SPI_MASTER_SLAVE

SPI Master / Slave Core
Specification

SPI_MASTER_SLAVE

SPI Master and Slave Interfaces

VHDL

RTL Architecture

Author: Jonny Doin
jdoin@opencores.org
Rev. 0.97
June 14, 2011
Revision History

	Rev.
	Date
	Author
	Description

	0.1
	11/05/18
	JD
	First Draft
Described the SPI_MASTER and SPI_SLAVE cores.

	0.97
	11/06/12
	JD
	Added Design Considerations.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

Introduction
1
Design Considerations
2

Architecture
2
Operation
3
Clocks
5
IO Ports
6
Appendix A
7
Appendix B
8
Index
9

Introduction

The SPI_MASTER_SLAVE core implements two related but independent design blocks: the SPI_MASTER and the SPI_SLAVE blocks.

Each core is a small RTL description for the widely used Serial Peripheral Interface, written in VHDL.
The SPI bus signals follow the de-facto standard for the SPI interface, and are named after the Motorola original naming convention, with the 4 SPI signals (SSEL, SCK, MOSI, MISO). The SPI mode and serial word size can be controlled at instantiation by VHDL generics.
There are two data interfaces to each core, the SPI bus interface, with the SPI signals, and the parallel read/write interface. Each data interface work on asynchronous clock domains, the SPI bus clock SCK, and the user internal logic clock, to which the parallel interface is synchronous. Cross-clock logic takes care of the data passing over the async domains, and guarantee glitch-free operation on data setup/hold times between the async clocks.
All operation is fully static, and the parallel interface is simple to use, similar to a synchronous RAM block.
Although the models are written in high-level, vendor-independent VHDL suitable to synthesis by standard VHDL synthesizers, the description follows the Xilinx recommendations for optimized Spartan-6 and newer CLB structures inference engines, such as reduced control sets and global initialization of registers using explicit initialization values at signal declarations. These are clean practices that do not yield obscure descriptions, and should not hinder targeting to other technologies.
Design Considerations

Every IP block in a design has some degree of flexibility in the actual implementation of the intended functionality modeled. If the target technology is an FPGA, there are different design considerations to achieve best area, resource utilization, operating frequency, module integration, technology independency and verification strategy.
The SPI master/slave IP follows some assumptions that governed the design:

· the primary use of the SPI interface is to communicate with low-frequency peripherals, on the range of 1MHz to 15MHz of SCK operating frequency;

· implementation should use only generic CLB resources, with no FPGA-specific hard macros or specialized block RAM structures to achieve the desired functionality;

· flexibility of SPI mode and word size selection is desirable, but also the model needs to have a very small footprint;

· synthesis should be possible with any reasonable synthesis tool, with little or no special constraint declaration;

· the code should be easily verifiable and high-level, but also correctly synthesizable for different FPGA architectures;
RTL CODE

With these constraints in mind, a description at the RTL level was chosen, with no vendor-specific structures or meta-commands, following generally sound techniques for RTL state machine design.
Inference of the intended FFDs and LUT/FF logic layers is easy, following an explicit clock model with explicit combinational/registered pairs of signals declared in the model.
CONFIGURATION VIA GENERICS
To achieve the least area possible, but still have a flexible IP, all configurations for SPI mode, word size and pipeline behavior are selected via VHDL generics at module instantiation. This preserves flexibility and usability, while achieving best area, by removing unnecessary logic that would be needed to implement runtime configuration.

The interface master/slave function is also selected by instantiating the appropriate model, instead of selecting the master/slave function at runtime. The two functions are similar but different enough to be implemented in separate models. This contributes for a better functional/area compromise.

VHDL CODE STYLE TO ACHIEVE BEST SYNTHESIS
Although the description is fairly vendor-independent, we chose Xilinx Spartan-6 technology as the target, and followed the accepted code style for correctly inference of optimized Xilinx CLB logic, having the Spartan-6 slice limitations on the use of register initialization and control sets.
The Spartan-6 and newer (smaller) Xilinx technologies have severe limitations on the use of control sets, which are the flip-flop control signals: CLOCK, RESET/PRESET and CLOCK ENABLE. Each slice has 8 registers, and all 8 registers must share the same set of control signals, and all control signals except the clock must be positive logic. Further, there are limitations on initialization logic. A flip-flop on these newer Xilinx architectures cannot have both an async set and a reset function, and cannot have a global init value that is the opposite polarity of the set/reset function. So, to achieve good resource utilization on these new Xilinx devices, the following guidelines apply:
· reduce the set/reset functions to the absolute essential;

· use only global initialization whenever possible. This means declaring explicit initial values on the signal declarations, and use only ‘zero’ values if possible, or group the init values with the control sets;

· use only positive logic for every control signal, including clock if possible;

· have control sets grouped in number of 8 registers, whenever possible;

· not use async resets/presets, but only synchronous resets instead, if possible. This moves the clear/preset from the FFD control pins to a slice LUT, relaxing the control set constraint and increasing LUT density;
· when async reset/preset cannot be avoided, redesign the logic to have only a clear or a preset. Inference of a RS flop generates very inefficient logic;
The logic in the spi_master and spi_slave cores follows these rules as much as possible, to get good LUT packing without CLB resource waste.

SPEED/AREA CONSIDERATIONS
To achieve the needed performance, even the slowest FPGAs on the market can reach SPI timing closure for 15MHz using bulk LUT/FF logic for the whole model. If the intended SPI bus performance is around 10MHz, aggressive area optimization can be applied. In the Spartan-6 architecture, using XST and ISE13.1, the 2 blocks can consume 44 slices after P&R, using only LUT/FF resources.
If operation above 15MHz, and up to 25MHz is intended, careful timing constraints should be placed on the clocks and data for the FSM and output registers, and general retiming and register duplication can be applied. The same models compile and use up to 70 slices when optimized for speed.
Ultimately, the data setup times of the MISO signal seen by the sampling clock at the master input register (rx_bit_reg) will limit upper operating frequency. Moving this register to a IOB, or applying a clock delay to the sampling clock will add slack time to the data setup, and can equalize the MISO setup to the MOSI performance, at the expense of specialized treatment, like instantiation of Xilinx-specific circuitry.

Another approach, if only data transmission is needed (only MOSI) from the spi_master block, is to remove the MISO-related circuitry, and operate only with the data transmission hardware. This will take the upper frequency to be limited only by the data setup needs of the receiving slave, but can reach more than 50MHz easily.
CROSS-CLOCK DATA TRANSFER

Text text
INTERFACE TO USER CIRCUITRY
Text text
Architecture

Each core is implemented as a single design entity. The block diagram for each core is detailed below:
[image: image2.png]sSpi_master

di_i(31:0) do_0(31:0)
par clk i sh_reg_dbg_o(31:0)
state_dbg_o(5:0)
rst_i
di_rdy_o

spimiso i | do_valid_o

spi_2x clk i spi_mosi_o

wren i spi_sck_o

spi_ssel_o

sSpi_master

 [image: image3.png]spi_slave

di i(31:0) | | do o(31:0)
cki | sh_reg_dbg_o(31:0)
rsti | | state_dbg_o(5:0)
spi_mosi i | | dirdy o
spisck i | | do_ valid_o
spi_ssel i | | spi_miso_o
wren_i |

A4
spi_slave

Each core has 2 interfaces, the SPI bus and the parallel data I/O ports. Separate clock domains inside the cores synchronize the operations of the core RTL registers and the parallel I/O ports.
The spi_master core generates the spi_sck_o clock by dividing input clock spi_2x_clk_i.

Small but significant differences exist in the state machines of the master and slave functions to have specialized cores for each function. Instead of making a universal master/slave core with runtime selection of operation mode, the function and mode are selected during instantiation, using generics, to achieve efficient silicon usage.
Operation

The internal logic of each core is a sequencer implemented as a single RTL state machine. The state machine is clocked by the SPI SCK clock. The spi_master block generates the spi clock from a 2x input clock, using 2 FFDs to derive two in-phase clocks, one continuous clock to control the sequencer, and an output spi clock, that is controlled with the CE input of a second FFD. Both clocks have high phase correlation, so serial data change is synchronous to the output SCK generated.
The SPI bus has 4 modes of operation, controlled by 2 parameters: Clock Polarity (CPOL) and Clock Phase (CPHA). The master and slave in a SPI connection must have the same SPI mode to interoperate. The modes are depicted in the following waveform diagram.

 [image: image4.jpg]cpoL=0
SCK ¢cpor=1
ss 11

il
Cycle # BOEEE eI
CPHA=0 M\SO TreEE

MOS| AT TS s s T s e

11

Cycle # mc
CPHA=1 Mso
Imzmimzmc

Mos|

Serial data output signal changes at the clock edge selected by CPOL and CPHA.

The serial data input is sampled at the opposite clock edge. Data setup time to the data sampling edge is the limiting factor for maximum SPI operating frequency. If transmit-only operation is intended, the master can achieve a much higher clock frequency.

The model has generics to control generation of SPI mode, word width and data prefetch timing.

The operation of the spi_master block starts with a write to the parallel data in port.
Clocks

[This section specifies all the clocks. All clocks, clock domain passes and the clock relations should be described.]
	Name
	Source
	Rates (MHz)
	Remarks
	Description

	
	
	Max
	Min
	Resolution
	
	

	clk_pad_i
	Input Pad
	10
	4
	0.1
	Duty cycle 70/30.
	For external interface.

	wb_clk_I
	PLL
	200
	-
	-
	Must be synchronized to sm_clk_i
	System clock.

	sm_clk_i
	Input port
	55
	40
	1
	There are multi-clocks paths.
	Clock 55MHz for State machine.

Table 1: List of clocks

IO Ports

[This section specifies the core IO ports.]
	Port
	Width
	Direction
	Description

	wb_clk_i
	1
	Input
	Block’s WISHBONE Clock Input

	wb_rst_i
	1
	Input
	Block’s WISHBONE Reset Input

	wb_sel_i
	4
	Input
	Block’s WISHBONE Select Inputs

	foo_pad_o
	1
	Output
	Block’s foo output to output pad

	…
	
	
	

Table 2: List of IO ports

Name

[This section may be added to outline different specifications.]
Name

[This section may be added to outline different specifications.]
[This section contains an alphabetical list of helpful document entries with their corresponding page numbers.]
www.opencores.org
Rev 0.97
 Draft Specification
iii

