
Embedded Protocol Analyzing Classifier Design Document
Version 1.0.8
April 25, 2007
Technica Corporation

45245 Business Court, Suite 300

Dulles, VA 20166

703.662.2000 phone

703.662.2001 fax
www.technicacorp.com
Table of Contents

11
Introduction

22
Design Objectives

33
Functional Description

43.1
Protocol Memory

43.2
Assembler

53.3
Length Saver

63.3.1
Calculating Length

63.4
Protocol Saver

63.4.1
Jump Block

73.5
Port Block

93.5.1
Loading New Port Values

94
Summary

10Acronym List

List of Figures

2Figure 1. EmPAC Top Level Design

3Figure 2. Internal Architecture of EmPAC

5Figure 3. Phy_data Registers

8Figure 4. Port Block Functional Description

List of Tables

4Table 1. Protocol Memory Signal Description

5Table 2. Assembler Signal Description

5Table 3. Length Saver Signal Description

6Table 4. Length Saver Field Type Requirement

6Table 5. Protocol Saver Signal Description

7Table 6. Protocol Types and Values

7Table 7. Jump Block Signal Description

8Table 8. Port Block Signal Description

1 Introduction

The Embedded Protocol Analyzing Classifier (EmPAC) is designed to perform the task of packet classification through protocol analysis. Its goal is to take an unclassified byte stream coming from the Ethernet Physical Layer Interface (PHY) and partition and classify the data blocks into corresponding protocol fields. These include header information such as source and destination address, header and payload sizes, and protocol flags, as well as the payload fields themselves.
The partitioned data fields are output on a 32-bit bus, accompanied simultaneously by a unique 16-bit field type to identify not only the field’s context (its associated protocol), but also its particular relevance (e.g., source address, payload size, and header checksum). EmPAC will support an interface to modules capable of analyzing certain Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) application layer protocols. Therefore, EmPAC must verify if the incoming application layer protocol is supported in the design. When supported, this verification must also be accompanied by the port value of the supported protocol. These port values are read from the PHY when the TCP or UDP source or destination port value arrives. Figure 1 depicts the top-level design of EmPAC. The associated signals are defined as follows:

· Field_data contains the 32-bit partitioned data field.

· Field_type contains the 16-bit field data identifier.

· Data_ready, when asserted, validates the data located on field_type and field_data once the 32-bit partitioned data field is available.

· Port_found, when asserted, the application layer protocol is supported in the design.
· Port_value contains the value of the application layer protocol port number.
· Load, when asserted, indicates that a new application layer protocol is available to be loaded into the design.

· Load_data contains the 16-bit application layer protocol value.

[image: image1.emf]EmPAC

PHY

Port_value

Port_found

Data_ready

Field_type

Field_data

Load

Load_data

Figure 1. EmPAC Top Level Design

EmPAC supports the following internet protocols:

· Physical Layer

– Ethernet

· Data Link Layer

– Address Resolution Protocol (ARP)

· Network Layer

– Internet Protocol Version 4 (IPv4)
– Internet Protocol Version 6 (IPv6)
· Transport Layer

– TCP

– UDP

Thousands of application layer protocols appear after the transport layer. Therefore, EmPAC is designed with re-configurability, allowing the user to update the design with new application layer protocols.

2 Design Objectives

Figure 2 illustrates the internal design of the EmPAC first design option.

[image: image2.emf]text

Assembler

Phy_data field_data

Length data_ready

Length Saver

Field_data

Length_ind length

Protoocl Memory

Jump_address Field_width

 var_len_field

 Protocol_ind

Length_ind

Port_ind

Branch_ind

Field_type

Protocol Saver

Field_data protocol_type

Protocol_ind

Jump Block

Branch_ind

jump_address

Protocol_type

Port Block

Field_data port_found

Port_ind

Port_value

Load

Load_data

PHY

MUX

Field_data

Field_type

Port_found

Port_value

Data_ready

Load_data

Load

Figure 2. Internal Architecture of EmPAC

3 Functional Description

EmPAC is capable of taking an incoming Ethernet frame stream and classifying each protocol field into its field type and placing the corresponding data onto the field_data signal. The field_type and field_data signals are validated by asserting the data_ready signal. This assures that the field_type and field_data have been completely assembled into a 32-bit vector. The load and load_data signals are used for reconfiguration when loading new application layer protocols. When the incoming application layer protocol is found, the port_found signal is asserted, and the corresponding application layer protocol value is placed on the port_value signal. The following sections explain the functionality of each module in detail.
3.1 Protocol Memory

This module contains the protocol information of all supported protocols listed below.

· Ethernet

· ARP

· IP

– IPv4

– IPv6

· TCP

· UDP

The information contained in this memory is used to determine which field types are expected on the incoming data stream from the PHY. It will be embedded in the design using case statements to generate the signals listed in Table 1.

Table 1. Protocol Memory Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Field_width
	OUT
	2
	Contains the width in bytes of each protocol field

	Branch_indicator
	OUT
	1
	Indicates when a branch to a different protocol within the protocol memory is required

	Protocol_indicator
	OUT
	1
	Indicates that a protocol type is available on the incoming packet

	Length_indicator
	OUT
	1
	Indicates that length information is available on the incoming packet

	Variable_length_field
	OUT
	1
	Indicates that the incoming field has a variable length

	Port_indicator
	OUT
	1
	Indicates that the incoming field contains port information

	Field_type
	OUT
	16
	Equivalent to the protocol memory address. It is also used as the protocol field classification values

	Jump_address
	IN
	8
	Address of protocol to jump to when the branch indicator is asserted

Embedding the data is possible because the protocol information stored will not require any alterations. This will present a faster frequency than the alternative solution of using a Read Only Memory (ROM) or a Random Access Memory (RAM). These memories tend to have maximum frequencies associated with them, which may limit the overall frequency of the design.

3.2 Assembler

This component is responsible for assembling the 8-bit data stream from the PHY into a 32-bit data stream. Bits 0 through 1 of length are used to determine how many bits should be zero padded when the length is less than 4 bytes. In the event that the length of the current field is greater than 4 bytes, the assembler will then assemble the entire 8-bit data stream into 32 bits without zero pads. If the length of variable length field is not a multiple of four, the remaining bits required to complete the 32-bit vector will be padded with zeros. Table 2 describes the ports and their functions.

Table 2. Assembler Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Length
	IN
	16
	Contains the remaining length in bytes of the incoming protocol field

	Phy_data
	IN
	8
	Contains the incoming packet to be classified

	Field_data
	OUT
	1
	Contains the data corresponding to each protocol field. When the protocol field is less than 32 bits, the remaining bits will be zero padded

	Data_ready
	OUT
	8
	Asserted when the 32-bit field data is complete

To avoid any possible delays, the incoming data stream is stored in registers. The assembler uses the concatenation of Q4, Q3, Q2, and Q1, respectively, as the 32 bits to be assembled as illustrated in Figure 3. The concatenation of D4, D3, D2, and D1 is available to all the other components in the design one cycle prior to assembling so that the necessary branching and length calculations may be determined.

[image: image3.emf]D1

Register 1

 Q1

D2

Register 2

 Q2

D3

Register 3

 Q3

D4

Register 4

 Q4

PHY

Figure 3. Phy_data Registers
3.3 Length Saver

The Length Saver is responsible for storing the length of the upcoming variable length field. Once activated, incoming field_data is stored temporarily. When the length of the current field type is unknown, the length stored by the Length Saver is used as the length of the current field type in place of the field width. The input and output signals of this module are listed in Table 3.

Table 3. Length Saver Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Length_indicator
	IN
	1
	When asserted, the value located on field_data will be stored

	Field_data
	IN
	32
	Contains the assembled packet to be classified

	Field_type
	IN
	8
	Equivalent to the protocol memory address. It is also used as the protocol field classification value

	Length
	OUT
	16
	Contains the length of the upcoming variable length field

The field_type is used to determine which protocol field is currently available. This is necessary in order to determine which protocol the length came from so that the proper calculations may be made to generate the correct length of the upcoming variable length field.

3.3.1 Calculating Length

To calculate the length of the upcoming variable length field, the Length Block uses the following formulas:

· In the case where the network layer header length is greater than 14 bytes

– Length = total packet length – network layer header length

· Otherwise

– Length = total packet length – transport layer header length

The total packet length and the transport layer length are received from the field​_data signal based on the value contained on field_type once the length​_indicator signal is asserted. Table 4 illustrates the associated field_type value required to retrieve the data properly.

Table 4. Length Saver Field Type Requirement

	Data Type
	Field_type Value (in hexadecimal)

	Ipv4 Header Length
	18

	Total Packet Length
	1A

	TCP Header Length
	27

	UDP Header Length
	2F

	Ipv6 Header Length
	35

3.4 Protocol Saver

The Protocol Saver has the responsibility of saving all protocol information on the incoming packet. This value is used to determine the location in memory in which the Protocol Memory should branch. Once activated, this component will begin storing the protocol value located on the incoming data stream. This protocol value is then delivered to the Jump Block for further processing detailed in the next section. Table 5 contains the signals to and from the Protocol Saver with the associated descriptions.
Table 5. Protocol Saver Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Protocol_indicator
	IN
	1
	When asserted, the value located on field_data will be stored

	Field_data
	IN
	32
	Contains the assembled packet to be classified

	Protocol_type
	OUT
	16
	Contains the value of the next protocol type to be expected on the incoming packet

3.4.1 Jump Block

Similar to the Protocol Memory, all jump addresses are also embedded into the system via case statements. When a particular protocol is delivered to this component, it will return the address location of this protocol in the protocol memory. Table 6 illustrates the supported protocol types and values with their corresponding address location in the protocol memory. Table 7 represents the signals to and from the Jump Block with the corresponding signal descriptions.
Table 6. Protocol Types and Values

	Protocol Type
	Protocol Value
	Protocol Memory Address

	Ehternet
	0000
	00

	ARP
	0806
	07

	Ipv4
	0800
	18

	Ipv6
	86DD
	32

	TCP
	0006
	23

	UDP
	0011
	2D

Table 7. Jump Block Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Protocol_type
	IN
	16
	Contains the width in bytes of each protocol field

	Branch_indicator
	IN
	1
	Indicates when a branch to a different protocol within the protocol memory is required

	Jump_address
	OUT
	8
	Address of protocol to jump to when the branch indicator is asserted

3.5 Port Block

Because there are thousands of port values available, it would be infeasible to embed all port values into the design. Therefore, the Port Block contains dynamically reconfigurable port registers. These registers contain the values of all supported application layer protocols. The Port Block will contain 69 preloaded port values, with the possibility of holding up to 128 different port values total. When the Port_indicator is asserted, this component will store the port value located on the incoming packet. Port_found will then be asserted only if the port_value has been located within the port registers. This is accomplished by loading the values of each register into one comparator, as shown in Figure 4. The comparator will simultaneously compare the value of each register with the value located on the field_data signal.

[image: image4.emf]Port Block

Port

Register

0

Port

Register

127

Port

Register

1

Comparator

Counter

Load Bus

Load_data

Load

Field_data

Port_found

Port_value

Port_Ind

Figure 4. Port Block Functional Description
To load new ports into the design, a load signal must be asserted, and the port_value must be placed simultaneously onto the load_data signal. The new ports will then be loaded sequentially, beginning with the first available address. If no new addresses are available (i.e., all 128 locations are occupied), new ports will be loaded, beginning with the first address.
Table 8 descibes the functionality of each signal to and from the Port Block.
Table 8. Port Block Signal Description

	Signal Name
	Direction
	Bit Width
	Description

	Load
	IN
	4
	When asserted, new port values may be loaded

	Load_data
	IN
	1
	Contains the port values to be loaded once load signal is asserted

	Port_indicator
	IN
	1
	Indicates that a port value is available on the incoming packet

	Port_found
	OUT
	1
	Indicates that current application layer protocol is supported

	Port_value
	OUT
	16
	Contains the value of the supported application layer protocol

	Field_data
	IN
	32
	Contains the assembled packet to be classified

3.5.1 Loading New Port Values

The load_data value is available to all registers; however, the load signal is connected to each register via the load bus (illustrated in Figure 4). Because all new port values are loaded into the port registers sequentially, a 7-bit counter is used to select the proper register to be loaded. For example, when the load signal is asserted, if the value contained in the counter is 1010010 (decimal value 82), only the load signal of the 82nd register will be asserted, allowing this register to take the new port value located on load_data. Once all port registers have been filled, the counter will reset to zero to overwrite the port values that have been supported the longest.

4 Summary

EmPAC is capable of taking an unclassified byte stream coming from the PHY and partition and classify the data blocks into corresponding protocol fields. It supports the following protocols:

· Physical Layer

– Ethernet

· Data Link Layer

– Address Resolution Protocol (ARP)

· Network Layer

– Internet Protocol Version 4 (IPv4)
– Internet Protocol Version 6 (IPv6)
· Transport Layer

– TCP

– UDP

EmPAC also supports all application layer protocols appearing after the supported transport layer protocols. Its reconfiguration ability allows new application layer protocols to also be loaded during runtime.

Acronym List

	Acronym
	Definition

	ARP
	Address Resolution Protocol

	EmPAC
	Embedded Protocol Analyzing Classifier

	IP
	Internet Protocol

	IPv4
	Internet Protocol version 4

	IPv6
	Internet Protocol version 6

	PHY
	Physical Layer Interface

	TCP
	Transmission Control Protocol

	UDP
	User Datagram Protocol

Copyright © 2009 Technica Corporation. All rights reserved.
i
144

_1239002008.vsd
EmPAC

PHY

Port_value

Port_found

Data_ready

Field_type

Field_data

Load

Load_data

_1239003755.vsd
D1

Register 1

 Q1	

PHY

D4

Register 4

 Q4	

D3

Register 3

 Q3	

D2

Register 2

 Q2	

_1239005428.vsd
Port Block

Port
Register
0

Port
Register
127

Port
Register
1

Comparator

Counter

Load Bus

Load_data

Load

Field_data

Port_found

Port_value

Port_Ind

_1238432785.vsd
text

Assembler

Phy_data field_data
Length data_ready

Length Saver

Field_data
Length_ind length

Protoocl Memory

Jump_address Field_width
 var_len_field
 Protocol_ind
Length_ind
Port_ind
Branch_ind
Field_type

Protocol Saver

Field_data protocol_type
Protocol_ind

Jump Block

Branch_ind
jump_address
Protocol_type

Port Block

Field_data port_found
Port_ind
Port_value

Load
Load_data

PHY

MUX

Field_data

Field_type

Port_found

Port_value

Data_ready

Load_data

Load

