Technica Corporation
 STYLEREF "Document Name" * MERGEFORMAT
Technica Corporation
eRCP Detailed Design Document

eRCP Detailed Design Document
Version 3.0.2
January 19, 2010
Technica Corporation

45245 Business Court, Suite 300

Dulles, VA 20166

703.662.2000 phone

703.662.2001 fax

www.technicacorp.com

Table of Contents

1Abstract

11
Introduction

21.1
Regular Expression Implementation

31.2
Implementing Snort Rules on eRCP

31.2.1
The Flexibility of eRCP

31.2.2
Decomposition of Sample Snort Rule

42
Objectives and Requirements

53
Instruction Semantics

64
Sample Boot Program

95
Module Functional Description

95.1
eRCP Top-Level Description

105.1.1
eRCP Ports

115.1.2
Instantiated Components

115.2
Data Unit

125.2.1
Ports of Data Unit

145.2.2
Instantiated Components

155.2.2.1
Logic Unit

165.2.2.2
Target Data RAM

165.2.2.3
Source RAM

175.2.2.4
Action Data RAM

175.2.2.5
Operand Data RAM

185.2.2.6
Data Stack

185.2.2.7
LU Pointer Stack

195.2.2.8
Frame Router

205.2.2.9
Frame Bus

215.2.2.10
Boot ROM

225.2.2.11
Alert Engine

245.2.2.12
LU Count

245.2.2.13
Multiplexer

255.2.2.14
Target Shift Register

265.3
Control Unit

346
Summary

357
Acronym List

36Appendix A: eRCP Parameterization

List of Figures
1Figure 1. High-Level eRCP Diagram

2Figure 2. Regular Expressions

6Figure 3. Contents of Data Stack

9Figure 4. eRCP Model Hierarchy

10Figure 5. eRCP Top-Level Signal Description

12Figure 6. Structural Description of Data Unit

15Figure 7. Logic Unit Description

16Figure 8. Target Data RAM Entity Description

16Figure 9. Source Data RAM Entity Description

17Figure 10. Action Data RAM Entity Description

17Figure 11. Operand Data RAM Entity Description

18Figure 12. Data Stack Entity Description

19Figure 13. LU Pointer Stack Entity Description

20Figure 14. Frame Router

21Figure 15. Frame Bus

22Figure 16. Boot ROM

23Figure 17. Alert Engine

23Figure 18. Representation of Combined Regular Expressions

24Figure 19. Representation of Complex Regular Expressions

24Figure 20. LU Count

25Figure 21. Multiplexer

26Figure 22. Target Shift Register

26Figure 23. Control Unit

27Figure 24. Control Unit State Diagram Pt. 0

28Figure 25. Control Unit State Diagram Pt. 1

29Figure 26. Control Unit State Diagram Pt. 2

30Figure 27. Control Unit State Diagram Pt. 3

31Figure 28. Control Unit State Diagram Pt. 4

32Figure 29. Control Unit State Diagram Pt. 5

33Figure 30. Control Unit State Diagram Pt. 6

34Figure 31. Control Unit State Diagram Pt. 7

34Figure 32. Control Unit State Diagram Pt. 8

List of Tables

2Table 1. Regular Expression Composition

5Table 2. eRCP Instruction Set

6Table 3. Contents of Boot ROM

10Table 4. Top-Level Ports

13Table 5. Data Unit Ports

15Table 6. Logic Unit Operation

17Table 7. List of Possible Actions

36Table 1. Semantic Switch Constants

37Table 2. Vector Width Constants

Abstract

As a part of the Wizardry Project, the design objective is to create a processor that is capable of searching for matches to Regular Expressions, which is called the Enhanced Reconfigurable Content Processor (eRCP). The eRCP is presented as a tool to aid in the detection of network intrusion.

1 Introduction
Technica Corporation is working on a new prototype called Wizardry-Dynamically Reconfigurable System-On-Chip (Wizardry), an intelligence system that will be used to enhance control of data traversing a network. The Wizardry design is unique in that it allows single chips containing embedded cores executing software and classical hardware in an integrated circuit that implements the functions of a complete electronic system. The eRCP is a processor designed as a component of the Wizardry to perform the task of inspecting incoming preparsed Ethernet frames for matches to Regular Expressions.

The eRCP comprises two main units: Control Unit and Data Unit. The Control Unit is the brain of the eRCP, orchestrating every process in the eRCP. The Data Unit operates on incoming Ethernet frames, inspecting them for matches to Regular Expressions that were loaded through the Control Unit. Figure 1 illustrates the flow of data to and from the eRCP.

[image: image1]
Figure 1. High-Level eRCP Diagram

Using a 9-bit instruction set, Regular Expressions are loaded and removed through the Instruction Interface. The eRCP can be booted with a predetermined set of Regular Expressions; it can also be loaded or unloaded interactively through the Instruction Interface. Target data, as well as a relational operation to a specific target, are loaded through the Instruction Interface. Action data, the action taken when a match is found, is also loaded through the Instruction Interface.

The Ethernet Frame Stream ports connect exclusively to the Data Unit. The eRCP inspects incoming frames for matches to Regular Expressions stored in memory. When matches are found to an expression, an alert signal is generated indicating the expression matched, frame location, and action to be taken. In addition, statistics regarding matches and resources are available from the Data Unit.
1.1 Regular Expression Implementation

Regular Expressions in the context of this paper take three distinct forms: Simple, Combined, and Complex Regular Expressions. Figure 2 illustrates the relationship between these forms.

[image: image2]
Figure 2. Regular Expressions

Simple Regular Expressions are at the heart of all expressions. Combined Regular Expressions are composed of a set of Simple Regular Expressions, while Complex Regular Expressions are composed of a subset of Combined Regular Expressions. Table 1 delineates each Regular Expression, indicating the composition and providing several examples.

Table 1. Regular Expression Composition
	Expression Type
	Composition
	Example

	Simple Expression
	N/A
	A <= B

	
	
	C >= D

	
	
	E = F

	
	
	G != H

	Combined Expression
	Two or More Simple Expressions
	(A <= B) OR (C >= D)

	
	
	(E = F) AND (G != H)

	
	
	(A <= B) OR (C >= D) OR (E = F) OR (G != H)

	Complex Expression
	Two or More Combined Expressions
	 ((A <= B) OR (C >= D)) OR ((E = F) AND (G != H))

	
	
	((A <= B) OR (C >= D)) AND ((E = F) AND (G != H))

Note: From this point forward, the term Regular Expression is synonymous with Simple Regular Expression, Combined Regular Expression, and Complex Regular Expression. In some cases, however, the former terms may be used if additional specification is needed.

1.2 Implementing Snort Rules on eRCP

Many Snort Rules can be implemented using the eRCP. This processor is currently limited to packet inspection; therefore, some features of Snort cannot be implemented. These unsupported features relate to packet modification. A brief statement about the flexibility of the eRCP is provided, as well as an illustrative example of a Snort Rule implemented using the eRCP.
1.2.1 The Flexibility of eRCP
The eRCP’s effectiveness is highly dependant on the creativity and intuition of the user. This system inherently requires the user to decompose any given Snort Rule into smaller, simpler expressions. An example of a Snort rule is: Match an Internet Control Message Passing (ICMP) packet from any source network to the 172.63.100.x network if the Data Size (dsize) is zero and the ICMP Type (itype) is 8.

Decomposition requires the completion of the following five key steps:

1. Pinpoint all targets values, including the value that the parsed frame compares against.

2. Identify all sources, including the portion of frame to be inspected.

3. Extract all operands, including the equal, not equal, less than, or greater than symbols.

4. Create a set Simple Regular Expression from information gathered.

5. Eliminate a Simple Regular Expression that always results in a true output (if A = anything).

Sections 5.1.1 and 5.1.1.1 provide a detailed description of the sample Snort rules in the context of decomposition.
1.2.2 Decomposition of Sample Snort Rule
In this sample, there are four key pieces of information, which include ICMP, 172.63.100.x, 0, and 8. These four pieces of information are Target Data.

Additional information that can be extracted from this rule include: type, from any source, data size (dsize), and ICMP type (itype). The information serves as the source, or more specifically, the Frame Buffer where the data is stored that is inspected against the targets. Enough information has been gathered to create a set of Simple Regular Expressions to represent the Snort Rule.

To create Simple Regular Expressions, the following format of some source = some target should be followed. The following are the Simple Regular Expression extracted from Snort Rule Sample 1:

6. Type = ICMP

7. Source = any

8. Destination = 172.63.100.xxx

9. dsize = 0

10. itype = 8

Next, identify any subrules that may be unnecessary. Simple Regular Expression 2 should be considered unnecessary, because it will always be true. The user has the choice of keeping it as part of the Snort Rule; however, in the interest of resources, it may be a good idea to remove this rule.

With each Simple Regular Expression derived and unnecessary ones removed, each Simple Regular Expression may now be loaded into the eRCP through the Instruction Interface, or stored in the Boot ROM.

After each Regular Expression is loaded, the Make Combined Expression instruction must be executed to finalize the Regular Expression.
2 Objectives and Requirements
Technica Corporation is working on a new prototype, an intelligence system that will be used to enhance control of data traversing a network. This system, called Wizardry, has several design requirements listed below:
· Take advantage of open intellectual property

· Fit on the ML40x evaluation board

· Support Internet Protocol Version 4 (IPv4) and Internet Version 6 (IPv6)

· Be able to inspect “all” packets arriving from a network, such as the following:
– Support 1 Gigabits Per Second (Gb/s) line rate

– Provide Tap-Monitoring to passively monitor network traffic
– Provide In-Band Monitoring block or alter data

· Support Statistics Collection, includes the following:

– Number of packets

– Protocol types, such as initial protocols: Ethernet, IP, Transmission Control Protocol (TCP), User Datagram Protocol (UDP), File Transfer Protocol (FTP), Telnet, and Multi-Protocol Label Switching (MPLS)
– Number of rules

· Generate alarms based on rule set match

The eRCP will be a subcomponent of the Wizardry Architecture that is responsible for inspecting frames for matches to a set of Regular Expressions. As a part of the Wizardry Project, the eRCP specific objectives and requirements are established and listed below:

· Device usage is less than 50 percent
· Device is dynamically Reconfigurable
· Allows users to enter Regular Expressions in accordance with the POSIX Regular Expression lexicon, including:
– Support of relational operations including:

· =

· !=

· <

· >

· <=

· >=

– Capability of searching for "don’t care" bytes

· Provides signals at the top level that, when a match to an expression has been found, the following is indicated:

– Which expression was matched

– Prescribed action to be taken

– Frame location where match was found
· Provides method for entering myriad expressions, along with a prescribed action to be taken when a match is found to that expression

· Capable of searching for matches to Regular Expression given data input at a rate in excess of 10 Gbp/s

· Provides statistics about match count

· Provides statistics about the current state of the system, including Total Simple Expressions, Total Combined Expressions, and Total Complex Expressions

· Has maximum clock frequency

3 Instruction Semantics

The eRCP’s instruction set is very simple, consisting of only nine instructions. Each instruction is 9-bits wide. Table 2 describes each instruction in detail.

Table 2. eRCP Instruction Set

	Name
	Instruction
	Description

	Load Simple Expression
	100000001
	Loads next available Logical Unit

	Load Simple Expression Direct
	100000010
	Loads specific Logic Unit

	Make Combined Expression
	100000100
	Creates Combined Expression from Simple Expressions

	Make Complex Expression
	100001000
	Creates Complex Expression from Combined Expressions

	Remove Simple Expression
	100010000
	Unloads Specific Simple Expression

	Remove Combined Expression
	100100000
	Unloads Specific Combined Expression

	Remove Complex Expression
	101000000
	Unloads Specific Complex Expression

	Clear All Expressions
	110000000
	Unloads all expressions

	Load Vector
	0XXXXXXXX
	Loads 8-bit vector(7 downto 0)

The eRCP’s instruction set is used to load Regular Expressions. Section 4 provides a description of a sample boot program, illustrating the use of the instruction set to load Regular Expressions.

4 Sample Boot Program

This sample program consists of eight separate instructions, which are listed in Table 3.
Table 3. Contents of Boot ROM

	Address
	Instruction
	Description

	H”00”
	000000000
	Loads “00000000” (4th byte of Target Data)

	H”01”
	010000000
	Loads “10000000” (3rd byte of Target Data)

	H”02”
	000000000
	Loads “00000000” (2nd byte of Target Data)

	H”03”
	011110011
	Loads “11110011” (1st byte of Target Data)

	H”04”
	000000000
	Loads “00000000” (Source Data)

	H”05”
	000000000
	Loads “00000000” (Operand Data)

	H”06”
	000000000
	Loads “00000000” (Action Data)

	H”07”
	100000001
	Triggers Control Unit to perform “Load Simple Expression”

Loaded vectors are stored on the Data Stack located in the Data Unit. Figure 3 illustrates the Data Stack after the execution of the seventh load instruction.

[image: image3]
Figure 3. Contents of Data Stack

Load Simple Expression instruction is read by the Control Unit, with all necessary data stored on the Data Stack. The Control Unit then orchestrates the loading of the expression by storing operand, action, source, and target data in the appropriate Random Access Memories (RAMs) in the Data Unit.

Each instruction, with the exception of Load Vector and Clear All Expressions, requires certain values on the Data Stack prior to execution. The following list indicates the necessary data vectors to execute each instruction. Each vector must be loaded in the order shown, prior to loading the given instruction.

11. Load Simple Expression

a. Target byte 4

b. Target byte 3

c. Target byte 2

d. Target byte 1

e. Source

f. Action

g. Operand

12. Load Simple Expression Direct

h. Target byte 4

i. Target byte 3

j. Target byte 2

k. Target byte 1

l. Source

m. Action

n. Logic Unit LU Number

o. Operand Data

13. Make Combined Expression

p. Simple Expression Number 1

q. Simple Expression Number 2

r. Simple Expression Number N

s. Combine Type (AND or OR)

t. Action

14. Make Complex Expression

u. Combined Expression Number 1

v. Combined Expression Number 2

w. Combined Expression Number N

x. Combine Type (AND or OR)

y. Action

15. Remove Simple Expression

z. Simple Expression Number 1

aa. Simple Expression Number 2

ab. Simple Expression Number N

16. Remove Combined Expression

ac. Combined Expression Number 1

ad. Combined Expression Number 2

ae. Combined Expression Number N

17. Remove Complex Expression

af. Complex Expression Number 1

ag. Complex Expression Number 2

ah. Complex Expression Number N

Section 5 explicates the eRCP, beginning with a description of the top level of the eRCP.
5 Module Functional Description

This section provides a functional description of each module in the eRCP. A high-level description of each module is presented, identifying the overall function and purpose, as well as:

· A brief description of each port

· Identification of signals associated with each entity

· List of any additional components included

· Detailed functional description of each component

Figure 4 depicts the hierarchical design of the eRCP. It comprises two modules: Data Unit and Control Unit.

[image: image4]
Figure 4. eRCP Model Hierarchy

5.1 eRCP Top-Level Description

This section describes the function of the eRCP from the highest level. The eRCP has several ports declared in its port declaration, which does not include reset and clock. The four port types include Instruction Interface, Ethernet Frame Stream, Statistical Interface, and Alert Interface. Instruction Interface ports are used to load and remove Regular Expressions. Ethernet Frame Stream ports accept incoming parsed Ethernet frames and allows each to be stored. The Statistics and Alert Interface ports notify the user of matches to loaded Regular Expressions, provides the frame location of those matches, and specifies the action to be taken while the Statistical Interface provides onboard resource statistics. The Ethernet Frame Stream, Statistical Interface, and Alert Interface ports connect exclusively to the Data Unit, while the Instruction Interface ports connect to the Control Unit and Data Unit.

Figure 5 depicts the top-level ports of the eRCP, illustrating the source and destination of all top-level signals.

[image: image5]
Figure 5. eRCP Top-Level Signal Description

5.1.1 eRCP Ports

The eRCP has several ports at the top level. Table 4 provides a detailed description of each port, identifying port name, direction, bit width, and type.
Table 4. Top-Level Ports

	Port Name
	Direction
	Bit Width
	Port Type
	Description

	Instruction
	IN
	9
	Instruction Interface
	When bit eight is set to low, bits 7 through 0 are stored internally as an 8-bit vector. When bit eight is set to high, bits 7 through 0 are stored as an instruction.

	Load_Instruction
	IN
	1
	Instruction Interface
	When set high, stores Instruction as either instruction or vector.

	Busy
	OUT
	1
	Instruction Interface
	When set to high, instructions will not be stored in memory because processor is busy.

	Field_Data
	IN
	32
	Ethernet Frame Stream
	Parsed Data vector of type Field_Type.

	Field_Type
	IN
	8
	Ethernet Frame Stream
	Indicates which portion of the frame Field_Data is.

	Data_Ready
	IN
	1
	Ethernet Frame Stream
	Signals that Field_Data is ready to be stored internally.

	Available_LU
	OUT
	6
	Statistics Interface
	Indicates number of available Logic Units.

	Available_CE
	OUT
	5
	Statistics Interface
	Specifies total number of vacant Combined Expressions.

	Available_CmpE
	OUT
	5
	Statistics Interface
	Indicates how many Complex Expressions can be loaded.

	Basic_Indicator
	OUT
	50
	Alert Interface
	Output value for each of the 50 Logic Units. The nth bit corresponds to the nth Logic Unit.

	Combined_Indicator
	OUT
	32
	Alert Interface
	Output value for each Combined Expression. The nth bit corresponds to the nth Complex Expression.

	Complex_Indicator
	OUT
	32
	Alert Interface
	Output value for each Complex Expression. The nth bit corresponds to the nth Complex Expression.

	Frame_Indicator
	OUT
	32
	Alert Interface
	Identifies which frame is being inspected.

5.1.2 Instantiated Components

The following components are included in the top-level structural description of the eRCP:
· Data Unit

· Control Unit

A thorough explanation, provided in Section 5.2 and Section 5.3, describes the functionality of each component and the interdependence between the two modules.

5.2 Data Unit

This section describes the function and structure of the Data Unit. The Data Unit has several ports declared in its port declaration, which does not include reset and clock. The five port types include Control Unit Communication, Instruction Interface, Ethernet Frame Stream, Statistical Interface, and Alert Interface. Control Unit Communication ports provide information to the Control Unit from the Data Unit, and provide control signals to the Data Unit from the Control Unit. Instruction Interface ports allow literal data, such as target values, source data, operands, and action data, to be stored internally. Ethernet Frame Stream allows preparsed frames to be stored and inspected. Statistical Interface ports outputs information about available resource, such as available LUs, Combined Expressions, and Complex Expressions. Alert Interface ports directly provide the user with information about matches to Regular Expressions and specifies which action will be taken. Figure 6 depicts the connection of all components contained in the Data Unit.

[image: image6]
Figure 6. Structural Description of Data Unit
5.2.1 Ports of Data Unit

The Data Unit has many ports declared in the entity declaration. Table 5 provides a detailed description of each port, identifying the port name, direction, bit width, and type.

Table 5. Data Unit Ports

	Port Name
	Direction
	Bit Width
	Port Type
	Description

	Booting
	IN
	1
	Control Unit Communication
	Signal from Control Unit. When set to high, allows program stored in Boot Read Only Memory (ROM) to be executed.

	Load
	IN
	1
	Control Unit Communication
	Loads current instruction stored in Boot ROM and increments Boot ROM address to next instruction on next cycle.

	Boot Data
	OUT
	9
	Control Unit Communication
	Outputs instructions stored in Boot ROM to the Control Unit.

	Stack Empty
	OUT
	1
	Control Unit Communication
	Indicates that the Data Stack is empty. Used as an input to Control Unit.

	Pop
	IN
	1
	Control Unit Communication
	Pops value on top of Data Stack.

	Push
	IN
	1
	Control Unit Communication
	Pushes value on Data Stack to the LU Pointer Stack.

	Load Target
	IN
	1
	Control Unit Communication
	Loads Target from Target Shift Register into Target RAM.

	Load Source
	IN
	1
	Control Unit Communication
	Loads Source data from Data Stack to Source RAM.

	Load Action
	IN
	1
	Control Unit Communication
	Loads Action data from Data Stack to Action RAM.

	Load Operand
	IN
	1
	Control Unit Communication
	Loads Operand data from Data Stack to Operand RAM

	Make Combined
	IN
	1
	Control Unit Communication
	Creates Combined Expression in Alert Engine.

	Make Complex
	IN
	1
	Control Unit Communication
	Creates Complex Expression in Alert Engine.

	Clear Combined
	IN
	1
	Control Unit Communication
	Clears Combined Expression in Alert Engine.

	Clear Complex
	IN
	1
	Control Unit Communication
	Clears Complex Expression in Alert Engine.

	Clear All
	IN
	1
	Control Unit Communication
	Clears all LUs, Combined Expressions, and Complex Expressions.

	Store Action
	IN
	1
	Control Unit Communication
	Stores action associated with Combined or Complex Regular Expression.

	Store CE Contrib
	IN
	1
	Control Unit Communication
	Stores contribution associated with Combined Regular Expression.

	Store Cmp Contrib
	IN
	1
	Control Unit Communication
	Stores contribution associated with Complex Regular Expression.

	Expression Done
	IN
	1
	Control Unit Communication
	Signal to Alert Engine indicating that expression is complete.

	Instruction
	IN
	9
	Instruction Interface
	Contains 8-bit vector data (Instruction (7 downto 0)) to be pushed onto the Data Stack.

	Load Instruction
	IN
	1
	Instruction Interface
	When set to high, pushes 8-bit vector onto Data Stack.

	Field Data
	IN
	32
	Ethernet Frame Stream
	Data to be stored and inspected in Data Unit.

	Field Type
	IN
	8
	Ethernet Frame Stream
	Indicates portion of frame represented by Field Data.

	Data Ready
	IN
	1
	Ethernet Frame Stream
	Enables Field Data to be stored in Data Unit.

	Port Name
	Direction
	Bit Width
	Port Type
	Description

	Avaliable LU
	OUT
	6
	Statistical Interface
	Indicates number of available LU in Data Unit.

	Available CE
	OUT
	5
	Statistical Interface
	Indicates number of available Combined Expressions in Alert Engine.

	Available CmpE
	OUT
	5
	Statistical Interface
	Indicates number of Complex Expressions in Alert Engine.

	Simple Expression Indicator
	OUT
	50
	Alert Interface
	Indicates the output of each LU.

	Combined Expression Indicator
	OUT
	32
	Alert Interface
	Indicates the output of each Combined Expression.

	Complex Expression Indicator
	OUT
	32
	Alert Interface
	Indicates the output of each Complex Expression.

	Frame Indicator
	OUT
	8
	Alert Interface
	Indicates frame that is being inspected.

	Action Indicator
	OUT
	5
	Alert Interface
	Indicates action to be taken.

Note: In Table 5, ports that are only 1-bit wide are control signals.

5.2.2 Instantiated Components

As depicted in Figure 6, the Data Unit is a collection of many subcomponents. The instantiated components include the following:

· Logic Unit

· Target Data RAM

· Source Data RAM

· Action Data RAM

· Operand Data RAM

· Data Stack

· LU Pointer Stack

· Frame Buffer

· Frame Router

· Frame Bus

· Boot ROM

· Alert Engine

· LU Count

· Multiplexer

· Target Shift Register

The following subsections provide a detailed explanation of each subcomponent.

5.2.2.1 Logic Unit

The Logic Unit (LU) is the primary component in the Data Unit performing inspection of the parsed Ethernet Frames. Each LU is accompanied by a unique set of Target, Source, Operand, and Action RAMs. The Target RAM output is hardwired to the Target port, while the Operand RAM output is hardwired to the Operand port. The LU compares the parsed Ethernet frames against values stored in the Target RAM and performs the relational operation stored in the Operand RAM. Figure 7 illustrates the ports associated with the Logic Unit.

[image: image7]
Figure 7. Logic Unit Description

The LU is capable of performing the following relational operations:

· Equality (=)

· Inequality (!=)

· Less than or Equal (<=)

· Greater than or Equal (>=)

The Operand specifies which relational operator the LU is currently performing. Table 6 lists the operations the LU performs, indicating the Operand value for each.

Table 6. Logic Unit Operation

	Operation
	Corresponding Operand Value
	Description

	Equality
	“00”
	If Frame Stream is equivalent to Target then Match = ‘1’, otherwise Match = ’0’.

	Inequality
	“01”
	If Frame Stream is not equivalent to Target then Match = ‘1’, otherwise Match = ’0’.

	Less Than or Equal
	“10”
	If Frame Stream is less than or equal to Target then Match = ‘1’, otherwise Match = ’0’.

	Greater Than or Equal
	“11”
	 f Frame Stream is greater than or equal to Target then Match = ‘1’, otherwise Match = ’0’.

The LU can also inspect for equality with “don’t care” bytes in the four-byte target data. For example, given a target value of H“UUUUUU00,” the LU is able to interpret the three uninitialized bytes as “don’t care.” This feature provides additional flexibility in the inspection process.

5.2.2.2 Target Data RAM

The Target Data RAM is a 32-bit wide memory element that stores the target value for a Logic Unit. Each Logic Unit has its own unique Target Data RAM. Incoming parsed Ethernet Frames are inspected against the target value stored in this entity. Figure 8 illustrates the ports of the Target Data RAM.

[image: image8]
Figure 8. Target Data RAM Entity Description

The Control Unit orchestrates all data loading and clearing. When the Control Unit asserts Load, target data is loaded through the Data In port. When the Control Unit asserts Clear, the value stored in this entity resets. Data Out indicates the value stored.

The Target Data RAM cannot be loaded directly with data from the Data Stack due to the width of the target. The Data Stack is eight bits wide, while the target data is thirty-two bits. Therefore, Data is loaded from the Target Shift Register, rather than directly from the Data Stack. Refer to Section 5.2.2.14 for details about the Target Shift Register.
5.2.2.3 Source RAM

The Source RAM is a 6-bit wide memory element that stores the source value for a Logic Unit. Each Logic Unit has an exclusive Source RAM hardwired to the respective Frame Bus select signal, indicating which portion of the parsed Ethernet frame is inspected. Figure 9 depicts the ports of the Source Data RAM.

[image: image9]
Figure 9. Source Data RAM Entity Description

The Control Unit orchestrates all data loading and clearing. When the Control Unit asserts Load, Source Data is loaded through the Data In port.

Data In is hardwired to the TOS port on the Data Stack, allowing Source Data to store directly from the top of the Data Stack. Data Out is connected directly to the Frame Bus and indicates which Frame Buffer is streamed to the Logic Unit for inspection.

5.2.2.4 Action Data RAM

The Action Data RAM is a 5-bit wide memory element that stores the action value for a Logic Unit. Each Logic Unit has an exclusive Action RAM indicating which action will be taken upon a match. Figure 10 depicts the ports of the Action Data RAM.

[image: image10]
Figure 10. Action Data RAM Entity Description

The Control Unit orchestrates all data loading and clearing. When the Control Unit asserts Load, Action Data is loaded through the Data In port.

Data In is hardwired to the TOS port on the Data Stack, allowing Action Data to store directly from the top of the Data Stack. Data Out connects directly to the Alert Engine and indicates which action will be output from the Alert Engine when a match is found. Table 7 provides the actions that are currently supported by the eRCP.

Table 7. List of Possible Actions
	Action
	Hex Value
	Description

	Alert
	H’00
	Sets flag

	Log
	H’01
	Logs the frame

	Activate
	H’02
	Activate dynamic rule

	Dynamic
	H’03
	Loads dynamic rule

	Increment
	H’04
	Increments counter

5.2.2.5 Operand Data RAM

The Operand Data RAM is a 2-bit wide memory element that stores the operand value for a Logic Unit. Each Logic Unit has an exclusive Operand RAM indicating which relational operation the Logic Unit is performing. Figure 11 depicts the ports of the Operand Data RAM.

[image: image11]
Figure 11. Operand Data RAM Entity Description

The Control Unit orchestrates all data loading and clearing. When the Control Unit asserts Load, Operand Data is loaded through the Data In port.

Data In is hardwired to the TOS port on the Data Stack, allowing Operand Data to store directly from the top of the Data Stack. Data Out connects directly to the Operand port of the Logic Unit and indicates which relational operation the LU performs.
5.2.2.6 Data Stack

The Data Stack stores the eight-bit vectors that are loaded through the Instruction Interface and Boot ROM. As a last-in-first-out data structure, each eight-bit vector is stored by pushing it onto the stack. To access the next value on the stack, the value at the top of stack is popped from the top of the stack. Data Stack can accommodate a maximum of 64 vectors. Figure 12 illustrates the ports of the Data Stack.

[image: image12]
Figure 12. Data Stack Entity Description

Push connects to the Load Instruction port of the Data Unit. However, data can only push to the stack when the ninth bit of the instruction is zero, such as when the Load Vector instruction executes. Pop is driven from the Control Unit, while Stack Empty and Stack Full are inputs to the Control Unit. TOS outputs the most recent vectors stored.

5.2.2.7 LU Pointer Stack

The LU Pointer Stack contains the index value of the next LUs to be loaded. Figure 13 illustrates the initial contents and ports of the LU Pointer Stack.

[image: image13]
Figure 13. LU Pointer Stack Entity Description

Upon startup, the LU Pointer Stack is initialized as illustrated in Figure 13. Hence, the first LU to be loaded is the 0th LU. The Pop port directly connects to the Load Target signal from the Control Unit. When the Control Unit sets the Load Target to logic high, such as when Pop is set to high, the value stored at the top of the stack is popped off.

The Push port directly connects to the Push port in the Data Unit and is only set by the Control Unit when the Load Simple Expression Direct instruction is used. The LU number is pushed to the top of the stack, allowing the specified LU number to be loaded directly. Any LU can be loaded directly, even if it has already been loaded. Valid values for the LU number are zero through forty-nine.

5.2.2.8 Frame Router

This entity is responsible for storing incoming parsed Ethernet frames into individual buffers. Incoming parsed frames are stored based upon the value of Field Type. Figure 14 illustrates the ports of the Frame Router.

[image: image14]
Figure 14. Frame Router

Field Data is routed to the Data Out port. The Data Out port connects to the Data In port of each Frame Buffer. Store_Buffer_n, referring to Store_Buffer_0 through Store_Buffer_49, is connected to the Load port of the nth Frame Buffer. When parsed Ethernet frame data is ready to be processed, the Store_Buffer_n signal corresponding to the Field Type is enabled. Field_Type specifies which portion of the frame is received. For example, if the field type is zero, Store_Buffer_0 enables when Data Ready sets to high, thus storing the parsed Ethernet frame portion in the appropriate buffer.

5.2.2.9 Frame Bus

The Frame Bus is responsible for making the contents of a Frame Buffer available to any given LU, as specified by the Source Data RAM. When the user programs a Simple Regular Expression into the eRCP, this entity has the task of making sure that the appropriate Frame Buffer connects to the LU. Figure 15 illustrates the ports of the Frame Bus.

[image: image15]
Figure 15. Frame Bus

Each LU’s respective Source Data RAM’s Data Out port is hardwired to the Source N input of Frame Bus. The value stored in this RAM is used to select one of the fifty frame buffers. This enables any LU to inspect any portion of the parsed Ethernet frame stored in the Frame Buffers.
5.2.2.10 Boot ROM

The Boot ROM entity contains a set of instructions that are executed after startup. The instructions stored in this memory element initialize the eRCP with a set of Regular Expressions.

[image: image16]
Figure 16. Boot ROM

The Boot ROM can accommodate up to 64 instructions. The Increment is connected to the Load port of the Data Unit and is driven by the Control Unit. Data Out is hardwired to the Boot Instruction port of the Data Unit and to the input of the Multiplexer. Refer to Section 4 for an example boot program.
5.2.2.11 Alert Engine

The Alert Engine is responsible for creating and storing Combined and Complex Regular Expressions. This entity has several inputs and outputs, as illustrated in Figure 17. Inputs include each LU’s output signal; each LU’s associated action, such as the output from each Action Data RAM; as well as signals from the Control Unit and the top of the Data Stack.

The Alert Engine can have up to 32 Combined Regular Expressions, and up to 32 Complex Regular Expressions loaded. However, support for additional Combined and Complex Expressions may be added during the implementation phase if device usage allows.

[image: image17]
Figure 17. Alert Engine

Each combined Regular Expression has a 49-bit register inside of the Action Engine that physically represents the Combined Expression.

[image: image18]
Figure 18. Representation of Combined Regular Expressions
Each bit in this register signifies what contribution each individual LU makes to the given Combined Expression. A zero indicates that the indexed comparator is to be ORed together, while one specifies AND. A separate process contained in the Action Engine performs the appropriate ANDing or ORing based upon the content of these registers. Figure 18 illustrates the logical representation of a Combined Expression. In this example, the LU’s zero through three are to be ANDed together, while the remaining LUs have no contribution to this expression. Consequently, when LUs zero through three are high, the output port Combined_Expression_n will be asserted by the Action Engine.

Similarly, each compex Regular Expression has a 32-bit register inside of the Action Engine that physically represents the Complex Expression.

[image: image19]
Figure 19. Representation of Complex Regular Expressions
Each bit in this register signifies what contribution each individual Combined Regular Expression makes to the given complex Regular Expression. A zero indicates that the indexed Combined Regular Expression is to be ORed together, while one specifies AND. A separate process contained in the Action Engine performs the appropriate ANDing or ORing based upon the content of these registers. Figure 19 illustrates the logical representation of a complex Regular Expression. In this example, combined Regular Expressions zero through three are to be ORed together, while the remaining expressions have no contribution to this expression. Consequently, if any one of Combined Regular Expressions zero through three are high, the output port Combined_Expression_n will be asserted by the Action Engine.
5.2.2.12 LU Count

This counter, LU Count, is initialized to 50, indicating that the system has a total of 50 Logic Units available upon startup. Figure 20 illustrates the ports of LU Count.

[image: image20]
Figure 20. LU Count

The Increment port is hardwired to the Remove Simple Expression port of the Data Unit, while the Decrement port is hardwired to the Load Target port of the Data Unit. Therefore, the Control Unit sets the Increment and Decrement for the LU Count at the appropriate cycle.
5.2.2.13 Multiplexer

This multiplexer chooses to either multiplex the Boot ROM or Instruction Interface, and allows either to be executed. Figure 21 illustrates the ports of the Multiplexer.

[image: image21]
Figure 21. Multiplexer

Booting and Load are hardwired to the Data Unit ports of the same name and are driven by the Control Unit. Instruction and Load Instruction are also connected to the Instruction and Load Instruction ports of the Data Unit, but are driven from the top-level inputs of the same name. Boot Instruction is hardwired to the Output port of the Boot ROM. On the output side, Data and Push are both connected to the Data Stack.

When the Control Unit sets Booting to high, Boot Instruction and Load are multiplexed through to outputs Data and Push. Similarly, when the Control Unit clears Booting to low, Instruction and Load Instruction are multiplexed through to Data and Push.

This entity provides a mechanism for either loading a series of instructions from the Boot ROM, or loading a series of instructions interactively through the Instruction Interface.

5.2.2.14 Target Shift Register
The Target Shift Register assembles 8-bit Target Data into 32-bit Target Data. Figure 22 depicts the ports of Target Shift Register.

[image: image22]
Figure 22. Target Shift Register

Enable is hardwired directly to the Pop port of the Data Unit and is driven by the Control Unit, while Data In connects to the top of the Data Stack. Target connects directly to the Target Data RAM.

Each time a value is popped from the Data Stack, Target Shift Register shifts in the popped value. This allows the Target Data RAM to store a 32-bit target value.
5.3 Control Unit

The Control Unit is the brain of the eRCP, orchestrating every process in the eRCP. This entity has several outputs, each controlling a specific operation in the Data Unit. The Data Unit provides the Control Unit with several feedback inputs that allow the Control Unit to make decisions about what will happen next. Figure 23 illustrates the input and output ports of the Control Unit.

[image: image23]
Figure 23. Control Unit

Each output from the Control Unit to the Data Unit triggers a specific consequence in the Data Unit. Refer to Table 5. Data Unit Ports, for further explanation of the output signals from the Control Unit to the Data Unit.

The Control Unit is a finite state machine that drives the Data Unit in such a way that the following will occur:

· Data is loaded, stored, and removed at the appropriate locations within the Data Unit

· Instructions are executed, resulting in the desired functionality specified in the Boot ROM or interactively loaded through the Instruction Interface

Figures 24 through 31 illustrate the decisionmaking process and subsequent orchestration of the Data Unit.

Note: Output ports listed in circular states indicate that those outputs are set high in that given state, while all other unlisted output ports are low.

[image: image24]
Figure 24. Control Unit State Diagram Pt. 0

[image: image25]
Figure 25. Control Unit State Diagram Pt. 1

[image: image26]
Figure 26. Control Unit State Diagram Pt. 2

[image: image27]
Figure 27. Control Unit State Diagram Pt. 3

[image: image28]
Figure 28. Control Unit State Diagram Pt. 4

[image: image29]
Figure 29. Control Unit State Diagram Pt. 5

[image: image30.emf]6

Load

Clear

Combined

 Pop

YES

To 0

Stack Empty = ‘1’

NO

Figure 30. Control Unit State Diagram Pt. 6

[image: image31]
Figure 31. Control Unit State Diagram Pt. 7

[image: image32]
Figure 32. Control Unit State Diagram Pt. 8

6 Summary

The eRCP is designed to inspect incoming pre-parsed Ethernet frames for matches to Regular Expressions. Using a 9-bit instruction set, Regular Expressions are loaded and removed through the Instruction Interface, but can also be loaded serially through a Boot ROM. When matches are found to Regular Expressions, the eRCP generates an alert, indicating the expression matched against, the specified action to be taken, and the frame of the match. System statistics are also available to provide information about the state of the processor.

Since the eRCP can be boot with a predetermined set of Regular Expressions and loaded or unloaded interactively through the Instruction Interface, the eRCP emerges as a critical module in the success of Wizardry.

This meets all of the specific design requirements enumerated above in section 2.0, providing a robust platform to allow maximum flexibility for frame inspection.

7 Acronym List

	Acronym
	Definition

	CE
	Combined Regular Expression

	CmpE
	Complex Regular Expression

	FTP
	File Transfer Protocol

	ICMP
	Internet Control Message Passing

	IP
	Internet Protocol

	LU
	Logic Unit

	MPLS
	Telnet, and Multi-Protocol Label Switching

	POSIX
	Portable Operating System Interface

	RAM
	Random Access Memories

	ROM
	Read Only Memory

	TCP
	Transmission Control Protocol

	TOS
	Top of Stack

	UDP
	User Datagram Protocol

	Gb/s
	Gigabits per Second

Appendix A: eRCP Parameterization
Introduction
Enhanced Reconfigurable Content Processor (eRCP) provides maximum flexibility and functionality to the user. Using a scalable architecture, modification of eRCP_constant.vhd provides the user with the ability to transform eRCP to meet a range of requirements. Area, speed, and performance can be significantly refined to achieve the desired functionality. Scaling eRCP enables its use under a wide variety of constraints.
eRCP Scaling

Constants set in eRCP_constants.vhd allow the instantiation of many configurations, design alternatives, and computational capabilities. The values assigned to these constants in Sections 2.1 and 2.2 indicate the recommended values set by default.

Semantic Switches

These constants directly affect the performance capabilities of eRCP. Table 1 delineates the purpose and function of the semantic switches in further detail.

Table 1. Semantic Switch Constants

	Semantic Switch Constants
	Description

	CONSTANT num_of_LUs : integer := 31
	· Specifies the total number, N + 1, of Simple Expressions generated in the Data Unit.
· This value also defines the total number of Target, Source, Action, and Operand registers generated in the Data Unit.
· The maximum value for N is 63 in this version of eRCP.

	CONSTANT num_of_CE : integer := 31
	· Specifies the total number, N + 1, of Combined Expressions generated in the Alert Engine.
· The maximum value for N is 31 in this version of eRCP.

	CONSTANT num_of_CmpE : integer := 31
	· Specifies the total number, N + 1, of Complex Expressions generated in the Alert Engine.
· The maximum value for N is 31 in this version of eRCP.

	CONSTANT num_of_boot_instructions : integer := 90
	· Specifies total number of instructions to be executed during the boot phase.

· This number should be equal to the number of instructions that the user intends to execute during boot phase; therefore, this constant may be set to 0 to bypass the boot process.
· The user has the option of booting the processor with as many or as few expressions as desired.

Vector Widths

These constants limit the vector sizes of key registers and data structures used by eRCP. Modification of these constraints may help to save Field Programmable Gate-Array (FPGA) space, or provide additional performance qualities. Refer to Table 2 for a description of the vector widths.

Table 2. Vector Width Constants

	Vector Width Constants
	Description

	CONSTANT target_width : integer := 31
	· Defines the width of the target value that each Logic Unit searches.

· Current implementation only supports 32-bit target width.

· This value may be modified in conjunction with the Logic Unit Architecture to support larger target values.

	CONSTANT source_ram_width : integer := 5
	· Defines the width of Source Registers generated in the Data Unit.

· EmPAC is currently limited to sixty-four field types; however, this constant can be changed, allowing more or less sources to be recognized.

	CONSTANT action_ram_width : integer := 4
	· Defines the width of Action Registers generated in the Data Unit.

· More actions may be added to the design by increasing this value.

	CONSTANT operand_ram_width : integer := 5
	· Defines the width of Operand Registers generated in the Data Unit.

· Additional operations may be added by increasing this value; however, this value should never be less than 5.

	CONSTANT data_stack_depth : integer := 16
	· Specifies the depth of the Data Stack contained in the Data Unit.

· This depth may be modified; however, the value should never be less that 8. This is due to the fact the instruction requiring the most space, Load Simple Direct, needs 8 vectors on the Data Stack to execute properly.

· Refer to the eRCP Detailed Design Document for more information.

	CONSTANT LU_pointer_stack_depth : integer := 64;

	· Specifies the depth of the Logic Unit Stack contained in the Data Unit.

· This value should be equal to the number of Simple Expressions per given implementation.

	CONSTANT CE_pointer_stack_depth : integer := 32
	· Specifies the depth of the Combined Expression Pointer Stack contained in the Alert Engine.

· This value should be equal to the number of Combined Expressions per given implementation.

	CONSTANT CmpE_pointer_stack_depth : integer := 32
	· Specifies the depth of the Complex Expression Pointer Stack contained in the Alert Engine.

· This value should be equal to the number of Complex Expressions per given implementation.

	CONSTANT boot_rom_addr_width : integer := 8
	· Defines the address width of the Boot ROM.

· The recommended width allows a maximum of 256 instructions to be stored in the Boot ROM.

· This value can be decreased to save FPGA space or increased to provide additional preloaded expressions.

	CONSTANT instruction_width : integer := 9
	· Defines width of instruction set.

· This constant may be increased to expand the instruction set in the future; however, it is recommended that this constant remain 9.

Copyright © 2010 Technica Corporation. All rights reserved.[image: image33.png]Tnsirucions, Conirol Unit

Pared Frames |

Data Unit Statslcs and Alers

[image: image34.png]Simple

Expression

i
Copyright © 2010 Technica Corporation. All rights reserved.[image: image35.png]Operand Data
[Adionba

Source Data

[T Bye of Target “11110011"
77y ol Target
[Byte of Target

[e orTaget

[image: image36.png]

iv

[image: image37.png][2 parand (1 :0) >

Y T, —

Logie Unit

o Mwn——

LTI —

[image: image38.png]@ Daah@EL:0—Ppf

o cer———p

[

Targot Data RAM

¢ owougo——p

[image: image39.png]@ Daahn(s:0——Pf

o cer———p

[

‘Source Data RAM

¢ owOuED b

[image: image40.png]@ Daah(1:0——P

o e p

(R

Operand Data RAM

@ Do

[image: image41.png]o eranmoH

[image: image42.png]@ Daain(7:0)- |

[image: image43.png]Field Data

Field Type

Data Ready

Frame Router

Data Out

Store_Buffer_0

Store_Buffer_49

[image: image44.png]Source 0-

Sourca 49

Frame. Buffer 0 Frame Stream 0

L d °

ps Framo s .

L] o
Frame_Bufr49 Frame Sieam

9

[image: image45.png]Pointer || 000000000"

@ ncrement—p Data Oul (8:0)- >

“TO0000T00"

[image: image46.png]Acton 0
At 49

LU Ouputs
Tos
CE Oupis
LogeUnt 00
< G Qs
= Combinga Compex
b4 Expresson Exprosson
= Regoars Roguars
Logelniouss |
o][
e
Dec || cout | pecl| Count
ENLENIBNLE
2 HIHH
i sl 18] 18] [§
i el 5| 5] [5
=B OB P

[image: image47.png]

[image: image48.png]

[image: image49.png]Increment

Decremnt

LU Gount

Count Out (5)

[image: image50.png]l4—Bootng—@

@00t nstucton (8:0p

o lu—p

@nstructon (8:0) |
@ Load Instruction |

Muitplexer

@—Dan:0—p

o P p

[image: image51.png]Enatie-

Datain (7 0}

By

By

Byo2

Bytet

Target 31 0}

[image: image52.png]

[image: image53.png]Y/

Load Single

[image: image54.png]

[image: image55.png]

[image: image56.png]store
Contribution
Pop

No.

Yes

Make
Combined
Losd

[image: image57.png]store
Contribution
Pop

No.

Yes

Make
Complex:
Losd

[image: image58.png]

[image: image59.png]Clear
Complex
Pop

Yes

[image: image60.png]Clear Al
Load

_1239694567.vsd
Load Instruction

LU Unavailable

Control Unit

Make Complex

Clear Complex

Pop

Clear Combined

Make Combined

Push

Clear All

Clear Simple

Expression Done

CE Unavailable

CmpE Unavailable

Done

Field Data (31 : 0)

Load Instruction

Load Instruction

Field Type (7 : 0)

Data Ready

Data Unit

Booting

Boot Data (8 : 0)

Simple Expression Indicator (49 : 0)

Combined Expression Indicator (31 : 0)

Busy

Complex Expression Indicator (31 : 0)

Available LU Units (6 : 0)

Available CE (4 : 0)

Available CmpE (4: 0)

Instruction Interface

Alert Interface

Statistical Interface

Ethernet Frame Stream

Frame Indicator (7 : 0)

Stack Empty

Load Target

Load Source

Load Action

Load Operand

Store Cmp Contrib

Store CE Contrib

Store Type

Store Action

Load

Action Indicator (4 : 0)

Load Instruction

Control Unit

Load Instruction

Make Complex

Clear Complex

Pop

Clear Combined

Make Combined

Push

Clear All

Clear Simple

Busy

Load Instruction

Booting

Load Target

Load Source

Load Action

Load Operand

LU Unavailable

CE Unavailable

CmpE Unavailable

Done

Boot Data (8 : 0)

Stack Empty

Expression Done

Store Cmp Contrib

Store CE Contrib

Store Type

Store Action

Load

Boot Flag Set = ‘1’

Is Instruction a Load?

Idle

YES

YES

Decode Instruction

No

To 1

To 2

To 3

To 4

To 5

To 6

To 7

To 8

0

Load Simple

Remove All

Make Complex

Remove Simple

Remove Combined

Make Combined

Load Simple Direct

Remove Complex

From Reset

Push
Pop

Idle

Idle

Idle

Idle

Idle

Load Action Pop

Idle

Idle

Idle

Idle

Idle

Load Source Pop

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Load Action Pop

Load Source Pop

Pop

Pop

Pop

Pop

Load Target

Load Operand Pop

Idle

Idle

Idle

Idle

Idle

Idle

Load Operand
Pop

Load Action Pop

1

Load Source Pop

Pop

Pop

Pop

Pop

Load Target Load

Load Operand
Pop

To 0

2

Push
Pop

Load Action Pop

Pop

Pop

Pop

Pop

Load Target Load

Load Operand
Pop

Load Source Pop

To 0

3

Store Type
Pop

Store Contribution Pop

Make Combined
Load

Store Action
Pop

To 0

Stack Empty = ‘1’

YES

NO

4

Store Type
Pop

Store Contribution Pop

Make Complex
Load

Store Action
Pop

YES

Stack Empty = ‘1’

NO

To 0

5

NO

Load

Clear Simple Pop

YES

To 0

Stack Empty = ‘1’

6

Load

Clear Combined
 Pop

YES

To 0

Stack Empty = ‘1’

NO

7

Load

Clear Complex
Pop

YES

To 0

Stack Empty = ‘1’

NO

8

Clear All
Load

To 0

