@
\ OpenCores.Org

SD/MMC Bootloader
Specification

Author: Arnim Lauger
arniml @opencores.org

Rev. 1.0
February 27, 2005

U
\> OpenCores SD/MMC Bootloader Specification 27-Feb-2005

This page has been intentionally left blank.

WWW.OPENCOores.org Rev 1.0 il

O

OpenCores

SD/MMC Bootloader Specification

27-Feb-2005

Revision History

Rev. | Date Author Description
1.0 27-Feb-2005 | Arnim Lauger | First Version
WWW.0PENCcores.org Rev 1.0 il

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

Contents

INTRODUGCTION....ccitiitiiieiie ettt sr e sre s sna e e e 1
ARCHITECTUREot s 2
OPERATION ...ttt sn e 4
INTEGRATION. ..o e e e e 7
FO PORT S e et eh st e e eh e s en e er e e 9

WWW.0OpPEeNcores.orq Rev 1.0 iv

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

1

Introduction

The SD/MMC Bootloader is a CPLD design that manages configuration and bootstrap-
ping of FPGAs. It is able to retrieve the required data from SecureDigital (SD) cards or
MultiMediaCards (MMC) and manages the FPGA configuration process. SD cards as
well as MMCs are operated in SPI mode which is part of both standards thus eliminating
the need for dedicated implementations. The SD/MMC Bootloader fits both. Beyond con-
figuration, this core supports a bootstrapping strategy where multiple images are stored
on one single memory card.

For example consider a system completely based on SRAM. The bootloader provides an
initial configuration data from the first image to the FPGA. This image contains a design
which pulls the next image from the memory card and transfers this datato SRAM. In the
third step the final FPGA design isloaded from the third image.

Features

» Configuration mode: configures SRAM based FPGASs via slave serial mode (Xilinx and
Altera)
- Data mode: provides stored data over a ssimple synchronous seria interface
» Broad compatability using SPI mode
» SecureDigital cards using dedicated initialization command
» MultiMediaCards (see below)
» Operation triggered by power-up or card insertion

The SD/MM C Bootloader project is maintained and released on the OpenCores web serv-
erat

http://www.opencores.org/proj ects.cai/web/spi boot/overview/

Updates of this core can be obtained via the project pages.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS"ASIS' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESSFOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

WWW.OPENCOores.org Rev 1.0 1of9

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

2

Architecture

The architecture of the SD/MMC Bootloader is depicted in Figure 1. It consists of the
controller and command FSMs, an SPI port, two config/data ports and three counters.

. contr ol contr ol .
config_n - _ = spi_cl k
cfg_init n#conflg SPI = spi _cs_n
g9 - por t controller por t pr_cs_n-
cfg_done —= st at us FSM I spi_data_in
—= spi _dat a_out
A A A
cfg_cl k =)
cf g_dat spi _data
A
spi _data
start st at us state
dat a finished
node —= por t A
dat _done —»| MvVC bi t cnd
conp. cnt FSM
cnt i mg
cnt

Figure 1: SD/MM C Bootloader block diagram
Controller FSM

The controller FSM manages the overall functionality of the core. On one hand, this in-
cludes the complete SD/MMC SPI mode protocol with initialization, data retrieval and
abort. On the other hand, configuration and data requests are handled.

Command FSM

The command FSM sequences each single SPI mode command and generates the
corresponding bit stream. Each sequence consists of the command itself, the card's
response and optional data. Whenever this sequence has finished, the controller FSM is
flagged, triggering it to step to the next command.

WWW.OPENCOores.org Rev 1.0 20f9

U
\> OpenCores SD/MMC Bootloader Specification 27-Feb-2005

Bit Counter

The bit counter provides a generic counting service to the command FSM. |.e. it times
each part of a command sequence and generates an overflow indicator to the command
FSM.

Image Counter

The image counter tracks the number of the current image. It increments according to the
instructions of the controller FSM.

MM C Compatability Counter

For full compatability with the MMC standard it is required to initialize the card with a
maximum clock frequency of 400 kHz. The clock division is done with the MMC com-
patibility counter which signals its overflow to the bit counter. As soon as the initializa-
tion phase has finished, the MM C compat counter is disabled by the controller FSM.

SPI Port
The SPI port connects to the pins of the SD or MM card according to Table 1.

Signal Connector Description
spi _cl k Pin5, CLK Clock
sSpi _cs_n Pinl, CS Chip Select (Active low)

spi _data_in Pin 7, DataOut | Card to Host Data and Status
spi _data_out | Pin2, Dataln Host to Card Commands and Data

Table 1: SD/MMC connections of SPI port
Furthermore, this port contains an output enable signal to put all outputs to tri-state.

Configuration Port

This port interfaces to the configuration facilities of the FPGA. It matches both Altera
and Xilinx products. The mapping isgivenin Table 2.

Signal Altera Xilinx Description

config_n NnCONFI G PROGRAME | Initiates configuration sequence when
asserted low

cgf _init_n | nSTATUS | NI T# Low to high transition signals end of
initialization

cf g_done CONF_DONE | DONE L oading the configuration completed

cfg_clk DCLK CCLK Configuration clock

cf g_dat DATAO DI N Configuration data

Table 2: Configuration port mapping
Data Port

The data port accepts control signals that control the sequence when reading multiple im-
ages from the card. Table 3 describes their meaning.

Signal Description

start Initiates configuration sequence when asserted low
node Mode selector: 0 = configuration mode, 1 - data mode
dat _done | Loading in data mode completed

Table 3: Data port signals

WWW.OPENCOores.org Rev 1.0 30f9

U
\> OpenCores SD/MMC Bootloader Specification 27-Feb-2005

3

Operation

The SD/MMC Bootloader has three operation states coupled to the interaction with the
memory card. After reset, the core is in initialization state and automatically configures
the SD or MM card. Next is the idle state where the core deactivates its outputs on the
SPI interface. Upon an external request, the core switches to the transfer state and re-
guests data from the memory card. The transfer state itself has two modes for either con-
figuring an FPGA or simply passing through the card's data.

Initialization State
The flow diagram of the initialization state is shown in Figure 2.

Power up

i

CMDO
GO_IDLE_STATE

l<7

CMD55
APP_CMD

ACMD41 CMD1
SEND_OP_CMD SEND_OP_CMD

No;

CMD16
SENT_BLOCKLEN

i

Wait for start

Figure2: Initialization flow diagram

WWW.OPENCOores.org Rev 1.0 4 0of 9

U
\> OpenCores SD/MMC Bootloader Specification 27-Feb-2005

After reset, the core remains in the power up state spending a total of 144 clock cycles
before the SPI interface is activated. This is more than twice the time the card needs to
initialize its internal states (specified to 64 clock cycles). The extra time is to eliminate
uncertainties both in power ramp up and card start up. If the application is time critical
and there is an external power supply monitor it is safe to reduce the power up time to
something around 74 clocks. This modification has to be applied to the VHDL source
code of the core.

The first command issued by the core is GO _IDLE_STATE (CMDO) with parallel asser-
tion of CS. This resets the card and puts it in SPI mode. Them the core sends the com-
mand APP_CMD (CMD?55) to escape the next extended command. MultiMediaCards
will respond to this with an illegal command error. The core detects this and uses CMD1
in the further process. In both ways (CMD55 + ACMDA41 and CMD1) the idle status of
the card is polled repeatedly. Once it |eft idle state, the core sets the desired block length
with SET_BLOCKLEN (CMD16). The block length is derived from the generic parame-
ter width_bit_cnt (refer to Table 5).

The coreis now idle, SPI output signals are tri-stated.

Transfer State

Whenever a start trigger is detected, the core turns to transfer state. The trigger consists
of a low-to-high transition of the start i input. To allow automatic operation, the core
also treats a constant high level at start_i asatrigger after reset. |.e. when the core reach-
es the idle state for the first time, it continues immediately when start i is high. For sub-
sequent loops through transfer and idle state start_i has to go low and high again.

When going from idle to transfer mode, the core samples the mode i input which deter-
mines whether the transfer should be done in configuration or data mode. This operation
isshown in Figure 3.

Wait for start

[e— start

Yes

mode = 1?

CMD18
READ_MULTIPLE_BLOCKS

l

-~
No
Read block

Yes

CcMD12 No
STOP_TRANSMISSION

Yes

Figure 3: Transfer flow diagram

Activate config_n

Deactivate config_n

WWW.OPENCOores.org Rev 1.0 50f9

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

Configuration and data mode are the same except that in configuration mode a configura-
tion cycle for the FPGA is generated. This cycle is similar for Altera and Xilinx devices
(alsorefer to Table 2):

1. Activation of config_n = configuration memory is cleared
2. Wait for low level on cfg_init_n - FPGA acknowledges assertion of config_n
3. Wait for high level on cfg_init_n - memory cleared, ready for configuration data

This sequence is skipped for data mode. The core continues with the data transfer itself in
both modes.

First step is to request a block of data by sending READ _MULTIPLE BLOCKS com-
mand (CMD18). The address of the first block depends on the current value of the image
counter. Starting from O, it counts the number of images transferred and the start address
of an image is derived from the following formula

dtart _address=cnt;,,* num-bits_per_image

As soon as the card has retrieved the specified block, the bit stream is presented at the
cfg_clk and cfg_dat outputs. Data at cfg dat can be sampled with the rising edge of
cfg_clk. The card now sends one block after another without intervention of the core.
Configuration clock and data outputs are only operated when there isa valid bit stream
from the card. l.e. during gaps between two blocks cfg_clk remains on high level. It
changes from high to low for the next valid bit on cfg_dat.

This sequence is terminated when either cfg_done or cfg_dat is activated. The configura-
tion clock is stopped immediately and the core sends STOP_TRANSMISSION (CMD12)
to the card. It may take some time before the core isfinaly in idle state again depending
on the block size and the time the done signal has been activated.

WWW.OPENCOores.org Rev 1.0 6 0f 9

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

A

Integration

This chapter provides informations on the integration of the SD/MMC Bootloader in a
FPGA system.

Configuration Timing

As written above, the configuration clock is stopped immediately when the core samples
a high level on either cfg_done or dat_done. The intention is to prevent any unwanted
data bits to be transferred to the FPGA. This scheme requires on the other hand that the
FPGA has terminated its configuration process a this time. For Spartan Ile devices (and
probably others) it is therefore necessary to program the DONE pin to the last cycle of
the startup sequence (one clock cycle earlier is probably aso ok). With the default set-
tings of Xilinx WebPack the FPGA will not be able to finish its startup sequence because
DONE is asserted too early.

There is no experience so far with Altera devices.

Writing Data to the Card

Downloading the configuration data to the card is a straight forward process. The images
have to be written starting at dedicated locations. For the provided toplevel designs, these
locations are multiples of 256 K. 1.e. 0, 0x40000, 0x80000 and so forth.

dd (part of the GNU coreutils) serves this purpose:

$ dd i f=ram| oader. bi n of =/ dev/sdX bs=512
$ dd i f=pongrom 6. bi n of =/ dev/ sdX bs=512 seek=512
$ dd i f=pacman. bi n of =/ dev/ sdX bs=512 seek=1024

The name of the device node depends on how the card reader is attached to the kernel.
For Linux systems this is most often something like /dev/sdX with X ranging from a-z.
Please note that it is essential to use the device without any trailing numbers as they refer
to partitions leading to wrong offsets for data written to the card.

All this works perfectly for my Spartan |le device as this FPGA expects the configuration
data as it is delivered from the card: Consecutive bytes each with its most significant bit
first. Altera devices like the FLEX family are different here. They expect the bytes with
least significant bit first. Therefore, the configuration data has to be swapped bitwise be-
foreit iswritten to the card.

WWW.OPENCOores.org Rev 1.0 7 of 9

O

OpenCores SD/MMC Bootloader Specification 27-Feb-2005

Schematic

A sample schematic for embedding SD/MMC Bootloader in an FPGA system is provided
in spi_boot_schematic.pdf. | use it to configure/boot the Xilinx Spartan I1e on BurchED's
B5-X300 board. SV2 fits the "SERIAL MODE" connector on this board but you will
have to add a separate wire from R6 to attach INIT. Please check the proper use of the
pull-up resistors for your specific board.

Only the configuration port has to be connected to the FPGA even in case the data mode
is not required and only one single configuration sequence should be applied. The core
will automatically start configuration as start_i and mode i inputs are pulled high. When
configuration has finished (FPGA sets cfg_done), the core will remain in the idle state
because there is no further low-to-high transition at start_i.

Compatability
These cards have been tested with the SD/MMC Bootloader:

Hama 64 MB SD
SanDisk 128 MB SD
SanDisk 64 MB MMC
Panasonic 32 MB SD

Some MM Cs might fail with this core as not all cards support CMD18 (READ_MULTI-
PLE BLOCK). Please consult the data sheet of your specific model. In case your MMC
does not implement CMD18 you might want to have a look at the FPGA MMC-Card
Config project at

http://www.opencores.org/proj ects.cai/web/mmcf pgaconfig/overview/

WWW.OPENCOores.org Rev 1.0 80of 9

U
\> OpenCores SD/MMC Bootloader Specification 27-Feb-2005

5
|O Ports

The following Table 4 shows the primary 10 ports of spi_boot.

Port Width | Dir | Description

clk i 1 In Clock input

reset i 1 In Reset input — active level selected via generic
spi_clk o 1 Out | SPI clock output

spi_ csno 1 Out | SPI chip select — low active

Spi_data in i 1 In SPI datafrom card

Spi_data out 0 | 1 Out | SPI datato card

Spi_ enoutso |1 Out | Tristate driver enable for SPI outputs
start i 1 In Start trigger

mode i 1 In Mode selection

config_n_ o 1 Out | Begin configuration

cfg_init n_i 1 In Configuration init handshake — low active
cfg_done i 1 In Configuration done

dat_done i 1 In Data transfer done

cfg clk o 1 Out | Configuration clock output

cfg dat o 1 Out | Configuration data

Table4: List of 10 ports
Table 5 lists the generic parameters of the core.

Generic Value | Description

width_bit_cnt 6—12 | Width of bit counter

width_img_cnt 0—m | Width of image counter

num_bits per img 0—31 | Number of bits required to address one image
sd_init 0,1 SD specific initialization command

1:use ACMDA41
0: donot use ACMDA41

mmc_compat_clk_div | 0—n Maximum count for MM C compatibility counter
0 : do not implement MM C compatibility counter

width mmc clk div. |0-o0 Width of MM C compatibility counter

reset level 0,1 Active level of reset |
Table5: List of generic parameters

WWW.OPENCOores.org Rev 1.0 90f9

