

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 1 of 30

SoCWire

User Manual
TU Braunschweig

System-on-Chip Wire

(SoCWire)

User Manual

Issue Draft, Revision 1

SoCWire V1.1

02.02.2012

Prepared by

Björn Osterloh

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 2 of 30

SoCWire

User Manual
TU Braunschweig

Page intentionally left blank

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 3 of 30

SoCWire

User Manual
TU Braunschweig

DOCUMENTATION CHANGE RECORD

Issue Rev. Pages Date Changes Author

Draft 1 All 22.04.2009 Draft Issue BO

 2 8 02.02.2012 Inverted Endianness removed HM

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 4 of 30

SoCWire

User Manual
TU Braunschweig

TABLE OF CONTENTS
1 General Overview .. 5

1.1 Software License .. 6

1.2 Package content ... 6

2 SoCWire ... 7

3 Background .. 7

3.1 Character Level .. 7

3.1.1 Data Character ... 7

3.1.2 Control Character ... 8

3.1.3 Parity .. 8

3.1.4 EOP and EEP ... 8

3.2 Exchange Level .. 8

3.2.1 Flow Control .. 9

3.2.2 State Machine... 9

3.2.3 Link Connection... 10

.. 11

3.3 Packet Level ... 11

3.4 Network.. 12

4 SoCWire CODEC .. 13

4.1 Structure ... 14

4.1.1 State Machine... 14

4.1.2 Rx Fifo ... 14

4.1.3 Rx ... 15

4.1.4 Tx Fifo ... 15

4.1.5 Tx ... 15

4.2 Configuration options .. 17

4.3 Signal description... 17

4.4 Write access ... 18

4.5 Read access .. 18

4.6 Data Rates .. 19

4.7 Resource utilization and timing ... 20

5 SoCWire Switch... 20

5.1 Structure ... 21

5.1.1 Entrance ... 21

5.1.2 Matrix ... 21

5.2 Configuration options .. 22

5.3 Signal description... 22

5.4 Switch example .. 23

5.5 Data Rates .. 24

5.6 Resource utilization and timing ... 24

6 Reference ... 25

7 Appendix .. 26

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 5 of 30

SoCWire

User Manual
TU Braunschweig

1 General Overview
SoCWire is a Network-on-Chip (NoC) approach based on the ESA SpaceWire interface standard

[1] to support dynamic reconfigurable System-on-Chip (SoC). SoCWire has been developed to

provide a robust communication architecture for the harsh space environment and to support

dynamic partial reconfiguration in future space applications.

SoCWire provides:

 Reconfigurable point-to-point communication

 High speed data rate

 Hot-plug ability to support dynamic reconfigurable modules

 Link error detection and recovery in hardware

 Easy implementation in dynamic partial reconfigurable systems.

 Scalable data word width (8-8192)

 Configurable Switch with 2 to 32 ports

For more background information about the SoCWire motivation see [2].

Node Node Node

Host

System

SoCWire

Switch
Node

Node
SoCWire

CODEC
Node

SoCWire

CODEC

Node
SoCWire

CODEC

SoCWire

CODEC

SoCWire

CODEC

SoCWire

CODEC

SoCWire

CODEC
SoCWire

Switch

SoCWire

Switch

SoCWire

CODEC

FPGAFPGA

Figure 1: SoCWire architecture network example

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 6 of 30

SoCWire

User Manual
TU Braunschweig

1.1 Software License

This license governs the use of this software, and your use of this software constitutes acceptance

of this license. Agreement with all points is required to use this software.

1. These source files may be used and distributed without restriction provided that the

software license statement is not removed from the file and that any derivative work

contains the original software license notice and the associated disclaimer.

2. The source files are free software; you can redistribute it and/or modify it under the

restriction that UNDER NO CIRCUMTANCES this Software is to be used to

CONSTRUCT a SPACEWIRE INTERFACE. This implies modification and/or

derivative work of this Software.

3. This source is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE.

Your rights under this license are terminated immediately if you breach it in any way.

1.2 Software content

This software package comprises:

SoCWire

1.0

CODEC

Switch

Docu

Testbench

Docu This document

CODEC SoCWire CODEC source files

Switch SoCWire Switch source files

Testbench
SoCWire CODEC Testbench. 1 SoCWire

CODEC configured in loopback mode, packets

with different length are send over the link

SoCWire network testbench. 1 Switch and 4

nodes communication example

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 7 of 30

SoCWire

User Manual
TU Braunschweig

2 SoCWire
SoCWire is based on the SpaceWire standard [1]. The SpaceWire interface is a well established

standard, providing a layered protocol (physical, signal, character, exchange packet, network) and

proven interface for space applications. It is an asynchronous communication, serial link, bi-

directional (full-duplex) interface including flow control, error detection and recovery in hardware,

hot-plug ability and automatic reconnection after a link disconnection. SpaceWire is a serial link

interface and performance of the interface depends on skew, jitter and the implemented

technology. SoCWire is a NoC approach in a complete on-chip environment. Therefore SpaceWire

interface has been modified to a parallel data interface. The advantage of this approach is that

significantly higher data rates can be achieved as compared to the SpaceWire standard.

Additionally, a scalable data word width to support medium to very high data rates has been

implemented. On the other hand the advantageous features of the SpaceWire standard including

flow control, hot-plug ability, error detection and link re-initialization are still fully support.

3 Background
The following sections describe the SoCWire interface. The chapter briefly describes the SoCWire

relevant sections from the SpaceWire standard and the differences. For more detailed information

please refer to [1]. The SoCWire character level, exchange level, packet level and network level is

derived from the SpaceWire standard and refers to it.

In Contrast to SpaceWire the SoCWire architecture does not require the physical layer.

Furthermore Time-Code characters and logical addressing has not been implemented to safe

resources.

3.1 Character Level

The character level describes data and control characters used to manage the flow of data across

the link. It follows the SpaceWire standard without Time-Code distribution. SpaceWire does not

provide a global time base; nodes are synchronized through a system time distribution with Time-

Codes, which have a high priority in the network Time-Code characters are not necessarily

required because a global time base distribution can be easily implemented in a complete on-chip

environment through dedicated signals, which saves resources.

3.1.1 Data Character

A data character is formed by 1 parity bit, 1 data-control flag and 8 data bits to be transmitted.

P 0 D D D D D D D D

0 1 2 3 4 5 6 7
LSB MSB

Data-Control Flag

Parity Bit

Figure 2: Data Character

The data-control flag indicates if the current character is a data (0) or control character (1).

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 8 of 30

SoCWire

User Manual
TU Braunschweig

3.1.2 Control Character

Control characters (4 bit length) are used for flow control: Flow Control Token (FCT), End of

Packet (EOP), Error End of Packet (EEP) and an Escape Character (ESC) which is used to form

the higher level control code (8 bit length) NULL (ESC+FCT). Odd parity is assigned to data and

control characters to support the detection of transmission errors. The parity bit covers the previous

eight bits of a data character or two bits of a control character. Table 3-1 shows the different

characters. If the data width is exceeds 8 bits the highest significant bits are appended with zeros.

Parity depends on the data or control character send in the previous clock cycle.

Parity Control Data Type

P „1‟ X”00” FCT Flow Control Token

P „1‟ X”02” EOP End of Packet

P „1‟ X”01” EEP Exceptional End of Packet

P „1‟ X”03” ESC Escape

P „1‟ X”0B” Null

Table 3-1 : Control Characters & Control Code

3.1.3 Parity

Odd parity is assigned to data and control characters to support the detection of transmission

errors. The parity bit covers the previous bits of a data or control character, the parity bit, and the

data-control flag. This parity algorithm is a SpaceWire legacy. SpaceWire employs this parity

algorithm, because of the serial nature of the transmission.

3.1.4 EOP and EEP

The host data interface can be source or destination for the transferred data. To distinguish

between user data and packet marker (EOP and EEP) the following coding is used.

Data Control Flag Data bits (MSB..LSB)

0 XXXXXXXX user data

1 00000000 coded EOP

1 00000001 coded EEP

Table 3-2: Coding of EOP and EEP for 8 bit data word width

The data control flag is the MSB of the dat_din(datawidth) or dat_dout(datawidth) vector. All

lower bits shall be set to „0‟s (EOP) or „0‟s + „1‟ for the LSB (EEP).

3.2 Exchange Level

The exchange level manages the connection and flow across the link. The exchange level is

separated into two types: Link-Characters (L-Char) and Normal-Characters (N-Char). N-Char

comprises data character, EOP and EEP and are passed to the network level. L-Char are used in the

exchange level and are not passed to the network level. They comprise FCT and ESC characters

and are responsible for link connection and flow control.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 9 of 30

SoCWire

User Manual
TU Braunschweig

3.2.1 Flow Control

To avoid buffer overflows and therefore data loss, a credit-based flow control is implemented.

After link connection is established, FCTs are transmitted over the link. Each FCT signify that one

end of the link is ready to receive 8 N-Chars.

3.2.2 State Machine

The SoCWire CODEC is based on a finite state machine derived from the SpaceWire standard as

depicted in Figure 3.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 10 of 30

SoCWire

User Manual
TU Braunschweig

ErrorReset
Reset Tx

Reset Rx

ErrorWait
Reset Tx

Enable Rx

Ready
Reset Tx

Enable Rx

Started
Send Nulls

Enable Rx

Connecting
Send FCTs/

NULLs

Enable Rx

Run
Send FCTs/

NULLs/N-Char

Enable Rx

RxErr OR

gotFCT OR

gotN-Char

RxErr OR

gotFCT OR

gotN-Char

RxErr OR

gotFCT OR

gotN-Char OR

after 12,8 µs

RxErr OR

gotN-Char OR

after 12,8 µs

RxErr OR

CreditError OR

[Link Disabled]

after 12,8 µs

after 6,4 µs

[Link Enabled]gotNull

gotFCT

Reset

Figure 3: SoCWire CODEC state machine (adapted from [1])

The “ErrorReset” is the initial state after an external reset, a link operation is terminated or if an

error occurs during link initialization. In “ErrorReset” state both transmitter and receiver are in

reset. If reset is de-asserted this state will be move after 6,4 µs into “ErrorWait”, In “ErrorWait”

the receiver is enabled and wait for 12,8 µs. This time period make sure that both ends of the link

are ready to receive data before either ends begins transmission. The “Ready” state checks if the

interface has permission (Link Enable) to buildup a link. If Link Enable is true the state machine

moves on into “Started” and waits 12,8 µs for NULL-characters. If during this time period NULL-

characters are received the state machine moves into “Connecting” and waits 12,8 for µs FCTs. If

an FCT is received the state machine moves into “Run”. The “Run” state is the state of normal

operation.

3.2.3 Link Connection

Figure 4 shows the SoCWire link connection flow.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 11 of 30

SoCWire

User Manual
TU Braunschweig

Figure 4: SoCWire link connection (adapted from [1])

The timeouts After 6,4 µs and After 12,8 µs follow the SpaceWire standard. Since SoCWire is in a

complete synchronized on-chip environment these timeouts can be decreased. Additional detection

of disconnection timeout has a window of 850 ns in the SpaceWire standard and can also be

decreased.

Generic Range (1 = 1 ns)

after64 1 to 6400

after128 1 to 12800

disconnect_detection 1 to 850

Table 3-3: SoCWire timeout generics

In simulation after64=64, after128=128 and disconnect_detection = 85 has been successfully

tested. This has to be verified in hardware!

3.3 Packet Level

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 12 of 30

SoCWire

User Manual
TU Braunschweig

The packet level describes the format to support routing of packets over a SoCWire network. A

SoCWire packet comprises Destination Address plus Cargo plus EOP/EEP as depicted in Figure 5

Destination

Address
Cargo

EOP/

EEP

Figure 5: SoCWire packet

The Destination Address is required to send packets over a SoCWire network to a certain target.

Depended on the network topology multiple destination addresses can follow, before the Cargo

begins. For point-to-point communication the destination address is not required. The Cargo

contains the user data. Regular packets are completed with an EOP marker. EEP marker is

exclusively send by the user to indicate an erroneous packet. To this the target can react

accordingly and reject the packet. In summary, the SpaceWire packet level is highly flexible and

permits to implement a wide range of protocols.

3.4 Network

SoCWire network nodes can be either connected by links or connected by routing switches. The

network operates exclusively with the objects of the packet level. All lower levels are completely

masked from the network. The network topology can be configured as e.g. tree, cloud or cube. The

SoCWire Switch supports wormhole routing; packets arriving at one port are routed immediately

to the output port, if the port is free, which reduces buffer space and latency. The SoCWire

network level supports the simple and effective header deletion technique to transfer packets

across an arbitrary sized network. When a packet is received at a routing switch the destination

port is determined from the header. The destination header is then deleted and the remaining

packet content is transferred through the output port. If a second identifier exists it can be used for

any subsequent routing. Therefore at each stage of the network a packet can be regarded as a

packet comprising a single destination identifier header, cargo and end of packet. The SoCWire

network level comprises patch dressing. With path addressing a sequence of destination identifier

within a packet is used to guide the packet across the network.

SoCWire Error Recovery Schemes

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 13 of 30

SoCWire

User Manual
TU Braunschweig

The SoCWire error recovery scheme covers the exchange and network level. In the exchange level the

following errors can be detected:

 Disconnect error

 Parity error

 Escape error

 Character sequence error (invalid token at invalid time)

 Credit error

The response to any of these errors is:

1. Detect error

2. Disconnect link

3. Report error to network level

4. Attempt to reconnect the link if the link is still enabled

In the network level the following errors can be detected:

 Link error (exchange level error)

 EEP received

 Invalid destination address

If a link error is detected the network level response as follows:

1. Error is received by the network level

2. Current received packet is terminated with EEP

3. If the error occurred in destination or source node, the error shall reported to the host system

4 SoCWire CODEC
The SoCWire CODEC connects a node or host system to a SoCWire network. SoCWire CODECs

are the atomic components of the network and are source and destination of a SoCWire link.

State Machine

dat_empty

dat_nread

dat_dout (datawidth:0)

socw_en

socw_dis

active

tx (datawidth+1:0)

tx_valid

rx (datawidth+1:0)

rx_valid
Receiver

Receiver

Fifo

Trasnmitter
Trasnmitter

Fifo

dat_full

dat_nwrite

dat_din (datawidth:0)

clk

rst

Figure 6: SoCWire CODEC

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 14 of 30

SoCWire

User Manual
TU Braunschweig

4.1 Structure

The SoCWire CODEC consists of 6 modules:

State machine (state_machine)

This module controls the operation of the SoCWire CODEC. It response

to errors and user requests

Rx Fifo (receive_fifo)

The Rx-Fifo receives the user data from the receiver and transfer it to the

host interface. It checks the outstanding counter and controls the FCT

handling.

Rx (receiver)

This module decodes the link data and sends the decoded user data to RX

Fifo. All read operations are operated by this module. Link errors are

detect and forward to the state machine

Tx Fifo (tx_fifo)

The TX Fifo transmits the user data from the host interface to the transmitter.

It controls the credit flow and checks the credit counter to send the

appropriate amount of user data.

Tx (transmitter)

The transmitter module operates all write operation on the SoCWire link.

The module codes the user data, calculates the parity and includes FCTs in

the data flow of the link. It permanent sends data to prevent a disconnection

error.

SoCWire CODEC

(socwire_codec)

Dual Port Ram (dp_ram)

Cascadable dual port ram to store received data.

4.1.1 State Machine

The state machine describes the SoCWire CODEC finite state machine. Its states are analog to

Figure 3 and response to the external signals “socw_en” and “socw_dis”. “socw_en” is necessary

to move from the state “ready” into “started”. The “socw_dis” signal forces the state machine to

move from “run” into “ErrorReset”. Additional the signal “active” indicates the “run” state, where

link connection is established. Time conditions for time dependent state transitions are triggered by

watchdog timer, which are adapted to the system clock period. The watchdog clock cycles are

calculated with:

1
clk

w

t

t
watchdog

tw is the number of watchdog clock cycles and tclk is the clock period in ns. The current state of the

state machine is distributed to all other modules.

4.1.2 Rx Fifo

The rx_fifo can be access from the host interface with the low active “dat_nread” signal. The fill

state of the fifo is indicated with the high active “dat_empty” signal. If “dat_empty” is „0‟, data can

be read from the fifo. The “dat_dout” signal vector provides the user data. It is 1+n bit width, n is

the data word width and the MSB is the Data Control Flag. The fifo is currently realized with 16

Kbyte BlockRAM (dp_ram). The fifo depth is 1024, which is the default depth of the Virtex-4

architecture. The fifo is cascadable to adapt it to data word width from 8 to 8192 bit. This is

automatically generated and the resource utilization of BlockRam increase with the data word

width.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 15 of 30

SoCWire

User Manual
TU Braunschweig

The fifo is currently implemented for the Xilinx Virtex-4 architecture, but it can be simply

implemented in any architecture with the replacement of the BlockRam primitive in the dp_ram

module. Additonal the rx_fifo controls the FCTs transfer. This is done by the “fct_empty” signal.

With “fct_nread” the transmitter can indicate that its credit counter is full and no more FCTs have

to be sent.

4.1.3 Rx

The receiver module receives the parallel data of the link. Since SoCWire is a synchronous

implementation it requires a additional signal to indicate the validation of the data. This is

implemented with the high active “rx_valid” signal. The receiver is responsible to detect link

errors. The errors are pass to the state machine with the signals “err_par” (parity error),”err_esc”

(escape error),”err_dsc”(disconnection error),”err_nchar”(character error) and “err_fct”(fct error).

A disconnection error is triggered if the link is inactive for disconnect_detectionns (generic in the

vhdl model) after the first link connection was established. Inactive is related to the rx_valid low

period. This state is implemented with a counter (dsc_count).

The clock cycles can be calculated with:

1
det_

clk

ns

t

ectiondisconnect
watchdog

The receiver communicates with the rx_fifo, to transfer data with the “dat_dout” signal. A valid

received N-Char is displayed with the “dat_empty” signal. Additional valid received FCTs are

displayed with the “fct_empty” signal. The rx_fifo signalize its internal fifo fill state to the

receiver. If the fifo is full and still a N-Char is received a character error is triggered. The receiver

is fully pipelined to provide at every clock cycle a full SoCWire data word.

4.1.4 Tx Fifo

The transmit fifo can be access with the low active “dat_write” signal”. As soon as the fifo is full

the “dat_full” signal is „1‟. FCTs received by the receiver are forwarded with the “fct_nwrite”

signal to the transmitter. The “fct_nwrite” increments the credit counter. If the credit counter

receives 7 FCTs the “fct_full” signal is set. For a bi-directional full-duplex transfer the FCTs have

to be included in the data transfer. The tx fifo does not require a dedicated ram, because it just has

to store 1 data word.

4.1.5 Tx

The tx module codes and transfers the user data and operates the handshake mechanisms.

Additional it calculates the parity bit in a 2 stage pipeline. The “tx_valid” signal indicates the

validity of the data and is connect with “rx_valid” of the receiver. Figure 7 shows the state

diagram.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 16 of 30

SoCWire

User Manual
TU Braunschweig

Figure 7: Control of tx_valid

In idle mode the transmitter sets all bits, except the parity bit, to „0‟. The parity bit is set to „1‟ to

cover the odd parity. In “run” state the transmitter sends NULL character to sustain the link

connection.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 17 of 30

SoCWire

User Manual
TU Braunschweig

4.2 Configuration options

Generic Function
Allowed

range Default

datawidth data word width 8-8192 8

speed
CODEC speed set to system clock in
ns 1-100 10

after64 6,4 us timeout, unit ns 1-6400 6400

after128 12,8 us timeout, unit ns 1-12800 12800

disconnect_detection disconnect detetction timeout 1-850 850

4.3 Signal description

Signal name Range Type Function Active

rst Input Reset High

clk Input Clock

socw_en Input
Link Enable - When assert CODEC can
move to Ready state and

High

socw_dis Input Link Disable - When assert and in Run
state CODEC moves immediately to
Error Reset state

High

rx (datawidth+1:0) Input SoCWire CODEC receive link

rx_valid Input When assert current rx link data is valid High

tx Output SoCWire CODEC transmit link

tx_valid Output When assert current tx link data is valid High

dat_full Output Input Data Interface - Indicates the input
Fifo is full, write is rejected High

dat_nwrite Input Input Data Interface - Write data to
CODEC

Low

dat_din (datawidth:0) Input Input Data Interface - User data (
datawidth-1:0), Data control flag
(datawidth)

dat_nread Input Read data from CODEC Low

dat_empty Output Indicates fifo empty, no data available High

dat_dout (datawidth:0) Output User data (datawidth-1:0), Data control
Flag (datawidth)

active Output When active , link is connected and
running, transmission can start High

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 18 of 30

SoCWire

User Manual
TU Braunschweig

4.4 Write access

Figure 8 shows a SoCWire CODEC write transfer completed with an EOP.

clk

dat_full

dat_nwrite

dat_din

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

Figure 8: SoCWire CODEC write access for 8 bit data word width

4.5 Read access

Figure 9 shows a SoCWire CODEC read transfer completed with an EOP.

clk

dat_empty

dat_nread

dat_dout

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

Figure 9: SoCWire CODEC read access 8 bit data word width

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 19 of 30

SoCWire

User Manual
TU Braunschweig

4.6 Data Rates
For bi-directional (full-duplex) data transfer the FCTs need to be included in the transfer. After initialization

phase, every eight data characters are followed by one FCT. The maximum data rate for a bi-directional

(full-duplex) transfer can therefore be calculated to:

8

7

s

Mb
)(WidthDWordfDRate MHzCoreBi

For a unidirectional data transfer the FCTs are processed in parallel and the maximum data rate can be

calculated to:

WidthDWordfDRate MHzCoreUni)(
s

Mb

Figure 10 shows data rates for different data word width, unidirectional and bi-directional (full-

duplex) data transfer at a core clock frequency of 200 MHz

Figure 10: SoCWire CODEC data rates at core clock frequency 200 MHz

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 20 of 30

SoCWire

User Manual
TU Braunschweig

4.7 Resource utilization and timing

The SoCWire CODEC has been implemented and tested in Xilinx Virtex-4 LX60-10. Figure 11

shows the occupied area, absolute values and maximum clock frequency.

Appendix A shows detailed information of the SoCWire CODEC implementation.

Figure 11: SoCWire CODEC synthesis report Xilinx Virtex 4 LX60-10

5 SoCWire Switch
The SoCWire Switch enables the transfer of packets arriving at one link interface to another link

interface on the switch. The SoCWire Switch provides a configurable number of ports, realized by

internal SoCWire CODECs.

Figure 12: SoCWire Switch

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 21 of 30

SoCWire

User Manual
TU Braunschweig

5.1 Structure

The SoCWire Switch comprises at least 5 modules. The number of SoCWire CODECs are

equivalent to the number of ports. Each cell module represents an inter-connection between two

ports and therefore a switch with 4 ports comprises 16 cells or with 32 ports 1024 cells

SoCWire CODEC (socw_codec)

Equivalent to the number of ports

Switch (switch)

Top-Level module

Matrix (matrix)

Matrix (crossbar) manages the cargo transfer to the

destination port by cell modules

SoCWire Switch

(socwire_switch)

Entrance (entrance)

Analyze Incoming packets. The module verifies the

validation of the header, processes header deletion and

passes the packet to the matrix

Cell (cell)

Each cell module represents an inter-

connection between two ports

5.1.1 Entrance

The entrance module analyzes the header of incoming packets. If the packet destination port is

valid the module deletes the header and forwards the cargo to the matrix with the destination port

information. For each port a entrance module is instantiated, therefore a 4 port switch has 4

entrance modules. This is necessary to provide an independent communication of each port.

Additional the entrance module markes a port as “full” if a cargo is transferred. The entrance

module itself does not receive information if the port is busy. The requested port of the current

packet is therefore transferred to the matrix with the “wanted” signal. This signal tests

autonomously if the connection to the destination port can be established. This information is

provided to the entrance module with the “nwrite” signal. If it is „0‟ the transfer can be started. If

the entrance receives an EOP or EPP, the header deletion is enabled and destination address is

determined for the incoming next packet.

5.1.2 Matrix

The matrix (crossbar) manages the cargo transfer to the destination port by cell modules. Each cell

module represents an inter-connection between two ports and therefore a switch with 4 ports

comprises 16 cells or with 32 ports 1024 cells. To provide parallel data transfer between different

ports, the matrix conceives data transfers of all ports as bit vector. Therefore the bit width of the

matrix is datawordwidth+1(data control flag) * number of ports. As depicted in Figure 13.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 22 of 30

SoCWire

User Manual
TU Braunschweig

Figure 13: Matrix bit vector

Data word width is in this case 8 bit and the switch comprises 4 ports. The matrix can manipulate

bits in this vector within 1 clock cycle to provide write access to ports. To prevent the concurrent

access from 2 ports writing to 1 port the round robin scheduling mechanism is implemented. The

access to ports is divided in time slots. Each time slot represents write access of 1 port. Therefore

the maximum latency of the Switch is number of ports -1; for a 4 port Switch 3 clock cycles. If 2

ports access 1 destination port, one data transfer will be blocked until the first received packet is

fully transmitted.

5.2 Configuration options

Generic Function
Allowed

range Default

datawidth data word width 8-8192 8

nports Number of ports 2-32 3

speed Switch speed set to system clock in ns 1-100 10

after64 6,4 us timeout, unit ns 1-6400 6400

after128 12,8 us timeout, unit ns 1-12800 12800

disconnect_detection disconnect detetction timeout 1-850 850

5.3 Signal description

Signal
name Range Type Function Active

rst Input Reset High

clk Input Clock

rx ((datawidth+2)*nports-
1:0)

Input SoCWire Switch receive link

rx_valid (nports-1 DOWNTO 0) Input When assert current rx link data is
valid

High

tx ((datawidth+2)*nports-
1:0)

Output SoCWire Switch transmit link

tx_valid (nports-1 DOWNTO 0) Output When assert current tx link data is valid High

active Output When assert, link is connection and
running, deassert link inactive High

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 23 of 30

SoCWire

User Manual
TU Braunschweig

5.4 Switch example

SoCWire

CODEC

B

SoCWire

CODEC

A
SoCWire

Switch

Port 3
P

o
rt

 2
P

o
rt 0

Port 1

rx(9:0)

rx_valid(0)

tx(9:0)

tx_valid(0)

active(0)

rx

rx_valid

tx

tx_valid

rx
(1

9
:1

0
)

rx
_

v
a

lid
(1

)

tx
(1

9
:1

0
)

tx
_

v
a

lid
(1

)

a
c
ti
v
e

(1
)

rx(29:20)

rx_valid(2)

tx(29:20)

tx_valid(2)

active(2)

rx
(3

9
:3

0
)

rx
_

v
a

lid
(3

)

tx
(3

9
:3

0
)

tx
_

v
a

lid
(3

)

a
c
ti
v
e

(3
)

rx

rx
_

v
a

lidtx

tx
_

v
a

lid

SoCWire

CODEC

C

rx

rx_valid

tx

tx_valid

SoCWire

CODEC

D

rxrx
_

v
a

lid

txtx
_

v
a

lid

Figure 14: SoCWire Switch example with 4 nodes

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 24 of 30

SoCWire

User Manual
TU Braunschweig

Figure 14 shows a SoCWire network with 4 nodes in a star topology. The simulation shows the

nodes A,B,C and D from top to bottom. For each node the transmit (tx, dat_in) and receive (rx,

dat_dout) signals are shown. The signals dat_nread, dat_nwrite, dat_empty and dat_full are

represented by bit vectors. The MSB (left) is therefore node D and LSB (right) node A. In the first

operation all nodes are set in read mode with dat_read = „0‟. Concurrently node A and B start a

write cycle. Node A sends data to its own port (loopback) and sets the header to “000” (orange

marked). Node Bs destination is node D and therefore sets the header to“003” (green marked). One

clock cycle later node C sends data to node D (purple marked) and node D sends data to C (blue

marked). The following transmissions make clear that the packets are received in the order they

have sent. The packet from C to D (blue) has to wait until the packet from B (green) is completely

received by D. Between the 2 packets the receiver of node D receives a NULL character (grey),

this is caused by the round robin scheduling of the switch.

5.5 Data Rates

The SoCWire Switch basically consists of a number of SoCWire CODECs according to the

number of ports and additional fully pipelined control machines. The maximum data rate is

therefore equivalent to the SoCWire CODEC.

5.6 Resource utilization and timing

The SoCWire Switch is a fully scalable design supporting many data word widths (8-128bit) and 2

to 32 ports. It is a totally symmetrical input and output interface with direct port addressing

including header deletion. The SoCWire Switch has been implemented and tested in a Xilinx

Virtex-4 LX60-10. Figure 15 shows the occupied area and maximum clock frequency for an 8 bit

data word width switch. For detailed resource utilization and timing see Appendix A

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

Number of Ports

 Slice

 Lut

 FF

 BRAM

 CoreClkF.

100

120

140

160

180

200

220

 C
o

re
 C

lo
c
k
 F

re
q

u
e

n
c
y
 (

M
H

z
)

Figure 15: SoCWire Switch 8 bit data word width synthesis report

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 25 of 30

SoCWire

User Manual
TU Braunschweig

6 Reference
[1] ECSS, Space Engineering: SpaceWire–Links, nodes, routers, and networks, ESA-ESTEC,

Noordwijk Netherlands, January 2003, ECSS-E-50-12A

[2] B. Osterloh, H. Michalik, and B. Fiethe, "SoCWire: A Robust and Fault Tolerant Network-on-

Chip Approach for a Dynamic Reconfigurable System-on-Chip in FPGAs," in Architecture of

Computing Systems - ARCS 2009. vol. 5455 Delft,Netherlands: Springer Berlin / Heidelberg, 2009,

pp. 50-59.

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 26 of 30

SoCWire

User Manual
TU Braunschweig

7 Appendix

SoCWire CODEC schematic

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 27 of 30

SoCWire

User Manual
TU Braunschweig

SoCWire Codec resource utilization synthesize report

Xilinx Virtex-4 LX60-10

 LX 60 Total number of

Data
Word
Width

SoCWire CODEC
Resource Utilization

SLICEs: 26624 LUTs: 53248

Core CLK
Frequency

MHz

Maximum
Data Rate
(Gbit/s)

FFs: 53248 BRAMs: 160

Slice Lut FF BRAM Slice % Lut % FF %
BRAM

%

8 180 340 143 1 0,676% 0,639% 0,269% 0,625% 219.450 1,76

16 209 389 186 2 0,785% 0,731% 0,349% 1,250% 227.905 3,65

32 257 475 266 3 0,965% 0,892% 0,500% 1,875% 228.084 7,30

64 388 708 431 5 1,457% 1,330% 0,809% 3,125% 225.601 14,44

128 549 977 746 9 2,062% 1,835% 1,401% 5,625% 220.510 28,23

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 28 of 30

SoCWire

User Manual
TU Braunschweig

SoCWire Switch resource utilization synthesize report

Xilinx Virtex-4 LX60-10

Data Word Width: 8 Bit LX 60 Total number of

Ports

SoCWire Switch Resource
Utilization

SLICEs: 26624 LUTs: 53248

Core CLK
Frequency

MHz

FFs: 53248 BRAMs: 160

Slice Lut FF BRAM Slice % Lut % FF %
BRAM

%

2 410 778 312 2 1,5% 1,5% 0,6% 1,3% 204.365

3 699 1333 489 3 2,6% 2,5% 0,9% 1,9% 196.277

4 1033 1944 660 4 3,9% 3,7% 1,2% 2,5% 188.237

5 1194 2250 855 5 4,5% 4,2% 1,6% 3,1% 176.519

6 1481 2784 1062 6 5,6% 5,2% 2,0% 3,8% 178.102

7 1870 3523 1283 7 7,0% 6,6% 2,4% 4,4% 158.741

8 2204 4139 1512 8 8,3% 7,8% 2,8% 5,0% 157.306

9 2825 5324 1756 9 10,6% 10,0% 3,3% 5,6% 156.837

10 3225 6058 2014 10 12,1% 11,4% 3,8% 6,3% 154.175

11 3589 6724 2277 11 13,5% 12,6% 4,3% 6,9% 153.170

12 4181 7850 2563 12 15,7% 14,7% 4,8% 7,5% 151.412

13 4693 8743 2862 13 17,6% 16,4% 5,4% 8,1% 146.371

14 5233 9775 3161 14 19,7% 18,4% 5,9% 8,8% 144.368

15 5075 9406 3470 15 19,1% 17,7% 6,5% 9,4% 133.478

16 5874 10824 3801 16 22,1% 20,3% 7,1% 10,0% 145.331

17 5945 10699 4143 17 22,3% 20,1% 7,8% 10,6% 134.065

18 6541 11847 4492 18 24,6% 22,2% 8,4% 11,3% 134.533

19 7175 13052 4860 19 26,9% 24,5% 9,1% 11,9% 132.036

20 7842 14259 5254 20 29,5% 26,8% 9,9% 12,5% 133.384

21 8680 15636 5631 21 32,6% 29,4% 10,6% 13,1% 129.565

22 9045 16363 6069 22 34,0% 30,7% 11,4% 13,8% 127.924

23 9658 17654 6462 23 36,3% 33,2% 12,1% 14,4% 125.024

24 10370 18897 6902 24 38,9% 35,5% 13,0% 15,0% 122.556

25 11293 20459 7342 25 42,4% 38,4% 13,8% 15,6% 122.027

26 11851 21894 7781 26 44,5% 41,1% 14,6% 16,3% 120.570

27 13270 24363 8288 27 49,8% 45,8% 15,6% 16,9% 121.036

28 13240 24534 8758 28 49,7% 46,1% 16,4% 17,5% 114.058

29 14048 25816 9208 29 52,8% 48,5% 17,3% 18,1% 115.195

30 14740 27310 9715 30 55,4% 51,3% 18,2% 18,8% 110.746

31 15657 29134 10192 31 58,8% 54,7% 19,1% 19,4% 113.718

32 16603 30587 10698 32 62,4% 57,4% 20,1% 20,0% 113.041

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 29 of 30

SoCWire

User Manual
TU Braunschweig

Data Word Width: 16 Bit LX 60 Total number of

Ports

SoCWire Switch Resource
Utilization

SLICEs: 26624 LUTs: 53248

Core CLK
Frequency

MHz

FFs: 53248 BRAMs: 160

Slice Lut FF BRAM Slice % Lut % FF %
BRAM

%

2 477 890 404 4 1,8% 1,7% 0,8% 2,5% 205.768

3 822 1562 623 6 3,1% 2,9% 1,2% 3,8% 196.277

4 1199 2252 856 8 4,5% 4,2% 1,6% 5,0% 190.647

5 1432 2680 1096 10 5,4% 5,0% 2,1% 6,3% 181.033

6 1782 3324 1368 12 6,7% 6,2% 2,6% 7,5% 178.102

7 2226 4161 1629 14 8,4% 7,8% 3,1% 8,8% 155.366

8 2623 4891 1888 16 9,9% 9,2% 3,5% 10,0% 154.018

9 3393 6352 2193 18 12,7% 11,9% 4,1% 11,3% 156.705

10 3817 7131 2545 20 14,3% 13,4% 4,8% 12,5% 156.844

11 4260 7945 2853 22 16,0% 14,9% 5,4% 13,8% 152.527

12 4901 9103 3186 24 18,4% 17,1% 6,0% 15,0% 153.576

13 5561 10280 3566 26 20,9% 19,3% 6,7% 16,3% 154.588

14 6185 11483 3935 28 23,2% 21,6% 7,4% 17,5% 151.755

15 6190 11407 4131 30 23,2% 21,4% 7,8% 18,8% 133.499

16 7001 12750 4716 32 26,3% 23,9% 8,9% 20,0% 147.265

17 7301 12833 5056 34 27,4% 24,1% 9,5% 21,3% 134.397

18 7906 14045 5258 36 29,7% 26,4% 9,9% 22,5% 134.533

19 8165 14805 5633 38 30,7% 27,8% 10,6% 23,8% 130.180

20 8920 16208 6138 40 33,5% 30,4% 11,5% 25,0% 130.334

21 9985 17771 6572 42 37,5% 33,4% 12,3% 26,3% 125.432

22 10816 19107 7218 44 40,6% 35,9% 13,6% 27,5% 127.897

23 11549 20803 7550 46 43,4% 39,1% 14,2% 28,8% 126.755

24 12151 22118 8121 48 45,6% 41,5% 15,3% 30,0% 122.462

25 13846 24709 8609 50 52,0% 46,4% 16,2% 31,3% 125.611

26 14495 25947 8949 52 54,4% 48,7% 16,8% 32,5% 125.723

27 15392 28094 9435 54 57,8% 52,8% 17,7% 33,8% 122.760

28 15792 29031 9985 56 59,3% 54,5% 18,8% 35,0% 115.747

29 17096 31019 10507 58 64,2% 58,3% 19,7% 36,3% 115.941

30 18443 33590 11050 60 69,3% 63,1% 20,8% 37,5% 117.128

31 18892 34727 11591 62 71,0% 65,2% 21,8% 38,8% 112.040

32 19423 35721 12271 64 73,0% 67,1% 23,0% 40,0% 115.819

Reference : SoCWire
Issue : Draft Rev. : 1

Date : 02.02.12
Page : 30 of 30

SoCWire

User Manual
TU Braunschweig

Data Word Width: 32 Bit LX 60 Total number of

Ports

SoCWire Switch Resource
Utilization

SLICEs: 26624 LUTs: 53248

Core CLK
Frequency

MHz

FFs: 53248 BRAMs: 160

Slice Lut FF BRAM Slice % Lut % FF %
BRAM

%

2 592 1094 568 6 2,2% 2,1% 1,1% 3,8% 206.511

3 1030 1955 859 9 3,9% 3,7% 1,6% 5,6% 196.277

4 1482 2784 1165 12 5,6% 5,2% 2,2% 7,5% 190.647

5 1760 3280 1506 15 6,6% 6,2% 2,8% 9,4% 181.033

6 2243 4158 1831 18 8,4% 7,8% 3,4% 11,3% 178.102

7 2884 5342 2178 21 10,8% 10,0% 4,1% 13,1% 155.366

8 3430 6348 2552 24 12,9% 11,9% 4,8% 15,0% 172.375

9 4357 8063 2941 27 16,4% 15,1% 5,5% 16,9% 161.430

10 4928 9118 3348 30 18,5% 17,1% 6,3% 18,8% 157.270

11 5559 10304 3734 33 20,9% 19,4% 7,0% 20,6% 152.581

12 6192 11365 4165 36 23,3% 21,3% 7,8% 22,5% 152.154

13 7232 13255 4628 39 27,2% 24,9% 8,7% 24,4% 154.588

14 7999 14704 5101 42 30,0% 27,6% 9,6% 26,3% 151.361

15 8520 15735 5486 45 32,0% 29,6% 10,3% 28,1% 139.396

16 9036 16127 6021 48 33,9% 30,3% 11,3% 30,0% 145.064

17 9636 16582 6408 51 36,2% 31,1% 12,0% 31,9% 132.239

18 10507 18156 6807 54 39,5% 34,1% 12,8% 33,8% 134.533

19 11351 20163 7346 57 42,6% 37,9% 13,8% 35,6% 132.036

20 11951 21212 7958 60 44,9% 39,8% 14,9% 37,5% 132.965

21 13405 23308 8231 63 50,3% 43,8% 15,5% 39,4% 127.445

22 14418 25135 9057 66 54,2% 47,2% 17,0% 41,3% 127.736

23 15282 27349 9617 69 57,4% 51,4% 18,1% 43,1% 125.024

24 16498 29680 10129 72 62,0% 55,7% 19,0% 45,0% 126.592

25 17970 31628 10661 75 67,5% 59,4% 20,0% 46,9% 123.666

26 18882 33230 11312 78 70,9% 62,4% 21,2% 48,8% 124.096

27 19397 35201 11847 81 72,9% 66,1% 22,2% 50,6% 116.197

28 20811 38166 12327 84 78,2% 71,7% 23,2% 52,5% 109.093

29 22720 40856 12885 87 85,3% 76,7% 24,2% 54,4% 109.631

30 23556 42052 13391 90 88,5% 79,0% 25,1% 56,3% 113.501

31 24768 45530 14185 93 93,0% 85,5% 26,6% 58,1% 111.849

32 25593 46720 14851 97 96,1% 87,7% 27,9% 60,6% 113.162

