we are not interested in the clock signal we add an additional
pattern to the %ci action, that tells it to only follow ports Q and D of
$dff cells:

prod

prod

$3_Y
A

B
$4

$mul Y

c

c

A

B
$4

$mul Y prod

$3_Y

c

A

B
$4

$mul Y prod

a
A

B
$3

$mul Y

b

Figure 13. Objects selected by select prod %ci...

show y %ci2:+$dff[Q,D]

To add a pattern we add a colon followed by the pattern to the
%ci action. The pattern it self starts with - or +, indicating if it is an
include or exclude pattern, followed by an optional comma separated
list of cell types, followed by an optional comma separated list of
port names in square brackets.

Since we know that the only cell considered in this case is a $dff

1 module memdemo(clk, d, y);

2
3 input clk;

4 input [3:0] d;

5 output reg [3:0] y;

6
7 integer i;

8 reg [1:0] s1, s2;

9 reg [3:0] mem [0:3];

10
11 always @(posedge clk) begin

12 for (i = 0; i < 4; i = i+1)

13 mem[i] <= mem[(i+1) % 4] + mem[(i+2) % 4];

14 { s2, s1 } = d ? { s1, s2 } ^ d : 4’b0;

15 mem[s1] <= d;

16 y <= mem[s2];

17 end

18
19 endmodule

Figure 14. Demo circuit for demonstrating some advanced Yosys features

154

6

clk

CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

CLK

D
$64
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

A $39
$reduce_bool Y

A

B
$38
$xor Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Y

A

B

S

$113
$mux Y

mem[1]

A

B
$28
$add Y

mem[2]

A

B
$31
$add Y

A

B

S

$116
$mux Y

mem[3]

s1

1:0 - 3:2

1:0 - 1:0

s2 y

A

B

S

$110
$mux Y

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00 A

B
$143
$eq Y

2'01 A

B
$173
$eq Y

2'10 A

B
$203
$eq Y

2'11 A

B
$233
$eq Y

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

Figure 15. Complete circuit diagram for the design shown in Fig. 14

cell, we could as well only specify the port names:

show y %ci2:+[Q,D]

Or we could decide to tell the %ci action to not follow the CLK

input:

show y %ci2:-[CLK]

Next we would investigate the next logic level by adding another
%ci2 to the command:

show y %ci2:-[CLK] %ci2

From this we would learn that the next cell is a $mux cell and we
would add additional pattern to narrow the selection on the path we
are interested. In the end we would end up with a command such as

show y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff

in which the first %ci jumps over the initial d-type flip-flop and
the 2nd action selects the entire input cone without going over
multiplexer select inputs and flip-flop cells. The diagram produces
by this command is shown in Fig. 16.

Similar to %ci exists an action %co to select output cones that
accepts the same syntax for pattern and repetition. The %x action
mentioned previously also accepts this advanced syntax.

This actions for traversing the circuit graph, combined with the
actions for boolean operations such as intersection (%i) and difference

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]
A

B

S

$116
$mux Y

mem[3]

y

$0\s2[1:0] [1]

A

B

S

$110
$mux Y

CLK

D
$64
$dff Q

$0\s2[1:0] [0]

$0\s2[1:0] [0]

clk

Figure 16. Output of show y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff

(%d) are powerful tools for extracting the relevant portions of the
circuit under investigation.

See help select for a complete list of actions available in
selections.

E. Storing and recalling selections

The current selection can be stored in memory with the command
select -set <name>. It can later be recalled using select @<name>.
In fact, the @<name> expression pushes the stored selection on the
stack maintained by the select command. So for example

select @foo @bar %i

will select the intersection between the stored selections foo and
bar.

In larger investigation efforts it is highly recommended to maintain
a script that sets up relevant selections, so they can easily be recalled,
for example when Yosys needs to be re-run after a design or source
code change.

The history command can be used to list all recent interactive
commands. This feature can be useful for creating such a script from
the commands used in an interactive session.

V. ADVANCED INVESTIGATION TECHNIQUES

When working with very large modules, it is often not enough
to just select the interesting part of the module. Instead it can be
useful to extract the interesting part of the circuit into a separate
module. This can for example be useful if one wants to run a series
of synthesis commands on the critical part of the module and wants
to carefully read all the debug output created by the commands in
order to spot a problem. This kind of troubleshooting is much easier
if the circuit under investigation is encapsulated in a separate module.

Fig. 17 shows how the submod command can be used to split the
circuit from Fig. 14 and 15 into its components. The -name option
is used to specify the name of the new module and also the name of
the new cell in the current module.

A. Evaluation of combinatorial circuits

The eval command can be used to evaluate combinatorial circuits.
For example (see Fig. 17 for the circuit diagram of selstage):

yosys [selstage]> eval -set s2,s1 4’b1001 -set d 4’hc -show n2 -show n1

155

7

clk
CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

clk

mem[0]

mem[1]

mem[2]

mem[3]

n1

outstage
outstage y

clk

d

n1

scramble
scramble

mem[0]

mem[1]

mem[2]

mem[3]

d

d

s1

s2

selstage
selstage

n1

n2 mem[0]

mem[1]

mem[2]

mem[3]

s1 s2

y

memdemo

clk
CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Y

mem[1]

A

B
$28
$add Y

mem[2]
A

B
$31
$add Y

mem[3]

n1

A

B
$143
$eq Y

A

B
$173
$eq Y

A

B
$203
$eq Y

A

B
$233
$eq Y

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00

2'01

2'10

2'11

scramble

clk

CLK

D
$64
$dff Q

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]

A

B

S

$116
$mux Ymem[3]

n1

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

y
A

B

S

$110
$mux Y

outstage

d A $39
$reduce_bool Y

A

B
$38
$xor Y

n1

n2
s1

1:0 - 3:2

1:0 - 1:0
s2

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

selstage

1 select -set outstage y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff
2 select -set selstage y %ci2:+$dff[Q,D] %ci*:-$dff @outstage %d
3 select -set scramble mem* %ci2 %ci*:-$dff mem* %d @selstage %d
4 submod -name scramble @scramble
5 submod -name outstage @outstage
6 submod -name selstage @selstage

Figure 17. The circuit from Fig. 14 and 15 broken up using submod

9. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set s2,s1 4’b1001 -set d 4’hc -show n2 -show n1
Eval result: \n2 = 2’10.
Eval result: \n1 = 2’10.

So the -set option is used to set input values and the -show option
is used to specify the nets to evaluate. If no -show option is specified,
all selected output ports are used per default.

If a necessary input value is not given, an error is produced. The
option -set-undef can be used to instead set all unspecified input
nets to undef (x).

The -table option can be used to create a truth table. For example:

yosys [selstage]> eval -set-undef -set d[3:1] 0 -table s1,d[0]

10. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set-undef -set d[3:1] 0 -table s1,d[0]

\s1 \d [0] | \n1 \n2
---- ------ | ---- ----
2’00 1’0 | 2’00 2’00
2’00 1’1 | 2’xx 2’00
2’01 1’0 | 2’00 2’00
2’01 1’1 | 2’xx 2’01
2’10 1’0 | 2’00 2’00
2’10 1’1 | 2’xx 2’10
2’11 1’0 | 2’00 2’00
2’11 1’1 | 2’xx 2’11

Assumed undef (x) value for the following signals: \s2

Note that the eval command (as well as the sat command dis-
cussed in the next sections) does only operate on flattened modules.
It can not analyze signals that are passed through design hierarchy
levels. So the flatten command must be used on modules that
instantiate other modules before this commands can be applied.

B. Solving combinatorial SAT problems

Often the opposite of the eval command is needed, i.e. the circuits
output is given and we want to find the matching input signals. For
small circuits with only a few input bits this can be accomplished
by trying all possible input combinations, as it is done by the eval

-table command. For larger circuits however, Yosys provides the
sat command that uses a SAT [4] solver [5] to solve this kind of
problems.

The sat command works very similar to the eval command. The
main difference is that it is now also possible to set output values
and find the corresponding input values. For Example:

yosys [selstage]> sat -show s1,s2,d -set s1 s2 -set n2,n1 4’b1001

11. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -show s1,s2,d -set s1 s2 -set n2,n1 4’b1001

Setting up SAT problem:
Import set-constraint: \s1 = \s2
Import set-constraint: { \n2 \n1 } = 4’1001
Final constraint equation: { \n2 \n1 \s1 } = { 4’1001 \s2 }
Imported 3 cells to SAT database.
Import show expression: { \s1 \s2 \d }

Solving problem with 81 variables and 207 clauses..
SAT solving finished - model found:

Signal Name Dec Hex Bin
-------------------- ---------- ---------- ---------------
\d 9 9 1001
\s1 0 0 00
\s2 0 0 00

Note that the sat command supports signal names in both argu-
ments to the -set option. In the above example we used -set s1 s2

to constraint s1 and s2 to be equal. When more complex constraints
are needed, a wrapper circuit must be constructed that checks the
constraints and signals if the constraint was met using an extra output
port, which then can be forced to a value using the -set option. (Such
a circuit that contains the circuit under test plus additional constraint
checking circuitry is called a miter circuit.)

1 module primetest(p, a, b, ok);

2 input [15:0] p, a, b;

3 output ok = p != a*b || a == 1 || b == 1;

4 endmodule

Figure 18. A simple miter circuit for testing if a number is prime. But it has
a problem (see main text and Fig. 19).

156

8

1 yosys [primetest]> sat -prove ok 1 -set p 31
2
3 8. Executing SAT pass (solving SAT problems in the circuit).
4 Full command line: sat -prove ok 1 -set p 31
5
6 Setting up SAT problem:
7 Import set-constraint: \p = 16’0000000000011111
8 Final constraint equation: \p = 16’0000000000011111
9 Imported 6 cells to SAT database.

10 Import proof-constraint: \ok = 1’1
11 Final proof equation: \ok = 1’1
12
13 Solving problem with 2790 variables and 8241 clauses..
14 SAT proof finished - model found: FAIL!
15
16 ______ ___ ___ _ _ _ _
17 (_____ \ / __) / __) (_) | | | |
18 _____))___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |
19 | ____/ ___) _ \ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|
20 | | | | | |_| | |_| || | | | / ___ | | || ____((_| |_
21 |_| |_| ___/ ___/ |_| |_| _____|_|_)_____)____|_|
22
23
24 Signal Name Dec Hex Bin
25 -------------------- ---------- ---------- ---------------------
26 \a 15029 3ab5 0011101010110101
27 \b 4099 1003 0001000000000011
28 \ok 0 0 0
29 \p 31 1f 0000000000011111
30
31 yosys [primetest]> sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0
32
33 9. Executing SAT pass (solving SAT problems in the circuit).
34 Full command line: sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0
35
36 Setting up SAT problem:
37 Import set-constraint: \p = 16’0000000000011111
38 Import set-constraint: { \a [15:8] \b [15:8] } = 16’0000000000000000
39 Final constraint equation: { \a [15:8] \b [15:8] \p } = { 16’0000000000000000 16’0000000000011111 }
40 Imported 6 cells to SAT database.
41 Import proof-constraint: \ok = 1’1
42 Final proof equation: \ok = 1’1
43
44 Solving problem with 2790 variables and 8257 clauses..
45 SAT proof finished - no model found: SUCCESS!
46
47 /$$$$$$ /$$$$$$$$ /$$$$$$$
48 /$$__ $$ | $$_____/ | $$__ $$
49 | $$ \ $$ | $$ | $$ \ $$
50 | $$ | $$ | $$$$$ | $$ | $$
51 | $$ | $$ | $$__/ | $$ | $$
52 | $$/$$ $$ | $$ | $$ | $$
53 | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$
54 ____ $$$|__/|________/|__/|_______/|__/
55 __/

Figure 19. Experiments with the miter circuit from Fig. 18. The first attempt of proving that 31 is prime failed because the SAT solver found a creative way
of factorizing 31 using integer overflow.

Fig. 18 shows a miter circuit that is supposed to be used as a prime
number test. If ok is 1 for all input values a and b for a given p, then
p is prime, or at least that is the idea.

The Yosys shell session shown in Fig. 19 demonstrates that SAT
solvers can even find the unexpected solutions to a problem: Using
integer overflow there actually is a way of “factorizing” 31. The clean
solution would of course be to perform the test in 32 bits, for example
by replacing p != a*b in the miter with p != {16’d0,a}*b, or by

using a temporary variable for the 32 bit product a*b. But as 31 fits
well into 8 bits (and as the purpose of this document is to show off
Yosys features) we can also simply force the upper 8 bits of a and b

to zero for the sat call, as is done in the second command in Fig. 19
(line 31).

The -prove option used in this example works similar to -set, but
tries to find a case in which the two arguments are not equal. If such
a case is not found, the property is proven to hold for all inputs that

157

9

satisfy the other constraints.
It might be worth noting, that SAT solvers are not particularly

efficient at factorizing large numbers. But if a small factorization
problem occurs as part of a larger circuit problem, the Yosys SAT
solver is perfectly capable of solving it.

C. Solving sequential SAT problems

The SAT solver functionality in Yosys can not only be used to
solve combinatorial problems, but can also solve sequential problems.
Let’s consider the entire memdemo module from Fig. 14 and suppose
we want to know which sequence of input values for d will cause the
output y to produce the sequence 1, 2, 3 from any initial state. Fig. 20
show the solution to this question, as produced by the following
command:

sat -seq 6 -show y -show d -set-init-undef \

-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

The -seq 6 option instructs the sat command to solve a sequential
problem in 6 time steps. (Experiments with lower number of steps
have show that at least 3 cycles are necessary to bring the circuit in
a state from which the sequence 1, 2, 3 can be produced.)

The -set-init-undef option tells the sat command to initialize
all registers to the undef (x) state. The way the x state is treated in
Verilog will ensure that the solution will work for any initial state.

The -max_undef option instructs the sat command to find a
solution with a maximum number of undefs. This way we can see
clearly which inputs bits are relevant to the solution.

Finally the three -set-at options add constraints for the y signal
to play the 1, 2, 3 sequence, starting with time step 4.

It is not surprising that the solution sets d = 0 in the first step, as
this is the only way of setting the s1 and s2 registers to a known
value. The input values for the other steps are a bit harder to work out
manually, but the SAT solver finds the correct solution in an instant.

There is much more to write about the sat command. For example,
there is a set of options that can be used to performs sequential proofs
using temporal induction [6]. The command help sat can be used
to print a list of all options with short descriptions of their functions.

VI. CONCLUSION

Yosys provides a wide range of functions to analyze and investigate
designs. For many cases it is sufficient to simply display circuit
diagrams, maybe use some additional commands to narrow the scope
of the circuit diagrams to the interesting parts of the circuit. But some
cases require more than that. For this applications Yosys provides
commands that can be used to further inspect the behavior of the
circuit, either by evaluating which output values are generated from
certain input values (eval) or by evaluation which input values and
initial conditions can result in a certain behavior at the outputs (sat).
The SAT command can even be used to prove (or disprove) theorems
regarding the circuit, in more advanced cases with the additional help
of a miter circuit.

This features can be powerful tools for the circuit designer using
Yosys as a utility for building circuits and the software developer
using Yosys as a framework for new algorithms alike.

REFERENCES

[1] Clifford Wolf. The Yosys Open SYnthesis Suite. http://www.clifford.at/
yosys/

[2] Graphviz - Graph Visualization Software. http://www.graphviz.org/
[3] xdot.py - an interactive viewer for graphs written in Graphviz’s dot

language. https://github.com/jrfonseca/xdot.py

1 yosys [memdemo]> sat -seq 6 -show y -show d -set-init-undef \
2 -max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3
3
4 6. Executing SAT pass (solving SAT problems in the circuit).
5 Full command line: sat -seq 6 -show y -show d -set-init-undef
6 -max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3
7
8 Setting up time step 1:
9 Final constraint equation: { } = { }

10 Imported 29 cells to SAT database.
11
12 Setting up time step 2:
13 Final constraint equation: { } = { }
14 Imported 29 cells to SAT database.
15
16 Setting up time step 3:
17 Final constraint equation: { } = { }
18 Imported 29 cells to SAT database.
19
20 Setting up time step 4:
21 Import set-constraint for timestep: \y = 4’0001
22 Final constraint equation: \y = 4’0001
23 Imported 29 cells to SAT database.
24
25 Setting up time step 5:
26 Import set-constraint for timestep: \y = 4’0010
27 Final constraint equation: \y = 4’0010
28 Imported 29 cells to SAT database.
29
30 Setting up time step 6:
31 Import set-constraint for timestep: \y = 4’0011
32 Final constraint equation: \y = 4’0011
33 Imported 29 cells to SAT database.
34
35 Setting up initial state:
36 Final constraint equation: { \y \s2 \s1 \mem[3] \mem[2] \mem[1]
37 \mem[0] } = 24’xxxxxxxxxxxxxxxxxxxxxxxx
38
39 Import show expression: \y
40 Import show expression: \d
41
42 Solving problem with 10322 variables and 27881 clauses..
43 SAT model found. maximizing number of undefs.
44 SAT solving finished - model found:
45
46 Time Signal Name Dec Hex Bin
47 ---- -------------------- ---------- ---------- ---------------
48 init \mem[0] -- -- xxxx
49 init \mem[1] -- -- xxxx
50 init \mem[2] -- -- xxxx
51 init \mem[3] -- -- xxxx
52 init \s1 -- -- xx
53 init \s2 -- -- xx
54 init \y -- -- xxxx
55 ---- -------------------- ---------- ---------- ---------------
56 1 \d 0 0 0000
57 1 \y -- -- xxxx
58 ---- -------------------- ---------- ---------- ---------------
59 2 \d 1 1 0001
60 2 \y -- -- xxxx
61 ---- -------------------- ---------- ---------- ---------------
62 3 \d 2 2 0010
63 3 \y 0 0 0000
64 ---- -------------------- ---------- ---------- ---------------
65 4 \d 3 3 0011
66 4 \y 1 1 0001
67 ---- -------------------- ---------- ---------- ---------------
68 5 \d -- -- 001x
69 5 \y 2 2 0010
70 ---- -------------------- ---------- ---------- ---------------
71 6 \d -- -- xxxx
72 6 \y 3 3 0011

Figure 20. Solving a sequential SAT problem in the memdemo module from
Fig. 14.

[4] Circuit satisfiability problem on Wikipedia http://en.wikipedia.org/wiki/
Circuit_satisfiability

[5] MiniSat: a minimalistic open-source SAT solver. http://minisat.se/
[6] Niklas Een and Niklas Sörensson (2003). Temporal Induction by Incre-

mental SAT Solving. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.4.8161

158

1

Yosys Application Note 012:
Converting Verilog to BTOR

Ahmed Irfan and Clifford Wolf
April 2015

Abstract—Verilog-2005 is a powerful Hardware Description Language
(HDL) that can be used to easily create complex designs from small HDL
code. BTOR [3] is a bit-precise word-level format for model checking. It is
a simple format and easy to parse. It allows to model the model checking
problem over the theory of bit-vectors with one-dimensional arrays, thus
enabling to model Verilog designs with registers and memories. Yosys [1]
is an Open-Source Verilog synthesis tool that can be used to convert
Verilog designs with simple assertions to BTOR format.

I. INSTALLATION

Yosys written in C++ (using features from C++11) and is tested on
modern Linux. It should compile fine on most UNIX systems with a
C++11 compiler. The README file contains useful information on
building Yosys and its prerequisites.

Yosys is a large and feature-rich program with some dependencies.
For this work, we may deactivate other extra features such as TCL and
ABC support in the Makefile.

This Application Note is based on GIT Rev. 082550f from 2015-
04-04 of Yosys [1].

II. QUICK START

We assume that the Verilog design is synthesizable and we also
assume that the design does not have multi-dimensional memories.
As BTOR implicitly initializes registers to zero value and memories
stay uninitialized, we assume that the Verilog design does not contain
initial blocks. For more details about the BTOR format, please refer
to [3].

We provide a shell script verilog2btor.sh which can be used to
convert a Verilog design to BTOR. The script can be found in the
backends/btor directory. The following example shows its usage:

verilog2btor.sh fsm.v fsm.btor test

Listing 1. Using verilog2btor script

The script verilog2btor.sh takes three parameters. In the above
example, the first parameter fsm.v is the input design, the second
parameter fsm.btor is the file name of BTOR output, and the third
parameter test is the name of top module in the design.

To specify the properties (that need to be checked), we have two
options:

• We can use the Verilog assert statement in the procedural block
or module body of the Verilog design, as shown in Listing 2.
This is the preferred option.

• We can use a single-bit output wire, whose name starts with
safety. The value of this output wire needs to be driven low
when the property is met, i.e. the solver will try to find a
model that makes the safety pin go high. This is demonstrated
in Listing 3.

module test(input clk, input rst, output y);

reg [2:0] state;

always @(posedge clk) begin

if (rst || state == 3) begin

state <= 0;

end else begin

assert(state < 3);

state <= state + 1;

end

end

assign y = state[2];

assert property (y !== 1’b1);

endmodule

Listing 2. Specifying property in Verilog design with assert

module test(input clk, input rst,

output y, output safety1);

reg [2:0] state;

always @(posedge clk) begin

if (rst || state == 3)

state <= 0;

else

state <= state + 1;

end

assign y = state[2];

assign safety1 = !(y !== 1’b1);

endmodule

Listing 3. Specifying property in Verilog design with output wire

We can run Boolector [2] 1.4.11 on the generated BTOR file:

$ boolector fsm.btor

unsat

Listing 4. Running boolector on BTOR file

We can also use nuXmv [4], but on BTOR designs it does not
support memories yet. With the next release of nuXmv, we will be
also able to verify designs with memories.

III. DETAILED FLOW

Yosys is able to synthesize Verilog designs up to the gate level.
We are interested in keeping registers and memories when syn-
thesizing the design. For this purpose, we describe a customized
Yosys synthesis flow, that is also provided by the verilog2btor.sh

1 Newer version of Boolector do not support sequential models. Boolector
1.4.1 can be built with picosat-951. Newer versions of picosat have an
incompatible API.

159

2

script. Listing 5 shows the Yosys commands that are executed by
verilog2btor.sh.

1 read_verilog -sv $1;

2 hierarchy -top $3; hierarchy -libdir $DIR;

3 hierarchy -check;

4 proc; opt;

5 opt_const -mux_undef; opt;

6 rename -hide;;;

7 splice; opt;

8 memory_dff -wr_only; memory_collect;;

9 flatten;;

10 memory_unpack;

11 splitnets -driver;

12 setundef -zero -undriven;

13 opt;;;

14 write_btor $2;

Listing 5. Synthesis Flow for BTOR with memories

Here is short description of what is happening in the script line by
line:

1) Reading the input file.
2) Setting the top module in the hierarchy and trying to read

automatically the files which are given as include in the file
read in first line.

3) Checking the design hierarchy.
4) Converting processes to multiplexers (muxs) and flip-flops.
5) Removing undef signals from muxs.
6) Hiding all signal names that are not used as module ports.
7) Explicit type conversion, by introducing slice and concat cells

in the circuit.
8) Converting write memories to synchronous memories, and

collecting the memories to multi-port memories.
9) Flattening the design to get only one module.

10) Separating read and write memories.
11) Splitting the signals that are partially assigned
12) Setting undef to zero value.
13) Final optimization pass.
14) Writing BTOR file.

For detailed description of the commands mentioned above, please
refer to the Yosys documentation, or run yosys -h command_name.

The script presented earlier can be easily modified to have a BTOR
file that does not contain memories. This is done by removing the
line number 8 and 10, and introduces a new command memory at line
number 8. Listing 6 shows the modified Yosys script file:

read_verilog -sv $1;

hierarchy -top $3; hierarchy -libdir $DIR;

hierarchy -check;

proc; opt;

opt_const -mux_undef; opt;

rename -hide;;;

splice; opt;

memory;;

flatten;;

splitnets -driver;

setundef -zero -undriven;

opt;;;

write_btor $2;

Listing 6. Synthesis Flow for BTOR without memories

IV. EXAMPLE

Here is an example Verilog design that we want to convert to
BTOR:

module array(input clk);

reg [7:0] counter;

reg [7:0] mem [7:0];

always @(posedge clk) begin

counter <= counter + 8’d1;

mem[counter] <= counter;

end

assert property (!(counter > 8’d0) ||

mem[counter - 8’d1] == counter - 8’d1);

endmodule

Listing 7. Example - Verilog Design

The generated BTOR file that contain memories, using the script
shown in Listing 5:

1 var 1 clk

2 array 8 3

3 var 8 $auto$rename.cc:150:execute$20

4 const 8 00000001

5 sub 8 3 4

6 slice 3 5 2 0

7 read 8 2 6

8 slice 3 3 2 0

9 add 8 3 4

10 const 8 00000000

11 ugt 1 3 10

12 not 1 11

13 const 8 11111111

14 slice 1 13 0 0

15 one 1

16 eq 1 1 15

17 and 1 16 14

18 write 8 3 2 8 3

19 acond 8 3 17 18 2

20 anext 8 3 2 19

21 eq 1 7 5

22 or 1 12 21

23 const 1 1

24 one 1

25 eq 1 23 24

26 cond 1 25 22 24

27 root 1 -26

28 cond 8 1 9 3

29 next 8 3 28

Listing 8. Example - Converted BTOR with memory

And the BTOR file obtained by the script shown in Listing 6,
which expands the memory into individual elements:

160

3

1 var 1 clk

2 var 8 mem[0]

3 var 8 $auto$rename.cc:150:execute$20

4 slice 3 3 2 0

5 slice 1 4 0 0

6 not 1 5

7 slice 1 4 1 1

8 not 1 7

9 slice 1 4 2 2

10 not 1 9

11 and 1 8 10

12 and 1 6 11

13 cond 8 12 3 2

14 cond 8 1 13 2

15 next 8 2 14

16 const 8 00000001

17 add 8 3 16

18 const 8 00000000

19 ugt 1 3 18

20 not 1 19

21 var 8 mem[2]

22 and 1 7 10

23 and 1 6 22

24 cond 8 23 3 21

25 cond 8 1 24 21

26 next 8 21 25

27 sub 8 3 16

...

54 cond 1 53 50 52

55 root 1 -54

...

77 cond 8 76 3 44

78 cond 8 1 77 44

79 next 8 44 78

Listing 9. Example - Converted BTOR without memory

V. LIMITATIONS

BTOR does not support initialization of memories and registers,
i.e. they are implicitly initialized to value zero, so the initial block for
memories need to be removed when converting to BTOR. It should
also be kept in consideration that BTOR does not support the x or z

values of Verilog.
Another thing to bear in mind is that Yosys will convert multi-

dimensional memories to one-dimensional memories and address
decoders. Therefore out-of-bounds memory accesses can yield un-
expected results.

VI. CONCLUSION

Using the described flow, we can use Yosys to generate word-
level verification benchmarks with or without memories from Verilog
designs.

REFERENCES

[1] Clifford Wolf. The Yosys Open SYnthesis Suite.
http://www.clifford.at/yosys/

[2] Robert Brummayer and Armin Biere, Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays
http://fmv.jku.at/boolector/

[3] Robert Brummayer and Armin Biere and Florian Lonsing, BTOR: Bit-
Precise Modelling of Word-Level Problems for Model Checking
http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf

[4] Roberto Cavada and Alessandro Cimatti and Michele Dorigatti and
Alberto Griggio and Alessandro Mariotti and Andrea Micheli and Sergio
Mover and Marco Roveri and Stefano Tonetta, The nuXmv Symbolic
Model Checker
https://es-static.fbk.eu/tools/nuxmv/index.php

161

Bibliography

[ASU86] Aho, Alfred V. ; Sethi, Ravi ; Ullman, Jeffrey D.: Compilers: principles, techniques, and
tools. Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc., 1986. – ISBN
0–201–10088–6

[BHSV90] Brayton, R.K. ; Hachtel, G.D. ; Sangiovanni-Vincentelli, A.L.: Multilevel logic syn-
thesis. In: Proceedings of the IEEE 78 (1990), Nr. 2, S. 264–300. http://dx.doi.org/10.1109/
5.52213. – DOI 10.1109/5.52213. – ISSN 0018–9219

[CI00] Cummings, Clifford E. ; Inc, Sunburst D.: Nonblocking Assignments in Verilog Synthesis,
Coding Styles That Kill. In: SNUG (Synopsys Users Group) 2000 User Papers, section-MC1
(1 st paper, 2000

[GW13] Glaser, Johann ; Wolf, Clifford: Methodology and Example-Driven Interconnect Synthe-
sis for Designing Heterogeneous Coarse-Grain Reconfigurable Architectures. In: Haase, Jan
(Hrsg.): Advances in Models, Methods, and Tools for Complex Chip Design — Selected contri-
butions from FDL’12. Springer, 2013. – to appear

[HS96] Hachtel, G D. ; Somenzi, F: Logic Synthesis and Verification Algorithms. 1996

[IP-10] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP
within Tools Flows. In: IEEE Std 1685-2009 (2010), S. C1–360. http://dx.doi.org/10.1109/
IEEESTD.2010.5417309. – DOI 10.1109/IEEESTD.2010.5417309

[LHBB85] Lee, Kyu Y. ; Holley, Michael ; Bailey, Mary ; Bright, Walter: A High-Level Design Lan-
guage for Programmable Logic Devices. In: VLSI Design (Manhasset NY: CPM Publications)
(June 1985), S. 50–62

[STGR10] Shi, Yiqiong ; Ting, Chan W. ; Gwee, Bah-Hwee ; Ren, Ye: A highly efficient method
for extracting FSMs from flattened gate-level netlist. In: Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, 2010, S. 2610–2613

[Ull76] Ullmann, J. R.: An Algorithm for Subgraph Isomorphism. In: J. ACM 23 (1976), Januar,
Nr. 1, S. 31–42. http://dx.doi.org/10.1145/321921.321925. – DOI 10.1145/321921.321925. –
ISSN 0004–5411

[Ver02] IEEE Standard for Verilog Register Transfer Level Synthesis. In: IEEE Std 1364.1-2002 (2002).
http://dx.doi.org/10.1109/IEEESTD.2002.94220. – DOI 10.1109/IEEESTD.2002.94220

[Ver06] IEEE Standard for Verilog Hardware Description Language. In: IEEE Std 1364-2005 (Revi-
sion of IEEE Std 1364-2001) (2006). http://dx.doi.org/10.1109/IEEESTD.2006.99495. – DOI
10.1109/IEEESTD.2006.99495

[VHD04] IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis. In: IEEE Std 1076.6-2004
(Revision of IEEE Std 1076.6-1999) (2004). http://dx.doi.org/10.1109/IEEESTD.2004.94802.
– DOI 10.1109/IEEESTD.2004.94802

162

http://dx.doi.org/10.1109/5.52213
http://dx.doi.org/10.1109/5.52213
http://dx.doi.org/10.1109/IEEESTD.2010.5417309
http://dx.doi.org/10.1109/IEEESTD.2010.5417309
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1109/IEEESTD.2002.94220
http://dx.doi.org/10.1109/IEEESTD.2006.99495
http://dx.doi.org/10.1109/IEEESTD.2004.94802

BIBLIOGRAPHY

[VHD09] IEEE Standard VHDL Language Reference Manual. In: IEEE Std 1076-2008 (Revision of
IEEE Std 1076-2002) (2009), 26. http://dx.doi.org/10.1109/IEEESTD.2009.4772740. – DOI
10.1109/IEEESTD.2009.4772740

[WGS+12] Wolf, Clifford ; Glaser, Johann ; Schupfer, Florian ; Haase, Jan ; Grimm, Christoph:
Example-driven interconnect synthesis for heterogeneous coarse-grain reconfigurable logic. In:
FDL Proceeding of the 2012 Forum on Specification and Design Languages, 2012, S. 194–201

[Wol13] Wolf, Clifford: Design and Implementation of the Yosys Open SYnthesis Suite. 2013. –
Bachelor Thesis, Vienna University of Technology

163

http://dx.doi.org/10.1109/IEEESTD.2009.4772740

Internet References

[16] C-to-Verilog. http://www.c-to-verilog.com/.

[17] Flex. http://flex.sourceforge.net/.

[18] GNU Bison. http://www.gnu.org/software/bison/.

[19] LegUp. http://legup.eecg.utoronto.ca/.

[20] OpenCores I2C Core. http://opencores.org/project,i2c.

[21] OpenCores k68 Core. http://opencores.org/project,k68.

[22] openMSP430 CPU. http://opencores.org/project,openmsp430.

[23] OpenRISC 1200 CPU. http://opencores.org/or1k/OR1200_OpenRISC_Processor.

[24] Synopsys Formality Equivalence Checking. http://www.synopsys.com/Tools/Verification/
FormalEquivalence/Pages/Formality.aspx.

[25] The Liberty Library Modeling Standard. http://www.opensourceliberty.org/.

[26] Armin Biere, Johannes Kepler University Linz, Austria. AIGER. http://fmv.jku.at/aiger/.

[27] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and Veri-
fication. HQ Rev b5750272659f, 2012-10-28, http://www.eecs.berkeley.edu/~alanmi/abc/.

[28] M. group at Berkeley studies logic synthesis and verification for VLSI design. MVSIS: Logic Synthesis
and Verification. Version 3.0, http://embedded.eecs.berkeley.edu/mvsis/.

[29] M. McCutchen. C++ Big Integer Library. http://mattmccutchen.net/bigint/.

164

http://www.c-to-verilog.com/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://legup.eecg.utoronto.ca/
http://opencores.org/project,i2c
http://opencores.org/project,k68
http://opencores.org/project,openmsp430
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
http://www.opensourceliberty.org/
http://fmv.jku.at/aiger/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://embedded.eecs.berkeley.edu/mvsis/
http://mattmccutchen.net/bigint/

	Introduction
	History of Yosys
	Structure of this Document

	Basic Principles
	Levels of Abstraction
	System Level
	High Level
	Behavioural Level
	Register-Transfer Level (RTL)
	Logical Gate Level
	Physical Gate Level
	Switch Level
	Yosys

	Features of Synthesizable Verilog
	Structural Verilog
	Expressions in Verilog
	Behavioural Modelling
	Functions and Tasks
	Conditionals, Loops and Generate-Statements
	Arrays and Memories

	Challenges in Digital Circuit Synthesis
	Standards Compliance
	Optimizations
	Technology Mapping

	Script-Based Synthesis Flows
	Methods from Compiler Design
	Lexing and Parsing
	Multi-Pass Compilation

	Approach
	Data- and Control-Flow
	Internal Formats in Yosys
	Typical Use Case

	Implementation Overview
	Simplified Data Flow
	The RTL Intermediate Language
	RTLIL Identifiers
	RTLIL::Design and RTLIL::Module
	RTLIL::Cell and RTLIL::Wire
	RTLIL::SigSpec
	RTLIL::Process
	RTLIL::Memory

	Command Interface and Synthesis Scripts
	Source Tree and Build System

	Internal Cell Library
	RTL Cells
	Unary Operators
	Binary Operators
	Multiplexers
	Registers
	Memories
	Finite State Machines

	Gates

	Programming Yosys Extensions
	The ``CodingReadme'' File
	The ``stubsnets'' Example Module

	The Verilog and AST Frontends
	Transforming Verilog to AST
	The Verilog Preprocessor
	The Verilog Lexer
	The Verilog Parser

	Transforming AST to RTLIL
	AST Simplification
	Generating RTLIL

	Synthesizing Verilog always Blocks
	The ProcessGenerator Algorithm
	The proc pass

	Synthesizing Verilog Arrays
	Synthesizing Parametric Designs

	Optimizations
	Simple Optimizations
	The opt_const pass
	The opt_muxtree pass
	The opt_reduce pass
	The opt_rmdff pass
	The opt_clean pass
	The opt_share pass

	FSM Extraction and Encoding
	FSM Detection
	FSM Extraction
	FSM Optimization
	FSM Recoding

	Logic Optimization

	Technology Mapping
	Cell Substitution
	Subcircuit Substitution
	Gate-Level Technology Mapping

	Auxiliary Libraries
	SHA1
	BigInt
	SubCircuit
	ezSAT

	Auxiliary Programs
	yosys-config
	yosys-filterlib
	yosys-abc

	Command Reference Manual
	abc – use ABC for technology mapping
	add – add objects to the design
	aigmap – map logic to and-inverter-graph circuit
	alumacc – extract ALU and MACC cells
	cd – a shortcut for 'select -module <name>'
	check – check for obvious problems in the design
	chparam – re-evaluate modules with new parameters
	clean – remove unused cells and wires
	connect – create or remove connections
	connwrappers – replace undef values with defined constants
	copy – copy modules in the design
	cover – print code coverage counters
	delete – delete objects in the design
	design – save, restore and reset current design
	dff2dffe – transform $dff cells to $dffe cells
	dffinit – set INIT param on FF cells
	dfflibmap – technology mapping of flip-flops
	dffsr2dff – convert DFFSR cells to simpler FF cell types
	dump – print parts of the design in ilang format
	echo – turning echoing back of commands on and off
	edgetypes – list all types of edges in selection
	equiv_add – add a $equiv cell
	equiv_induct – proving $equiv cells using temporal induction
	equiv_make – prepare a circuit for equivalence checking
	equiv_mark – mark equivalence checking regions
	equiv_miter – extract miter from equiv circuit
	equiv_purge – purge equivalence checking module
	equiv_remove – remove $equiv cells
	equiv_simple – try proving simple $equiv instances
	equiv_status – print status of equivalent checking module
	equiv_struct – structural equivalence checking
	eval – evaluate the circuit given an input
	expose – convert internal signals to module ports
	extract – find subcircuits and replace them with cells
	flatten – flatten design
	freduce – perform functional reduction
	fsm – extract and optimize finite state machines
	fsm_detect – finding FSMs in design
	fsm_expand – expand FSM cells by merging logic into it
	fsm_export – exporting FSMs to KISS2 files
	fsm_extract – extracting FSMs in design
	fsm_info – print information on finite state machines
	fsm_map – mapping FSMs to basic logic
	fsm_opt – optimize finite state machines
	fsm_recode – recoding finite state machines
	help – display help messages
	hierarchy – check, expand and clean up design hierarchy
	hilomap – technology mapping of constant hi- and/or lo-drivers
	history – show last interactive commands
	ice40_ffinit – iCE40: handle FF init values
	ice40_ffssr – iCE40: merge synchronous set/reset into FF cells
	ice40_opt – iCE40: perform simple optimizations
	iopadmap – technology mapping of i/o pads (or buffers)
	json – write design in JSON format
	log – print text and log files
	ls – list modules or objects in modules
	lut2mux – convert $lut to $_MUX_
	maccmap – mapping macc cells
	memory – translate memories to basic cells
	memory_bram – map memories to block rams
	memory_collect – creating multi-port memory cells
	memory_dff – merge input/output DFFs into memories
	memory_map – translate multiport memories to basic cells
	memory_share – consolidate memory ports
	memory_unpack – unpack multi-port memory cells
	miter – automatically create a miter circuit
	muxcover – cover trees of MUX cells with wider MUXes
	nlutmap – map to LUTs of different sizes
	opt – perform simple optimizations
	opt_clean – remove unused cells and wires
	opt_const – perform const folding
	opt_muxtree – eliminate dead trees in multiplexer trees
	opt_reduce – simplify large MUXes and AND/OR gates
	opt_rmdff – remove DFFs with constant inputs
	opt_share – consolidate identical cells
	plugin – load and list loaded plugins
	pmuxtree – transform $pmux cells to trees of $mux cells
	prep – generic synthesis script
	proc – translate processes to netlists
	proc_arst – detect asynchronous resets
	proc_clean – remove empty parts of processes
	proc_dff – extract flip-flops from processes
	proc_dlatch – extract latches from processes
	proc_init – convert initial block to init attributes
	proc_mux – convert decision trees to multiplexers
	proc_rmdead – eliminate dead trees in decision trees
	qwp – quadratic wirelength placer
	read_blif – read BLIF file
	read_ilang – read modules from ilang file
	read_liberty – read cells from liberty file
	read_verilog – read modules from Verilog file
	rename – rename object in the design
	sat – solve a SAT problem in the circuit
	scatter – add additional intermediate nets
	scc – detect strongly connected components (logic loops)
	script – execute commands from script file
	select – modify and view the list of selected objects
	setattr – set/unset attributes on objects
	setparam – set/unset parameters on objects
	setundef – replace undef values with defined constants
	share – perform sat-based resource sharing
	shell – enter interactive command mode
	show – generate schematics using graphviz
	simplemap – mapping simple coarse-grain cells
	singleton – create singleton modules
	splice – create explicit splicing cells
	splitnets – split up multi-bit nets
	stat – print some statistics
	submod – moving part of a module to a new submodule
	synth – generic synthesis script
	synth_greenpak4 – synthesis for GreenPAK4 FPGAs
	synth_ice40 – synthesis for iCE40 FPGAs
	synth_xilinx – synthesis for Xilinx FPGAs
	tcl – execute a TCL script file
	techmap – generic technology mapper
	tee – redirect command output to file
	test_abcloop – automatically test handling of loops in abc command
	test_autotb – generate simple test benches
	test_cell – automatically test the implementation of a cell type
	torder – print cells in topological order
	trace – redirect command output to file
	tribuf – infer tri-state buffers
	verific – load Verilog and VHDL designs using Verific
	verilog_defaults – set default options for read_verilog
	vhdl2verilog – importing VHDL designs using vhdl2verilog
	wreduce – reduce the word size of operations if possible
	write_blif – write design to BLIF file
	write_btor – write design to BTOR file
	write_edif – write design to EDIF netlist file
	write_file – write a text to a file
	write_ilang – write design to ilang file
	write_intersynth – write design to InterSynth netlist file
	write_json – write design to a JSON file
	write_smt2 – write design to SMT-LIBv2 file
	write_smv – write design to SMV file
	write_spice – write design to SPICE netlist file
	write_verilog – write design to Verilog file

	Application Notes

