
SV Directed Test Bench User Guide
by
Ken Campbell
Version: 1.1

January 2019

Copyright (c) 2019 Ken Campbell.
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License
Revision History:
	Version
	Revised By
	Description
	Date

	
	
	
	

	1.0
	Ken Campbell
	Initial release
	August 15, 2014

	1.1
	Ken Campbell
	Updates after support of user.
	April 2019

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents:
1. Introduction
6

1.1 History
6

1.2 Over View
6

1.3 Scope
6

1.4 Interested Parties
6

1.5 Why?
6

1.6 Document Acronyms
7

2. Test Environment Usage Flow
8

2.1 The DUT
9

2.2 Choose The Methodology
9

2.3 Generating the Test Bench
9

2.4 Creating the Initial Instructions
9

2.5 Writing Test Cases (stm files)
10

2.6 The Regression Set
11

3. The SV Directed Test Bench
11

3.1 Recommended directory and file structure
11

3.2 Default Test Bench Structure
12

3.3 Implementation Variations
12

3.3.1 Internal Test Bench Variant
12

3.3.2 Multi Script Implementations
13

3.4 Script Parsing Conventions
13

3.4.1 Case
13

3.4.2 White space
13

3.4.3 Comments
13

3.4.4 Variables
14

3.4.5 Special Variables
14

3.4.6 Condition Variables
14

3.4.7 Number Notation:
15

3.4.8 Dynamic Text Strings
15

3.5 Search Order
16

4. Test environment Instructions
16

4.1 Default Instructions
16

4.2 User Defined Instructions
19

4.2.1 Tasks
20

4.2.2 Concurrency
20

5. Test Bench Working Details
20

5.1 SystemVerilog Classes
21

5.2 User Functions
21

6. Test Bench Generator tool
21

6.1 tb_gen Usage
22

6.2 tb_gen Step by Step
23

7. Releases and Updates.
23

7.1 update #1 April 2019
23

Appendix A: Examples
24

Appendix A: Examples
24

Table of Figures

Figure 1 - Default Test Bench Structure
12

Figure 2: Script Driven Processor Implementation
13

Index of Tables

1. Introduction

1.1 History

The VHDL test bench system was released in 2007. This version is the same implementation but is implemented using SystemVerilog (SV). Using some of the facilities of SV this implementation duplicates the scripting syntax of the VHDL version.

1.2 Over View

The SV Directed test bench is a collection of SystemVerilog classes and functions which enable the user to create their own scripting instructions for directed test stimulus. The stimulus script or test case contains the instructions in a regular ASCII text file. The functionality of the instructions are coded in SystemVerilog as part of the test bench. The SV Directed package contains classes and functions to read, parse and execute the test script (stimulus file, test case, script). The script is evaluated in two passes. The first pass reads the instructions from the stimulus file, checks the validity of the instructions, adds valid instructions to the cmd_lst object and creates the variable list. The first pass leaves everything needed in memory and happens at time zero of the simulation. The second pass is the execution pass. Instructions are referenced by their index numbers and return the instruction text, up to 6 parameters in integer form and possibly one text string. This is then fed down an “elsif” chain where the instruction text is used to choose the correct SV instruction sequence. At this point each instruction could be controlling the timing of the test case.

1.3 Scope

This document provides the usage recommendations and detailed functionality of the test bench environment. It is expected that once this document has been read, the user will have the knowledge to use the environment.

1.4 Interested Parties

All Verilog designers can benefit from the use of a simple but flexible foundation. The SV Directed test bench package provides a very good starting point for any effort requiring verification using the SV language. This document should provide you all you need to use and implement the package.

VHDL test bench package users may find this interesting they are told they MUST use SystemVerilog. In fact if one has used the VHDL system, this SV system will be VERY familure.

1.5 Why?

There are several reasons why you may want to use this test bench package

· Used the VHDL test bench package before and liked it.

· Don’t want a heavy verification environment. (Don’t want to use UVM)

· As a designer, want an environment that is quick and easy to use.

· You do not need a fully randomized test environment to do your verification.

· Have access to SV but not UVM (FPGA tools)

1.6 Document Acronyms

	Term
	Definition

	
	

	DUT
	Design Under Test

	
	

	FPGA
	Field Programmable Gate Array

	
	

	
	

	
	

	SV
	SystemVerilog

	
	

	
	

	UVM
	(ultimate, unbelievable, Ultra) Universal Verification Methodology

	VHDL
	Very High Level Design Language

	
	

	
	

2. Test Environment Usage Flow

[image: image1]
Illustration 1: Typical Test Bench Usage Flow

Consider the flow illustration above, Illustration 1: Typical Test Bench Usage Flow. This flow diagram presents a basic flow of how the test bench package can be used to create a verification environment, to test a DUT.

 The following assumes that the DUT is a synchronous design that has a reset input.

2.1 The DUT

To start using the environment it is required that the Verilog module of the DUT be available. With the DUT module file available, the test bench can be generated using the tb_gen tool. The tb_gen tool uses the pin definitions within the module definition to generate several parts of the test bench structure.

2.2 Choose The Methodology

Depending on how you like to do your verification, the test bench will be coded differently. If you are going to create dynamic self-checking test cases or you are going to record vectors and compare to some good vector set, the test bench will be implemented in different ways. The commands that need to be created will be different.

As a preference, dynamic self-checking test cases should be the first choice. This will suggest that you will have to create commands to “read” various outputs, and “verify” the outputs are as expected.

Vector collection and compare should be the last choice of method. But this implementation may include creating instructions that enable the test environment to collect different outputs at different times.

2.3 Generating the Test Bench

Using the tb_gen tool, generate the test bench. Once the initial files have been generated, the test bench writer will then edit them for specifics. The tb_mod.sv file is the users play ground. It is recommended that all edits, instructions and tasks be placed in this file, or a file that is included by this file. The other files that make up the test bench should not be edited because they can be regenerated if the module pinout changes significantly. The tb_mod.sv file is optionally generated, as you would not want to over write the code that has been created for this test environment.

2.4 Creating the Initial Instructions

The test bench package file cmd_lst.sv contains several default instructions. Those are presented later in this document. It would be beneficial to review these instructions and be familiar with their implementation before creating your own instructions.

As a starting point, the first instruction that would be included in all test environments is the “reset” type instruction. This instruction is the one that applies the reset to the DUT and test bench elements. It is expected that all items need to be triggered to get into a default starting state. There may be several reset type instructions in one environment, one to reset everything, one to reset just the DUT and could be one to reset test bench models. These instructions would be created if the elements of the test environment need to be reset independent of each other.

Another very common instruction to consider is the “wait” type instructions. These instructions are used to time activities in a test case. For instance, an instruction to wait so many clock cycles is useful for just waiting for some know amount of time. A wait on interrupt is also useful to enable the test case to wait till some indicator triggers the test case to continue. As an addition to the wait instruction there should be a wait_max type instruction that enables the test writer to set a time out for the wait. This is so that if the single event you are waiting for never happens, the environment can terminate the simulation.

To facilitate control of the DUT, write type instructions will be needed. This type of instruction will access the DUT possibly through an address and data buss or just the placing of values on input pins. Whatever the write type instruction(s) do, they will be the instructions used to setup and control the DUT.

To enable the collection of data, some kind of “read” instruction will be created. This instruction reads a target item, data bus, register, output pins, and puts the value into a common place. As in, all read instructions put the data in the same place, this could be a variable.

To confirm the data values are as expected, some kind of “verify” instructions will be created. The verify instruction(s) enable the test writer to check that the value of the last read item is as expected. Several types of verify instructions can be created, verify (whole word), verify_slice, verify_bit and they would all look to the same place for the data to compare.

The four basic instruction groups described above will enable the test bench developer to get started at the test bench / test case creation. As new instructions are needed, they are added.

Depending on the complexity of the test bench environment, there may be some instructions that are needed to initialize, access and or control test bench models.

2.5 Writing Test Cases (stm files)

Once the test bench initial instructions have been created, test cases may start to be created. The test case is created by a person or persons through the use of a simple text editor. The test case writer will create the file containing instructions defined in the tb_mod.sv file. As an example, please examine the following:

-- This is an example test case

-- using instructions defined in previous sections. << actual comment seen in test scripts

DEFINE_VAR STAT_ADDR x001000 -- status address variable (test bench default instruction)

DEFINE_VAR CTL_ADDR x001004 -- control register address variable

RESET_SYS -- The reset instruction, DUT and test bench initialization.

WRITE $CTL_ADDR x01 -- Write to the control register some value (assume DUT enable)

WAIT_CYCS 1000 -- Waiting for 1000 clock cycles to go by.

READ $STAT_ADDR -- Read some status to some internal variable after waiting

VERIFY x0055 -- Testing the read value is as expected.

FINISH -- Terminating statement for the test case (test bench default instruction)

The test case presented above is very simple. The syntax is presented later in this document. This test case could be created by a test writer with a simple text editor in a matter of moments. As the test case writer(s) progress into the test case writing phase of a verification effort, they will find that the initial instructions are not enough to do the testing they need to do. At any point new instructions may be added to a test environment. Once added to the environment the new instructions can be used in test cases. Test cases that are hand written are typically directed type tests. Unless the test bench is created with randomization instructions, most of the test cases written will be directed type test cases.

Another way to write test cases is to have a program generate them. Depending on the type of DUT, randomization may be a target test methodology. A test case generator can facilitate both ease of test writing and randomization. This is a method that should be considered when the DUT is very complicated.

2.6 The Regression Set

It is assumed that the test case writer is working from a “Test Plan”. The Test Plan is a document which states what tests are going to be created and what functionality each test validates. The Test Plan is created from the document that contains the functional requirements of the DUT. The test case writer will create test cases (stimulus files) until all those stated in the test plan are complete and working as expected.

If the tools are available, it is now time to do code coverage. Using all the test cases created run them with code coverage enabled and merge the results. Any missing code should be evaluated and determined what was missed. Once the missed code is determined, existing tests can be upgraded or new tests created to cover the missed statements or branches. Once an acceptable level of coverage is achieved, it is considered that all of the test cases written constitute the full regression set.

3. The SV Directed Test Bench

Usage of the environment can be done in many ways. Part of the objective of using a common verification environment is to use it in a common way. One thing about the test bench package and its components is that it is very flexible. If users implement in a common way then the ability to take up other's work becomes easier. Below are a few recommendations and then some details of the environment.

3.1 Recommended directory and file structure

The following directory and file naming is used throughout the remainder of this document.

Design name directory -- the top level test directory name

 sv -- The directory holding all test bench SV files

 stm -- The directory holding all the test scripts (stimulus files)

 sim -- The compile and run directory

The test bench comprises several files.

Package files:

gfuncts.sv general functions

tb_types.sv definition of types

lst_item.sv the list item class

tb_cmd.sv the tb command class

cmd_lst.sv the command list class

tb_pkg.sv the package file, `includes the above files.

Test bench files:

dut_if.sv the interface used to connect to the DUT (generated file)

tb_mod.sv the module file, contains instructions (generated from a template)

tb_top.sv the top module (generated file)

The package files need to be compiled with the environment. These files should not have to be modified by the user or test bench creator. The test bench files are generated or modified from a template by the tb_gen GUI script.

In a team setting it is recommended that team members follow a documented style and directory structure.

3.2 Default Test Bench Structure

A pictorial representation of the default test bench environment is provided below in Figure 1 - Default Test Bench Structure. As can be seen the stimulus file is directly linked to the tb_mod. This link is facilitated through the use of a parameter at the top level called STM_FILE.

Usually, a test environment will contain many test scripts, and obviously they can not all have the same name or if they do, can not exist in the same directory. The user can control which test file will be loaded in many ways. One way is that the user copy the test file to stimulus_file.stm. (this assumes the parameter points to this file by default, it may be modified to point to something else)
Other ways include using symbolic links, or passing in parameter changes when you start the simulator. (not detailed in this document, $value$plusargs)

[image: image2]
Figure 1 - Default Test Bench Structure

3.3 Implementation Variations

The default structure of the test bench is to have the test bench wrapped around the DUT. This is depicted in Figure 1 - Default Test Bench Structure. The file set generated by tb_gen creates the structure that is presented in Figure 1 - Default Test Bench Structure. There are other ways that the test bench package can be used to facilitate other configurations.

3.3.1 Internal Test Bench Variant

This implementation connects the script parser inside the DUT. For instance, if your DUT has an internal processor, the script parsing part of the test environment can be used to emulate the processor. This is depicted in Figure 2: Script Driven Processor Implementation, where hierarchy signals are used to drive and read the CPU module pins. The scripting commands are created such that they interface to the processor buses. They assign and react to signaling just as a processor would. Instructions can emulate assembly instructions exactly or instructions can be created to implement more abstract functionality. This is accomplished by instantiating the tb_mod.sv in the top level test bench and using hierarchy connections down into an empty processor module.

Figure 2: Script Driven Processor Implementation, shows hierarchy connections can be used to drive and read top level I/O. This will be required to provide such things as clocks, and reset.

[image: image3]
Figure 2: Script Driven Processor Implementation

3.3.2 Multi Script Implementations

Just say no. With the hierarchy connectivity of Verilog, it should not necessary to use two scripting parsers. That said, it is possible to create an environment that has two or more scripting parsers in it.

3.4 Script Parsing Conventions

This section contains the details of the system with regards to parsing of the test scripts. The script parser is what the SV Directed Test Bench Package is. It is very limited, and all the particulars are stated in this section.

3.4.1 Case

The case of all text in the stimulus file is significant.

3.4.2 White space

There must be white space between fields with the exception being the comment. White space characters are, 'space' and tab.

3.4.3 Comments

Comments can be added within the script file. The '--' is used as the comment delimiter, and when encountered parsing of the current line is halted. Anything on a given line, after and including the '--' character sequence, is ignored.

Examples

 ADD_VAR TEMP 5 -- add 5 to the TEMP Variable

 ADD_VAR TEMP 5-- add 5 to the TEMP Variable

 -- An all comment line

3.4.4 Variables

Variables can be created with in the scripting environment. To create a variable the DEFINE_VAR instruction is used. Variables can be defined anywhere in the script. The parser uses the DEFINE_VAR instruction to create and add to the list of variables, a new variable. The first pass of the script parser puts the variables onto a link list in the order they were defined. Once a variable is defined, it can be referenced in two ways. One way is to specify to return the value of the variable: $var_name returns the value of the variable. Second way, is to specify to return the index to the variable: var_name returns the index to the variable.

Examples

 DEFINE_VAR VAR1 10 -- define variable 'VAR1' to have a value of 10

 DEFINE_VAR VAR2 20 -- define variable 'VAR2' to have a value of 20

 .

 .

 READ_DUT $VAR1 -- some kind of read instruction, passing a value of 10 to the instruction

 ADD_VAR VAR1 $VAR2 -- add to VAR1 the Value of VAR2

3.4.5 Special Variables

To facilitate branching and jumping a special variable, we will call an “in-line variable”, can be created. This is a pointer type of variable which is not used like the variables created with the DEFINE_VAR instruction. A text field terminated by the ':' character will create a variable with a value equal to the sequence number or 'line number' of the next valid instruction. This can then be used as a jump or call pointer.

Example

.

.

CALL $TEST_FUNCTION

.

.

TEST_FUNCTION:

 ADD_VAR VAR1 10

RETURN_CALL

3.4.6 Condition Variables

To facilitate the WHILE and IF instructions the parser will recognize condition fields. The cmd_lst.get() function will search for condition code text. If the condition text is found, the relative value is returned into the elsif chain. The instruction must now act on the returned integer in the proper way. Usage examples can be seen in the WHILE and IF instructions.

The parser can detect the following fields and pass the indicated integer to the elsif chain.

	Text
	Meaning
	Return value

	==
	Left side equals right side
	0

	!=
	Left side is not equal right side
	1

	>
	Left side is greater than the right side
	2

	<
	Left side is less than the right side
	3

	>=
	Left side is greater than or equal to the right side
	4

	<=
	Left side is less than or equal to the right side
	5

3.4.7 Number Notation:

The stimulus file parser recognizes binary, decimal and hexadecimal numbers. For binary numbers the number is preceded by a 'b', lower case only. For a hexadecimal numbers the number is preceded by an 'x' or 'h', lower case only. If the first digit of the number is a decimal number character, the number is considered decimal notation. Any other character will make the parser consider the field a variable. All values are converted to integers within the test bench data records.

Examples

 DEFINE_VAR VAR1 10 -- define VAR1 to have value decimal 10

 DEFINE_VAR VAR2 xabc800 -- define VAR2 to have a hexadecimal value of 'abc800'

 DEFINE_VAR VAR3 habc800 -- define VAR3 to have a hexadecimal value of 'abc800'

 EQU_VAR VAR1 b0011001 -- equate the value of VAR1 to binary value '11001'

3.4.8 Dynamic Text Strings

The stimulus file parser recognizes a text field within an instruction. The '”' (double quote) character defines the beginning of the text field. Anything after the '”' character is considered to be part of the text string, for that line of the stimulus file. There must only be one '”' in a line, indicating the beginning of the text field. The characters after the '”' are stored in a string and that string is returned into the elsif chain. The double quote is not included as part of the final string. There must be at least one white space character before the '”' character. Dynamic text strings must also be placed before any comment delimiter in that instruction line.

The text string feature is part of every instruction, and is not optional nor does it require any pre-definition or pre-configuration. For every line of a stimulus file, if the '”' is encountered, the string is stored. The user may then do with this string as they wish. The tb_pkg provides functions to print the text string to the console. Details of the two functions are provided in a section later in this document.

NOTE: Inline variables are not commands, any dynamic text on a line where an inline variable is defined, is ignored.

Note: any white space found at the end of a text string up to the comment delimiter will be included in any string output. The exception to this is when the text string is used for an include file, the extra white space is stripped off before using it for a file name.

Examples:

DEFINE_VAR ACQ_CTL1 xD0010034

DEFINE_VAR VALUE 55

.

.

PPC_WRITE $ACQ_CTL1 x000DEF “Writing to acquisition control x0DEF

This will write to the console 'Writing to acquisition control x0DEF' each time this stimulus file line is run. This is provided that the user does a print_str call. See section 8 for details of the print_str procedure.

PPC_WRITE $ACQ_CTL1 $VALUE ” #&% Writing to $ACQ_CTL1 $VALUE

This will write to the console ' #&% Writing to $ACQ_CTL1 $VALUE' each time this stimulus file line is run. This is provided that the user does a print_str call. See section 8 for details of the print_str procedure.

Or, this will write to the console ' #&% Writing to 0xD0010034 0x37'. each time this stimulus file line is run. This is provided the user does a print_str_wvar call. See section 8 for details of the print_str_wvar procedure.

3.5 Search Order

The test bench package implements a double linked list for the instructions. The tb_trans class contains the full instruction list, return value and a next value. The next value is set by the user to state which instruction to retrieve. Depending on whether the desired instruction is after or before the current one, list pointers next and prev will be used to transverse instruction list.

4. Test environment Instructions

4.1 Default Instructions

As a starting point several default instructions are included in the test bench environment. These are considered among the most useful instructions or are nice to have as a common set among different test benches. Following is an explanation of each of the default instructions.

DEFINE_VAR

is the only way to define / create a stimulus file variable. The implementation of this instruction is solely done within the test bench package. The DEFINE_VAR instruction is not part of the instruction list.

ABORT

is the instruction that may be called in case of failure. If this instruction is encountered, the simulation is halted and a failure message is displayed.

FINISH

is the instruction which is called at the end of a simulation. When this instruction is encountered the simulation is halted and a message is displayed stating the simulation passed.

NOTE:
It has been found that for some simulators (FPGA tools) do not respond to the $finish() SV instruction in the same way. See cmd_lst.sv line 515. It may be required to insert a $stop(); prior to the $finish();.

This information has been obtained from a user.

INCLUDE

is the instruction used to load in another stimulus file. The instructions found in the include file are inserted into the sequence of instructions as if they were part of the calling stimulus file. Includes cannot be nested. The file name may be specified in one of two ways. One way is to just state its path and name, no quoting required.

Example:

INCLUDE stm/include.stm

The second way is to use the text string method. This allows the text path name to be the length of type string.

Example:

INCLUDE “C:/work/dir1/dir2/dir3/dir4/dir5/stm/include.stm

EQU_VAR

is the instruction used to change the value of an existing variable.

ADD_VAR

is the instruction used to add a value to an existing variable.

SUB_VAR

is the instruction used to subtract a value from an existing variable.

CALL

is the instruction use to jump execution to a subroutine. The use of this instruction should include a RETURN_CALL instruction as there is a stack maintained in the back ground. The limit to the nested call depth is 8.

RETURN_CALL

is the instruction which terminates a CALL sequence. This instruction will return sequence execution to the point from which is was called.

Example:

DEFINE_VAR TEMP_DAT x0

DEFINE_VAR TEMP_ADD x01000

.

.

.

EQU_VAR TEMP_ADD x02000

CALL $ACCESS_DUT

.

.

.

FINISH

ACCESS_DUT:

 READ_DUT $TEMP_ADD

 WRITE_DUT $TEMP_ADD $TEMP_DAT

 ADD_VAR TEMP_ADD 4

RETURN_CALL

LOOP

is a simple loop instruction. Used to execute a set of instructions a number of times between it and the END_LOOP instruction.

END_LOOP

is the instruction used to terminate a loop instruction.

Example:

DEFINE_VAR ADDR x80

DEFINE_VAR DATA x20

.

.

LOOP 5

 WRITE_DUT $ADDR $DATA

 ADD_VAR ADDR 4

END_LOOP

JUMP

This instruction is used to go to particular location in the script. NOTE: When a JUMP instruction is encountered, all WHILE and CALL stacks are zeroed. This is to prevent problems with jumping out of one of these constructs.

Example:

JUMP $NEXT1

.

.

NEXT1: -- <<< NOTE: Inline variable

 ADD_VAR $VAR1 20

IF, ELSEIF, ELSE, END_IF

These instructions form the structure for an “if” type condition script sequence. The implementation is that of a regular if statement found in other languages. The current implementation cannot operate on nested if statements.

Example:

IF $var < 10

 ADD_VAR var 1

ELSEIF $var = 10

 EQU_VAR var 2

ELSE

 EQU_VAR var 2

END_IF

WHILE, END_WHILE

These instructions make up the structure for a “while” type condition script sequence. The implementation is that like any other language. If a JUMP instruction is used with in a WHILE loop, all while loop status is zeroed. This means that if you jump back into a while loop, it may not work as expected.

The WHIILE instruction can not be nested.

Example:

WHILE $var != 10

 ADD_VAR var 1

END_WHILE

4.2 User Defined Instructions

The user will be required to create instructions for use in test case writing. These instructions will be more specific for the DUT than those default instructions of the test bench environment. Once the instruction is defined using the define_instruction function call, the new instruction is coded into the else if chain. The default instructions are coded as part of the cmd_lst class. Simply copy an else if line and replace the existing instruction with the new instruction text, remembering case sensitivity. Then code the SV below the condition statement to implement the required functionality.

The best instruction is one that says something about what it does. Also, flexible instructions are very good to reduce test writing complexity. For instance, if you had a DUT with 20 ports, creating an instruction to read data from every port you would have 20 different instructions. By using the parameters, you can case on one of them and use one READ instruction to read all 20 different ports.

Example SV code in the tb_mod.sv file

///
 end else if(cmd_string == “READ”) begin
 case (r.rtn_val.par1)
 0: temp_data = port1;
 1: temp_data = port2;
 2: temp_data = port3;
 3: temp_data = port4;
 .
 .
 endcase
Script code example:
DEFINE_VAR PORT1 0
DEFINE_VAR PORT2 1
DEFINE_VAR PORT3 2
DEFINE_VAR PORT4 3
READ $PORT1
READ $PORT2
READ $PORT3
READ $PORT4
The limit of 6 passed parameters per instruction can seem limiting for some cases. If for instance you need 8 fields for an instruction or you have a 256 word burst transfer you want to control, the use of SV variables will be needed. The way I have done this in the past is to create a test bench SV variable and create an instruction to access it. This way the number of parameters can be as large as you need. In the case of providing data for a 256 word burst write instruction, create an array of words in SV and then create an instruction that enables the array to be filled. Of course Zero time fill. Then create a task to apply the data to the RTL.
If performance is a concern, try to limit the character length of the instructions. Small strings are quicker to compare than long strings. Also, the instructions are searched in the order they are defined, putting an instruction that is used a lot at the bottom of the else if chain will result in compare of the whole list of instructions before finding the last one. Put often used instructions close to the top of the else if chain.
The default instructions are searched first. This means that if you find that there are some instructions you use very often, they could be added to the default list. And conversely if it is found that some of the default instructions are never used, they could be removed to increase performance. Or moved to the bottom of the user list, just in case. The point here is that with for knowledge of search order affects, one can ensure the possible performance.
4.2.1 Tasks

The use of tasks within the tb_mod file is recommended. Interface procedures are good things to put into a task. Once created, any instruction created can take advantage of the task, saving coding and creating a single point of interface.

4.2.2 Concurrency

At some point it will become apparent that something will have to happen at the same time as something else. Some kind of complicated instruction may be considered. At this time, a model to relieve the stimulus file from producing everything, should be created. The use of models will enable many things to be taking place at the same time, and the stimulus file controlling and checking as the test progresses. Such things to be considered for a model implementation are objects like memories, data generators, data checkers and standard protocol interfaces.

5. Test Bench Working Details

The tb_mod file contains all clock sources, models connected to the DUT, instruction definition and any other processes or models used to monitor or control the DUT. An initial block handles the stimulus file parsing and script execution process. Details are:

5.1 SystemVerilog Classes

lst_item:

this class is used to implement a basic list of items. In the test bench system it is used for the variable, files and valid instructions lists. The valid instruction list is the list that is created by the define_instruction calls. The variables and files lists are created as the stimulus file is parsed.

tb_cmd:

this class is used to hold the stimulus commands in the form of a double linked list. It holds all the variables needed to store a stimulus file command or line. This class contains a “self” parser method, which parses a string into itself.

cmd_lst:

this class implements the command system. It has many functions that are needed to implement the test bench system. This includes user functions, define_instruction, print_str_wvar and many others the user may never have to use.

tb_trans:

this class is a container class used to pass in “next” and return the values from the command list. This class enables the user to have full access to the command list as required by their implementation.

5.2 User Functions

cmd_lst::define_instruction

is the function that must be called to add a new instruction to the list of valid instructions. It is defined as define_instruction("INSTRUCTION_TEXT", Number of Parameters). The user must define the “INSTRUCTION_TEXT” and number of parameters. The instruction text is what the user wants to make the instruction read in stimulus files, and case matters. The number of parameters is defined by the user and checked by the parser during the stimulus file reading. The dynamic text string does not require configuration and is not optional, it is part of every instruction.

NOTE: If the number of parameters is defined to be more than 6, the parser will not check for the correct number of parameters. This enables a variable number of parameters in an instruction.

cmd_lst::get(tb_trans inst)

is the function used to get a command from the command list. The inst.next is set to the index that is to be retrieved. The instruction is returned in inst.rtn_val. Instructions modify the inst.next value as needed to access the instructions or by default inst.next is incremented.

6. Test Bench Generator tool

To make it as easy as possible to get started quickly, a tool to generate some of the default code is provided. tcl/tk script GUI form is provided. The script will generate, from a module file input, the interface file (dut_if.sv), the tb top (tb_top.sv) and will write out the module file (tb_mod.sv) from the template. The other files are part of the package and are static.

6.1 tb_gen Usage

The test bench generation tool is called tb_gen, a tcl/tk GUI. It is assumed that tcl\tk is installed on your Windows or Lenox computer. The tool has been re-written to use standard TCL/TK items. This should reduce the effort getting it running, as standard installations should just work. This version also breaks the script into two files, one for the GUI part and one file for the parser part. A button was added, “Source”, which will aid in development of parser if customizing is needed. While working to correct the progress bar bug report, newer SV module definitions were examined. It was decided to create something that will “do the best I can” and leave particulars to users. The parsing of Verilog / SystemVerilog is not simple as the options for coding a modules’ IO are many. (endless)

If the generator does not provide what you need, feel free to re-code or modify the existing code to make it generate output from your coding style. The effort to do this will pay off again and again as you generate new test benches.

With GUI version invoked the user can use the Browse ... button to select the file that contains the module definition of interest or you can type the path and file name into the Source field. If the Browse button is used the Destination field is filled by default to be the source directory.

The reason for the option to generate the tb_mod.sv file or not, is so that you can avoid over writing an existing test bench module file. For instance, after some time the DUT may have a significant pinout change. This will cause the test bench files to have to be edited. The interface and top level files can be regenerated, avoiding hand editing errors.

tb_gen will parse out the first module it finds in the source file, and halt the search for any other module definitions. Once the end of the module definition is found, file parsing halts, the file is closed and that stored in memory is used from then on.

So far only 3 pin directions are supported, input, output and inout. tb_gen is NOT a full Verilog parser, and uses the pin input, output and inout to find pins within a module.

The latest version attempts to implement the `ifdef syntax used in the definition of optional pins. This will cause `ifdefs to be placed in all generated files. If there are import statements, they will be copied into files as needed. Multi-dimensional pin arrays have been implemented to cover two dimensional array type I/Os.

It must be remembered that the parser is simplistic and not able to parse all verilog that could define a module. Best solution for quickness may be to create a wrapper around the DUT, if needed, to simplify the module pin definitions so the parser can help. If not, the output could enable a quick copy paste operation for coding the infrastructure files.

The tool copies the test bench module file from the template included in the package. Those constructs that are needed to implement the test bench are inserted at the appropriate places.
Support for CMD line usage has been removed from the package.
6.2 tb_gen Step by Step
Here is what is considered step by step usage instructions for tb_gen.tcl.
1) invoke tb_gen.tcl depending on your setup, we will assume tb_gen.tcl is started within the folder containing tb_gen.tcl.
a) cd to the directory containing tb_gen.tcl
b) start the GUI type: wish tb_gen.tcl
2) Hit browse button for field Top mod loc, navigate to the directory containing the module of interest, hit OK.
3) The left hand list widget should now have all .v and .sv files listed. Select the file that contains the module of interest.
4) See that the module is displayed in the text pane on the right, also the module name found should be stated above the text window. (If not something is wrong, coding error?)
5) Before hitting the “Generate” button, ensure Output loc selection is correct, if not use the Browse button to navigate to the output directory desired.
6) Now select from the left hand drop down “Gen mod” to generate the initial file set or select “No mod” to regenerate an existing env and not over write the mod file.
7) Now hit the “Generate” button to generate the file set.
Of course once you get use to generating environment files you may want to change how you do things. If you really want to re-generate an existing environment, one could simply select a different / temp output directory and copy files or partial files as needed.
7. Releases and Updates.

7.1 update #1 April 2019

This update corrects some tb_gen generation errors. The `ifdef in the module pins area has been included. Some changes were made to enable SV types as pins to be correctly handled. An attempt to handle arrays types in the IO definitions. Any import statements found will be inserted in files needing to know about them. The tb_gen application has been broken down into two separate files. A source button was added to enable quicker development of the parser.

This document was reviewed and attempted to ensure figures were displaying correctly. Using Ooffice. Some sections have been updated with further information.

A possible issue with the FINISH instruction was documented.

Further comments about user commands were added.

The tb_gen user section was updated to reflect changes made.

Appendix A: Examples

Example standard test bench:

A simple example of a test bench implementation is provided with the SVN repository. This example contains a working behavioral model of a couple registers driving some output pins. The user can control the value of the output pins by writing to the stimulus access port address corresponding to the output desired. A read instruction is included to read the value of the example DUT outputs. A verify instruction is used to check the value that was read is as expected. This demonstrates self-checking test cases.

The following files are found in the SVN examples/standard/sv directory:

dut.sv

du_if.sv

tb_mod.sv

tb_top.sv

The example stimulus file is found in the SVN examples/standard/stm

stimulus_file.stm

Example internal test bench:

A simple example of how the test bench system can be connected to an internal block of the system. In this example the CPU module is used as the interface point. This enables the scripting system to emulate the processor and access the CPU facilities. The example includes a memory and a GPIO block that can be addressed from the CPU module. The stimulus file does several writes and reads to prove access to memory and input GPIO values.

The following files are found in the SVN examples/internal/sv directory:

dut_top.v

arb.v

cpu_mod.v

gpio_mod.v

mem_mod.v

tb_top.sv

tb_mod.sv

dut_if.sv

The example stimulus file is found in the SVN examples/internal/stm

stimulus_file.stm

Obtain Verilog module

&

Decide the test bench

methodology

Run tb_gen or

tb_gen_cmd to

generate base files

Edit generated files

to make them

complete

Connect clock driver

always output to

DUT

Get the environment

to compile without

errors

Create Reset, Read

and Verify

instructions in

tb_prg file

Add required Models

and model access

instructions

Create an initial test

case that proves the

DUT will initialize

correctly

Create test case that

proves access to the

DUT

Create self checking

test case to prove

functional test plan

points

Code new instructions

or tasks into the

tb_prg file

All Test Plan

test cases

complete?

New Instructions

or functionality

needed?

No

No

Yes

Yes

Stimulus file

regression set

ready

DUT

Interface

tb_mod.sv

tb_top.sv

Stimulus file

tb_mod.sv

tb_top.sv

Stimulus file

CPU

GPIO

ARB

MEM

DUT

