
P a g e | 1

FT64

Overview
FT64 is a two-way superscalar processing core capable of executing up to two instructions per

clock cycle. The core features register renaming to avoid data hazards. The core has the following

features:

- 64 register sets

- 32 general purpose scalar registers

- 32 general purpose floating-point registers

- 32 general purpose vector registers, length 63

- register renaming

- speculative loading

- 32 bit fixed instruction format

- 64 bit data width

- powerful branch prediction with target buffer (BTB)

- return address prediction (RSB)

- bus interface unit

- instruction and data caches

- Vector and SIMD operations

- fine-grained simultaneous multi-threading (SMT)

- dual ALU’s, one flow control unit, one memory unit, one floating point unit

History

FT64 is a work-in-progress beginning in July 2017. FT64 originated from RiSC-16 by Dr. Bruce

Jacob. RiSC-16 evolved from the Little Computer (LC-896) developed by Peter Chen at the

University of Michigan. See the comment in FT64.v. FT64 is the author's fifth attempt at a 64 bit

ISA. Other attempts including Raptor64, Thor, FISA64, and DSD9. The author has tried to be

innovative with this design borrowing ideas from a number of other processing cores. Berkeley’s

RiSC-V has had an influence on this core.

Goals

One of the primary goals for the development of this core was the implementation of a register

renaming mechanism. The author also wanted a stream-lined core as a starting place.

Implementing many features of the Thor core using a fixed 32 bit instruction set.

Easy implementation of a compiler.

P a g e | 2

Eventual implementation as a four-way superscalar processing core.

P a g e | 3

Register Sets

There are 64 sets of 32 general purpose registers in the architecture. The odd registers sets may be

used as floating-point registers for the even register set. When SMT is turned on register sets are

used in pairs. The following is an illustration of register set usage.

On reset register set #0 is selected to be the operating register set. On interrupt every fourth

register sets #4 to #28 will be selected according to the level of the interrupt.

Machine State Register Set Selected

BRK / RESET 0

IRQ 1 4

IRQ 2 8

IRQ 3 12

IRQ 4 16

IRQ 5 20

IRQ 6 24

IRQ 7 28

Normal Operations according to rs field in control reg #0

There is just a single set of vector registers.

P a g e | 4

Register Usage Convention

R0 always has the value zero in all register sets. r29 is the link register used implicitly by the call

instruction.

Register Description / Suggested Usage Saver

r0 always reads as zero

r1-r2 return values / exception caller

r3-r10 temporaries caller

r11-r17 register variables callee

r18-r22 function arguments caller

r23 assembler usage

r24 type number / function argument caller

r25 class pointer / function argument caller

r26 thread pointer callee

r27 global pointer

r28 exception link register caller

r29 return address / link register caller

r30 base / frame pointer callee

r31 stack pointer (hardware) callee

The ISA supports up to 32 vector registers of length 63. There is only a single set of vector

registers.

Register

v0 to v31 general purpose vector registers

vm0 to vm7 vector mask registers

The register file has six read ports and two write ports.

Notes:

The register set is implemented with block ram resources in the FPGA. In order to get byte write

strobes for the registers it was possible to accommodate a large number of registers. Elucidating,

the block rams in use provided 4096 eight-bit wide registers per block ram. Regardless of the

number of registers actually used there was still a provision for 4096. All these available registers

were put to good use as multiple register sets and vectored registers.

The register set currently selected is determined by the rs field in the machine status register

(0x044).

Internally to the core a single register file is in use that uses a 12-bit register code:

11 6 5 4 0

Register Set 0 General Purpose Register number

Vector element 1 Vector register number

P a g e | 5

To conserve hardware which would otherwise be quite large, the bypassing logic looks at only the

six least significant bits, plus bits 6, and 7 of the register code for bypassing purposes. This allows

it to differentiate between different general purpose registers, floating-point, thread 0 and thread 1

registers, and vector registers. This meets bypass logic requirements in most circumstances.

The core does not provide bypass logic between different elements of the same vector register. It

only provides bypassing at the vector register number level. Normally this is not a problem

because vector elements are processed independently.

Similarly, the core does not provide bypassing between register sets of the general purpose

registers outside of checking thread register pairs. Switching the register set should be followed

by a synchronization operation to ensure contents of the previous instructions are updated before

the new use.

There are only 63 usable elements to each vector register. Register codes for the 64th element are

used to access the vector mask registers.

11 6 5 4 3 2 0

63 1 0 mask register number

This is hidden from the ISA and may be implemented differently in the future.

On reset register set #0 is selected.

P a g e | 6

Program Counter

The program counter identifies which instruction to execute. The program counter increments by

four with the least significant two bits always zero. The increment may be overridden using one

of the flow control instructions. The program counter addresses 32 bit instruction parcels.

63 2 1 0

Address[63..2] 02

Notes:

There are actually two program counters in use by the core, one for each fetch buffer, and each

one normally increments by eight. The second program counter always follows the first one,

incremented by four, so that it addresses the next instruction word. There are a couple of reasons

to use two counters. One is to avoid an adder delay that would be present on the output of a single

counter if only one counter were used. A second reason for two counters is that they may be used

independently for simultaneous multi-threading (SMT). When SMT is on each program counter

operates independently and increments by four instead of eight.

SMT

The core is capable of fine-grained SMT (simultaneous multi-threading) operation. With SMT

there are two possible threads of execution each of which operates at about ½ the performance of

a single thread. For some applications it may be desirable to use SMT in order to increase the

overall performance of the system. The core fetches from two different execution threads

simultaneously. When enabled the core’s program counters operate independently. One half of

the fetch buffers are used for each of two possible threads of execution.

Notes:

For simplicity, on a branch miss the entire fetch buffer is flushed and reloaded with instructions

from the target address. This includes instructions for both threads of execution. Both threads

may miss at the same time and the fetch buffer will only be reloaded once.

Vector Chaining

The vector chain bit in control register #0 controls the priority of queueing vector instructions

when there are two vector instructions available to queue. If vector chaining is on then one

element from each vector instruction will queue. If vector chaining is off then two elements from

the first vector instruction will queue. Vector chaining may improve performance depending on

the instruction mix. For instance if there is a multiply followed by an add under normal

circumstances multiplication of the next vector element can’t proceed until the instruction is

finished. Without vector chaining the add can’t proceed until the multiply is done. With vector

chaining the add can be performed at the same time as the multiply, hiding some of the latency of

the multiply operation.

Caches

The core has both instruction and data caches in order to improve performance.

P a g e | 7

The instruction cache is a two level cache (L1, L2) allowing better performance. The first level

cache is four way associative, the second level cache is four-way set associative. L1 is 2kB in size

and made from distributed ram in order to get single cycle performance. L1 is organized as 64

lines of 32 bytes. L2 is 16kB in size implemented with block ram. L2 is organized as 512 lines of

32 bytes. The L1 instruction cache is dual read ported to allow two instructions to be fetched at

one time.

The data cache is organized as 512 lines of 32 bytes (16kB) and implemented with block ram.

Access to the data cache is multicycle. The data cache has three read ports allowing three load

operations to be in progress at the same time. Stores write through to memory. There is only a

single write port on the data cache.

Uncached Data Area

The address range $FFDxxxxx is an uncached data area. This area is reserved for I/O devices.

The data cache may also be disabled in control register zero. There is also a set of load

instructions that bypass the data cache. These are called load volatile (LVx) instructions.

Fetch Buffers

There are two fetch buffers each of which holds a pair of instructions. When a fetch buffer

becomes empty it is loaded with new instructions from the cache.

Branch Predictor

The branch predictor is a (2, 2) correlating predictor. The branch history is maintained in a 512

entry history table. It has four read ports for predicting branch outcomes, one port for each

instruction in the fetch buffer. The branch predictor may be disabled by a bit in control register

zero. When disabled all branches are predicted as not taken, unless specified otherwise in the

branch instruction. A statically predicted branch does not use the branch predictor instead the

prediction is based on the setting of the prediction bits in the branch instruction.

The CC64 compiler has a notation for representing static branch predictions in high level code.

Refer to the CC64 compiler documentation for the exact notation used.

To conserve hardware the branch predictor uses a fifo that can queue up to two branch outcomes

at the same time. Outcomes are removed from the fifo one at a time and used to update the branch

history table which has only a single write port. In an earlier implementation of the branch

predictor, two write ports were provided on the history table. This turned out to be relatively large

compared to it’s usefulness.

Correctly predicting a branch turns the branch into a single cycle operation. During execution of

the branch instruction the address of the following instruction queued is checked against the

address depending on the branch outcome. If the address does not match what is expected then

the queue will be flushed and new instructions loaded from the correct program path.

P a g e | 8

Branch Target Buffer (BTB)

The core has a 1k entry branch target buffer for predicting the target address of flow control

instructions where the address is calculated and potentially unknown at time of fetch. Instructions

covered by the BTB include jump-and-link, interrupt return and breakpoint instructions and

branches to targets contained in a register.

Return Address Stack Predictor (RSB)

There is an address predictor for return addresses which can in some cases can eliminate the

flushing of the instruction queue when a return instruction is executed. The RET instruction is

detected in the fetch stage of the core and a predicted return address used to fetch instructions

following the return. JAL instructions using the link register as the source are also treated as

return instructions. The return address stack predictor has a stack depth of 32 entries. On stack

overflow or underflow the prediction will be wrong, however performance will be no worse than

not having a predictor. The return address stack predictor checks the address of the instruction

queued following the RET against the address fetched for the RET instruction to make sure that

the address corresponds.

There is a separate RSB for each thread while operating with SMT turned on.

Instruction Queue

The instruction queue is an eight-entry re-ordering buffer (ROB). The instruction queue tracks an

instructions progress and provides a holding place for operands and results. Each instruction in

queue may be in one of a number of different states. The core will not enqueue an instruction

unless there is room for two or more instructions in the queue. It will not enqueue two

instructions unless there is room for three or more instructions in the queue. The core waits for an

additional queue slot to become available in order to prevent the core from becoming deadlocked

by a flow control instruction which waits until the next instruction queues before being issued.

Queueing of Flow Control Operations

Flow control operations are not done until sometime after the next instruction queues. This is

necessary to determine address miss-predicts during the flow control operation. Waiting until the

next instruction queues avoids the problem of false mis-predictions. A consequence of waiting for

the next instruction to queue is that flow control operations may only issue from one of the first

seven queue slots relative to the head of the queue.

Operating Levels

The core has eight operating levels. The highest operating level is operating level zero which is

called the machine operating level. Operating level zero has complete access to the machine.

Other operating levels may have more restricted access. When an interrupt occurs the operating

level is set to the machine level. The core vectors to an address depending on the current

operating level.

Operating Level Privilege Level Moniker

P a g e | 9

7 7 to 255 user

6 6 supervisor

5 5 supervisor

4 4 supervisor

3 3 supervisor

2 2 supervisor

1 1 hypervisor

0 0 machine

Switching Operating Levels

The operating level is automatically switched to the machine level when an interrupt occurs. The

BRK instruction may be used to switch operating levels. The REX instruction may also be used

by an interrupt handler to switch the operating level to a lower level. The RTI instruction will

switch the operating level back to what it was prior to the interrupt.

Privilege Levels

The core supports a 256 level privilege level system. Privilege level zero is assigned to operating

mode zero. Privilege level one is assigned to operating level one. Privilege levels 2 to 6 are

assigned to their corresponding operating level. The remaining privilege levels are assigned to

operating level seven.

Control and Status Registers

Control Register Zero (CSR #000)

This register contains a bit to enable protected mode.

63 62 33 32 30 17 16 1514 13 8 7 1 0

D ~ ~ bpe dce SNR SMT 0 ~ Pe

D: debug mode status. this bit is set during an interrupt routine if the processor was in debug

mode when the interrupt occurred.

PE: Protected Mode enable: 1 = enabled, 0 = disabled.

DCE: data cache enable: 1=enabled, 0 = disabled

bpe: branch predictor enable: 1=enabled, 0=disabled

SMT: simultaneous multi-threading enable 1 = enabled, 0 = disabled (0 default).

SNR: sequence number reset, 1 = reset, automatically clears

Disabling the data cache is useful for some codes with large data sets to prevent cache loading of

values that are used infrequently. The instruction cache may not be disabled.

Disabling branch prediction will significantly affect the cores performance, but may be useful for

debugging. Disabling branch prediction causes all branches to be predicted as not-taken (unless

determined otherwise by the instruction). No entries will be updated in the branch history table if

the branch predictor is disabled.

This register supports bit set / clear CSR instructions.

HARTID (0x001)

This register contains a number that is externally supplied on the hartid_i input bus to represent

the hardware thread id or the core number.

P a g e | 10

TICK (0x002)

This register contains a tick count of the number of clock cycles that have passed since the last

reset.

PCR Paging Control (CSR 0x003)

This register controls the paged memory management unit. A more detailed description is

available under the section on memory management.

AEC Arithmetic Exception Control (CSR 0x004)

This register has controls to enable arithmetic exceptions and status bits to indicate the occurrence

of exception conditions.

Exception Occurrence Exception Enable

63

37

36 35 34 33 32 31

5

4 3 2 1 0

 DIV MUL ASL SUB ADD DIV MUL ASL SUB ADD

CAUSE (0x006)

This register contains a code indicating the cause of an exception or interrupt. The break handler

will examine this code in order to determine what to do. Only the low order 16 bits are

implemented. The high order bits read as zero and are not updateable.

BADADDR (CSR 0x007)

This register contains the effective address for a load / store operation that caused a memory

management exception or a bus error. Note that the address of the instruction causing the

exception is available in the EPC register.

PCR2 Paging Control (CSR 0x008)

This register controls the paged memory management unit. A more detailed description is

available under the section on memory management.

Scratch (CSR 0x009)

This register is available for scratchpad use. It is typically swapped with a GPR during exception

processing.

SEMA (CSR 0x00C) Semaphores

This register is available for system semaphore or flag use. The least significant bit is tied to the

reservation address status input (rb_i). It will be set if a SWC instruction was successful. The

least significant bit is also cleared automatically when an interrupt (BRK) or interrupt return

(RTI) instruction is executed. Any one of the remaining bits may also be cleared by an RTI

instruction. This could be a busy status bit for the interrupt routine. Bits in this CSR may be set or

cleared with one of the CSRxx instructions. This register has individual bit set / clear capability.

P a g e | 11

SBL (CSR 0x00E)

The SBL register contains the address representing the lower bound of the stack. If an address is

formed using one of the stack indexing registers (stack pointer r31 or base pointer r30) is lower

than the SBL a stack fault occurs. This represents a stack overflow condition.

SBU (CSR 0x00F)

The SBU register contains the address representing the upper bound of the stack. If an address is

formed using one of the stack indexing registers (stack pointer r31 or base pointer r30) is higher

than the SBU a stack fault occurs. This represents a stack underflow condition.

FSTAT (CSR 0x014) Floating Point Status and Control Register

The floating point status and control register may be read using the CSR instruction. Unlike other

CSR’s the control register has its own dedicated instructions for update. See the section on

floating point instructions for more information.

Bit Symbol Description

31:29 RM rm rounding mode

28 E5 inexe - inexact exception enable

27 E4 dbzxe - divide by zero exception enable

26 E3 underxe - underflow exception enable

25 E2 overxe - overflow exception enable

24 E1 invopxe - invalid operation exception enable

23 NS ns - non standard floating point indicator

Result Status
22 fractie - the last instruction (arithmetic or conversion) rounded

intermediate result (or caused a disabled overflow exception)

21 RA rawayz rounded away from zero (fraction incremented)

20 SC C denormalized, negative zero, or quiet NaN

19 SL neg < the result is negative (and not zero)

18 SG pos > the result is positive (and not zero)

17 SE zero = the result is zero (negative or positive)

16 SI inf ? the result is infinite or quiet NaN

Exception Occurrence

15 X6 swt {reserved} - set this bit using software to trigger an invalid

operation

14 X5 inerx - inexact result exception occurred (sticky)

13 X4 dbzx - divide by zero exception occurred

12 X3 underx - underflow exception occurred

11 X2 overx - overflow exception occurred

10 X1 giopx - global invalid operation exception – set if any invalid operation

exception has occurred

9 GX gx - global exception indicator – set if any enabled exception has

happened

8 SX sumx - summary exception – set if any exception could occur if it was

enabled

- can only be cleared by software

Exception Type Resolution

7 X1T cvt - attempt to convert NaN or too large to integer

6 X1T sqrtx - square root of non-zero negative

P a g e | 12

5 X1T NaNCmp - comparison of NaN not using unordered comparison

instructions

4 X1T infzero - multiply infinity by zero

3 X1T zerozero - division of zero by zero

2 X1T infdiv - division of infinities

1 X1T subinfx - subtraction of infinities

0 X1T snanx - signaling NaN

P a g e | 13

DBADx (CSR 0x018 to 0x01B) Debug Address Register

These registers contain addresses of instruction or data breakpoints.

63 0

Address 63..0

DBCR (CSR 0x01C) Debug Control Register

This register contains bits controlling the circumstances under which a debug interrupt will occur.

bits

3 to 0 Enables a specific debug address register to do address matching. If

the corresponding bit in this register is set and the address

(instruction or data) matches the address in the debug address

register then a debug interrupt will be taken.

17, 16 This pair of bits determine what should match the debug address

register zero in order for a debug interrupt to occur.

17:16

00 match the instruction address

01 match a data store address

10 reserved

11 match a data load or store address

19, 18 This pair of bits determine how many of the address bits need to

match in order to be considered a match to the debug address

register. These bits are ignored when matching instruction addresses,

which are always half-word aligned.

19:18 Size

00 all bits must match byte

01 all but the least significant bit should match char

10 all but the two LSB’s should match half

11 all but the three LSB’s should match word

23 to 20 Same as 16 to 19 except for debug address register one.

27 to 24 Same as 16 to 19 except for debug address register two.

31 to 28 Same as 16 to 19 except for debug address register three.

55 to 62 These bits are a history stack for single stepping mode. An exception

will automatically disable single stepping mode and record the single

step mode state on stack. Returning from an exception pops the

single step mode state from the stack.

63 This bit enables SSM (single stepping mode)

DBSR (CSR 0x01D) - Debug Status Register

This register contains bits indicating which addresses matched. These bits are set when an address

match occurs, and must be reset by software.

bit

0 matched address register zero

1 matched address register one

2 matched address register two

3 matched address register three

63 to 4 not used, reserved

P a g e | 14

CAS (CSR 0x02C) Compare and Swap

This register is to support the compare and swap (CAS) instruction. If the value in the addressed

memory location identified by the CAS instruction is equal to the value in the CAS register, then

the source register is written to the memory location, and the source register is loaded with the

value 1. Otherwise if the value in the addressed memory location doesn’t match the value in this

register, then value at the memory location is loaded into the CAS register, and the source register

is set to zero. No write to memory occurs if the match fails.

63 0

Value 63..0

TVEC (0x030 to 0x037)

These registers contain the address of the exception handling routine for a given operating level.

TVEC[0] (0x030) is used directly by hardware to form an address of the interrupt routine. The

lower eight bits of TVEC[0] are not used. The lower bits of the interrupt address are determined

from the operating level. For the other registers the two low order bits of the address must be zero

in order to keep the program counter aligned on a half-word address. TVEC[1] to TVEC[7] are

used by the REX instruction.

IM_STACK (0x040)

This register contains the interrupt mask stack. When an exception or interrupt occurs this register

is shifted to the left and the current status copied to the low order bits, when an RTI instruction is

executed this register is shifted to the right and the status bits copied from the low order bits of

the register. On RTI the last stack entry is set to seven masking all interrupts on stack underflow.

Only the low order 24 bits of the register are implemented.

OL_STACK (0x041)

This register contains the operating level stack. When an exception or interrupt occurs this

register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

order bits of the register. On RTI the last stack entry is set to zero which will select the machine

operating level on stack underflow. Only the low order 24 bits of the register are implemented.

PL_STACK (0x042)

This register contains the privilege level stack. When an exception or interrupt occurs this register

is shifted to the left and the current status copied to the low order bits, when an RTI instruction is

executed this register is shifted to the right and the status bits copied from the low order bits of

the register. On RTI the last stack entry will be set to zero which will select privilege level zero

on stack underflow.

RS_STACK (0x043)

This register contains the register set selection stack. When an exception or interrupt occurs this

register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

P a g e | 15

order bits of the register. On RTI the last stack entry will be set to eight which will select register

set #8 on stack underflow.

STATUS (0x044)

This register contains the interrupt mask, operating level, and privilege level.

63 6261 60 56 55 5452 5150 4948 47 32 27 24 2320 19 14 13 6 5 3 2 0

SD1 ~2 VM5 MPRV1 ~3 XS2 FS2 ~16 Thrd1 ~4 RS6 PL8 OL3 IM3

VM5

These bits control virtual memory options. Note that multiple options may be present at

the same time. At reset all the bits are set to zero.

Bit Indicates

0 1 = single bound

1 1 = separate program and data bounds

2 1 = lot protection system

3 1 = simplified paged unit

4 1 = paging unit

MPRV

This bit when true (1) causes memory operations to use the first stack privilege level

when evaluating privilege and protection rules. (Bits 0 to 13 in the status reg).

FS2

These two bits can be used to keep track of the floating point register state.

XS2

These two bits can be used to keep track of an additional core extension state.

Thrd1

The currently executing hardware thread.

IRQ[42..40]

The level of interrupt that caused the hardware BRK.

VCA

(bit 32) This bit indicates that vector chaining was active prior to an exception.

VE_HOLD (0x045)

This register contains the currently executing vector element number for fetch buffers #0 and #1.

Source and target element numbers are stored independently. Normally the source and target

elements are the same, however they may be different if a vector compress instruction is

executing. If the vector register set is switched during exception processing this register should be

saved and restored.

63 54 53 48 47 38 37 32 31 22 21 16 15 6 5 0

~ vet1 ~ ves1 ~ vet0 ~ ves0

P a g e | 16

EPC (0x048 to 0x4F)

This sets of registers contains the interrupt or exception stack of the program counter register. The

top of the stack is register 0x48. When an interrupt or exception occurs register 0x48 to 0x4E are

copied to the next register and the program counter is placed into register 0x48. When an RTI

instruction is executed the program counter is loaded from register 0x048 and registers 0x048 to

0x047 are loaded with the next register. Register 0x04F is loaded with the address of the break

handler so that in the event of an underflow the break handler will be executed.

P a g e | 17

CODEBUF (0x080 to 0x0BF)

This register range is for access to 64 adaptable code buffers. The code buffers are used by the

EXEC instruction in order to execute code which may change at run-time.

TIME (0x7E0)

The TIME register corresponds to the wall clock real time. This register can be used to compute

the current time based on a known reference point. The register value will typically be a fixed

number of seconds offset from the real wall clock time. The lower 32 bits of the register are

driven by the tm_clk_i clock time base input which is independent of the cpu clock. The tm_clk_i

input is a fixed frequency used for timing that cannot be less than 10MHz. The low order 32 bits

represent the fraction of one second. The upper 32 bits represent seconds passed. For example if

the tm_clk_i frequency is 100MHz the low order 32 bits should count from 0 to 99,999,999 then

cycle back to 0 again. When the low order 32 bits cycle back to 0 again, the upper 32 bits of the

register is incremented. The upper 32 bits of the register represent the number of seconds passed

since an arbitrary point in the past.

Note that this register has a fixed time basis, unlike the TICK register whose frequency may vary

with the cpu clock. The cpu clock input may vary in frequency to allow for performance and

power adjustments.

INSTRET (0x7E1)

This register contains a count of the number of instructions retired (successfully completed) by

the core.

INFO (0x7F0 to 0x7FF)

This set of registers contains general information about the core including the manufacturer name,

cpu class and name, and model number.

P a g e | 18

Exceptions

External Interrupts

There is very little difference between an externally generated exception and an internally

generated one. An externally caused exception will force a BRK instruction into the instruction

stream. The BRK instruction contains a cause code identifying the external interrupt source.

Effect on Machine Status

The operating mode is always switched to the machine mode on exception. It’s up to the machine

mode code to redirect the exception to a lower operating mode when desired. Further exceptions

at the same or lower interrupt level are disabled automatically. Machine mode code must enable

interrupts at some point. This can be done automatically when the exception is redirected to a

lower level by the REX instruction. The RTI instruction will also automatically enable further

machine level exceptions.

For a hardware interrupt the register set is set to the level of the hardware interrupt (0 to 7). For a

software exception register set #8 is selected. Individual registers from alternate register sets may

be selected with the MOV instruction.

Exception Stack

The program counter and status bits are pushed onto an internal stack when an exception occurs.

This stack is only eight entries deep as that is the maximum amount of nesting that can occur.

Further nesting of exceptions can be achieved by saving the state contained in the exception

registers.

Exception Vectoring

Exceptions are handled through a vector table. The vector table has eight entries, one for each

operating level the core may be running at. The location of the vector table is determined by

TVEC[0]. If the core is operating at level four for instance and an interrupt occurs vector table

address number four is used for the interrupt handler. Note that the interrupt automatically

switches the core to operating level zero, privilege level zero. An exception handler at the

machine level may redirect exceptions to a lower level handler identified in one of the vector

registers. More specific exception information is supplied in the cause register.

Operating

Level

Address (If TVEC[0]

contains $FFFC0000)

0 $FFFC0000 Handler for operating level zero interrupt

1 $FFFC0020

2 $FFFC0040

3 $FFFC0060

4 $FFFC0080

5 $FFFC00A0

6 $FFFC00C0

7 $FFFC00E0 handler for operating level seven interrupt

P a g e | 19

Reset

The core begins executing instructions at address $FFFC0100. All registers are in an undefined

state. Register set #8 is selected.

P a g e | 20

Exception Cause Codes

The following table outlines the cause code for a given purpose. These codes are specific to

FT64. Under the HW column an ‘x’ indicates that the exception is internally generated by the

processor; the cause code is hard-wired to that use. An ‘e’ indicates an externally generated

interrupt, the usage may vary depending on the system.

Cause

Code

 HW Description

0

1

2 FMTK Scheduler

432 e

433 KRST e Keyboard reset interrupt

434 MSI e Millisecond Interrupt

435 TICK e FMTK Tick Interrupt

…

463 KBD e Keyboard interrupt

480 SSM x single step

481 DBG x debug exception

482 TGT x call target exception

483 MEM x memory fault

484 IADR x bad instruction address

485 UNIMP x unimplemented instruction

486 FLT x floating point exception

487 CHK x bounds check exception

488 DBZ x divide by zero

489 OFL x overflow

493 FLT x floating point exception

497 EXF x Executable fault

498 DWF x Data write fault

499 DRF x data read fault

500 SGB x segment bounds violation

501 PRIV x privilege level violation

504 STK x stack fault

505 CPF x code page fault

506 DPF x data page fault

508 DBE x data bus error

509 IBE x instruction bus error

510 NMI x Non-maskable interrupt

P a g e | 21

Simplified Paged Memory Management Unit

Overview

One option for memory management is a simplified paged memory management unit. Memory

management by the MMU includes virtual to physical address mapping and read/write/execute

permissions. The MMU divides memory into 64kB or 4MiB pages depending on the setting in

PCR2.

64kiB pages

Processor address bits 16 to 25 are used as a ten bit index into a mapping table to find the

physical page. The MMU remaps the ten address bits into a sixteen bit value used as address bits

16 to 31 when accessing a physical address. The lower sixteen bits of the address pass through the

MMU unchanged. The maximum amount of memory that may be mapped in the MMU is 64MiB

per map out of a pool of 4GiB. Addresses with the most significant six bits set are not mapped.

4MiB pages

Some tasks require a lot of memory and a 64MB map isn’t sufficient. For instance, while in

machine mode the core requires access to the entire address range. A memory page size of 4MiB

may be selected by setting the bit corresponding to the memory map in PCR2.

Processor address bits 22 to 31 are used as a ten bit index into a mapping table to find the

physical page. The MMU remaps the ten address bits into a ten bit value used as address bits 22

to 31 when accessing a physical address. The lower 22 bits of the address pass through the MMU

unchanged. The maximum amount of memory that may be mapped in the MMU is 4GiB per map

out of a pool of 4GiB. Addresses with the most significant six bits set are not mapped.

Map Tables

The mapping tables for memory management are stored directly in the MMU rather than being

stored in main memory as is commonly done. The MMU supports up to 64 independent mapping

tables. Only a single mapping table may be active at one time. The active mapping table is set in

the paging control register (CSR #3) bits 0 to 5 – called the operate key. Mapping tables may be

shared between tasks.

Map Caching / TLB

There isn’t a need for a TLB or ATC as the entire mapping table is contained in the MMU. A

TLB isn’t required. Address mapping is still only two cycles.

Operate Key

The operate key controls which mapping table is actively mapping the memory space. The

operate key is located in CSR #3 bits 0 to 5. The operate key is similar to an ASID (address space

identifier). The operate key is also used as part of the cores cache tags. When the operate key

changes due to a task switch, the cache does not have to be invalidated.

P a g e | 22

Access Key

The MMU mapping tables are present at I/O address $FFDC4000 to $FFDC4FFF. All the

mapping tables share the same I/O space. Only one mapping table is visible in the address space

at one time. Which table is visible is controlled by an access key. The access key is located in the

paging control register (CSR #3) bits 8 to 13.

Address Pass-through

Addresses pass through the MMU unaltered until the mapping enable bit is set. Until mapping is

enabled, the physical address will match the virtual address. Additionally address bits 0 to 15 pass

through the MMU unaltered.

Mapping Table Layout

 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

000 S1 S0 W R X PA31 PA30 PA29 PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16

004 S1 S0 W R X PA31 PA30 PA29 PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16

 …

FFC S1 S0 W R X PA31 PA30 PA29 PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16

PAnn = physical address

X = executable page indicator.

W = writeable data page indicator.

R = readable data page indicator.

Note the low order six bits are not used for 4MiB pages.

S1,S0 = two bits for program use

PCR- Paging Control Register Layout
31 30 14 13 8 7 6 5 0

PE ~18 AKey6 ~ OKey6

PE = Paging Enable (1=enabled, 0 = disabled)

AKey = Access Key

OKey = Operate Key

PCR2 – Page Size

This register controls the memory page size. Each bit in the register corresponds to a memory

map. Memory may be paged in either 64kiB or 4MiB pages. All pages in a map have the same

size.

Latency

The address map operation when enabled has two cycles of latency. In the case of instructions

address translation only takes place on a cache miss when the cache needs to be loaded from main

memory.

P a g e | 23

Instruction Set Description

Formats

Instructions have a fixed 32 bit format. There are only a handful of different instruction formats.

The opcode, Ra, Rb, and Rc fields always occur in the same place in an instruction to simplify

decoding and keep the register read address which is needed prior to enqueue at a fixed decoding

location. The Rt field is allowed to float around to make the instruction encoding easier. In a

pipelined processor there is usually at least one clock cycle before Rt is used meaning it has time

to be shifted around before it’s use.

Immed16 Rt5 Ra5 Opcode6 RI

Funct4 Immed12 Rt5 Ra5 Opcode6 RI12

Funct6 ~2 Sz3 Rt5 Rb5 Ra5 Opcode6 RR

016 ~2 Sz3 Funct5 Rt5 Ra5 Opcode6 R1

Funct6 Funct4 E Rt5 Rb5 Ra5 Opcode6 SR

Funct6 Funct4 Immed6 Rt5 Ra5 Opcode6 SI

Funct4 Me6 Mb6 Rt5 Ra5 Opcode6 BF

Disp10 P2 Cond4 Rb5 Ra5 Opcode5 D BD

Disp10 P2 Cond3 Bitno6 Ra5 Opcode5 D BB

~5 P2 Cond4 Rc5 Rb5 Ra5 Opcode6 BR

Funct6 Fn3 Sc2 Rt5/Rc5 Rb5 Ra5 Opcode6 MX

Op2 OL3 Regno11 Rt5 Ra5 Opcode6 CSR

Address26 Opcode6 JC

Funct6 Prec2 Rm3 Rt5 Rb5 Ra5 Opcode6 FLT

There are a handful of additional formats primarily for control type instructions. See the

particular instruction for the exact format used and additional information.

Format Instruction Group

RI register-immediate and load / store with displacement

RI12 register-immediate 12, set and load volatile instructions.

RR register-register, two source registers

R1 single source register

SR shift register-register

SI shift register-immediate

BF bitfield

BD branch with displacement

BB branch on bit set / clear

BR branch to register

MX memory indexed

CSR control and status register access

JC jump and call

FLT floating-point

P a g e | 24

Operation Sizes

Many instructions have an option to process data in sub-word data sizes including bytes, chars,

and half-words. Typically, sized operations are supported only with register-register instructions.

Instructions using immediate values always operate on whole words.

SIMD

Single instruction multiple data operations treat the 64 bit operands as multiple independent lanes

of data depending on the size selected. For a half-word size the operands are treated as two

independent 32 bit operands. For a character size the operands are treated as four independent 16

bit operands. SIMD operations are selected by setting the parallel operation bit in the instruction

(the most significant bit of the size field).

Arithmetic Operations

Arithmetic operations include addition, subtraction, comparison, multiplication and division.

Logical Operations

Logical operations include bitwise and, or, and exclusive or. Inverted logical ops are also

available for register instruction forms (nand, nor, and exnor).

Memory Operations

Memory operations include loads and stores of bytes, words or half-words. There isn’t yet a full

complement of memory operations in order to keep the size of the core smaller. The core can

perform loads and stores using indexed addressing.

Loads

Loads may execute speculatively. They may occur out of program order. A load will be issued

provided there is no address overlap with a previous memory operation.

Stores

Stores will not be issued by the core until it is known that the store can be guaranteed to execute.

Unlike a load, a store cannot be executed speculatively. This means no prior instruction will

exception and no change of control flow will take place before the store. Stores always write

through to memory. A store instruction can’t be committed to the machine state until exceptions

are checked for during the store operation. Until the operation to memory is complete the store

can’t commit. However, the store operation is marked as “done” as soon as it’s issued so that

other instructions may continue to execute. Much of the latency of a store operation is then

hidden.

Control Flow Instructions

Control flow instructions include call, return, jumps and branches, breakpoint and return

instructions. All controls transfers take place at the fetch stage of the processor and if a predicted

fetch direction turns out to be incorrect it is corrected during the execution stage of the

instruction.

P a g e | 25

Call

Call instruction flow transfer takes place immediately in the fetch stage of the core. The call

return address is pushed onto the return address stack predictor. When the call instruction

executes the return address is stored in the return address register.

Return

Return instructions are predicted during the fetch stage of the core using a return address

predictor. The return instruction is also capable of adjusting the stack pointer.

Conditional Branches

Conditional branches are predicted using a (2,2) correlating branch predictor.

Breakpoint

Breakpoint instructions cause some of the cores state to be stored on internal stacks. The stored

state includes the program counter, interrupt mask, privilege level, and operating level. The

internal stacks are eight entries deep; this is the maximum amount of nesting that can occur. The

breakpoint instruction specifies a number of instruction words to skip over to determine point of

return.

Exception (breakpoint) Return

The exception return instruction unstacks the state previously stacked by a breakpoint instruction.

Clock cycles

The clock cycles indicated are only approximate. An attempt has been made to give a relative

indication between instructions of the clocks required. The core hasn’t under gone significant

timing measurements. Many common instructions which can execute in only ½ of a clock cycle,

for example add and subtract, indicate a clock cycle time of 1. A number of instructions have

single cycle execution times because they may only execute on ALU #0.

P a g e | 26

ABS – Absolute Value

Description:

This instruction takes the absolute value of a register and places the result in a target register.

Instruction Format:

016 ~2 Sz3 45 Rt5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

If Ra < 0

 Rt = -Ra

 else

 Rt = Ra

Exceptions: none

Notes:

Sz3

0 Byte

1 Char

2 Half

3 Word

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 27

ADD - Addition
Description:

Add two values. The first operand must be in a register. The second operand may be in a register

or may be an immediate value specified in the instruction.

Instruction Format:

Immed16 Rt5 Ra5 04h6

046 ~1 Ov Sz3 Rt5 Rb5 Ra5 02h6

Ov

0 no overflow

1 overflow exception if overflow occurred and enabled in AEC

Overflow works properly only on 64 bit values.

Instruction Format:

This format performs the ‘add’ operation with an immediate value to one of four quadrants of the

target register. It may be used to build a 64 bit constant in a register. The immediate is sign

extended to 64 bits then shifted by 0, 16, 32 or 48 bits to the left.

Immed16 Rt5 13 Q2 1Ah6

Q2 Bits

0 0 to 15

1 16 to 31

2 32 to 47

3 48 to 63

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions:

The immediate form of the instruction will not cause an exception. The registered form of the

instruction may cause an overflow exception if enabled in the AEC register.

Notes:

For sub-word forms the part of the register updated corresponds to the size selected. For instance,

if a byte operation is specified then only the low order eight bits of the target register is updated,

the remaining bits hold their current value. For parallel operation forms the registers are treated as

P a g e | 28

if they were a group of registers corresponding to the size selected. And the same operation is

performed on each part of the register. For parallel forms the entire register is updated.

Sz3

0 Byte

1 Char

2 Half

3 Word

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 29

AMO – Atomic Memory Operation
Description:

The atomic memory operations read from memory addressed by the Ra register and store the

value in Rt. As a second step the value from memory is combined with the value in register Rb

according to one of the available functions then stored back into the memory addressed by Ra.

Instruction Format:

Funct6 A R Sz3 Rt5 Rb5 Ra5 2Fh6

Instruction Format (immediate operand):

Funct6 A R Sz3 Imm5 Rt5 Ra5 2Fh6

Funct6 Mnemonic Operation

Performed

01 swap swap memory[Ra] = Rb

04 add addition memory[Ra] = memory[Ra] + Rb

08 and bitwise and memory[Ra] = memory[Ra] & Rb

09 or bitwise or memory[Ra] = memory[Ra] | Rb

0A xor bitwise exclusive

or

memory[Ra] = memory[Ra] ^ Rb

0C shl shift left memory[Ra] = memory[Ra] << Rb

0D shr shift right memory[Ra] = memory[Ra] >> Rb

1C min minimum memory[Ra] = memory[Ra] < Rb ? memory[Ra]

: Rb

1D max maximum memory[Ra] = memory[Ra] >Rb ? memory[Ra]

: Rb

1E minu minimum unsigned memory[Ra] = memory[Ra] < Rb ? memory[Ra]

: Rb

1F maxu maximum

unsigned

memory[Ra] = memory[Ra] > Rb ? memory[Ra]

: Rb

20 swapi swap memory[Ra] = imm

24 addi addition memory[Ra] = memory[Ra] + imm

28 andi bitwise and memory[Ra] = memory[Ra] & imm

29 ori bitwise or memory[Ra] = memory[Ra] | imm

2A xori bitwise exclusive

or

memory[Ra] = memory[Ra] ^ imm

2C shli shift left memory[Ra] = memory[Ra] << imm

2D shri shift right memory[Ra] = memory[Ra] >> imm

3C mini minimum memory[Ra] = memory[Ra] < imm ?

memory[Ra] : imm

P a g e | 30

3D maxi maximum memory[Ra] = memory[Ra] > imm ?

memory[Ra] : imm

3E minui minimum memory[Ra] = memory[Ra] < imm ?

memory[Ra] : imm

3F maxui maximum memory[Ra] = memory[Ra] > imm ?

memory[Ra] : imm

Sz2

0 Byte

1 Char

2 Half

3 Word

Acquire and release bits determine the ordering of memory operations.

A = acquire – 1 = no following memory operations can take place before this one

R = release – 1 = this memory operation cannot take place before prior ones.

All combinations of A, R are allowed.

P a g e | 31

AND – Bitwise And
Description:

Perform a bitwise ‘and’ operation between operands.

Instruction Format:

The immediate value is sign extended on the left before use.

Immed16 Rt5 Ra5 08h6

Rt = Ra & Rb

086 ~2 Sz3 Rt5 Rb5 Ra5 02h6

Instruction Format:

This format performs the ‘and’ operation with an immediate value to one of four quadrants of the

target register. It may be used to build a 64 bit constant in a register. The immediate is shifted to

the left by 0, 16, 32, or 48 bits then one extended on both the left and right sides. Note this

instruction will only mask out bits in the selected quadrant.

Immed16 Rt5 23 Q2 3Bh6

Q2 Bits

0 0 to 15

1 16 to 31

2 32 to 47

3 48 to 63

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 32

ASL – Arithmetic Shift Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. A zero is shifted into bit zero. The difference between this instruction and a SHL

instruction is that ASL may cause an arithmetic overflow exception. SHL will never cause an

exception.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

Func6 24 E Rt5 Rb5 Ra5 02h6

Func6 Ah4 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions:

An overflow exception may result if the bits shifted out from the MSB are not the same as the

resulting sign bit and the exception is enabled in the AEC register. Exceptions are only caused by

a word size operation.

P a g e | 33

ASR – Arithmetic Shift Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. The sign bit is shifted into the most significant bits.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

Func6 34 E Rt5 Rb5 Ra5 02h6

Func6 Bh4 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 34

BBC –Branch if Bit Clear
Description:

If the specified bit in a register is clear then an eleven bit sign extended value is shifted left twice

and added to the program counter. The branch is relative to the address of the instruction directly

following the branch.

Instruction Format:

31 22 21 19 11 10 6 5 1 0

Displacement10 P2 13 Bitno6 Ra5 13h5 D1

Operation:

 if (Ra[bitno]=0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

Clock Cycles: 1 with accurate prediction, otherwise 8 or more

Execution Units: FCU Only

Exceptions: none

P a g e | 35

BBS –Branch if Bit Set
Description:

If the specified bit in a register is set then an eleven bit sign extended value is shifted left twice

and added to the program counter. The branch is relative to the address of the instruction directly

following the branch.

Instruction Format:

31 22 21 19 11 10 6 5 1 0

Displacement10 P2 03 Bitno6 Ra5 13h5 D1

Operation:

 if (Ra[bitno]=1)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

Clock Cycles: 1 with accurate prediction, otherwise 8 or more

Execution Units: FCU Only

Exceptions: none

P a g e | 36

Bcc – Conditional Branch
Description:

If the branch condition is true, an eleven bit sign extended value is shifted left twice and added to

the program counter. The branch is relative to the address of the instruction directly following the

branch. The immediate value may not be extended with a prefix instruction.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 Cond4 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 Cond4 Rc5 Rb5 Ra5 03h6

Cond4 Mne.

0 BEQ Ra = Rb signed

1 BNE Ra <> Rb

2 BLT Ra < Rb

3 BGE Ra >= Rb

4 BLTU Ra < Rb (unsigned)

5 BGEU Ra >= Rb (unsigned)

6 reserved

7 BOR Ra || Rb (either Ra or Rb is true)

8 FBEQ Ra = Rb (floating point)

9 FBNE Ra != Rb (floating point)

10 FBLT Ra < Rb (floating point)

11 FBGE Ra >= Rb (floating point)

12 reserved

13 reserved

14 reserved

15 FBUN register Ra contains unordered floating point constant

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 37

Clock Cycles:

Typically 1 with correct branch outcome and target prediction.

P a g e | 38

BCDADD - Register-Register

Description:

Adds two registers using BCD arithmetic and places the result in a target register. Only the low

order byte of the register is used. The result is an eight bit BCD number. The result is zero

extended to 64 bits.

Instruction Format:

006 05 Rt5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra + Rb

Exceptions: none

P a g e | 39

BCDMUL - Register-Register

Description:

Multiplies two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is a 16 bit BCD value. The result is zero

extended to 64 bits.

Instruction Format:

006 25 Rt5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Operation:

Rt = Ra * Rb

Exceptions: none

P a g e | 40

BCDSUB - Register-Register

Description:

Subtracts two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is an eight bit BCD number. The result is zero

extended to 64 bits.

Instruction Format:

006 15 Rt5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra - Rb

Exceptions: none

P a g e | 41

BEQ –Branch if Equal
Description:

If two registers are equal an eleven bit sign extended value is shifted left twice and added to the

program counter. The branch is relative to the address of the instruction directly following the

branch.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 04 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 04 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra <> 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

Clock Cycles: Typically 1 with correct branch outcome and target prediction.

P a g e | 42

BEQI –Branch if Equal Immediate
Description:

If a register is equal to a nine bit sign extended value then an eleven bit sign extended value is

shifted left twice and added to the program counter. The branch is relative to the address of the

instruction directly following the branch. This instruction is useful for implementing case

statements based on small values.

Instruction Format:

31 22 21 19 11 10 6 5 1 0

Displacement10 P2 Immed9 Ra5 19h5 D1

Operation:

 if (Ra = Immediate)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

Clock Cycles: Typically 1 with correct branch outcome and target prediction.

P a g e | 43

BFCHG – Bitfield Change
Description:

A bitfield is inverted in the target register.

Instruction Format:

24 Me6 Mb6 Rt5 Ra5 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 44

BFCLR – Bitfield Clear
Description:

A btifield is cleared in the target register. This is an alternate mnemonic for the bitfield insert

instruction.

Instruction Format:

34 Me6 Mb6 Rt5 05 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 45

BFEXT – Bitfield Extract
Description:

A bitfield is extracted from the source register Ra by shifting to the right and ‘and’ masking. The

result is sign extended to the width of the machine. This instruction may be used to sign extend a

value from an arbitrary bit position.

Instruction Format:

54 Me6 Mb6 Rt5 Ra5 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 46

BFEXTU – Bitfield Extract
Description:

A btifield is extracted from the source register Ra by shifting to the right and ‘and’ masking. The

result is zero extended to the width of the machine. This instruction may be used to zero extend a

value from an arbitrary bit position.

Instruction Format:

64 Me6 Mb6 Rt5 Ra5 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 47

BFINS – Bitfield Insert
Description:

A btifield is inserted into the source register Ra by shifting to the left.

Instruction Format:

34 Me6 Mb6 Rt5 Ra5 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 48

BFINSI – Bitfield Insert Immediate
Description:

A bitfield is inserted into the target register Rt by shifting a constant to the left. The bitfield may

not be larger than five bits. To accommodate a larger field multiple instructions can be used.

Instruction Format:

44 Me6 Mb6 Rt5 Imm5 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 49

BGE –Branch if Greater or Equal
Description:

If register Ra is greater than or equal to register Rb then an eleven bit sign extended value is

shifted left twice and added to the program counter. The branch is relative to the address of the

instruction directly following the branch. This instruction may also be used to branch on less than

or equal by swapping the registers around.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 34 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 34 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra < 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 50

BGEU –Branch if Greater or Equal Unsigned
Description:

If register Ra is greater than or equal to register Rb then an eleven bit sign extended value is

shifted left twice and added to the program counter. The values are treated as unsigned numbers.

The branch is relative to the address of the instruction directly following the branch. This

instruction may also be used to branch on less than or equal by swapping the registers around.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 54 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 54 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra < 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 51

BLT –Branch if Less Than
Description:

If register Ra is less than register Rb then an eleven bit sign extended value is shifted left twice

and added to the program counter. The branch is relative to the address of the instruction directly

following the branch. This instruction may also be used to branch on greater than by swapping

the registers around.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 24 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 24 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra < 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 52

BLTU –Branch if Less Than Unsigned
Description:

If register Ra is less than register Rb then an eleven bit sign extended value is shifted left twice

and added to the program counter. The values are treated as unsigned numbers. The branch is

relative to the address of the instruction directly following the branch. This instruction may also

be used to branch on greater than by swapping the registers around.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 44 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 44 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra < 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 53

BMM – Bit Matrix Multiply
BMM Rt, Ra, Rb

Description:

The BMM instruction treats the bits of register Ra and Rb as an 8x8 bit matrix, performs a bit

matrix multiply of the two registers and stores the result in the target register. An alternate

mnemonic for this instruction is MOR.

Instruction Format:

036 ~3 ~2 Rt5 Rb5 Ra5 02h6

Operation:

for I = 0 to 7

for j = 0 to 7

 Rt.bit[i][j] = (Ra[i][0]&Rb[0][j]) | (Ra[i][1]&Rb[1][j]) | … | (Ra[i][7]&Rb[7][j])

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

Notes:

The bits are numbered with bit 63 of a register representing I,j = 0,0 and bit 0 of the register

representing I,j = 7,7.

P a g e | 54

BNE –Branch if Not Equal
Description:

If two registers are unequal an eleven bit sign extended value is shifted left twice and added to the

program counter. The branch is relative to the address of the instruction directly following the

branch.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 14 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 14 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra <> 0)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 55

BRK – Hardware / Software Breakpoint
Description:

Invoke the break handler routine. The break handler routine handles all the hardware and

software exceptions in the core. A cause code is loaded into the CAUSE CSR register. The break

handler should read the CAUSE code to determine what to do. The break handler is located by

TVEC[0]. This address should contain a jump to the break handler. Note the reset address is

$FFFC0100. An exception will automatically switch the processor to the machine level operating

mode. The break handler routine may redirect the exception to a lower level using the REX

instruction.

For hardware interrupts a register set is selected automatically according to the hardware interrupt

level (0 to 7). For a software interrupt register set #8 is selected. Registers from alternate register

sets are available with the MOV instruction.

The core maintains an internal eight level interrupt stack for each of the following:

Item Stacked CSR reg

program counter pc_stack

operating level ol_stack available as a single CSR

privilege level pl_stack available as a single CSR

interrupt mask im_stack available as a single CSR

register set rs_stack available as a single CSR

If further nesting of interrupts is required the stacks may be copied to memory as they are

available from CSR’s.

On stack underflow a break exception is triggered.

Instruction Format:

31 24 23 19 18 16 15 14 6 5 0

User8 WS5 L3 ~ Cause Code9 00h6

WS = word skip 1 = software interrupt – return address is next instruction

WS = 0 = hardware interrupt – return address is current instruction

L3 = the priority level of the hardware interrupt, the priority level at time of interrupt is recorded

in the instruction, the interrupt mask will be set to this level when the instruction commits. This

field is not used for software interrupts and should be zero.

Cause Code = numeric code associated with the cause of the interrupt.

The User8 field may be used to pass constant data to the break handler.

P a g e | 56

CACHE – Cache Command

CACHEX –

CACHE Cmd, d(Rn)

CACHE Cmd, d(Ra + Rb * scale)

Description:

This instruction commands the cache controller to perform an operation. Commands are

summarized in the command table below.

Instruction Formats:

 Displacement16 Cmd5 Ra5 1Eh6 CACHE Cmd,d16(Rn)

1Eh6 ~3 Sc2 Cmd5 Rb5 Ra5 02h6 CACHE Cmd,d(Ra+Rb*sc)

Commands:

Cmd5 Mne. Operation

00h reserved

01h reserved

02h inviline invalidate instruction cache line

03h invic invalidate entire instruction cache (address is ignored)

10h disabledc disable data cache

11h enabledc enable data cache

12h invalidate data cache line

13h invdc invalidate entire data cache (address is ignored)

Operation:

Register Indirect with Displacement Form

Line = round32(sign extend(memory[displacement + Ra]))

Register-Register Form

Line = round32(sign extend(memory[Ra + Rb * scale]))

Notes:

The displacement constant may be extended up to 64 bits.

Sc2 Code Multiply By

0 1

1 2

2 4

P a g e | 57

3 8

P a g e | 58

CALL – Call Subroutine
Description:

Call a subroutine. This instruction is a longer address form than the JAL instruction and has the

link register as an implied target for the return address. This is the preferred method to call a

subroutine. If a larger address range is required then the address must be loaded into a register

and the JAL instruction used.

Instruction Format:

The address of the following instruction is stored in the link register. The format shifts the

address field of the instruction by two bits to the left then modifies only PC bits 0 to 27. The high

order PC bits are not affected. This allows accessing a subroutine within a 256MB region of

memory. Note that with the use of a mmu this address range is often sufficient.

Address[27..2] 19h6

The change of address takes place during the fetch stage of the core. This makes the instruction

faster than other alternatives.

Execution Units: FCU

Clock Cycles: 1

Exceptions: none

Notes:

There is no need for the instruction queue to flush as the address is entirely determined during the

fetch stage.

P a g e | 59

CAS – Compare and Swap
Description:

If the contents of the addressed memory cell is equal to the contents of CAS register then a sixty-

four bit value is stored to memory from the source register Rst and Rst is set equal to one.

Otherwise Rst is set to zero and the contents of the memory cell is loaded into the CAS register.

The memory address is the sum of the sign extended displacement and register Ra. The compare

and swap operation is an atomic operation; the bus is locked during the load and potential store

operation. This operation assumes that the addressed memory location is part of the volatile

region of memory and bypasses the data cache. Note that the memory system must support bus

locks in order for this instruction to work as expected.

This instruction is typically used to implement semaphores. The LWR and SWC may also be

used to perform a similar function where the memory system does not support bus locks, but

support address reservations instead.

Instruction Format:

Disp16 Rst5 Ra5 25h6

Operation:

if memory[Ra+displacement] = casreg

memory[Ra + displacement] = Rst

Rst = 1

else

casreg = memory [Ra + displacement]

 Rst = 0

Assembler:

CAS Rt, displacement[Ra]

P a g e | 60

CHK – Check Register Against Bounds
Description:

A register is compared to two values. If the register is outside of the bounds defined by Rb and Rc

or an immediate value then an exception will occur. Ra must be greater than or equal to Rb and

Ra must be less than Rc or the immediate.

Instruction Format:

31 16 15 11 10 6 5 0

Immediate16 Rb5 Ra5 34h6

31 26 25 21 20 16 15 11 10 6 5 0

34h6 ~5 Rc5 Rb5 Ra5 02h5

Clock Cycles: 1

Exceptions: bounds check

Notes:

P a g e | 61

CLI – Clear Interrupt Mask
Description:

The interrupt level mask is set to zero enabling all interrupts. This is an alternate mnemonic for

the SEI instruction where the mask level to set is set to zero by the assembler.

Instruction Format:

306 ~7 03 ~5 05 02h6

Clock Cycles: 0.5

P a g e | 62

CMOVEQ – Conditional Move Equal
Description:

The conditional move if equal instruction moves the contents of register Rb to the target register

Rt if Ra is zero. Otherwise the contents of register Rc are moved to the target register.

Instruction Format:

28h6 Rt5 Rc5 Rb5 Ra5 02h6

Clock Cycles: 0.5

CMOVNE – Conditional Move Not Equal
Description:

The conditional move if not equal instruction moves the contents of register Rb to the target

register Rt if Ra is non-zero. Otherwise the contents of register Rc are moved to the target

register.

Instruction Format:

29h6 Rt5 Rc5 Rb5 Ra5 02h6

Clock Cycles: 0.5

P a g e | 63

CMP – Signed Comparison
Description:

The compare instruction places a 1, 0 or -1 in the target register based on the relationship between

the two source operands. If they are equal a zero is placed in the target register, if register Ra is

less than the second operand then a -1 is placed in the target register, otherwise a 1 is placed in

the target register. The values are treated as signed operands. The immediate constant is sign

extended to the width of the machine.

Instruction Format:

Immed16 Rt5 Ra5 06h6

06h6 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Parallel Operand (SIMD) compare

19h6 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Sz2

0 Byte

1 Char

2 Half

3 Word

Cnd3

0 CMP

2 SEQ

3 SNE

4 SLT

5 SGE

6 SLE

7 SGT

P a g e | 64

CMPU – Unsigned Comparison
Description:

The compare instruction places a 1, 0 or -1 in the target register based on the relationship between

the two source operands. If they are equal a zero is placed in the target register, if register Ra is

less than the second operand then a -1 is placed in the target register, otherwise a 1 is placed in

the target register. The values are treated as unsigned operands. Note the immediate constant is

sign extended but otherwise treated as an unsigned value.

Instruction Format:

Immed16 Rt5 Ra5 07h6

07h6 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Parallel Operand (SIMD) compare

1Ah6 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Sz2

0 Byte

1 Char

2 Half

3 Word

Cnd3

0 CMPU

4 SLTU

5 SGEU

6 SLEU

7 SGTU

P a g e | 65

CNTLO – Count Leading Ones
Description:

Count the number of leading ones (starting at the MSB) and place the count in the target register.

Instruction Format:

016 ~3 Sz2 15 Rt5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz2

0 Byte

1 Char

2 Half

3 Word

P a g e | 66

CNTLZ – Count Leading Zeros
Description:

Count the number of leading zeros (starting at the MSB) and place the count in the target register.

Instruction Format:

016 ~3 Sz2 05 Rt5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz2

0 Byte

1 Char

2 Half

3 Word

P a g e | 67

CNTPOP – Count Population
Description:

Count the number of ones and place the count in the target register.

Instruction Format:

016 ~3 Sz2 25 Rt5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz2

0 Byte

1 Char

2 Half

3 Word

P a g e | 68

CSR – Control and Status Access
Description:

The CSR instruction group provides access to control and status registers in the core. For the

read-write operation the current value of the CSR is placed in the target register Rt then the CSR

is updated from register Ra. The CSR read / update operation is an atomic operation.

Instruction Format:

Op2 OL3 Regno11 Rt5 Ra5 0Eh6

Op2 Operation

0 CSRRD Only read the CSR, no update takes place, Ra should be R0.

1 CSRRW Both read and write the CSR

2 CSRRS Read CSR then set CSR bits

3 CSRRC Read CSR then clear CSR bits

CSRRS and CSRRC operations are only valid on registers that support the capability.

The OL3 field is reserved to specify the operating level. Note that registers cannot be accessed by

a lower operating level.

Regno12 Access Description

001 HARTID R hardware thread identifier (core number)

002 TICK R tick count, counts every cycle from reset

030-037 TVEC RW trap vector handler address

040 EPC RW exceptioned pc, pc value at point of exception

044 STATUSL RWSC status register, contains interrupt mask, operating level

045 STATUSH RW status register bits 64 to 127

080-0BF CODE RW code buffers

7F0 INFO R Manufacturer name

7F1 “ R “

7F2 “ R cpu class

7F3 “ R “

7F4 “ R cpu name

7F5 “ R “

7F6 “ R model number

7F7 “ R serial number

7F8 “ R cache sizes instruction (bits 32 to 63), data (bits 0 to 31)

Clock Cycles: 0.5

P a g e | 69

DBNZ –Decrement, Branch if Not Zero
Description:

If the specified register is non-zero then an eleven bit sign extended value is shifted left twice and

added to the program counter. The branch is relative to the address of the instruction directly

following the branch. The register is also decremented by one.

Instruction Format:

31 22 21 19 11 10 6 5 1 0

Displacement10 P2 73 06 Ra5 13h5 D1

Operation:

 if (Ra<>0)

 pc = pc + displacement

Ra = Ra - 1

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

Clock Cycles: 1 with accurate prediction, otherwise 8 or more

Execution Units: FCU Only

Exceptions: none

P a g e | 70

DIV – Signed Division
Description:

Compute the quotient. The first operand must be in a register. The second operand may be in

either a register or an immediate value specified in the instruction. The operands are treated as

signed values and the result is a signed result. Note that for the registered form of the instruction

both the quotient and remainder may be calculated at the same time.

Instruction Format:

Immed16 Rt5 Ra5 3Eh6

Return quotient

3E6 02 Sz3 Rt5 Rb5 Ra5 02h6

Return remainder

3E6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 71

DIVSU – Signed-Unsigned Division
Description:

Compute the quotient value. The first operand must be in a register. The second operand may be

in either a register or an immediate value specified in the instruction. The first operand is treated

as a signed value. The second operand is an unsigned value. The result is a signed result.

Instruction Format:

Immed16 Rt5 Ra5 3Dh6

Return quotient

3Dh6 02 Sz3 Rt5 Rb5 Ra5 02h6

Return remainder

3Dh6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exception: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 72

DIVU – Unsigned Division
Description:

Compute the quotient value. The first operand must be in a register. The second operand may be

in either a register or an immediate value specified in the instruction. The operands are treated as

unsigned values and the result is an unsigned result.

Instruction Format:

Immed16 Rt5 Ra5 3Ch6

Return quotient

3Ch6 02 Sz3 Rt5 Rb5 Ra5 02h6

Return remainder

3Ch6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 73

EXEC – Execute Code Buffer
Description:

Execute code from code buffer. The N6 field specifies the code buffer to use. Code buffers allow

code to be adapted at run-time. This is useful as an alternative to self-modifying code when code

has to change at runtime.

Instruction Format:

~10 N6 ~5 ~5 1Fh6

Clock Cycles: Minimum 0.5 – depends on the instruction in the code buffer

P a g e | 74

JAL – Jump-And-Link
Description:

Instruction Format:

This instruction loads the program counter with the sum of a register and a constant value

specified in the instruction. In addition the address of the instruction following the JAL is stored

in the specified target register. This instruction may be used to implement subroutine calls and

returns. The two least significant bits of the program counter are forced to zero.

Immed16 Rt5 Ra5 18h6

Execution Units: FCU

Clock Cycles:

P a g e | 75

JMP – Jump to Address
Description:

A jump is made to the address specified in the instruction. The format first shifts the address field

of the instruction by two bits to the left then modifies only PC bits 0 to 27. The high order PC bits

are not affected. This allows accessing code within a 256MB region of memory. Note that with

the use of a mmu this address range is often sufficient. If a larger address range is required the

JAL instruction must be used.

Instruction Format:

Address[27..2] 28h6

Execution Units: FCU

Clock Cycles: 1

Exceptions: none

Notes:

The jump instruction executes immediately during the fetch stage of the core. This makes it much

faster than a JAL.

P a g e | 76

LB – Load Byte
Description:

This instruction loads a byte (8 bit) value from memory. The value is sign extended to 64 bits

when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 13h6

13h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 77

LBO – Load Byte Only
Description:

This instruction loads a byte (8 bit) value from memory. Only the lower eight bits of the target

register are updated, the upper bits of the register are not affected. This instruction may be used to

perform unaligned memory loads when combined with a shift instruction.

Instruction Format:

Immed16 Rt5 Ra5 2Ah6

2Ah6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 78

LBU – Load Unsigned Byte
Description:

This instruction loads a byte (8 bit) value from memory. The value is zero extended to 64 bits

when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 23h6

23h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 79

LC – Load Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. The value is sign extended to 64 bits

when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 20h6

20h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 80

LCO – Load Char Only (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. Only the low order sixteen bits of the

target register are updated, the remaining bits are not affected.

Instruction Format:

Immed16 Rt5 Ra5 2Bh6

2Bh6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 81

LCU – Load Unsigned Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. The value is zero extended to 64 bits

when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 21h6

21h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 82

LDI – Load Immediate
Description:

This instruction loads an immediate value into a register. It is an alternate mnemonic for the OR

instruction.

Instruction Format:

Immed16 Rt5 05 09h6

Clock Cycles: 0.5

P a g e | 83

LEAX – Load Effective Address
Description:

This instruction loads an address value into a register.

Instruction Format:

This instruction format is simply an alternate mnemonic and representation for the ADD

instruction. The ADD instruction is sufficient to calculate the effective address for register

indirect with displacement addressing.

Immed16 Rt5 Ra5 04h6

This instruction format is of the indexed load / store format, but places the calculated address in

the target register rather than fetching or storing data.

18h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 84

LH – Load Half-Word (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. The memory address must be

half-word aligned. The value is sign extended to 64 bits when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 10h6

10h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 85

LHO – Load Half-Word Only (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. The memory address must be

half-word aligned. Only the lower 32 bits of the register are updated, the remaining bits are

unchanged.

Instruction Format:

Immed16 Rt5 Ra5 35h6

35h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 86

LHU – Load Half-Word (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. The memory address must be

half-word aligned. The value is zero extended to 64 bits when placed in the target register.

Instruction Format:

Immed16 Rt5 Ra5 11h6

11h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 87

LVB – Load Volatile Byte (8 bits)
Description:

This instruction loads a byte (8 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory.

Instruction Format:

04 Immed12 Rt5 Ra5 3Bh6

3Bh6 03 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 88

LVBU – Load Volatile Unsigned Byte (8 bits)
Description:

This instruction loads a byte (8 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory.

Instruction Format:

14 Immed12 Rt5 Ra5 3Bh6

3Bh6 13 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 89

LVC – Load Volatile Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory.

Instruction Format:

24 Immed12 Rt5 Ra5 3Bh6

3Bh6 23 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 90

LVW – Load Volatile Word (64 bits)
Description:

This instruction loads a word (64 bit) value from memory. The memory address must be word

aligned. This load instruction bypasses the data cache and loads directly from memory.

Instruction Format:

64 Immed12 Rt5 Ra5 3Bh6

3Bh6 63 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 91

LW – Load Word (64 bits)
Description:

This instruction loads a word (64 bit) value from memory. The memory address must be word

aligned.

Instruction Format:

Immed16 Rt5 Ra5 12h6

12h6 ~3 Sc2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 92

LWR – Load Word and Reserve Address
Description:

This instruction loads a word (64 bit) value from memory and places a reservation on the address.

The memory address must be word aligned. This instruction activates the sr_o signal output by

the core. It relies on external hardware to implement the address reservation. This instruction

performs an un-cached load operation.

Instruction Format:

Immed16 Rt5 Ra5 1Dh6

1Dh6 A R Sc3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Acquire and release bits determine the ordering of memory operations.

A = acquire – no following memory operations can take place before this one

R = release – this memory operation cannot take place before prior ones.

All combinations of A, R are allowed.

P a g e | 93

MAJ – Majority Logic

Description:

Determines the majority logic bits of three values in registers Ra, Rb, and Rc and places the result

in the target register Rt.

Instruction Format:

2Eh6 Rt5 Rc5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = (Ra & Rb) | (Ra & Rc) | (Rb & Rc)

P a g e | 94

MAX – Maximum Value

Description:

Determines the maximum of two values in registers Ra, Rb and places the result in the target

register Rt.

Instruction Format:

2Dh6 ~2 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra > Rb

Rt = Ra

else

 Rt = Rb

P a g e | 95

MEMDB –Memory Data Barrier
Description:

All memory instructions before the MEMDB are completed and committed to the architectural

state before memory instructions after the MEMDB are issued. This instruction is used to ensure

that the memory state is valid before subsequent instructions are executed.

Instruction Format:

01h6 ~5 10h5 ~5 ~5 02h6

Clock Cycles: varies depending on queue contents

P a g e | 96

MEMSB –Memory Synchronization Barrier
Description:

This instruction is similar to the SYNC instruction except that it applies only to memory

operations. All instructions before the MEMSB are completed and committed to the architectural

state before memory instructions after the MEMSB are issued. This instruction is used to ensure

that the memory state is valid before subsequent instructions are executed.

Instruction Format:

01h6 ~5 11h5 ~5 ~5 02h6

Clock Cycles: varies depending on queue contents

P a g e | 97

MIN – Minimum Value

Description:

Determines the minimum of two values in registers Ra, Rb and places the result in the target

register Rt.

Instruction Format:

2Ch6 ~2 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra < Rb

Rt = Ra

else

 Rt = Rb

P a g e | 98

MOD – Signed Modulus
Description:

Compute the modulus (remainder) value. The first operand must be in a register. The second

operand may be in either a register or an immediate value specified in the instruction. The

operands are treated as signed values and the result is a signed result.

Instruction Format:

Immed16 Rt5 Ra5 2Eh6

Return remainder

3E6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 99

MODSU – Signed-Unsigned Modulus
Description:

Compute the modulus (remainder) value. The first operand must be in a register. The second

operand may be in either a register or an immediate value specified in the instruction. The first

operand is treated as a signed value. The second operand is an unsigned value. The result is a

signed result.

Instruction Format:

Immed16 Rt5 Ra5 2Dh6

Return remainder

3Dh6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 100

MODU – Unsigned Modulus
Description:

Compute the modulus (remainder) value. The first operand must be in a register. The second

operand may be in either a register or an immediate value specified in the instruction. The

operands are treated as unsigned values and the result is an unsigned result.

Instruction Format:

Immed16 Rt5 Ra5 2Ch6

Return remainder

3Ch6 12 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 101

MOV – Move register to register
Description:

This instruction moves one general purpose register to another including between different

register sets. This instruction may be used to move between the integer and floating point

registers or between normal and excepted register sets.

Instruction Format:

22h6 D3 ~1 Rgs6 Rt5 Ra5 02h6

D3 Asm Sample Operation

0 mov r6:1,r1 move from current Ra to Rt in register set Rgs

1 mov r1,r6:1 move from Ra in register set Rgs to Rt in current register set

2 mov r7:x,r2 move from current Ra to Rt in excepted register set (Rgs is ignored).

3 mov r7,r2:x move from Ra in excepted register to Rt in current register set.

4 mov fp8,r3 move from Ra in current register set to Rt in floating point register set

5 mov r3,fp9 move from floating point to general register file in current register set

6 reserved

7 mov r15,r23 move from current Ra to current Rt (rgs ignored).

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

Notes:

The exceptioned register set referred to by the instruction is the one identified by the top stack

element of the rs_stack.

P a g e | 102

MUL – Signed Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as signed values, the result is a signed result. For the registered form of the instruction both the

high order and low order halves of the result are available. For the immediate form of the

instruction, only the low order half (bits 0 to 63) of the product is available.

Instruction Format:

Immed16 Rt5 Ra5 3Ah6

Multiply, return low order product

3Ah6 03 Sz2 Rt5 Rb5 Ra5 02h6

 Multiply, return high order product

3Ah6 13 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 19

P a g e | 103

MULSU – Signed-Unsigned Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. The first operand is treated as a

signed value. The second operand is treated as an unsigned value. The result is a signed result.

Instruction Format:

Immed16 Rt5 Ra5 39h6

Multiply, return low order product

39h6 03 Sz2 Rt5 Rb5 Ra5 02h6

 Multiply, return high order product

39h6 13 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 19

P a g e | 104

MULU – Unsigned Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as unsigned values. The result is an unsigned result.

Instruction Format:

Immed16 Rt5 Ra5 38h6

Multiply, return low order product

38h6 03 Sz2 Rt5 Rb5 Ra5 02h6

 Multiply, return high order product

38h6 13 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 19

Exceptions: none

P a g e | 105

MUX – Multiplex
Description:

The MUX instruction performs a bit-by-bit copy of a bit of Rb to the target register if the

corresponding bit in Ra is set, or a copy of a bit from Rc if the corresponding bit in Ra is clear.

Instruction Format:

1Bh6 Rt5 Rc5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 106

NAND – Bitwise Nand
Description:

Perform a bitwise and operation between two operands then invert the result. Both operands must

be in registers.

Instruction Format:

0C6 ~2 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 107

NEG - Negate
Description:

This is an alternate mnemonic for the SUB instruction where the first register operand is R0.

Instruction Format:

056 ~2 Sz3 Rt5 Rb5 05 02h6

Clock Cycles: 0.5

P a g e | 108

NOP – No Operation
Description:

The NOP instruction doesn’t perform any operation. NOP’s are detected in the instruction fetch

stage of the core and are not enqueued by the core. They do not occupy queue slots. Because

NOPs don’t occupy queue slots they may not be used to synchronize operations between

instructions.

Instruction Format:

Immediate26 1Ch6

P a g e | 109

NOR – Bitwise Nor
Description:

Perform a bitwise or operation between two operands then invert the result. Both operands must

be in registers.

Instruction Format:

0D6 ~3 Sz3 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 110

OR – Bitwise Or
Description:

Perform a bitwise or operation between operands.

Instruction Format:

The immediate value is sign extended to the left before use.

Rt = Ra | immed

Immed16 Rt5 Ra5 09h6

Rt = Ra | Rb

096 ~2 Sz3 Rt5 Rb5 Ra5 02h6

Instruction Format:

This format performs the ‘or’ operation with an immediate value to one of four quadrants of the

target register. It may be used to build a 64 bit constant in a register. The immediate constant is

zero extended then shifted to the left by 0, 16, 32, or 48 bits.

Immed16 Rt5 03 Q2 1Ah6

Q2 Bits

0 0 to 15

1 16 to 31

2 32 to 47

3 48 to 63

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 111

RET – Return from Subroutine
Description:

This instruction performs a subroutine return by loading the program counter with the contents of

the return address register. Additionally, the stack pointer is adjusted by a constant supplied in the

instruction. The immediate constant should be a multiple of eight to keep the stack word aligned.

Instruction Format:

Immed16 1Dh5 1Fh5 29h6

PC = RA

SP = SP + Immediate

Clock Cycles: 1 (more if predicted incorrectly).

Exceptions: none

Notes:

The RET instruction is detected and used at the fetch stage of the processor to update the RSB.

P a g e | 112

REX – Redirect Exception
Description:

This instruction redirects an exception from an operating level to a lower operating level and

privilege level. If the target operating level is hypervisor then the hypervisor privilege level (1) is

set. If the target operating level is supervisor then one of the supervisor privilege levels must be

chosen (2 to 6). This instruction if successful jumps to the target exception handler and does not

return. If this instruction fails execution will continue with the next instruction.

This instruction may fail if exceptions are not enabled at the target level.

When redirecting the target privilege level is set to the bitwise ‘or’ of an immediate constant

specified in the instruction and register Ra. One of these two values should be zero. The result

should be a value in the range 2 to 255. The instruction will not allow setting the privilege level

numerically less than the operating level.

The location of the target exception handler is found in the trap vector register for that operating

level (tvec[xx]).

The cause (cause) and bad address (badaddr) registers of the originating level are copied to the

corresponding registers in the target level.

The REX instruction also specifies the interrupt mask level to set for further processing.

Attempting to redirect the operating level to the machine level (0) will be ignored. The instruction

will be treated as a NOP with the exception of setting the interrupt mask register.

Instruction Format:

31 27 26 24 23 16 1514 13 11 10 6 5 0

~5 IM3 PL8 ~2 Tgt3 Ra5 0Dh6

Tgt3

0 not used

1 redirect to hypervisor level

2 redirect to supervisor level

3 redirect to supervisor level

4 redirect to supervisor level

5 redirect to supervisor level

6 redirect to supervisor level

7 not used

Clock Cycles: 3

Example:

P a g e | 113

REX 5,12,r0 ; redirect to supervisor handler, privilege level two

; If the redirection failed, exceptions were likely disabled at the target level.

; Continue processing so the target level may complete it’s operation.

RTI ; redirection failed (exceptions disabled ?)

Notes:

Since all exceptions are initially handled at the machine level the machine level handler must

check for disabled lower level exceptions.

P a g e | 114

ROL – Rotate Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. The most significant bit is shifted into bit zero.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

Func6 44 E Rt5 Rb5 Ra5 02h6

Func6 Ch4 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 115

ROR – Rotate Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. The bit zero is shifted into the most significant bits.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

Func6 54 E Rt5 Rb5 Ra5 02h6

Func6 Dh4 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 116

RTI – Return from Interrupt
Description:

Return from an interrupt subroutine. The interrupted program counter is loaded into the program

counter register. The internal interrupt stack is popped and the operating level, privilege level,

interrupt mask level, and register set are reset to values before the exception occurred. Optionally

a semaphore bit in the semaphore register is cleared. The least significant bit of the semaphore

register (the reservation status bit) is always cleared by this instruction.

Instruction Format:

32h6 ~4 Sema6 ~5 Ra5 02h6

Semaphore[Sema6|[Ra]] = 0

Clock Cycles: 8 minimum

Execution Units: Flow Control Unit

P a g e | 117

RTE – Return from Exception
Description:

This is an alternate mnemonic for the RTI instruction.

Instruction Format:

32h6 ~4 Sema6 ~5 Ra5 02h6

Semaphore[Sema6|[Ra]] = 0

Clock Cycles:

P a g e | 118

SB – Store Byte
Description:

This instruction stores a byte (8 bit) value to memory.

Instruction Format:

Immed16 Rb5 Ra5 15h6

15h6 ~3 Sc2 Rc5 Rb5 Ra5 02h6

Operation:

Memory8[Ra + immediate] = Rb

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Notes:

Stores always write through to memory and therefore take a significant number of clock cycles

before they are ready to be committed. Exceptions are checked for during the execution of a store

operation.

P a g e | 119

SC – Store Char (16 bits)
Description:

This instruction stores a char (16 bit) value to memory. The memory address must be char (16

bit) aligned.

Instruction Format:

Immed16 Rb5 Ra5 24h6

24h6 ~3 Sc2 Rc5 Rb5 Ra5 02h6

Operation:

Memory16[Ra + immediate] = Rb

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 120

Scc – Set
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands.

Instruction Format:

Cond4 Immed12 Rt5 Ra5 1Bh6

Signed

066 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Unsigned

076 Cnd3 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Cond3 / Cond4

0 CMP / CMPU

2 SEQ

3 SNE

4 /12 SLT / SLTU

5 /13 SGE / SGEU

6 /14 SLE / SLEU

7 /15 SGT / SGTU

Sz2

0 Byte

1 Char

2 Half

3 Word

P a g e | 121

SEI – Set Interrupt Mask
SEI #3

Description:

The interrupt level mask is set to the value specified by the instruction. The value used is the

bitwise or of the contents of register Ra and an immediate (M3) supplied in the instruction. The

assembler assumes a mask value of seven, masking all interrupts, if no mask value is specified.

Usually either M3 or Ra should be zero.

Instruction Format:

306 ~4 ~3 M3 ~5 Ra5 02h6

Operation:

im = M3 | Ra

P a g e | 122

SGN – Get Sign
Description:

The SGN instruction places a 1, 0 or -1 in the target register depending on the sign of the source

operand. This instruction is an alternate mnemonic for the compare instruction where the value is

compared to zero.

Instruction Format:

066 ~3 Sz2 Rt5 05 Ra5 02h6

Clock Cycles: 0.5

Sz2

0 Byte

1 Char

2 Half

3 Word

P a g e | 123

SH – Store Half-Word (32 bits)
Description:

This instruction stores a half-word (32 bit) value to memory. The memory address must be half-

word aligned.

Instruction Format:

Immed16 Rb5 Ra5 14h6

14h6 ~3 Sc2 Rc5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 124

SHL – Shift Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. Zeros are shifted into the least significant bits.

Instruction Format:

Func6 04 E Rt5 Rb5 Ra5 02h6

E indicates to update all lanes of target register.

Func6 84 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 125

SHR – Shift Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. Zeros are shifted into the most significant bits.

For the sub-word forms the result is zero extended to 64 bits.

Instruction Format:

Func6 14 E Rt5 Rb5 Ra5 02h6

Func6 94 Imm6 Rt5 Ra5 02h6

Func6 Op Size If E set

0Fh word word

1Fh byte byte parallel

2Fh char char parallel

3Fh half half parallel

Clock Cycles: 1

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 126

SUB - Subtract
Description:

Subtract two values. Both operands must be in a register.

Instruction Format:

056 ~2 Ov Sz2 Rt5 Rb5 Ra5 02h6

Ov

0 no overflow

1 overflow exception if overflow occurred and enabled in AEC

Overflow works properly only on 64 bit values.

Clock Cycles: 0.5

Exceptions:

The registered form of the instruction may cause an overflow exception if enabled in the AEC

register.

P a g e | 127

SW – Store Word (64 bits)
Description:

This instruction stores a word (64 bit) value to memory. The memory address must be word

aligned.

Instruction Format:

Immed16 Rb5 Ra5 16h6

16h6 ~3 Sc2 Rc5 Rb5 Ra5 02h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 128

SWC – Store Word and Clear Reservation
Description:

This instruction conditionally stores a word (64 bit) value to memory and clears any memory

reservation that was previously set at the address. If the memory address was reserved at the time

of the store the store will succeed, otherwise the data is not stored. The previous status of the

reservation is copied to the least significant bit of the semaphore register. This instruction

depends on external hardware to implement the reservation. The instruction activates the cr_o

signal output by the core. The memory address must be word aligned. This instruction should be

both preceded and succeeded by SYNC instructions to ensure that the reservation status bit is

updated correctly in the semaphore CSR.

Instruction Format:

Immed16 Rb5 Ra5 17h6

17h6 A R Sc3 Rc5 Rb5 Ra5 02h6

Side Effect: the reservation status bit (bit 0) in the semaphore register is set accordingly.

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Acquire and release bits determine the ordering of memory operations.

A = acquire – no following memory operations can take place before this one

R = release – this memory operation cannot take place before prior ones.

All combinations of A, R are allowed.

P a g e | 129

SYNC -Synchronize
Description:

All instructions before the SYNC are completed and committed to the architectural state before

instructions after the SYNC are issued. This instruction is used to ensure that the machine state is

valid before subsequent instructions are executed.

Instruction Format:

01h6 05 12h5 ~5 ~5 02h6

Clock Cycles: 1 *varies depending on queue contents

Execution Units: All ALU’s

Notes:

This instruction may be used with CSR register access as the core does not provide bypassing on

the CSR registers. Issuing a sync instruction before reading a CSR will ensure that any

outstanding updates to the CSR will be completed before the read.

P a g e | 130

WAIT – Wait For Signal

Description:

This instruction causes the core to pause execution during the execute phase of the instruction

until an external signal is true. Note that instructions already in the queue before the wait will

continue to execute to completion. Also additional instructions may be fetched after the wait

instruction however they will not be able to update the state of the machine until the wait is done.

The signal to wait for is specified as the union of register Ra and an immediate value. Either Ra

or the immediate value should be zero.

A timeout for the wait may be specified in register Rb. If a timeout is not desired use R0 for Rb

and the instruction will wait indefinitely.

Instruction Formats:

316 ~5 Imm5 Rb5 Ra5 02h6

Operation:

if (no signal)

 delay instruction

else

 mark instruction done

Notes:

This instruction waits for a signal to occur before proceeding.

P a g e | 131

XNOR – Bitwise Exclusive Nor
Description:

Perform a bitwise exclusive or operation between two operands then invert the result. Both

operands must be in registers.

Instruction Format:

0E6 ~3 Sz2 Rt5 Rb5 Ra5 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 132

XOR – Bitwise Exclusive Or
Description:

Perform a bitwise exclusive or operation between operands.

Instruction Format:

The immediate constant is sign extended to the left before use.

Immed16 Rt5 Ra5 0Ah6

Rt = Ra ^ Rb ^ Rc

0A6 ~3 Sz2 Rt5 Rb5 Ra5 02h6

Instruction Format:

This format performs the ‘xor’ operation with an immediate value to one of four quadrants of the

target register. The immediate constant is zero extended then shifted to the left by 0, 16, 32, or 48

bits.

Immed16 Rt5 33 Q2 1Ah6

Q2 Bits

0 0 to 15

1 16 to 31

2 32 to 47

3 48 to 63

Clock Cycles: 0.5

P a g e | 133

Floating Point

Overview

The floating-point unit provides basic floating-point operations including addition, subtraction,

multiplication, division, square root, and float to integer and integer to float conversions. The core

contains only a single floating-point unit. Only double precision floating point operations are

supported. The core automatically uses odd numbered register sets for the floating-point registers.

For instance, if register set #16 is selected the corresponding floating-point registers are in

register set #17. The floating-point registers may also be used as integer registers by selecting an

odd numbered register set if floating-point is not required.

The precision field (prec2) should be set to 1.

The rounding mode is normally specified by the rounding mode bits in the floating-point control

and status register. However, it may be overridden by specification of a rounding mode in the

instruction.

Representation

The floating-point format is an IEEE-754 representation for double precision. Briefly,

Double Precision Format:

63 62 61 52 51 0

SM SE Exponent Mantissa

SM – sign of mantissa

SE – sign of exponent

The exponent and mantissa are both represented as two’s complement numbers, however the sign

bit of the exponent is inverted.

SeEEEEEEEEEE

11111111111 Maximum exponent

….

01111111111 exponent of zero

….

00000000000 Minimum exponent

The exponent ranges from -1024 to +1023 for double precision numbers

Instruction Format
31 26 25 24 23 21 20 16 15 11 10 6 5 0

Func6 Prec2 Rm3 Rt5 Rb5 Ra5 0Bh6

Not all instructions required the Rb5 field. If not required Rb should be set to zero.

P a g e | 134

FABS – Floating Absolute Value

Description:

Take the absolute value of the floating-point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is set to zero. No rounding of the number occurs.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

15h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 135

FADD – Floating point addition

Description:

Add two floating point numbers in registers Ra and Rb and place the result into target register Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

046 Prec2 Rm3 Rt5 Rb5 Ra5 0Fh6

Clock Cycles: 10

Execution Units: Floating Point

P a g e | 136

FBEQ –Branch if Equal
Description:

If two registers are equal an eleven bit sign extended value is shifted left twice and added to the

program counter. The branch is relative to the address of the instruction directly following the

branch. The displacement value may not be extended with a prefix instruction. Note that positive

and negative zero are treated as equal.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 84 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 84 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra = Rb)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 137

FBGE –Branch if Greater than or Equal
Description:

If register Ra is greater than or equal to register Rb an eleven bit sign extended value is shifted

left twice and added to the program counter. The branch is relative to the address of the

instruction directly following the branch. The displacement value may not be extended with a

prefix instruction. A branch on less than or equal may be achieved by swapping registers.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 Bh4 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 Bh4 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra >= Rb)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 138

FBLT –Branch if Less Than
Description:

If register Ra is less than register Rb an eleven bit sign extended value is shifted left twice and

added to the program counter. The branch is relative to the address of the instruction directly

following the branch. The displacement value may not be extended with a prefix instruction. A

branch on greater than may be achieved by swapping the registers.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 Ah4 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 Ah4 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra < Rb)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 139

FBNE –Branch if Not Equal
Description:

If two registers are unequal an eleven bit sign extended value is shifted left twice and added to the

program counter. The branch is relative to the address of the instruction directly following the

branch. Note that positive and negative zero are treated as equal.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 94 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 94 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra <> Rb)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 140

FBUN –Branch if Unordered
Description:

If the comparison is unordered an eleven bit sign extended value is shifted left twice and added to

the program counter. The branch is relative to the address of the instruction directly following the

branch. The displacement value may not be extended with a prefix instruction.

Instruction Format:

31 22 21 19 16 15 11 10 6 5 1 0

Displacement10 P2 Fh4 Rb5 Ra5 18h5 D1

A branch to a value computed in a register may be performed using the instruction format shown

below. Rc contains the target address which is an absolute address.

31 27 26 24 21 20 16 15 11 10 6 5 0

~5 P2 Fh4 Rc5 Rb5 Ra5 03h6

Operation:

 if (Ra ? Rb)

 pc = pc + displacement

The P2 field is reserved for branch prediction hints.

P2 Prediction Type

0 no static prediction (use branch history)

1 reserved

2 always predict as not-taken

3 always predict as taken

If a branch prediction is supplied, then the branch instruction doesn’t occupy room in the history

tables.

P a g e | 141

FCMP - Float Compare

Description:

The register compare instruction compares two registers as floating point values and sets the flags

in the target register as a result.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

066 Prec2 Rm3 Rt5 Rb5 Ra5 0Bh6

Clock Cycles: 2

Execution Units: FPU

Operation:

if Ra < Rb

 Rt[1]= true

else

 Rt[1] = false

if mag Ra < mag Rb

 Rt[2] = true

else

 Rt[2] = false

if Ra = Rb

 Rt[0] = true

else

 Rt[0] = false

if Ra <= Rb

 Rt[3] = true

else

 Rt[3] = false

if unordered

 Rt[4] = true

else

 Rt[4] = false

P a g e | 142

FCVTSD – Convert Single to Double

Description:

Convert the single precision value (32 bits) in Ra into a floating point double value (64 bits) and

place the result into target register Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

19h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 143

FDIV – Floating point divide

Description:

Divide two floating point numbers in registers Ra and Rb and place the result into target register

Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

086 Prec2 Rm3 Rt5 Rb5 Ra5 0Fh6

Clock Cycles: 115

Execution Units: Floating Point

P a g e | 144

FCX – Clear Floating Point Exceptions

Description:

This instruction clears floating point exceptions. The Exceptions to clear are identified as the bits

set in the union of register Ra and an immediate field in the instruction. Either the immediate or

Ra should be zero.

Instruction Format:

31 26 25 24 2322 21 16 15 11 10 6 5 0

21h6 Prec2 ~2 Imm6 05 Ra5 0Fh6

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation clears the following:

- division of infinities

- zero divided by zero

- subtraction of infinities

- infinity times zero

- NaN comparison

- division by zero

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 summary exception

P a g e | 145

FDX – Floating Disable Exceptions

Description:

This instruction disables floating point exceptions. The Exceptions disabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero. Exceptions won’t be disabled until the instruction commits and the state of

the machine is updated. This instruction should be followed by a synchronization instruction

(FSYNC) to ensure that following floating point operations recognize the disabled exceptions.

Instruction Format:

31 26 25 24 2322 21 16 15 11 10 6 5 0

23h6 Prec2 ~2 Imm6 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 146

FEX – Floating Enable Exceptions

Description:

This instruction enables floating point exceptions. The Exceptions enabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero. Exceptions won’t be enabled until the instruction commits and the state of

the machine is updated. This instruction should be followed by a synchronization instruction

(FSYNC) to ensure that following floating point operations recognize the enabled exceptions.

Instruction Format:

31 26 25 24 2322 21 16 15 11 10 6 5 0

22h6 Prec2 ~2 Imm6 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 147

FMUL – Floating point multiplication

Description:

Multiply two floating point numbers in registers Ra and Rb and place the result into target

register Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

086 Prec2 Rm3 Rt5 Rb5 Ra5 0Fh6

Clock Cycles: 12

Execution Units: Floating Point

P a g e | 148

FNABS – Floating Negative Absolute Value

Description:

Take the negative absolute value of the floating point number in registers Ra and place the result

into target register Rt. The sign bit (bit 63) of the register is set to one. No rounding of the number

occurs.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

18h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 149

FNEG – Floating Negative Value

Description:

Negate the value of the floating point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is inverted. No rounding of the number occurs.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

14h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 150

FSIGN – Floating Sign

Description:

FSIGN returns a value indicating the sign of the floating point number. If the value is zero, the

target register is set to zero. If the value is negative the target register is set to the floating point

value -1.0. Otherwise the target register is set to the floating point value +1.0. No rounding of the

result occurs.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

16h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 151

FSQRT – Floating point square root

Description:

Take the square root of the floating-point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is set to zero.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

1Dh6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 110

Execution Units: Floating Point

P a g e | 152

FSUB – Floating point subtraction

Description:

Subtract two floating point numbers in registers Ra and Rb and place the result into target register

Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

056 Prec2 Rm3 Rt5 Rb5 Ra5 0Fh6

Clock Cycles: 10

Execution Units: Floating Point

P a g e | 153

FSYNC -Synchronize
Description:

All floating point instructions before the FSYNC are completed and committed to the

architectural state before floating point instructions after the FSYNC are issued. This instruction

is used to ensure that the machine state is valid before subsequent instructions are executed.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

36h6 ~2 ~3 ~5 ~5 ~5 0Fh6

Clock Cycles: varies depending on queue contents

P a g e | 154

FTOI – Floating Convert to Integer

Description:

Convert the floating-point value in Ra into an integer and place the result into target register Rt. If

the result overflows the value placed in Rt is a maximum integer value.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

12h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 155

FTX – Trigger Floating Point Exceptions

Description:

This instruction triggers floating point exceptions. The Exceptions to trigger are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero.

Instruction Format:

31 26 25 24 2322 21 16 15 11 10 6 5 0

20h6 Prec2 ~2 Imm6 05 Ra5 0Fh6

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 reserved

P a g e | 156

ITOF – Convert Integer to Float

Description:

Convert the integer value in Ra into a floating-point value and place the result into target register

Rt. Some precision of the integer converted may be lost if the integer is larger than 52 bits.

Double precision floating point values only have a precision of 53 bits.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

15h6 Prec2 Rm3 Rt5 05 Ra5 0Fh6

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 157

Vector Programming Model

The ISA supports up to 31 vector registers of length 64.

Reg no

0 <vector mask registers>

1 to 31 general purpose vector registers

Vector Length (VL register)

The vector length register controls how many elements of a vector are processed. The vector

length register may not be set to a value greater than the number of elements supported by

hardware. After the vector length is set a SYNC instruction should be used to ensure that

following instructions will see the updated version of the length register.

7 6 0

0 Length6..0

Vector Masking

All vector operations are performed conditionally depending on the setting in the vector mask

register unless otherwise noted.

Vector Mask (Vm registers)

The ISA supports up to eight, sixty-four element vector mask registers. In the proof-of-concept

version there is are four sixteen element vector mask registers. All vector instructions are

executed conditionally based on the value in a vector mask register. The mask register may be set

using one of the vector set instructions VSEQ, VSNE, VSLT, VSGE, VSLE, VSGT. Mask

registers may also be manipulated using one of the mask register operations VMAND, VMOR,

VMXOR, VMXNOR, VMFILL.

After a change to a mask register a SYNC instruction should be used to ensure that the updated

mask register is visible to following instructions.

On reset the vector mask registers are set to all ones.

The vector mask registers are aliased with vector register #0. The mask registers may be

manipulated as a group by referencing v0.

Detailed Vector Instruction Set

P a g e | 158

LV – Load Vector
Synopsis

Load vector

Description:

Load a vector register from memory. Vector mask register #0 is used to mask the operation.

Instruction Format:

Immed16 Vt5 Ra5 36h6

Operation

for x = 0 to VL-1

if vm[x]

Vt[x] = memory64[Ra + Immed + 8 * x]

 else

 NOP

Exceptions: DBE, DBG, LMT

P a g e | 159

LVWS – Load Vector With Stride
Synopsis

Load vector

Description:

Load a vector register from memory using indexed addressing.

Instruction Format:

26h6 Vm3 32 Vt5 Rb5 Ra5 02h6

Operation

for x = 0 to VL-1

Vt[x] = memory64[Ra+Rb*x*8]

Exceptions: DBE, DBG, LMT

P a g e | 160

LVX – Load Vector
Synopsis

Load vector

Description:

Load a vector register from memory using vector indexed addressing.

Instruction Format:

36h6 ~3 32 Vt5 Vb5 Ra5 02h6

Operation

for x = 0 to VL-1

Vt[x] = memory64[Ra+Vb[x]]

Exceptions: DBE, DBG, LMT

P a g e | 161

SV – Store Vector
Synopsis

Load vector

Description:

Store a vector register to memory. Vector mask register #0 is used to mask the operation.

Instruction Format:

Immed16 Vb5 Ra5 37h6

Operation

for x = 0 to VL-1

 if (vm[x])

memory64[Ra + Immed + 8 * x] = Vb[x]

else

 NOP

Exceptions: DBE, DBG, LMT

P a g e | 162

SVWS – Store Vector With Stride
Synopsis

Store vector

Description:

Store a vector register to memory using indexed addressing.

Instruction Format:

27h6 Vm3 32 Vc5 Rb5 Ra5 02h6

Operation

for x = 0 to VL-1

memory64[Ra+Rb*(x*8)] = Vc[x]

Exceptions: DBE, DBG, LMT

P a g e | 163

SVX – Store Vector
Synopsis

Load vector

Description:

Store a vector register to memory using vector indexed addressing.

Instruction Format:

37h6 ~3 32 Vc5 Vb5 Ra5 02h6

Operation

for x = 0 to VL-1

memory64[Ra+Vb[x]] = Vc[x]

Exceptions: DBE, DBG, LMT

P a g e | 164

V2BITS
Synopsis

Convert Boolean vector to bits.

21h6 Vm3 02 05 Rt5 Va5 01h6

Description

The least significant bit of each vector element is copied to the corresponding bit in the target

register.

Operation

For x = 0 to VL-1

Rt[x] = Va[x].LSB

Exceptions: none

Execution Units: ALUs

P a g e | 165

VABS – Absolute value
Synopsis

Vector register absolute value. Vt = Va < 0 ? –Va : Va

Description

The absolute value of a vector register is placed in the target vector register Vt.

Instruction Format

036 Vm3 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] < 0 ? –Va[x] : Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 166

VADD - Add
Synopsis

Vector register add. Vt = Va + Vb

Description

Two vector registers (Va and Vb) are added together and placed in the target vector register Vt.

Instruction Format

046 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] + Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 167

VADDS – Add Scalar
Synopsis

Vector register add. Vt = Va + Rb

Description

A vector and a scalar (Va and Rb) are added together and placed in the target vector register Vt.

Instruction Format

14h6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Vb[x] + Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 168

VAND – Bitwise And
Synopsis

Vector register bitwise and. Vt = Va & Vb

Description

Two vector registers (Va and Vb) are bitwise and’ed together and placed in the target vector

register Vt.

Instruction Format

086 Vm3 02 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] & Vb[x]

Execution Units: ALUs

P a g e | 169

VANDS – Bitwise And with Scalar
Synopsis

Vector register bitwise and. Vt = Va & Rb

Description

A vector register (Va) is bitwise and’ed with a scalar register and placed in the target vector

register Vt.

Instruction Format

18h6 Vm3 02 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] & Rb[x]

P a g e | 170

VASR – Arithmetic Shift Right
Synopsis

Vector signed shift right.

0Eh6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted right. The most significant bits are loaded with the sign bit.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] >> amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 171

VBITS2V
Synopsis

Convert bits to Boolean vector.

20h6 Vm3 02 Vt5 05 Ra5 01h6

Description

Bits from a general register are copied to the corresponding vector target register.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Ra[x]

Exceptions: none

Execution Units: ALUs

P a g e | 172

VCIDX – Compress Index
Synopsis

Vector compression.

Description

A value in a register Ra is multiplied by the element number and copied to elements of vector

register Vt guided by a vector mask register.

Instruction Format

016 Vm3 02 Vt5 05 Ra5 01h6

Operation

y = 0

for x = 0 to VL - 1

if (Vm[x])

Vt[y] = Ra * x

y = y + 1

P a g e | 173

VCMPRSS – Compress Vector
Synopsis

Vector compression.

Description

Selected elements from vector register Va are copied to elements of vector register Vt guided by a

vector mask register.

Instruction Format

006 Vm3 02 Vt5 05 Va5 01h6

Operation

y = 0

for x = 0 to VL - 1

if (Vm[x])

Vt[y] = Va[x]

y = y + 1

P a g e | 174

VCNTPOP – Population Count
Synopsis

Vector register population count. Vt = popcnt(Va)

Description

The number of bits set in a vector register is placed in the target vector register Vt.

Instruction Format

28h6 Vm3 02 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = popcnt(Va[x])

P a g e | 175

VDIV - Divide
Synopsis

Vector register divide. Vt = Va / Vb

Description

Vector register Va is divided by Vb and placed in the target vector register Vt.

Instruction Format

3Eh6 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] / Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 176

VDIVS – Divide by Scalar
Synopsis

Vector register divide by scalar. Vt = Va / Rb

Description

Vector register Va is divided by Rb and placed in the target vector register Vt.

Instruction Format

2Eh6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] / Rb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 177

VEINS / VMOVSV – Vector Element Insert
Synopsis

Vector element insert.

22h6 ~ M2 02 Vt5 Rb5 Ra5 01h6

Description

A general purpose register Rb is transferred into one element of a vector register Vt. The element

to insert is identified by Ra.

Operation

Vt[Ra] = Rb

Exceptions: none

P a g e | 178

VEX / VMOVS – Vector Element Extract
Synopsis

Vector element insert.

23h6 ~ M2 02 Rt5 Vb5 Ra5 01h6

Description

A vector register element from Vb is transferred into a general purpose register Rt. The element

to extract is identified by Ra.

Operation

Rt = Vb[Ra]

Exceptions: none

P a g e | 179

VFLT2INT – Float to Integer
Synopsis

Vector float to integer.

24h6 ~ M2 T2 Vt5 05 Va5 01h6

Description

Elements of the vector are converted from floating point to integer.

Operation

For x = 0 to [Ra]-1

Vt[x] = (int)Va[x]

Exceptions: none

P a g e | 180

VINT2FLT – Integer to Float
Synopsis

Vector float to integer.

25h6 ~ M2 T2 Vt5 05 Va5 01h6

Description

Elements of the vector are converted from integer to floating point.

Operation

For x = 0 to VL-1

Vt[x] =(float) Va[x]

Exceptions: none

P a g e | 181

VMAND – Bitwise Mask And
Synopsis

Vector mask register bitwise and. Vmt = Vma & Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise and’ed together and placed in the target

vector register Vmt.

Instruction Format

30h6 03 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma & Vmb

Execution Units: ALUs

P a g e | 182

VMFILL –Mask Fill
Synopsis

Fill vector mask register with bits.

Description

The first Ra bits of the vector mask register are set to one. The remaining bits of the mask register

are set to zero.

Instruction Format

30h6 53 02 Vmt5 05 Ra5 01h6

Operation

for x = 0 to VLMAX

if (x < Ra) Vmt[x] = 1

else Vmt[x] = 0

Execution Units: ALUs

P a g e | 183

VMFIRST – Find First Set Bit
Synopsis

Convert Boolean vector to bits.

30h6 63 02 05 Rt5 ~2 Vm3 01h6

Description

The position of the first bit set in the mask register is copied to the target register. If no bits are set

the value is 64. The search begins at the least significant bit and proceeds to the most significant

bit.

Operation

Rt = first set bit number of (Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 184

VMLAST – Find Last Set Bit
Synopsis

Convert Boolean vector to bits.

30h6 73 02 05 Rt5 ~2 Vm3 01h6

Description

The position of the last bit set in the mask register is copied to the target register. If no bits are set

the value is 64. The search begins at the most significant bit of the mask register and proceeds to

the least significant bit.

Operation

Rt = first set bit number of (Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 185

VMOR – Bitwise Mask Or
Synopsis

Vector mask register bitwise and. Vmt = Vma | Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise ord’ed together and placed in the target

vector register Vmt.

Instruction Format

30h6 13 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma | Vmb

Operand Type

T2 Operand Type

0 Integer

1 reserved

2 reserved

3 reserved

Execution Units: ALUs

P a g e | 186

VMOV – Move Vector Control Register

Description:

.

Instruction Format:

33h6 05 Vt5 Ra5 02h6

Va5/Vt5

0 to 7 Vector Mask

15 Vector Length

33h6 15 Rt5 Va5 02h6

Clock Cycles: 1

Execution Units: ALUs

P a g e | 187

VMPOP – Mask Population Count
Synopsis

Convert Boolean vector to bits.

30h6 43 02 05 Rt5 ~2 Vm3 01h6

Description

A count of the number of bits set in the mask register is copied to the target register.

Operation

Rt = population count(Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 188

VMUL - Multiply
Synopsis

Vector register multiply. Vt = Va * Vb

Description

Two vector registers (Va and Vb) are multiplied together and placed in the target vector register

Vt.

Instruction Format

3Ah6 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] * Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 189

VMULS – Multiply by Scalar
Synopsis

Vector register multiply by scalar. Vt = Va * Rb

Description

A vector registers (Va) and a scalar register (Rb) are multiplied together and placed in the target

vector register Vt.

Instruction Format

2Ah6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] * Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 190

VMXNOR – Bitwise Mask Exclusive Nor
Synopsis

Vector mask register bitwise and. Vmt = ~(Vma ^ Vmb)

Description

Two vector mask registers (Vma and Vmb) are bitwise exclusive nord’ed together and placed in

the target vector register Vmt.

Instruction Format

30h6 33 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma ^ Vmb

Execution Units: ALUs

P a g e | 191

VMXOR – Bitwise Mask Exclusive Or
Synopsis

Vector mask register bitwise and. Vmt = Vma ^ Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise exclusive ord’ed together and placed in

the target vector register Vmt.

Instruction Format

30h6 23 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma ^ Vmb

Execution Units: ALUs

P a g e | 192

VNEG – Negate
Synopsis

Vector register subtract. Vt = R0 - Va

Description

A vector is made negative by subtracting it from zero and placing it in the target vector register

Vt. This instruction is an alternate mnemonic for the VSUBRS instruction.

Instruction Format

16h6 Vm3 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = R0 - Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 193

VOR – Bitwise Or
Synopsis

Vector register bitwise or. Vt = Va | Vb

Description

Two vector registers (Va and Vb) are or’ed together and placed in the target vector register Vt.

Instruction Format

096 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] | Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 194

P a g e | 195

VORS – Bitwise Or with Scalar
Synopsis

Vector register bitwise and. Vt = Va | Rb

Description

A vector register (Va) is bitwise ord’ed with a scalar register and placed in the target vector

register Vt.

Instruction Format

19h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] | Rb[x]

Operand Type

T2 Operand Type

0 Integer

1 reserved

2 reserved

3 reserved

P a g e | 196

VSxx / VSxxS
Synopsis

Vector register set. Vm = Va ? Vb

Description

A vector register is compared to either a second vector register or a scalar register and the

comparison result is placed in the target vector mask register Vmt.

Instruction Format

Vector-Vector Compare (VSxx)

066/3F6 M3 T2 Cn2 Vmt3 Vb5 Va5 01h6

Vector-Vector Unsigned Compare (VSxxU)

27h6/2F6 M3 T2 Cn2 Vmt3 Vb5 Va5 01h6

Vector-Scalar Compare (VSxxS)

076/0F6 M3 T2 Cn2 Vmt3 Rb5 Va5 01h6

Vector-Scalar Unsigned Compare (VSxxSU)

17h6/1F6 M3 T2 Cn2 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vt[x] = Va[x] ? Vb[x]

Operation:

For each vector element

if signed Va op signed Vb

 Vm = true

else

 Vm = false

Set Condition

Cn3

0 Equal

1 Not Equal

2 Less Than

P a g e | 197

3 Greater Than or Equal

4 Less Than or Equal

5 Greater Than

6 reserved

7 unordered

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 198

VSCAN
Synopsis

.

Description

Elements of Vt are set to the cumulative sum of a value in register Ra. The summation is guided

by a vector mask register.

Instruction Format

026 ~ M2 02 Vt5 05 Ra5 01h6

Operation

sum = 0

for x = 0 to VL - 1

Vt[x] = sum

if (Vm[x])

sum = sum + Ra

P a g e | 199

VSEQ – Set if Equal
Synopsis

Vector register set. Vm = Va == Vb

Description

Two vector registers (Va and Vb) are compared for equality and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 02 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] == Vb[x]

Operation:

For each vector element

if signed Va equals signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 200

VSEQS – Set if Equal Scalar
Synopsis

Vector register set. Vm = Va == Rb

Description

All elements of a vector are compared for equality to a scalar value. If equal a one is written to

the output vector mask register, otherwise a zero is written to the output mask register.

Instruction Format

076 0 M2 T2 02 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] == Rb[x]

Operation:

For each vector element

if signed Va equals signed Rb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 201

VSGE – Set if Greater or Equal
Synopsis

Vector register set. Vm = Va >= Vb

Description

Two vector registers (Va and Vb) are compared for greater or equal and the comparison result is

placed in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 32 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] >= Vb[x]

Operation:

For each vector element

if signed Va greater than or equal signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 202

VSGES – Set if Greater or Equal Scalar
Synopsis

Vector register set. Vm = Va >= Rb

Description

All elements of a vector are compared for greater or equal to a scalar value. If the condition is

true a one is written to the output vector mask register, otherwise a zero is written to the output

mask register.

Instruction Format

076 0 M2 T2 32 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] >= Rb

Operation:

For each vector element

if signed Va greater than or equal signed Rb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 203

VSHL – Shift Left
Synopsis

Vector shift left.

0Ch6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted left. The least significant bits are loaded with the value zero.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] << amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 204

VSHLV – Shift Vector Left
Synopsis

Vector shift left.

10h6 ~ M2 02 Vt5 Amt5 Va5 01h6

Description

Elements of the vector are transferred upwards to the next element position. The first is loaded

with the value zero.

Operation

For x = VL-1 to Amt

Vt[x] = Va[x-amt]

For x = Amt-1 to 0

Vt[x] = 0

Exceptions: none

P a g e | 205

VSHR – Shift Right
Synopsis

Vector shift left.

0Dh6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted right. The most significant bits are loaded with the value zero.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] >> amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 206

VSHRV – Shift Vector Right
Synopsis

Vector shift right.

11h6 ~ M2 02 Vt5 Amt5 Va5 01h6

Description

Elements of the vector are transferred downwards to the next element position. The last is loaded

with the value zero.

Operation

For x = 0 to VL-Amt

Vt[x] = Va[x+amt]

 For x = VL-Amt +1 to VL-1

Vt[x] = 0

Exceptions: none

P a g e | 207

VSIGN – Sign
Synopsis

Vector register sign value. Vt = Va < 0 ? –1 : Va = 0 ? 0 : 1

Description

The sign of a vector register is placed in the target vector register Vt.

Instruction Format

26h6 ~ M2 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] < 0 ? –1 : Va[x]=0 ? 0 : 1

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 208

VSLT – Set if Less Than
Synopsis

Vector register set. Vm = Va < Vb

Description

Two vector registers (Va and Vb) are compared for less than and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 22 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] < Vb[x]

Operation:

For each vector element

if signed Va less than signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSNE – Set if Not Equal
Synopsis

Vector register set. Vm = Va != Vb

Description

Two vector registers (Va and Vb) are compared for inequality and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

P a g e | 209

066 0 M2 T2 12 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] <> Vb[x]

Operation:

For each vector element

if signed Va not equal signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSUB - Subtract
Synopsis

Vector register add. Vt = Va - Vb

Description

Two vector registers (Va and Vb) are subtracted and placed in the target vector register Vt.

Instruction Format

056 ~ M2 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] - Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

P a g e | 210

2 reserved

3 reserved

P a g e | 211

VSUBRS – Subtract from Scalar
Synopsis

Vector register subtract. Vt = Rb - Va

Description

A vector and a scalar (Va and Rb) are subtracted and placed in the target vector register Vt.

Instruction Format

16h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Rb - Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 212

VSUBS – Subtract Scalar
Synopsis

Vector register subtract. Vt = Va - Rb

Description

A vector and a scalar (Va and Rb) are subtracted and placed in the target vector register Vt.

Instruction Format

15h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] - Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 213

VSUN – Set if Unordered
Synopsis

Vector register set. Vm = Va ? Vb

Description

Two vector registers (Va and Vb) are compared and the comparison result is placed in the target

vector mask register Vmt.

Instruction Format

066 1 M2 T2 32 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] ? Vb[x]

Operation:

For each vector element

if is unordered Va or Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSYNC -Synchronize
Description:

All vector instructions before the VSYNC are completed and committed to the architectural state

before vector instructions after the VSYNC are issued. This instruction is used to ensure that the

machine state is valid before subsequent instructions are executed.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

36h6 ~2 ~3 ~5 ~5 ~5 01h6

P a g e | 214

Clock Cycles: varies depending on queue contents

P a g e | 215

VXCHG - Exchange
Synopsis

Vector register exchange. Va = Vb;Vb= Va

Description

Exchange two vector registers (Va and Vb)

Instruction Format

0B6 Vm3 02 Va5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x])

 Vb[x] = Va[x]

Va[x] = Vb[x]

P a g e | 216

VXOR – Bitwise Exclusive Or
Synopsis

Vector register bitwise or. Vt = Va ^ Vb

Description

Two vector registers (Va and Vb) are exclusive or’ed together and placed in the target vector

register Vt.

Instruction Format

0Ah6 Vm3 02 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] ^ Vb[x]

P a g e | 217

VXORS – Bitwise Exclusive Or with Scalar
Synopsis

Vector register bitwise and. Vt = Va ^ Rb

Description

A vector register (Va) is bitwise exclusive ord’ed with a scalar register and placed in the target

vector register Vt.

Instruction Format

1Ah6 Vm3 02 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] ^ Rb[x]

P a g e | 218

P a g e | 219

Opcode Tables

Major Opcode (inst. bits 0 to 5)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x BRK {VECTOR} {RR} BccR ADDI SUBI CMPI CMPUI ANDI ORI XORI REX CSR {FLOAT}

1x LH LHU LW LB SH SB SW SWC JAL CALL QOPI Scc NOP LWR CACHE EXEC

2x LC LCU {BITFIELD} LBU SC CAS BBc JMP RET LBO LCO MODUI MODSUI MODI {AMO}

3x Bcc BEQ# CHK LHO LV SV MULUI MULSUI MULI LVx DIVUI DIVSUI DIVI

Major Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x {BCD} {R1} {Bitfield} BMM ADD SUB CMP CMPU AND OR XOR NAND NOR XNOR {shift}

1x LHX LHUX LWX LBX SHX SBX SWX SWCX LEAX CMP CMPU MUX LWRX CACHEX {shiftb}

2x LCX LCUX MOV LBUX SCX CASX LVWS SVWS CMOVEQ CMOVNE LBOX LCOX MIN MAX MAJ {shiftc}

3x SEI / CLI WAIT RTI VMOV CHK LHOX LVX SVX MULU MULSU MUL LVxx DIVMODU DIVMODSU DIVMOD {shifth}

Float Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x FADD FSUB FCMP FMUL FDIV

1x FMOV FTOI ITOF FNEG FABS FSIGN FMAN FNABS FCVTSD FCVTSQ FSTAT FSQRT

2x FTX FCX FEX FDX FRM FCVTDS

3x FSYNC

R1 (inst. bits 21 to 25)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x CNTLZ CNTLO CNTPOP ABS NOT REDOR

1x MEMDB MEMSB SYNC CHAIN

OFF

CHAIN

ON

P a g e | 220

Shift (inst. bits 22 to 25)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x SHL SHR ASL ASR ROL ROR SHLI SHRI ASLI ASRI ROLI RORI

Vector Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x VCMPRSS VCIDX VSCAN VABS VADD VSUB VSxx VSxxS VAND VOR VXOR VXCHG VSHL VSHR VASR

1x VSHLV VSHRV VADDS VSUBS VSUBRS VSxxSU VANDS VORS VXORS

2x VBITS2V V2BITS VEINS /

VMOVSV

VEX /

VMOVS

VFLT2INT VINT2FLT VSIGN VSxxU VCNTPOP VMULS VDIVS

3x VMAND VMOR VMXOR VMXNOR VMPOP VMFILL VMFIRST VMLAST VMUL VDIV

P a g e | 221

Appendix

Reducing the size of the core.

The vector instructions add considerably to the size of the core consuming approximately 40,000

LUTs. IF they are not required the core should be built without the vector instructions.

• Only for the FT64 core. Register renaming adds considerably to the size of the core. It uses

approximately 30,000 LUTs to implement register renaming. The core (FT64a) may be built

without register renaming by setting the RENAME parameter to zero.

Architectural Register vs Physical Registers

Architectural registers are the registers visible to the programmer as part of the programming

model. Physical registers are the registers physically present in the machine’s hardware. There are

substantially more physical registers than there are architectural ones. For FT64 there are 32

registers visible to be programmed which are supported by 64 physical registers.

Register Renaming

The core maintains an eight entry deep history file for register rename mappings and register in

use flags. The depth of the history file corresponds to the number of entries in the re-order buffer.

At most a new map will be needed for each re-order buffer entry. Typically the history file is

cycled through at half or less the rate of the instruction queue as approximately 50% of

instructions don’t have target registers.

The core can allocate up to two registers as target registers for every pair of instructions queued.

If there are no target registers available the core stalls until previous instructions have made more

target registers available.

Instruction Cache Miss

During a cache miss the core streams NOP operations to the instruction fetch unit while the core

is waiting for the instruction cache to load. The program counters are not incremented however,

and they remain at the value when the cache miss occurred.

Branches

Branches store the target address in iqentry_a0 the immediate constant field of the queue. The

target address has to be stored somewhere in the instruction queue so that it may be used to

update the branch target buffer later. It can’t be stored in the result field, and it can’t be stored in

one of the other argument fields. Arg0 is the only place it can be stored safely.

Branches are evaluated after the following instruction enqueues so that false branch

mispredictions don’t occur. Mispredict logic looks at the address of the instruction following the

branch to ensure that the branch address was predicted correctly.

P a g e | 222

Configuration Defines

Q2VECTORS

- allows queuing two vector elements per cycle, rather than just one

- increases code size and complexity

- not known to be working

Parameters

SUP_TXE

- default 0

- enables support for the call target exception

SUP_VECTOR

- default 1

- enables support for vector instructions

P a g e | 223

-

Instructions Supported Only on ALU #0

The following less frequently used instructions are only supported on ALU #0 in order to reduce

the size of the core.

o division and remainder instructions (DIV,DIVSU,DIVU,MOD,MODSU, MODU)

o bit-field instructions (BFCLR, BFSET, BFCHG, BFINS, BFINSI, BFEXT, BFEXTU)

▪ these are rarely used instructions

o shift instructions (ASR, SHL, SHR)

▪ The shift instructions use barrel shifters to shift by any amount in a single clock

cycle and so are relatively resource expensive compared to how often they are used.

o indexed memory loads / stores (LBX, LHX, LHUX, LWX, SBX, SHX, SWX)

▪ since indexed memory instructions are infrequently used they are supported only on

alu #0.

o CSR instruction

▪ CSR instructions are rarely used. They often also have synchronization issues as

there is no bypassing for the CSR registers. Since they typically require

synchronization operations there is no benefit to having multiple CSR instructions

executing at the same time.

P a g e | 224

Glossary

Burst Access

A burst access is a number of bus accesses that occur rapidly in a row in a known

sequence. If hardware supports burst access the cycle time for access to the device is

drastically reduced. For instance dynamic RAM memory access is really fast for

sequential burst access, and somewhat slower for random access.

BTB

An acronym for Branch Target Buffer. The branch target buffer is used to improve the

performance of a processing core. The BTB is a table that stores the branch target from

previously executed branch instructions. A typical table may contain 1024 entries. The

table is typically indexed by part of the branch address. Since the target address of a

branch type instruction may not be known at fetch time, the address is speculated to be

the address in the branch target buffer. This allows the machine to fetch instructions in a

continuous fashion without pipeline bubbles. In many cases the calculated branch address

from a previously executed instruction remains the same the next time the same

instruction is executed. If the address from the BTB turns out to be incorrect, then the

machine will have to flush the instruction queue or pipeline and begin fetching

instructions from the correct address.

FPGA

An acronym for Field Programmable Gate Array. FPGA’s consist of a large number of

small RAM tables, flip-flops and other logic. These are all connected together with a

programmable connection network. FPGA’s are ‘in the field’ programmable, and usually

re-programmable. An FPGA’s re-programmability is typically RAM based. They are

often used with configuration PROM’s so they may be loaded to perform specific

functions.

HDL

An acronym that stands for ‘Hardware Description Language’. A hardware description

language is used to describe hardware constructs at a high level.

Instruction Bundle

A group of instructions. It is sometimes required to group instructions together into

bundle. For instance all instructions in a bundle may be executed simultaneously on a

processor as a unit. Instructions may also need to be grouped if they are oddball in size

for example 41 bits, so that they can be fit evenly into memory. Typically a bundle has

some bits that are global to the bundle, such as template bits, in addition to the encoded

instructions.

ISA

An acronym for Instruction Set Architecture. The group of instructions that an

architecture supports. ISA’s are sometimes categorized at extreme edges as RISC or

P a g e | 225

CISC. FT64 falls somewhere in between with features of both RISC and CISC

architectures.

Linear Address

A linear address is the resulting address from a virtual address after segmentation has

been applied.

Physical Address

A physical address is the final address seen by the memory system after both

segmentation and paging have been applied to a virtual address. One can think of a

physical address as one that is “physically” wired to the memory.

Program Counter

A processor register dedicated to addressing instructions in memory. It is also often and

perhaps more aptly called an instruction pointer. The program counter got it’s name

because it usually increments (or counts) automatically after an instruction is fetched. In

early machines in some rare cases the program counter did not count in a sequential

binary fashion, but instead used other forms of a counter such as a grey counter or linear

feedback shift register. In some machines the program counter addresses bundles of

instructions rather than individual instructions. This is common with some stack

machines where multiple instructions are packed into a memory word.

RSB

An acronym that stands for return stack buffer. A buffer of addresses used to predict the

return address which increases processor performance. The RSB is usually small,

typically 16 entries. When a return instruction is detected at time of fetch the RSB is

accessed to determine the address of the next instruction to fetch. Predicting the return

address allows the processing core to continuously fetch instructions in a speculative

fashion without bubbles in the pipeline. The return address in the RSB may turn out to be

detected as incorrect during execution of the return instruction, in which case the pipeline

or instruction queue will need to be flushed and instructions fetched from the proper

address.

SIMD

An acronym that stands for ‘Single Instruction Multiple Data’. SIMD instructions are

usually implemented with extra wide registers. The registers contain multiple data items,

such as a 128 bit register containing four 32 bit numbers. The same instruction is applied

to all the data items in the register at the same time. For some applications SIMD

instructions can enhance performance considerably.

Stack Pointer

A processor register dedicated to addressing stack memory. Sometimes this register is

assigned by convention from the general register pool. This register may also sometimes

index into a small dedicated stack memory that is not part of the main memory system.

P a g e | 226

Sometimes machines have multiple stack pointers for different purposes but they all work

on the idea of a stack. For instance in Forth machines there are typically two stacks, one

for data and one for return addresses.

P a g e | 227

WISHBONE Compatibility Datasheet

The FT64 core may be directly interfaced to a WISHBONE compatible bus.

WISHBONE Datasheet

WISHBONE SoC Architecture Specification, Revision B.3

Description: Specifications:

General Description: Central processing unit (CPU core)

Supported Cycles:

MASTER, READ / WRITE

MASTER, READ-MODIFY-WRITE

MASTER, BLOCK READ / WRITE, BURST READ (FIXED

ADDRESS)

Data port, size:

Data port, granularity:

Data port, maximum operand

size:

Data transfer ordering:

Data transfer sequencing

64 bit

8 bit

64 bit

Little Endian

any (undefined)

Clock frequency constraints:

Supported signal list and cross

reference to equivalent

WISHBONE signals

Signal Name:

ack_i

adr_o(31:0)

clk_i

dat_i(63:0)

dat_o(63:0)

cyc_o

stb_o

wr_o

sel_o(7:0)

cti_o(2:0)

bte_o(1:0)

WISHBONE Equiv.

ACK_I

ADR_O()

CLK_I

DAT_I()

DAT_O()

CYC_O

STB_O

WE_O

SEL_O

CTI_O

BTE_O

Special Requirements:

P a g e | 228

