
P a g e | 1

FT64v7

Preface

Who This Book is For

This book is for the FPGA enthusiast who’s interested in instruction set architecture (ISA). It’s

advisable that one have a fairly good background in digital electronics, computer systems and

networking before attempting a read. Examples are provided in the Verilog language, it would be

helpful to have some understanding of HDL languages. Finally, a lot about computer architecture

is contained within these pages, some previous knowledge would also be helpful. If you’re into

electronics and computers as a hobby FPGA’s can be a lot of fun.

Motivation

The author has learned a few new tricks and it was time for a new book. Initially the author was

going to create one massive book covering many different cores as an extension of the Table888

book. Rather than create a massive revision of the book, a new book has been created that focuses

on a single component. This book is another book about the development of a 64-bit homebrew

processor, more specifically it’s ISA. This time the processing core is much more in line with

contemporary processors and has an improved ISA. Once again one has to be somewhat nuts to

consider it. It takes a lot of time and dedication to develop a good ISA; perhaps too much for a

hobbyist. It is less work to develop cores against and already established ISA.

If you seek to be an expert on the personal computer or laptop sitting on your desk, there’s

nothing like trying to develop your own system to learn things. It’s possible these days to develop

something simple and rudimentary using a small FPGA board available from several different

vendors. One can get started working with FPGA’s for well under $100; with free toolsets

available it’s not an expensive hobby. It’s no more expensive than a good video game and can

provide a lot of entertainment for the money. For an outlay of a few hundred dollars one can

begin to become a real expert on home-grown processors, including some of the more advanced

aspects of processor such as memory management and data protection. FPGA stands for ‘Field

Programmable Gate Array’, which is a chip with lots of small memories interconnected with a

P a g e | 2

connection network. I’m currently using the Nexys4Video board from Digilent. I’ve upgraded

several times, to more memory and more logic cells. I’ve used boards from Terasic and BurchEd

in the past. Of course, it’s also possible to make your own board if you have the skills. The first

board I used was one I wired up myself but it didn’t work very reliably. Be sure to recycle the

boards appropriately; I sell my older boards on Ebay to budding students.

The ISA and core presented here aren’t necessarily the best available for a given system. The

processor isn’t the smallest or fastest RISC processor. The core presented here is also not a

simple beginner’s example. Those weren’t my goals. Instead they offer reasonable size and

performance and hopefully are balanced to the available hardware.

There’s lots of room for expansion in the future. I chose 64 bits in part anticipating more than

4GB of memory available sometime down the road. A 64-bit architecture is doable in FPGA’s

today, although it uses double or more the resources that a 32 bit design would.

What this book is about

This book is an outgrowth of the Table888 book and covers one aspect of core design – a general

purpose ISA for a 64-bit machine. It is centric to the author and a record of his work. The book

shows how flexible FPGA’s can be. A single FPGA board is used for several different systems.

The processing core could be incorporated into a single chip (called an SoC System-On-Chip).

Although the book is primarily about the ISA some notes on an implementation of FT64 are

included. The author continues to learn about computing systems.

About the Author

First a warning: I’m an enthusiastic hobbyist like yourself, with a ton of experience. I’ve spent a

lot of time at home doing research and implementing several soft-core processors, almost

maniacally. One of the first cores I worked on was a 6502 emulation. I then went on to develop

the Butterfly32 core. Later the Raptor64. I have about 20 years professional experience working

on banking applications at a variety of language levels including assembler. So I have some real

world experience developing complex applications. I also have a diploma (in what is now a

degree course) in electronics engineering technology. Some of the cores I work on these days are

really too complex and too large to do at home on an inexpensive FPGA. I await bigger, better,

faster boards yet to come.

P a g e | 3

Status

FT64 is still a project in the works. The ISA has become somewhat stable and is unlikely to

undergo major changes. The basic instruction formats are unlikely to change. A lot of work has

been put into implementing the ISA as a two-way superscalar core, but it is far from a finished

project. The author has begun work on a new version of the processor so maybe it’s time to spit

out the book for the current version. The most recent evolution of FT64 (FT64v3) is as a barrel

processor.

P a g e | 4

Overview
FT64 is a two-way superscalar processing core capable of executing up to two instructions per

clock cycle. The core features register renaming to avoid data hazards. The core is configurable

with the following rich set of features:

- 64 register sets

- 32 general purpose scalar registers

- 32 general purpose floating-point registers

- 32 general purpose vector registers, length 63

- register renaming

- speculative loading

- 32-bit fixed instruction format

- 64-bit data width

- powerful branch prediction with target buffer (BTB)

- return address prediction (RSB)

- bus interface unit

- instruction and data caches

- Vector and SIMD operations

- fine-grained simultaneous multi-threading (SMT)

- dual ALU’s, one flow control unit,

- one memory unit, one to three read channels

- optional write buffering

- zero to two floating point units

- bus randomization on missed speculative execution

- ability to disable branch prediction and the data cache

- wide variety of memory management options:

- 1) none

- 2) segmentation

- 3) paging

- 4) software managed tlb

- 5) inverted page table

- optional predicated instruction execution

History

FT64v7 is a work-in-progress beginning in October 2017. FT64 originated from RiSC-16 by Dr.

Bruce Jacob. RiSC-16 evolved from the Little Computer (LC-896) developed by Peter Chen at

the University of Michigan. See the comment in FT64.v. FT64 is the author's fifth attempt at a 64

bit ISA. Other attempts including Raptor64, Thor, FISA64, and DSD9. The author has tried to be

innovative with this design borrowing ideas from a number of other processing cores. Berkeley’s

RiSC-V has had an influence on this core.

P a g e | 5

Goals

One of the primary goals for the development of this core was the implementation of a register

renaming mechanism. The author also wanted a stream-lined core as a starting place.

Implementing many features of the Thor core using a fixed 32 bit instruction set.

Easy implementation of a compiler.

Eventual implementation as a four-way superscalar processing core.

P a g e | 6

Core Features

SMT

The core is capable of fine-grained SMT (simultaneous multi-threading) operation. With SMT

there are two possible threads of execution each of which operates at about ½ the performance of

a single thread. For some applications it may be desirable to use SMT in order to increase the

overall performance of the system. The core fetches from two different execution threads

simultaneously. When enabled the core’s program counters operate independently. One half of

the fetch buffers are used for each of two possible threads of execution.

The availability of SMT operation does not affect the core’s ISA. The same instructions are

executed on either thread, and there are no instructions specific to SMT.

SMT Granularity

There are two basic granularities to SMT, fine-grained and coarse-grained. This core is capable of

fine-grained SMT meaning instructions for more than one thread are fetched and executed per

clock cycle. In coarse-grained SMT the same thread may run for several clock cycles before the

thread alternates to another thread.

Notes:

For simplicity, on a branch miss the entire fetch buffer is flushed and reloaded with instructions

from the target address. This includes instructions for both threads of execution. Both threads

may miss at the same time and the fetch buffer will only be reloaded once.

External interrupts are processed only by the even numbered thread to prevent an interrupt from

being processed twice. Other exceptions may occur on either thread.

There is a bit in the machine status register to indicate which thread is running when the bit is

checked. Testing this bit makes it possible to branch to different code for each thread.

When SMT is turned on, the program counter for the second thread will be pointing to the next

instruction after the current program counter. Also, the current program counter may increment

by eight for one cycle. Because the exact value of the program counters may not be known a

ramp of harmless instructions needs to be performed when SMT is turned on. the following code

show an example of turning on SMT.

 ldi r1,#$10000 ; turn on SMT use $10000

 csrrs r0,#0,r1

 add r0,r0,#0 ; fetch adjustment ramp

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

 add r0,r0,#0

P a g e | 7

 add r0,r0,#0

 csrrd r1,#$044,r0 ; which thread is running ?

 bfextu r1,r1,#24,#24

 bne r1,r0,.st2

Turning SMT off is equally as tricky. It is best to turn off SMT when the location of both sets of

program counters are known. Turning SMT off will cause the second program counter to follow

the first one again.

Vectors

The core has standard support for vector operations. Support includes vector length and vector

mask registers. Although the vector registers are currently limited to 63 elements there is no

reason why the number of vector elements can’t be increased in the future.

Vector Chaining

The core is capable of limited chaining of vector instruction; starting a second vector instruction

before the first one is complete.

The vector chain bit in control register #0 controls the priority of queueing vector instructions

when there are two vector instructions available to queue. If vector chaining is on, then one

element from each vector instruction will queue. If vector chaining is off, then two elements from

the first vector instruction will queue. Vector chaining may improve performance depending on

the instruction mix. For instance, if there is a multiply followed by an add under normal

circumstances multiplication of the next vector element can’t proceed until the instruction is

finished. Without vector chaining the add can’t proceed until the multiply is done. With vector

chaining the add can be performed at the same time as the multiply, hiding some of the latency of

the multiply operation.

P a g e | 8

Pieces
This section covers various pieces that make up the FT64 core and influence it’s ISA.

Register File

The processor caches 64 sets of 32 registers in the architecture. A set may be selected for use as

either general purpose registers or floating-point registers. It is recommended that odd numbered

register sets be used for floating point values, while an even numbered register set is used for

general purpose registers. This is because the bypass logic in the core only detects two bits of the

register set selection. There is a single set of vector registers. The following is an illustration of

register set usage.

On reset register set #0 is selected to be the operating register set. Register sets beginning with #1

to #7 is reserved for interrupt processing. The register set is automatically switched on interrupt

and restored at interrupt return.

Machine State Register Set Reservation

BRK / RESET 0

IRQ 1 1

IRQ 2 2

IRQ 3 3

IRQ 4 4

IRQ 5 5

IRQ 6 6

IRQ 7 7

Normal Operations according to rs field in control reg #0

P a g e | 9

Wired Register Sets

Register sets are associated with threads of execution. There is a cache of 64 register sets

including caching of base and bounds registers. The register sets may be “wired” meaning they

are always present in the processor. Non-wired threads may have their associated register sets

evicted from the core during a thread switch.

The first eight register sets are always wired. By default, the next eight register sets are also

wired. Which registers sets are wired is controlled by the wired thread register (WTR). The

number of wired register always starts with register set zero and proceeds towards larger

numbered register sets.

P a g e | 10

Register Usage Convention

The register usage convention probably has more to do with software than hardware. Excepting a

couple of special cases, the registers are general purpose in nature.

R0 always has the value zero in all register sets. r29 is the link register used implicitly by the call

instruction.

Register Description / Suggested Usage Saver

r0 always reads as zero

r1-r2 return values / exception caller

r3-r10 temporaries caller

r11-r17 register variables callee

r18-r22 function arguments caller

r23 assembler usage

r24 type number / function argument caller

r25 class pointer / function argument caller

r26 thread pointer callee

r27 global pointer

r28 exception link register callee

r29 return address / link register callee

r30 base / frame pointer callee

r31 stack pointer (hardware) callee

The ISA supports up to 32 vector registers of length 63. There is only a single set of vector

registers.

Register

v0 to v31 general purpose vector registers

vm0 to vm7 vector mask registers

The register file has six read ports and two write ports.

Notes:

The register set is implemented with block ram resources in the FPGA. It was desired to have 64

element vector registers, since the general register file is also contained in the same block rams,

this resulted in 64 available register sets.

The register set currently selected is determined by the rs field in the machine status register

(0x044). Note that the register sets selected for SMT operation should have different bit settings

for bit 6, and 7 of the register code in order to allow bypassing logic to work correctly.

Internally to the core a single register file is in use that uses a 12-bit register code:

11 6 5 4 0

Register Set Fp 0 General Purpose Register number

Vector element 1 Vector register number

P a g e | 11

To conserve hardware which would otherwise be quite large, the bypassing logic looks at only the

six least significant bits, plus bits 6, and 7 of the register code for bypassing purposes. This allows

it to differentiate between different general-purpose registers, floating-point, thread 0 and thread 1

registers, and vector registers. This meets bypass logic requirements in most circumstances.

The core does not provide bypass logic between different elements of the same vector register. It

only provides bypassing at the vector register number level. Normally this is not a problem

because vector elements are processed independently.

Similarly, the core does not provide bypassing between register sets of the general-purpose

registers outside of checking thread register pairs. Switching the register set should be followed

by a synchronization operation to ensure contents of the previous instructions are updated before

the new use. Note that the break and return from interrupt operations automatically synchronize

the processor so that register sets remain valid.

There are only 63 usable elements to each vector register. Register codes for the 64th element are

used to access the vector mask registers.

11 6 5 4 3 2 0

63 1 0 mask register number

This is hidden from the ISA and may be implemented differently in the future.

On reset register set #0 is selected.

P a g e | 12

Program Counter

The program counter identifies which instruction to execute. The program counter normally

increments by the size of the instruction (2, 4, or 6). If predicated instructions are enabled the

program counter increments by an additional byte (3, 5, or 7). The increment may be overridden

using one of the flow control instructions. The program counter usually addresses 16-bit

instruction parcels but operates as a byte aligned counter. The program counter register is also

split into two sections. The low order 40 bits represent the instruction address. The upper 24 bits

are the code segment selector. 40 bits was deemed adequate as the size of a single module is

unlikely to exceed it. Potentially up to 101 bits of code address may be available once the base

register is factored into the addressing.

63 40 39 0

Selector24 Address[39..0]

Notes:

There are actually multiple program counters in use by the core, one for each thread.

Register Zero

Register zero – r0 – always reads as zero.

Stack and Frame Pointers

Although the stack and frame pointer registers may be used with any instruction the core has

special hardware to detect stack bounds violations by either the stack pointer or frame pointer.

The stack and frame pointer registers should be kept aligned on whole word boundaries. That is

they should be a multiple of eight, which has the three least significant bits as zero. There is

currently no hardware in the core to enforce a word alignment.

P a g e | 13

P a g e | 14

Control and Status Registers

Control Register Zero (CSR #000)

This register contains miscellaneous control bits including a bit to enable protected mode.

Bit Description

0 Pe Protected Mode Enable: 1 = enabled, 0 = disabled

8 to 13 cmpgrp compressed instruction group (0-7 valid)

16 SMT simultaneous multi-threading enable 1 = enabled, 0 = disabled (0

default).

30 DCE data cache enable: 1=enabled, 0 = disabled

32 BPE branch predictor enable: 1=enabled, 0=disabled

34 WBM write buffer merging enable: 1 = enabled, 0 = disabled

35 SPLE speculative load enable (1 = enable, 0 = disable) (0 default)

36 PRED predicated execution mode (1 = enable, 0 = disable) (0 default)

63 D debug mode status. this bit is set during an interrupt routine if the

processor was in debug mode when the interrupt occurred.

This register supports bit set / clear CSR instructions.

DCE

Disabling the data cache is useful for some codes with large data sets to prevent cache

loading of values that are used infrequently. Disabling the data cache may reduce security

risks for some kinds of attacks. The instruction cache may not be disabled.

BPE

Disabling branch prediction will significantly affect the cores performance, but may be

useful for debugging. Disabling branch prediction causes all branches to be predicted as

not-taken (unless determined otherwise by the instruction). No entries will be updated in

the branch history table if the branch predictor is disabled.

WBM bit

Merging of values stored to memory may be disabled by setting this bit. On reset write

buffer merging is disabled because it is likely desirable to setup I/O devices. Many I/O

devices require updates to individual bytes by separate store instructions.

SPLE

Enabling speculative loads give the processor better performance at an increased security

risk to meltdown attacks.

HARTID (0x001)

This register contains a number that is externally supplied on the hartid_i input bus to represent

the hardware thread id or the core number. No core should have the value zero as the hartid.

TICK (0x002)

This register contains a tick count of the number of clock cycles that have passed since the last

reset. Note that this register should not be used for precise timing as the processor’s clock

frequency may vary for performance and power reasons. The TIME CSR may be used for wall-

clock timing as it has its own timing source.

P a g e | 15

PCR Paging Control (CSR 0x003)

This register controls the paged memory management unit. A more detailed description is

available under the section on memory management.

AEC Arithmetic Exception Control (CSR 0x004)

This register has controls to enable arithmetic exceptions and status bits to indicate the occurrence

of exception conditions.

Exception Occurrence Exception Enable

63

37

36 35 34 33 32 31

5

4 3 2 1 0

 DIV MUL ASL SUB ADD DIV MUL ASL SUB ADD

PMR Power Management Register (CSR 0x005)

This register contains bits to disable functional units in the core to conserve power. There is a bit

for each functional unit.

 39 32 31 24 23 16 15 8 7 0

 FCU MEM FPU ALU Inst. Dec

It is not possible to disable all instruction decoders at the same time. There will always be at least

one active decoder. Similarly for the ALU; ALU #0 is always enabled. There will always be at

least one memory channel on. The FCU can’t be turned off, however the performance enhancing

components can be. The branch predictor, branch target buffer and return stack buffer may all be

turned off as a single unit.

CAUSE (0x006)

This register contains a code indicating the cause of an exception or interrupt. The break handler

will examine this code in order to determine what to do. Only the low order 16 bits are

implemented. The high order bits read as zero and are not updateable. The low order eight bits are

loaded from the cause field of the BRK instruction. The next eight bits are loaded from the user6

field of the break instruction. Bit 7 of the cause is set if a hardware interrupt was the source of the

break.

BADADDR (CSR 0x007)

This register contains the effective address for a load / store operation that caused a memory

management exception or a bus error. Note that the address of the instruction causing the

exception is available in the EPC register.

PCR2 Paging Control (CSR 0x008)

This register controls the paged memory management unit. A more detailed description is

available under the section on memory management.

Scratch (CSR 0x009)

This register is available for scratchpad use. It is typically swapped with a GPR during exception

processing.

P a g e | 16

WBRCD (CSR 0x00A)

WBRCD stands for ‘write barrier record’. This register records the occurrence of a pointer store

operation done by an instruction using a particular register set. There is a separate bit for each

register set in the machine. This register is used by the garbage collector (GC) to determine if a

scan should occur on a set of registers.

BAD_INSTR (CSR 0x00B)

This register contains a copy of the exceptioned instruction.

SEMA (CSR 0x00C) Semaphores

This register is available for system semaphore or flag use. The least significant bit is tied to the

reservation address status input (rb_i). It will be set if a SWC instruction was successful. The

least significant bit is also cleared automatically when an interrupt (BRK) or interrupt return

(RTI) instruction is executed. Any one of the remaining bits may also be cleared by an RTI

instruction. This could be a busy status bit for the interrupt routine. Bits in this CSR may be set or

cleared with one of the CSRxx instructions. This register has individual bit set / clear capability.

Semaphore Usage Convention

0 LWR / SWC status bit

1 system garbage collection protector

2 system

3 input / output focus list

4 keyboard

5 system busy

6 memory management

VM_SEMA (CSR 0x00D) Semaphores

 This register is available for system semaphore or flag use.

KEYS – (CSR 0x00E)

This register contains the collection of keys associated with the process for the memory lot

system. Each key is ten bits in size. The register contains six keys.

63 60 59 50 49 40 39 30 29 20 19 10 9 0

~4 key6 key5 key4 key3 key2 key1

TCB (CSR 0x010)

This CSR register is reserved for use as a pointer to a control block for the currently running

thread.

WRS (CSR 0x011)

This register indicates which register sets are wired, or perpetually present in the core. Register

sets beginning with register set #0 and progressing to the value supplied in this register are wired.

P a g e | 17

There are only 64 register sets in the machine. Wiring too many register sets may make it difficult

for the OS to switch threads.

P a g e | 18

FSTAT (CSR 0x014) Floating Point Status and Control Register

The floating point status and control register may be read using the CSR instruction. Unlike other

CSR’s the control register has its own dedicated instructions for update. See the section on

floating point instructions for more information.

Bit Symbol Description

63:44 ~ reserved

43:40 PRC Default precision

39:32 RGS Register set

31:29 RM rm rounding mode

28 E5 inexe - inexact exception enable

27 E4 dbzxe - divide by zero exception enable

26 E3 underxe - underflow exception enable

25 E2 overxe - overflow exception enable

24 E1 invopxe - invalid operation exception enable

23 NS ns - non standard floating point indicator

Result Status
22 fractie - the last instruction (arithmetic or conversion) rounded

intermediate result (or caused a disabled overflow exception)

21 RA rawayz rounded away from zero (fraction incremented)

20 SC C denormalized, negative zero, or quiet NaN

19 SL neg < the result is negative (and not zero)

18 SG pos > the result is positive (and not zero)

17 SE zero = the result is zero (negative or positive)

16 SI inf ? the result is infinite or quiet NaN

Exception Occurrence

15 X6 swt {reserved} - set this bit using software to trigger an invalid

operation

14 X5 inerx - inexact result exception occurred (sticky)

13 X4 dbzx - divide by zero exception occurred

12 X3 underx - underflow exception occurred

11 X2 overx - overflow exception occurred

10 X1 giopx - global invalid operation exception – set if any invalid operation

exception has occurred

9 GX gx - global exception indicator – set if any enabled exception has

happened

8 SX sumx - summary exception – set if any exception could occur if it was

enabled

- can only be cleared by software

Exception Type Resolution

7 X1T cvt - attempt to convert NaN or too large to integer

6 X1T sqrtx - square root of non-zero negative

5 X1T NaNCmp - comparison of NaN not using unordered comparison

instructions

4 X1T infzero - multiply infinity by zero

3 X1T zerozero - division of zero by zero

2 X1T infdiv - division of infinities

1 X1T subinfx - subtraction of infinities

0 X1T snanx - signaling NaN

P a g e | 19

DBADx (CSR 0x018 to 0x01B) Debug Address Register

These registers contain addresses of instruction or data breakpoints.

63 0

Address 63..0

DBCR (CSR 0x01C) Debug Control Register

This register contains bits controlling the circumstances under which a debug interrupt will occur.

bits

3 to 0 Enables a specific debug address register to do address matching. If

the corresponding bit in this register is set and the address

(instruction or data) matches the address in the debug address

register then a debug interrupt will be taken.

17, 16 This pair of bits determine what should match the debug address

register zero in order for a debug interrupt to occur.

17:16

00 match the instruction address

01 match a data store address

10 reserved

11 match a data load or store address

19, 18 This pair of bits determine how many of the address bits need to

match in order to be considered a match to the debug address

register. These bits are ignored when matching instruction addresses,

which are always half-word aligned.

19:18 Size

00 all bits must match byte

01 all but the least significant bit should match char

10 all but the two LSB’s should match half

11 all but the three LSB’s should match word

23 to 20 Same as 16 to 19 except for debug address register one.

27 to 24 Same as 16 to 19 except for debug address register two.

31 to 28 Same as 16 to 19 except for debug address register three.

55 to 62 These bits are a history stack for single stepping mode. An exception

will automatically disable single stepping mode and record the single

step mode state on stack. Returning from an exception pops the

single step mode state from the stack.

63 This bit enables SSM (single stepping mode)

DBSR (CSR 0x01D) - Debug Status Register

This register contains bits indicating which addresses matched. These bits are set when an address

match occurs, and must be reset by software.

bit

0 matched address register zero

1 matched address register one

2 matched address register two

3 matched address register three

63 to 4 not used, reserved

P a g e | 20

CAS (CSR 0x02C) Compare and Swap

This register is to support the compare and swap (CAS) instruction. If the value in the addressed

memory location identified by the CAS instruction is equal to the value in the CAS register, then

the source register is written to the memory location, and the source register is loaded with the

value 1. Otherwise if the value in the addressed memory location doesn’t match the value in this

register, then value at the memory location is loaded into the CAS register, and the source register

is set to zero. No write to memory occurs if the match fails.

63 0

Value 63..0

TVEC (0x030 to 0x033)

These registers contain the address of the exception handling routine for a given operating level.

TVEC[0] (0x030) is used directly by hardware to form an address of the interrupt routine. The

lower eight bits of TVEC[0] are not used. The lower bits of the interrupt address are determined

from the operating level. TVEC[1] to TVEC[3] are used by the REX instruction.

IM_STACK (0x040)

This register contains the interrupt mask stack. When an exception or interrupt occurs, this

register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

order bits of the register. On RTI the last stack entry is set to seven masking all interrupts on stack

underflow. Only the low order 32 bits of the register are implemented.

OL_STACK (0x041)

This register contains the operating and data level stack. When an exception or interrupt occurs,

this register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

order bits of the register. On RTI the last stack entry is set to zero which will select the machine

operating level on stack underflow. Only the low order 32 bits of the register are implemented.

The low order 16 bits are the code/stack operating level, the next 16 bits are the data operating

level.

PL_STACK (0x042)

This register contains the privilege level stack. When an exception or interrupt occurs, this

register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

order bits of the register. On RTI the last stack entry will be set to zero which will select privilege

level zero on stack underflow.

RS_STACK (0x043)

This register contains the register set selection stack. When an exception or interrupt occurs, this

register is shifted to the left and the current status copied to the low order bits, when an RTI

instruction is executed this register is shifted to the right and the status bits copied from the low

P a g e | 21

order bits of the register. On RTI the last stack entry will be set to eight which will select register

set #8 on stack underflow.

STATUS (0x044)

This register contains the interrupt mask, operating level, and privilege level.

Bitno Field Description

0 to 3 IM active interrupt mask level

4 to 5 OL operating level

6 to 13 PL privilege level

14 to 19 RS register set selection – general purpose registers, this also controls which

bounds register set is viewable in the CSRs.

20 to 21 DL data operating level

24 to 27 Thrd active thread

28 to 31 IRQ The level of interrupt that caused the hardware BRK.

32 VCA indicates that vector chaining was active prior to an exception

40 to 47 ASID active address space identifier

48 to 49 FS floating point state

50 to 51 XS additional core extension state

55 MPRV memory privilege: This bit when true (1) causes memory operations to

use the first stack privilege level when evaluating privilege and

protection rules. (Bits 0 to 13 in the status reg).

56 to 60 VM These bits control virtual memory options. Note that multiple options

may be present at the same time. At reset all the bits are set to zero.

63 SD

VM5

Bit Indicates

0 1 = single bound

1 1 = separate program and data bounds

2 1 = lot protection system

3 1 = simplified paged unit

4 1 = paging unit

VE_HOLD (0x045)

This register contains the currently executing vector element number for fetch buffers #0 and #1.

Source and target element numbers are stored independently. Normally the source and target

elements are the same, however they may be different if a vector compress instruction is

executing. If the vector register set is switched during exception processing this register should be

saved and restored.

63 54 53 48 47 38 37 32 31 22 21 16 15 6 5 0

~ vet1 ~ ves1 ~ vet0 ~ ves0

P a g e | 22

BRS_STACK (0x046)

This register contains the register set selection stack for base and bounds registers. When an

exception or interrupt occurs, this register is shifted to the left and the current status copied to the

low order bits, when an RTI instruction is executed this register is shifted to the right and the

status bits copied from the low order bits of the register. On RTI the last stack entry will be set to

eight which will select register set #8 on stack underflow.

Normally the brs_stack matches the rs_stack, but it’s convenient to have a different register for

interrupt processing so that base and bounds register may be modified without switching the

general-purpose register set.

EPC (0x048 to 0x4F)

This sets of registers contains the interrupt or exception stack of the program counter register. The

top of the stack is register 0x48. When an interrupt or exception occurs register 0x48 to 0x4E are

copied to the next register and the program counter is placed into register 0x48. When an RTI

instruction is executed the program counter is loaded from register 0x048 and registers 0x048 to

0x047 are loaded with the next register. Register 0x04F is loaded with the address of the break

handler so that in the event of an underflow the break handler will be executed.

CODEBUF (0x080 to 0x0BF)

This register range is for access to 64 adaptable code buffers. The code buffers are used by the

EXEC instruction to execute code which may change at run-time.

IQ CTR (0x3C0)

This register contains a 40-bit count of the number of instructions queued since the last reset.

BM_CTR (0x3C1)

This register contains a 40-bit counter of the number of branch misses since the last reset.

IRQ_CTR (0x3C3)

This register is reserved to contain a 40-bit count of the number of interrupt requests.

BR_CTR (0x3C4)

This register contains a 40-bit counter of the number of branches committed since the last reset.

TIME (0x3E0)

The TIME register corresponds to the wall clock real time. This register can be used to compute

the current time based on a known reference point. The register value will typically be a fixed

number of seconds offset from the real wall clock time. The lower 32 bits of the register are

driven by the tm_clk_i clock time base input which is independent of the cpu clock. The tm_clk_i

input is a fixed frequency used for timing that cannot be less than 10MHz. The low order 32 bits

represent the fraction of one second. The upper 32 bits represent seconds passed. For example, if

the tm_clk_i frequency is 100MHz the low order 32 bits should count from 0 to 99,999,999 then

cycle back to 0 again. When the low order 32 bits cycle back to 0 again, the upper 32 bits of the

register is incremented. The upper 32 bits of the register represent the number of seconds passed

since an arbitrary point in the past.

P a g e | 23

Note that this register has a fixed time basis, unlike the TICK register whose frequency may vary

with the cpu clock. The cpu clock input may vary in frequency to allow for performance and

power adjustments.

INSTRET (0x3E1)

This register contains a count of the number of instructions retired (successfully completed) by

the core.

INFO (0x3F0 to 0x3FF)

This set of registers contains general information about the core including the manufacturer name,

cpu class and name, and model number.

P a g e | 24

Caches

Overview

The core has both instruction and data caches to improve performance. The instruction cache is a

two-level cache (L1, L2) allowing better performance. The first level cache is four-way set

associative, the second level cache is also four-way set associative. The author initially had the

first level cache fully associative based on a cam memory but found the resource requirements for

the cam memory to be too large. It was turned into an option. The cache sizes of the instruction

and data cache are available for reference from one of the INFO CSR registers.

Instructions

Since the instruction format affects the cache design it is mentioned here. For this design

instructions are of three different sizes (16, 32 or 48 bits). Specific formats are listed under the

instruction set description section of this book. Because instructions vary in size the number of

instructions fitting onto a cache line may not work out evenly. For this reason, there is an

overflow area of 32-bits for each cache line. The overflow area stores the instruction bits

remaining from the next cache line.

L1 Instruction Cache

L1 is 2.25kB in size and made from distributed ram to get single cycle read performance. L1 is

organized as 64 lines of 36-bytes. Note that there is a separate copy of the L1 cache for each way

parallel of the design. Separate copies are used to support SMT in addition to a wider instruction

fetch. The following illustration shows the L1 cache organization for FT64.

A 64-line cache was chosen as that matches the inherent size of single distributed ram component

in the FPGA. It is the author’s opinion that it would be better if the L1 cache were larger because

it often misses due to its small size. However, using a larger distributed ram means going outside

of the single lookup-table (LUT) and may then affect the clock cycle time. Using just a single

LUT as a memory component may also make it possible to implement part of the eight-to-one

multiplexor in the same logic slice as the ram. In short, the current design is an attempt to make it

easy for the tools to create a fast implementation.

P a g e | 25

Note that supporting interrupts and cache misses, a requirement for a realistic processor design,

adds complexity to the instruction stream. Reading the cache ram, selecting the correct instruction

word and accounting for interrupts and cache misses must all be done in a single clock cycle.

While the L1 cache has single cycle reads it requires two clock cycles to update (write) the cache.

The cache line to update needs to be provided by the tag memory which is unknown until after

the tag updates.

L2 Instruction Cache

L2 is 18kB in size implemented with block ram. L2 is organized as 512 lines of 36 bytes. Unlike

the L1 cache there is only a single L2 cache. There is more flexibility in the design of the L2

cache since it’s made up of block ram components. Once again, the cache is too small in the

author’s opinion, but it represents a trade-off in use of block ram resources for the cpu core versus

using the block ram for other purposes such as memory management or data cache. There are

only so many block rams in the FPGA.

The L2 cache has a read latency of three clock cycles to try and get the best clock cycle time out

of the cache. It feeds the L1 cache with a cache-line wide bus so that only a single transfer cycle

is required to update the L1 cache. All copies of the L1 cache are updated at the same time from

L2.

The L2 cache reads five words from memory on a cache line load, the fifth word read is the first

word of the next cache line which is also stored in the current cache line. The reason to do this is

instructions may not fit evenly into a 32-byte cache line so there is a four-byte overflow area.

While data is loading into the L2 cache an input register is also loaded with the data, the input

register is transferred to the L1 cache, this is done so that the L1 cache update doesn’t have to

wait for the three cycle read latency of the L2 cache. Also fed into the input register are

instructions for error processing should an error occur during the cache load.

P a g e | 26

Data Cache

The data cache organization is somewhat simpler than that of the instruction cache. Data is

cached with a single level cache because it’s not critical that the data be available within a single

clock cycle at least not for the hobby design. Some of the latency of the data cache can be hidden

by the presence of non-memory operating instructions in the instruction queue and the ability of

the core to overlap data fetches.

The data cache is organized as 256 lines of 64 bytes (16kB) and implemented with block ram.

Access to the data cache is multicycle. The data cache has three read ports allowing three load

operations to be in progress at the same time. The policy for stores is write-through. Stores

always write through to memory. Since stores follow a write-through policy the latency of the

store operation depends on the external memory system. It isn’t critical that the cache be able to

update in single cycle as external memory access is bound to take many more cycles than a cache

update. There is only a single write port on the data cache.

Cache Enables

The instruction cache is always enabled to keep hardware simpler and faster. Otherwise an

additional multiplexor and control logic would be required in the instruction stream to read from

external memory.

For some operations it may desirable to disable the data cache so there is a data cache enable bit

in control register #0. This bit may be set or cleared with one of the CSR instructions.

Cache Validation

A cache line is automatically marked as valid when loaded. The entire cache may be invalidated

using the CACHE instruction. Invalidating a single line of the cache is not currently supported,

but it is supported by the ISA.

Uncached Data Area

The address range $F…FDxxxxx is an uncached 1MB data area. This area is reserved for I/O

devices. The data cache may also be disabled in control register zero. There is also a set of load

instructions that bypass the data cache. These are called load volatile (LVx) instructions.

Write Buffering

The core has a seven entry write buffer to enhance performance of store operations. The core

always writes-through to memory and at the same time the cache is updated if a cache hit occurs.

Loads will not occur until after the write buffer is emptied to ensure that data loaded isn’t stale,

P a g e | 27

Fetch Buffers

There are two fetch buffers each of which holds a pair of instructions. When a fetch buffer

becomes empty it is loaded with new instructions from the cache. While the processor is working

with instructions from one fetch buffer, the other fetch buffer can be loading more instructions. In

the case of a cache miss or interrupt a special instruction is loaded into the fetch buffer rather than

the instruction output by the cache. For a cache miss this is the NOP instruction. For an interrupt

this is the BRK instruction. The program counter increment is suppressed during a cache miss.

The program counters are located in the fetch buffer component.

When SMT is enabled one half of the fetch buffers is used for each thread.

Fetch Rate

The fetch rate is two instructions per clock cycle. When SMT is on one instruction is fetched for

each thread. This is fine-grained SMT.

Return Address Stack Predictor (RSB)

There is an address predictor for return addresses which can in some cases can eliminate the

flushing of the instruction queue when a return instruction is executed. The RET instruction is

detected in the fetch stage of the core and a predicted return address used to fetch instructions

following the return. JAL instructions using the link register as the source are also treated as

return instructions. The return address stack predictor has a stack depth of 32 entries. On stack

overflow or underflow, the prediction will be wrong, however performance will be no worse than

not having a predictor. The return address stack predictor checks the address of the instruction

queued following the RET against the address fetched for the RET instruction to make sure that

the address corresponds.

There is a separate RSB for each thread while operating with SMT turned on.

P a g e | 28

Branch Predictor

The branch predictor is a (2, 2) correlating predictor. The branch history is maintained in a 512-

entry history table. It has four read ports for predicting branch outcomes, one port for each

instruction in the fetch buffer. The branch predictor may be disabled by a bit in control register

zero. When disabled all branches are predicted as not taken, unless specified otherwise in the

branch instruction.

To conserve hardware the branch predictor uses a fifo that can queue up to two branch outcomes

at the same time. Outcomes are removed from the fifo one at a time and used to update the branch

history table which has only a single write port. In an earlier implementation of the branch

predictor, two write ports were provided on the history table. This turned out to be relatively large

compared to it’s usefulness.

Correctly predicting a branch turns the branch into a two-cycle operation. Branches are detected

in the instruction decode stage, one cycle after a fetch. During execution of the branch instruction

the branch status is checked against the predicted status and if the two differ then a branch miss

occurs. The miss address may be the branch’s target address if the branch was supposed to be

taken, otherwise it will be the address of the next instruction. If there was a branch miss, then the

queue will be flushed, and new instructions loaded from the correct program path.

Sequence Numbers

Sequence numbers are mentioned here because they are used by branch instructions to determine

what to invalidate.

The core assigns a sequence number to each instruction as it enters the instruction queue. The

purpose of the sequence number is to allow the core to determine which instructions should be

invalidated because of a branch miss. All the instructions in the queue with a sequence number

coming after the branch instruction’s sequence number will be invalidated. The sequence number

assigned is the next highest number above that which is already in the queue. As instructions

commit to the machine state, the sequence numbers of following instructions are decremented by

the value of the sequence number of the committing instruction. This keeps the sequence numbers

within range of the number of queue entries while maintaining the ordering relationship between

the numbers.

The sequence number mechanism allows the core to speculate across any number of branches that

might be in the instruction queue.

Branch Target Buffer (BTB)

The core has a 1k entry branch target buffer for predicting the target address of flow control

instructions where the address is calculated and potentially unknown at time of fetch. Instructions

covered by the BTB include jump-and-link, interrupt return and breakpoint instructions and

branches to targets contained in a register.

P a g e | 29

Decode Logic

Instruction decode is performed primarily in two places a) in the instruction decode and register

fetch stage of the core, and b) within the core’s functional units. Broad classes of instructions are

decoded for the benefit of issue logic along with register specifications prior to instruction

enqueue. Most of the decodes are done with functions defined early in FT64.v because decoding

typically involves reducing a wide input into a smaller number of output signals. Other decodes

are done at instruction execution time with case statements.

A sample decode of the register Rc field is shown below. It shows that there is additional logic

required to insert the register set selection and vector element selection into the final register

select output bits. It also shows that the least significant bits of the register Rc field of the

instruction are simply copied directly from the instruction.

function [RBIT:0] fnRc;

input [31:0] isn;

input [5:0] vqei;

input thrd;

case(isn[`INSTRUCTION_OP])

`RR: case(isn[`INSTRUCTION_S2])

 `SVX: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]};

 `SBX,`SCX,`SHX,`SWX,`SWCX,`CACHEX:

 fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]};

 `CMOVEQ,`CMOVNE,`MAJ:

 fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]};

 default: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]};

 endcase

`VECTOR:

 case(isn[`INSTRUCTION_S2])

 `VSxx,`VSxxS,`VSxxU,`VSxxSU: fnRc = {6'h3F,1'b1,2'b0,isn[18:16]};

 default: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]};

 endcase

P a g e | 30

`FLOAT: fnRc = {rgs[5:1],1'b1,1'b0,isn[`INSTRUCTION_RC]};

`BccR: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]};

default: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]};

endcase

endfunction

Instruction Queue (ROB)

The instruction queue is an eight-entry re-ordering buffer (ROB). The instruction queue tracks an

instructions progress and provides a holding place for operands and results. Each instruction in

queue may be in one of a number of different states. The instruction queue is a circular buffer

with head and tail pointers. Instructions are queued onto the tail and committed to the machine

state at the head.

Queue Rate

Up to two instructions may queue during the same clock cycle depending on the availability of

queue slots. For a vector instruction up to two elements of the vector may queue during a clock

cycle, or if vector chaining is on single elements from both the current and following vector

instruction may queue during the same clock cycle.

Sequence Numbers

The queue maintains a 32-bit instruction sequence number which gives other operations in the

core a clue as to the order of instructions. The sequence number is assigned when an instruction

queues. Branch instructions need to know when the next instruction has queued in order to detect

branch misses. A separate sequence number is maintained for each hardware thread. The program

counter cannot be used to determine the instruction sequence because there may be a software

P a g e | 31

loop at work which causes the program counter to cycle backwards even though it’s really the

next instruction executing.

Queueing of Flow Control Operations

Flow control operations are not done until sometime after the next instruction queues. This is

necessary to determine address miss-predicts during the flow control operation. Waiting until the

next instruction queues avoids the problem of false mis-predictions. A consequence of waiting for

the next instruction to queue is that flow control operations may only issue from one of the first

seven queue slots relative to the head of the queue. Note however that if the instruction queue is

full the flow control operation will issue anyway otherwise the core could become deadlocked.

When the core issues a flow control operation because the queue is full it will most likely cause a

branch-miss state, which may reduce performance.

Issue Logic

Issue logic is responsible for assigning instructions to functional units. Instructions cannot be

issued unless all operands are available, and the functional unit is also available.

The amount of issue logic required grows at a more than linear rate corresponding to the number

of queue entries in the re-order buffer. This is in part due to the need for the issue logic to be

synchronous in nature for an FPGA. There are more elegant ways to implement the issue logic

using asynchronous loops, however these are not possible with an FPGA implementation. The

amount of issue logic may be reduced by a core configuration define at some loss of performance.

Since instructions that have just queued at the tail of the queue are unlikely to be ready to be

processed the issue logic for those queue entries can be omitted. Instructions more towards the

head of the queue will be more likely to be ready to issue.

Issue Rate

The functional units of FT64 include two alu’s, a floating-point unit, a memory unit, and a flow

control unit (branch unit). Instructions may be issued to any and all functional units during a

single clock cycle. The memory unit can handle three requests at the same time. As a result, up to

seven instructions may be issued in a single clock cycle. In practice fewer instructions will be

ready to be issued. The author has noted, with limited testing, that issuing a third memory

operation in the same clock cycle is rarely done. The memory unit is typically 2/3 occupied or

less. The design could likely be reduced in size by omitting the third cache read port and support

for a third memory operation in the issue logic with little loss of performance.

Execute Logic

Instructions are executed on functional units after they have been issued to the unit. The

execution logic for FT64 consists of two alu’s, a floating-point unit, a flow control unit and a

memory unit.

ALU’s

Most instructions execute on one of two alu’s. The alu’s are asymmetrical. The first alu supports

all operations including rarely performed operations, the second alu supports a subset of the

operations which represents the most commonly performed operations. Splitting the functionality

like this allows the core to support a wide variety of instructions while at the same time not using

P a g e | 32

too many resources for rarely used operations. The issue logic knows about the difference in the

ALU’s and will issue what it can to the second alu if the first is busy. It’s best to intermix

commonly used instructions with rarely used ones to keep both alu’s busy.

Floating Point Unit

The floating-point unit is used to execute almost all floating-point operations. The exception is

floating point branches which are executed on the flow control unit. The length of time required

to complete a floating-point operation varies depending on the instruction.

It would be better for performance if the floating-point unit were broken apart into several

separate units. Each unit would have associated issue logic. That way the pipelining of the

individual operations could be put to better use. Some machines have the fp multiplier separate

from fp addition/subtraction and other units. This could be done but would require more

resources from the FPGA. Having multiple floating-point units would also help.

Note that the ISA isn’t closely related to the implementation of the floating-point unit. There is no

reason why faster floating point wouldn’t be possible from an ISA perspective.

Flow Control Unit

A single flow control (or branch) unit takes care of all the flow control instructions the core

supports. The author prefers to call the unit a flow control unit rather than a branch unit, because

the unit takes care of additional instructions besides simple branches. A branch implies multiple

paths of execution. For some instructions for instance a jump or a call there is only one path of

execution, calling them a branch is a bit of a misnomer. In an initial version of the core flow

control operations were performed by the alu’s. This led to problems of prioritization of flow

control operations when two flow control operations were taking place at the same time.

Especially given that the operations may have been assigned out of order to the alu’s. Moving

from the alu pair to a single flow control unit resolved those problems.

P a g e | 33

The flow control unit is responsible for determining whether a branch should be taken. However,

by the time the branch reaches the flow control unit, it has already taken a predicted path of

execution. So, the flow control unit’s real job is to verify that the correct path was taken.

The flow control unit has a small alu to calculate register increment or decrement, stack pointer

adjustment, and return addresses. The fcu’s alu is called FT64_fcu_calc.v to avoid confusion with

FT64’s master alu.

Memory Unit

The memory unit can handle up to three requests at a time. If the data cache is enabled loads

check for data in the data cache, which is loaded with data if the data is not present in the cache.

Up to three load operations may be taking place at the same time, each one making use of a

different read port of the data cache.

Un-cached loads and stores access external memory and hence are serialized. Since there is only a

single port to external memory access takes place one request at a time.

Operating Levels

The core has four operating levels. The highest operating level is operating level zero which is

called the machine operating level. Operating level zero has complete access to the machine.

Other operating levels may have more restricted access. When an interrupt occurs, the operating

level is set to the machine level. The core vectors to an address depending on the current

operating level.

Operating Level Privilege Level Moniker

3 7 to 255 user

2 2 to 6 supervisor

1 1 hypervisor

0 0 machine

Switching Operating Levels

The operating level is automatically switched to the machine level when an interrupt occurs. The

BRK instruction may be used to switch operating levels. The REX instruction may also be used

by an interrupt handler to switch the operating level to a lower level. The RTI instruction will

switch the operating level back to what it was prior to the interrupt.

Privilege Levels

The core supports a 256-level privilege level system. Privilege level zero is assigned to operating

mode zero. Privilege level one is assigned to operating level one. Privilege levels 2 to 6 are

assigned to their corresponding operating level. The remaining privilege levels are assigned to

operating level three.

P a g e | 34

Exceptions

External Interrupts

There is very little difference between an externally generated exception and an internally

generated one. An externally caused exception will force a BRK instruction into the instruction

stream. The BRK instruction contains a cause code identifying the external interrupt source.

If running with SMT then an external interrupt will be processed only by the even numbered

thread to prevent the same interrupt from being processed twice. Other exceptions may occur on

either thread.

Polling for Interrupts

To support managed code an interrupt polling instruction (PFI) is provided in the instruction set.

In some managed code environments, it is not enough to disable and enable interrupts around

critical code. The code must be effectively run with interrupt disabled all the time. This makes it

necessary to poll for interrupts in software. For instance, stack prologue code may cause false

pointer matches for the garbage collector because stack space is allocated before the contents are

defined. If the GC scan occurs on this allocated but undefined area of memory, there could be

false matches.

Effect on Machine Status

The operating mode is always switched to the machine mode on exception. It’s up to the machine

mode code to redirect the exception to a lower operating mode when desired. Further exceptions

at the same or lower interrupt level are disabled automatically. Machine mode code must enable

interrupts at some point. This can be done automatically when the exception is redirected to a

lower level by the REX instruction. The RTI instruction will also automatically enable further

machine level exceptions.

For a hardware interrupt the register set is set to the level of the hardware interrupt (0 to 7) times

four. For a software exception register set #0 is selected. Individual registers from alternate

register sets may be selected with the MOV instruction.

Exception Stack

The program counter and status bits are pushed onto an internal stack when an exception occurs.

This stack is only eight entries deep as that is the maximum amount of nesting that can occur.

Further nesting of exceptions can be achieved by saving the state contained in the exception

registers.

Exception Vectoring

Exceptions are handled through a vector table. The vector table has four entries, one for each

operating level the core may be running at. The location of the vector table is determined by

TVEC[0]. If the core is operating at level three for instance and an interrupt occurs vector table

address number three is used for the interrupt handler. Note that the interrupt automatically

switches the core to operating level zero, privilege level zero. An exception handler at the

P a g e | 35

machine level may redirect exceptions to a lower level handler identified in one of the vector

registers. More specific exception information is supplied in the cause register.

Operating

Level

Address (If TVEC[0]

contains $FFFC0000)

0 $FFFC0000 Handler for operating level zero

1 $FFFC0020

2 $FFFC0040

3 $FFFC0060

Reset

The core begins executing instructions at address $FFFFFFFFFFFC0100. All registers are in an

undefined state. Register set #0 is selected.

Precision

Exceptions in FT64 are precise. They are processed according to program order of the

instructions. If an exception occurs during the execution of an instruction, then an exception field

is set in the reorder buffer. The exception is processed when the instruction commits which

happens in program order. If the instruction was executed in a speculative fashion, then no

exception processing will be invoked unless the instruction makes it to the commit stage.

P a g e | 36

Exception Cause Codes

The following table outlines the cause code for a given purpose. These codes are specific to

FT64. Under the HW column an ‘x’ indicates that the exception is internally generated by the

processor; the cause code is hard-wired to that use. An ‘e’ indicates an externally generated

interrupt, the usage may vary depending on the system.

Cause

Code

 HW Description

1 IBE x instruction bus error

2 EXF x Executable fault

4 TLB x tlb miss

 FMTK Scheduler

128 e

129 KRST e Keyboard reset interrupt

130 MSI e Millisecond Interrupt

131 TICK e

156 KBD e Keyboard interrupt

157 GCS e Garbage collect stop

158 GC e Garbage collect

159 TSI e FMTK Time Slice Interrupt

3 Control-C pressed

20 Control-T pressed

26 Control-Z pressed

32 SSM x single step

33 DBG x debug exception

34 TGT x call target exception

35 MEM x memory fault

36 IADR x bad instruction address

37 UNIMP x unimplemented instruction

38 FLT x floating point exception

39 CHK x bounds check exception

40 DBZ x divide by zero

41 OFL x overflow

 FLT x floating point exception

47

48 ALN x data alignment

49

50 DWF x Data write fault

51 DRF x data read fault

52 SGB x segment bounds violation

53 PRIV x privilege level violation

54 CMT x commit timeout

55 BD x branch displacement

56 STK x stack fault

57 CPF x code page fault

P a g e | 37

58 DPF x data page fault

60 DBE x data bus error

61

62 NMI x Non-maskable interrupt

230 RT x return selector

231 LDCS x load code selector

232 ZS LD x segment load exception

233 DS LD x

234 ES LD x

235 FS LD x

236 GS LD x

237 HS LD x

238 SS LD x

239 CS LD x

240 SYS Call operating system (FMTK)

241 FMTK Schedule interrupt

255 PFI reserved for poll-for-interrupt instruction

DBG

A debug exception occurs if there is a match between a data or instruction address and an address

in one of the debug address registers.

IADR

This exception is currently not implemented but reserved for the purpose of identifying bad

instruction addresses. If the two least significant bits of the instruction address are non-zero then

this exception will occur.

UNIMP

This exception occurs if an instruction is encountered that is not supported by the processor. It is

not currently implemented.

OFL

If an arithmetic operation overflows (multiply, add, or shift) and the overflow exception is

enabled in the arithmetic exception enable register then an OFL exception will be triggered.

FLT

A floating-point exception is triggered if an exceptional condition occurs in the floating-point unit

and the exception is enabled. Please see the section on floating-point for more details.

DRF, DWF, EXF

Data read fault, data write fault, and execute fault are exceptions that are returned by the memory

management unit when an attempt is made to access memory for which the corresponding access

type is not allowed. For instance, if the memory page is marked as non-executable an attempt is

made to load the instruction cache from the page then an execute fault EXF exception will occur.

P a g e | 38

CPF, DPF

The code page fault and data page fault exceptions are activated by the mmu if the page is not

present in memory. Access may be allowed but simply unavailable.

PRIV

Some instructions and CSR registers are legal to use only at a higher operating level. If an attempt

is made to use the privileged instruction by a lower operating level, then a privilege violation

exception may occur. For instance, attempting to use RTI instruction from user operating level.

STK

If the value loaded into one of the stack pointer registers (the stack point sp or frame pointer fp) is

outside of the bounds defined by the stack bounds registers, then a stack fault exception will be

triggered.

DBE

A timeout signal is typically wired to the err_i input of the core and if the data memory does not

respond with an ack_i signal fast enough and error will be triggered. This will happen most often

when the core is attempting to access an unimplemented memory area for which no ack signal is

generated. When the err_i input is activated during an data fetch, an exception is flagged in a

result register for the instruction. The core will process the exception when the instruction

commits. If the instruction does not commit (it could be a speculated load instruction) then the

exception will not be processed.

IBE

A timeout signal is typically wired to the err_i input of the core and if the instruction memory

does not respond with an ack_i signal fast enough and error will be triggered. This will happen

most often when the core is attempting to access an unimplemented memory area for which no

ack signal is generated. When the err_i input is activated during an instruction fetch, a breakpoint

instruction is loaded into the cache at the address of the error.

NMI

The core does not currently support non-maskable interrupts. However, this cause value is

reserved for that purpose.

P a g e | 39

IPT – The Inverted Page Table

Overview

A page table stores address translations from virtual to physical addresses. The inverted page

table stores the virtual address in the table at an offset that corresponds to a physical page in

memory. Thus, a translation can just use the index into the inverted page table as the physical

page. This mechanism requires searching for the virtual page number in the table in order to

determine the index. One might think this would be time consuming, but usually a hash function

is used to get a good guess at the entry desired.

Memory Usage

An inverted page table manages memory using only a single entry for each physical page of

memory. As such it requires less memory than a paged memory management system would.

Hash Function

A hash function is used to turn a virtual address into an inverted page table index. The hash

function effectively reduces the number the number of bits in the virtual address to a number that

corresponds to the table size. Hash function inputs are the virtual page number and the system’s

current randomization key.

Randomization Key

As an aid to system security and integrity memory pages are allocated in a randomized fashion.

Each time the system is restarted pages will be allocated in a different order. This is accomplished

using a random key value in the hash function used to find virtual to physical address translations.

the randomization key is determined from a random source in the system.

TLB

Usually an inverted page table is also used with a tlb to store address translations for faster

access. In the case of the FT64v7SoC system-on-chip however there is no caching of address

translations. Instead the entire inverted page table is stored in block ram resources within the

FPGA. Translation will typically require only a small number of accesses to the block ram

memory. This is contrasted with access to main memory which has a higher latency.

P a g e | 40

TLB – The Translation Lookaside Buffer

Overview

The TLB (translation look-aside buffer) offers a means of address virtualization and memory

protection. A TLB works by caching address mappings between a real physical address and a virtual

address used by software. The TLB is managed by software triggered when a TLB miss occurs. The

TLB deals with memory organized as pages. Typically, software manages a paging table whose

entries are loaded into the TLB as translations are required.

The TLB keeps a reference count for each map entry stored in the TLB. The upper 24-bits of the

reference count, which is a 32-bit saturating counter, are automatically incremented with each

memory access to the page. Reference counts are subject to aging under control of the AFC register.

The reference counts may be read or written with the TBLRDAGE or TLBWRAGE commands.

The TLB is manipulated with the TLB instruction.

Size / Organization

The core uses a 256 entry TLB (translation look-aside buffer) to support virtual memory. The TLB

supports variable page sizes from 8kB to 2MB. The TLB is organized as a sixteen-way sixteen-set

cache. The TLB processes all addresses leaving the core including both code and data addresses.

Updating the TLB

The TLB is updated by first placing values into the TLB holding registers using the TLB instruction,

then issuing a TLB write command using the TLB command instruction.

Address translations will not take place until the TLB is enabled. An enable TLB command must be

issued using the TLB command instruction.

G = Global

P a g e | 41

The global bit marks the TLB entry as a global address translation where the ASID field

is not used to match addresses.

ASID = address space identifier

The ASID field in the TLB entry must match the processor’s current ASID value for the

translation to be considered valid, unless the G bit is set. If the G bit is set in the TLB

entry, then the ASID field is ignored during the address comparison. The processor’s

current ASID is located in the machine status register.

C = cache-ability bits

If the cache-ability bits are set to 001b then the page is un-cached, otherwise the page is

cached.

D = dirty bit

The dirty bit is set by hardware when a write occurs to the virtual memory page identified

by the TLB entry.

A = accessed bit

This bit is set when the page is accessed.

U = undefined usage

This bit is available for OS usage

S = address shortcut

R = read bit

This bit indicates that the page is readable.

W = write bit

This bit indicates that the page is writeable

X = execute bit

This bit indicates that the page contains executable code

R,W,X = valid bit

P a g e | 42

One of these bits must be set for the address translation to be considered valid. The entire

TLB may be invalidated using the invalidate all command.

Page Table Entry

The following layout shows the page table entry structure as stored in memory. Although the

page table is managed by software, this layout should be followed.

31 16 15 8 7 6 5 4 3 2 1 0

~16 PL D U S A C R W X

Reference Counter32

Page Number31..0

Page Number63..32

Bit

0 X 1 = executable Together these three fields combined indicate if the page

is present. It must be at least one of readable, writeable, or

executable.
1 W 1 = page writeable

2 R 1 = readable

3 C 1 = cache disabled

4 A 1 = accessed

5 S 1 = shortcut translation Translation shortcut bit eg (8MiB

pages)

6 U undefined usage available to be used by OS

7 D 1=dirty

8 to

15

PL Privilege level

16 to

31

PN Memory Page Number High order bits of the page number

may not be required and should be set

to zero. 32 to

50

Page Directory Entry
Page directory entries have the same format as page table entries.

P a g e | 43

TLB Registers

TLBWired (#0h)

This register limits random updates to the TLB to a subset of the available number of

ways. TLB ways below the value specified in the Wired register will not be updated

randomly. Setting this register provides a means to create fixed translation settings. For

instance, if the wired register is set to two, the thirty-two fixed entries will be available.

TLBIndex (#1h)

 This register contains the entry number of the TLB entry to be read from or written to.

TLBRandom (#2h)

This register contains a random four-bit value used to update a random TLB entry during

a TLB write operation.

TLBPageSize (#3h)

The TLBPageSize register controls which address bits are significant during a TLB

lookup.

TLBPhysPage (#5h)

The TLBPhysPage register is a holding register that contains the page number for an

associated virtual address. This register is transferred to or from the TLB by TLB

instructions.

63 0

Physical Page Number

N Page Size

0 8KiB

1 32kiB

2 128kiB

3 512kiB

4 2MiB

5 8MiB

P a g e | 44

TLBVirtPage (#4h)

The TLBVirtPage register is a holding register that contains the page number for an

associated physical address. This register is transferred to or from the TLB by TLB

instructions.

63 0

Virtual Page Number

TLBASID (#7h)

The TLBASID register is a holding register that contains the address space identifier

(ASID) , valid, dirty, global, and cache-ability bits associated with a TLB entry. This

register is transferred to or from the TLB by TLB instructions.

63 32 31 24 23 16 13 11 10 9 8 7 6 5 3 2 1 0

----- PL ASID PgSz G D U S A C R W X

TLBAFC (#12) – Aging Frequency Control

This 24-bit register controls the frequency of aging applied to page reference counters. The aging

counter is decremented at the core’s clock frequency. When the counter underflows it triggers an

aging cycle and is reloaded with the value in the AFC register. The AFC register is defaulted to

20000. This gives an aging frequency of 1000Hz with a 20MHz core clock.

P a g e | 45

Simplified Paged Memory Management Unit

Overview

One option for memory management is a simplified paged memory management unit. Memory

management by the MMU includes virtual to physical address mapping and read/write/execute

permissions. The MMU divides memory into 8kiB or 512kiB pages depending on the setting in

PCR2. The FPGA board in use has 512MiB of ram onboard. The simplified MMU is setup to

map only this amount of ram.

8kiB pages

Processor address bits 13 to 22 are used as a ten-bit index into a mapping table to find the

physical page. The MMU remaps the ten address bits into a sixteen-bit value used as address bits

13 to 28 when accessing a physical address. The lower thirteen bits of the address pass through

the MMU unchanged. The maximum amount of memory that may be mapped in the MMU is

8MiB per map out of a pool of 512MiB. Only addresses with the most significant three bits set to

zero are mapped.

512kiB pages

Some tasks require a lot of memory and an 8MiB map isn’t sufficient. For instance, while in

machine mode the core requires access to the entire address range. A memory page size of

512kiB may be selected by setting the bit corresponding to the memory map in PCR2.

Processor address bits 19 to 28 are used as a ten-bit index into a mapping table to find the

physical page. The MMU remaps the ten address bits into a ten-bit value used as address bits 19

to 28 when accessing a physical address. The lower 19 bits of the address pass through the MMU

unchanged. The maximum amount of memory that may be mapped in the MMU is 512MiB per

map out of a pool of 512MiB. Only addresses with the most significant three bits set to zero are

mapped.

Map Tables

The mapping tables for memory management are stored directly in the MMU rather than being

stored in main memory as is commonly done. The MMU supports up to 64 independent mapping

tables. Only a single mapping table may be active at one time. The active mapping table is set in

the paging control register (CSR #3) bits 0 to 5 – called the operate key. Mapping tables may be

shared between tasks.

Map Caching / TLB

There isn’t a need for a TLB or ATC as the entire mapping table is contained in the MMU. A

TLB isn’t required. Address mapping is still only two cycles.

Operate Key

The operate key controls which mapping table is actively mapping the memory space. The

operate key is located in CSR #3 bits 0 to 5. The operate key is similar to an ASID (address space

P a g e | 46

identifier). The operate key is also used as part of the cores cache tags. When the operate key

changes due to a task switch, the cache does not have to be invalidated.

Access Key

The MMU mapping tables are present at I/O address $FFDC4000 to $FFDC4FFF. All the

mapping tables share the same I/O space. Only one mapping table is visible in the address space

at one time. Which table is visible is controlled by an access key. The access key is located in the

paging control register (CSR #3) bits 8 to 13.

Address Pass-through

Addresses pass through the MMU unaltered until the mapping enable bit is set. Until mapping is

enabled, the physical address will match the virtual address. Additionally address bits 0 to 12 pass

through the MMU unaltered.

Mapping Table Layout

 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

000 S1 S0 W R X PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16 PA15 PA14 PA13

004 S1 S0 W R X PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16 PA15 PA14 PA13

 …

FFC S1 S0 W R X PA28 PA27 PA26 PA25 PA24 PA23 PA22 PA21 PA20 PA19 PA18 PA17 PA16 PA15 PA14 PA13

PAnn = physical address bit

X = executable page indicator.

W = writeable data page indicator.

R = readable data page indicator.

Note the low order six bits are not used for 512kiB pages.

S1,S0 = two bits for program use

PCR- Paging Control Register Layout
31 30 14 13 8 7 6 5 0

PE ~18 AKey6 ~ OKey6

PE = Paging Enable (1=enabled, 0 = disabled)

AKey = Access Key

OKey = Operate Key

PCR2 – Page Size

This register controls the memory page size. Each bit in the register corresponds to a memory

map. Memory may be paged in either 8kiB or 512kiB pages. All pages in a map have the same

size.

Latency

The address map operation when enabled has two cycles of latency. In the case of instructions

address translation only takes place on a cache miss when the cache needs to be loaded from main

memory.

P a g e | 47

Telescopic Memory
Telescopic memory is used to increase the performance of garbage collection routines and other

similar software.

Telescopic memory stores pointer values at progressively lower address resolutions. When a

pointer store to main memory occurs, the address is shifted right eleven times and a single bit is

set in the telescopic memory to indicate that a pointer store occurred. At the same time the

address is also shifted right twenty-two times and a single bit is set in the telescopic memory to

indicate a pointer store occurred. This generates two, bit tables indicating where pointer stores

occurred. Three write accesses to update the telescopic memory occur in parallel to main memory

access. A single store pointer (sptr) instruction triggers all three accesses.

For instance, with a 256MB memory, the first level table contains 128kB (16k words). The

resolution of the address of the stored pointer is 256 bytes. The second level table contains 32

bytes or four words. The resolution of the address of the stored pointer is 1MB.

P a g e | 48

Instruction Set Description

Formats

Most instructions have a fixed 32 bit format. There are only a handful of different instruction formats. The opcode, register read Ra, Rb,

Rc, and Rt fields always occur in the same place in an instruction to simplify decoding and keep the register read address which is needed

prior to enqueue at a fixed decoding location.

Immed14 Rt5 Ra5 L2 Opcode6 RI

Immed14 Rt5 Imm5 L2 Opcode6 LUI

Disp13..6 Rb5 Disp4..0 Ra5 L2 Opcode6 MS

Funct6 Sz3 Rb5 Rt5 Ra5 L2 Opcode6 RR

016 Sz3 Funct5 Rt5 Ra5 L2 Opcode6 R1

Funct6 Funct3 Rb5 Rt5 Ra5 L2 Opcode6 SR

Funct6 Funct3 Immed5 Rt5 Ra5 L2 Opcode6 SI

Funct4 Rg3 ~3 Bw Bo Rc5 Bw5 Rt5 Bo5 L2 Opcode6 BF

Disp11..3 Rb5 D2..1 Cond3 Ra5 L2 Opcode6 BD

Disp11..3 Bitno5..1 D2..1 B0 Cnd2 Ra5 L2 Opcode6 BB

Disp11..3 Imm7..3 D2..1 Imm2..0 Ra5 L2 Opcode6 BE

~8 Rc5 Rb5 Cond5 Ra5 L2 Opcode6 BR

0 Funct3 Fn2 ~ Sc2 Rb5 Rt5 Ra5 L2 Opcode6 MXL

1 Funct3 Rc5 Rb5 Fn2 ~ Sc2 Ra5 L2 Opcode6 MXS

Op2 OL2 Regno10 Rt5 Ra5 L2 Opcode6 CSR

Funct5 Prec2 Rm3 Rb5 Rt5 Ra5 L2 Opcode6 FLT

Address24 L2 Opcode6 JC

There are a handful of additional formats primarily for control type instructions. See the instruction details for the exact format used and

additional information.

P a g e | 49

Format Instruction Group

RI register-immediate and load with displacement

LUI load upper immediate

MS memory store with displacement

RR register-register, two source registers

R1 single source register

SR shift register-register

SI shift register-immediate

BF bitfield

BD branch with displacement

BB branch on bit set / clear

BE branch on equal immediate

BR branch to register

MXL memory indexed load

MXS memory indexed store

CSR control and status register access

JC jump and call

FLT floating-point

P a g e | 50

P a g e | 51

L2 Instruction Length

0 32 bit instruction

1 48 bit instruction

2 16 bit compressed instruction

3 16 bit compressed instruction

Compressed Instruction Formats

15 12 11 8, 5 76 4 0

0000 005 10 05 NOP

0000 Amt[7..3] 10 315 ADDISP

0000 Amt5 10 Ra/Rt5 ADDI

0001 Amt5 10 Rt5 LDI / SYS (SYS if Rt = 0)

0010 Amt5 10 Ra/Rt5 RET / ANDI (RET if Ra=0)

0011 Amt5 10 Rt5 SHLI

0100 Amt5 10 00 Ra/Rt’3 SHRI

0100 Amt5 10 01 Ra/Rt’3 ASRI

0100 Amt5 10 10 Ra/Rt’3 ORI

0100 00 Rb’3 10 11 Ra/Rt’3 SUB

0100 01 Rb’3 10 11 Ra/Rt’3 AND

0100 10 Rb’3 10 11 Ra/Rt’3 OR

0100 11 Rb’3 10 11 Ra/Rt’3 XOR

0101 Address9..5 10 Address4..0 CALL

0110 10 reserved

0111 Disp9..5 10 Disp4..0 BRA

10 Disp7 10 Ra5 BEQZ

11 Disp7 10 Ra5 BNEZ

0000 Rt5 11 Ra5 MOV

0001 Rb5 11 Ra/Rt5 ADD

0010 Rt5 11 Ra5 JALR

0011 ?????? 11 Ra5 PUSH / CS / DS / ES / SS / FS / GS

The following two instructions have SP as an implied register read

0100 Disp6..2 11 Rt5 LH Rt,d[SP]

0101 Disp7..3 11 Rt5 LW Rt,d[SP]

The following two instructions have FP as an implied register read

0110 Disp6..2 11 Rt5 LH Rt,d[FP]

0111 Disp7..3 11 Rt5 LW Rt,d[FP]

The following two instructions have SP as an implied register read

1000 Disp6..2 11 Rb5 SH Rb,d[SP]

1001 Disp7..3 11 Rb5 SW Rb,d[SP]

The following two instructions have FP as an implied register read

1010 Disp6..2 11 Rb5 SH Rb,d[FP]

1011 Disp7..3 11 Rb5 SW Rb,d[FP]

1100 d5..4 Rt’3 11 d3..2 Ra’3 LH Rt,d[Ra]

1101 d6..5 Rt’3 11 d4..3 Ra’3 LW Rt,d[Ra]

111? d5..4 Rb’3 11 d3..2 Ra’3 SH Rb,d[Ra]

1111 d6..5 Rb’3 11 d4..3 Ra’3 SW Rb,d[Ra]

Operation Sizes

Many instructions have an option to process data in sub-word data sizes including bytes, chars,

and half-words. Typically, sized operations are supported only with register-register instructions.

Instructions using immediate values always operate on whole words.

SIMD

Single instruction multiple data operations treat the 64 bit operands as multiple independent lanes

of data depending on the size selected. For a half-word size the operands are treated as two

independent 32 bit operands. For a character size the operands are treated as four independent 16

P a g e | 52

bit operands. SIMD operations are selected by setting the parallel operation bit in the instruction

(the most significant bit of the size field).

Arithmetic Operations

Arithmetic operations include addition, subtraction, comparison, multiplication and division.

Relational Operations

There are handful of instructions for determining the relationship between values. These include

an assortment of set instructions. The set instruction group is asymmetrical because there are

means to implement set instructions with other already existing instructions. For instance, there

are no set greater than or set greater than or equal set instructions that take register operands

because the less than versions of the set instructions can be used to the same effect by swapping

operands around. There is no set if equal or set if not equal because the xnor and xor functions

perform much the same operation.

Logical Operations

Logical operations include bitwise and, or, and exclusive or. Inverted logical ops are also

available for register instruction forms (nand, nor, and exnor).

Shift Operations

There is a full complement of shift operations including left and right unsigned and signed shifts,

and left and right rotate instructions. Shift instructions are only supported on alu #0.

Bitfield Operations

The CC64 compiler has direct support for bitfields and bitfield instructions support these

operations. Bitfield operations include insert, extract, set, change and clear operations.

Memory Operations

Memory operations include loads and stores of bytes, words or half-words. There isn’t yet a full

complement of memory operations in order to keep the size of the core smaller. The core can

perform loads and stores using indexed addressing.

Loads

Loads may execute speculatively. They may occur out of program order. A load will be issued

provided there is no address overlap with a previous memory operation.

Stores

Stores will not be issued by the core until it is known that the store can be guaranteed to execute.

Unlike a load, a store cannot be executed speculatively. This means no prior instruction will

exception and no change of control flow will take place before the store. Stores always write

through to memory. A store instruction can’t be committed to the machine state until exceptions

are checked for during the store operation. Until the operation to memory is complete the store

can’t commit. However, the store operation is marked as “done” as soon as it’s issued so that

other instructions may continue to execute. Much of the latency of a store operation is then

hidden.

P a g e | 53

AMO

There is a set of AMO memory operations (atomic memory operations). These operations use a

read-modify-write cycle to modify the memory location. There is a small ALU associated with

the AMO operations that allows some basic functions to be performed on the data between the

read and write cycle.

Control Flow Instructions

Control flow instructions include call, return, jumps and branches, breakpoint and return

instructions. All controls transfers take place at the fetch stage of the processor and if a predicted

fetch direction turns out to be incorrect it is corrected during the execution stage of the

instruction. Instructions which use calculated addresses unknown until run-time make use of the

branch target buffer to predict the address.

Jump

There is a single jump instruction which modifies the low order 28 bits of the program counter,

allowing a jump within the same 256MB region of memory. This range is probably sufficient for

most applications when an mmu is present.

Call

There is a single call instruction which modifies the low order 28 bits of the program counter.

Call instruction flow transfer takes place immediately in the fetch stage of the core. The call

return address is pushed onto the return address stack predictor. When the call instruction

executes, the return address is stored in the return address register. The JAL instruction may also

be used to call subroutines and allows a register indirect call to be performed.

Return

Return instructions are predicted during the fetch stage of the core using a return address

predictor. The return instruction is also capable of adjusting the stack pointer.

Conditional Branches

Conditional branches are predicted using a (2,2) correlating branch predictor.

Breakpoint

Breakpoint instructions cause some of the cores state to be stored on internal stacks. The stored

state includes the program counter, interrupt mask, privilege level, and operating level. The

internal stacks are eight entries deep; this is the maximum amount of nesting that can occur. The

breakpoint instruction specifies the number of instruction words to skip over to determine point of

return.

Exception (breakpoint) Return

The exception return instruction unstacks the state previously stacked by a breakpoint instruction.

Clock cycles

The clock cycles indicated are only approximate. An attempt has been made to give a relative

indication between instructions of the clocks required. The core hasn’t under gone significant

timing measurements. Many common instructions which can execute in only ½ of a clock cycle,

P a g e | 54

for example add and subtract, indicate a clock cycle time of 1. A number of instructions have

single cycle execution times because they may only execute on ALU #0.

P a g e | 55

ABS – Absolute Value

Description:

This instruction takes the absolute value of a register and places the result in a target register.

Instruction Format:

016 Sz3 45 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

If Ra < 0

 Rt = -Ra

 else

 Rt = Ra

Exceptions: none

Notes:

Sz3

0 reserved

1 reserved

2 reserved

3 reserved

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 56

ADD - Addition
Description:

Add two values. The first operand must be in a register. The second operand may be in a register

or may be an immediate value specified in the instruction.

Instruction Format:

Immed14 Rt5 Ra5 L2 04h6

L2: 0 = 14 bit constant, 1 = 30 bit constant

046 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

Notes:

For parallel operation forms the registers are treated as if they were a group of registers

corresponding to the size selected. And the same operation is performed on each part of the

register. For parallel forms the entire register is updated.

Sz3

0 reserved

1 reserved

2 reserved

3 reserved

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 57

ADD3 - Addition
Description:

Add three values. All operands must be in registers.

Instruction Format:

046 ~14 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

P a g e | 58

ADDV – Addition with Overflow Detection
Description:

Add two values. Both operands must be in registers. If an overflow occurs an overflow exception

may be generated if enabled in the arithmetic exception control register.

Instruction Format:

026 ~3 Rt5 Rb5 Ra5 L2 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions:

The instruction may cause an overflow exception if enabled in the AEC register.

Notes:

P a g e | 59

AMO – Atomic Memory Operation
Description:

The atomic memory operations read from memory addressed by the Ra register and store the

value in Rt. As a second step the value from memory is combined with the value in register Rb

according to one of the available functions then stored back into the memory addressed by Ra.

Instruction Format:

Funct4 A R Sz3 Rt5 Rb5 Ra5 02 2Fh6

Instruction Format (immediate operand):

Funct4 A R Sz3 Imm5 Rt5 Ra5 02 3Fh6

Funct4 Mnemonic Operation

Performed

00 swap swap memory[Ra] = Rb

01 add addition memory[Ra] = memory[Ra] + Rb

02 and bitwise and memory[Ra] = memory[Ra] & Rb

03 or bitwise or memory[Ra] = memory[Ra] | Rb

04 xor bitwise exclusive

or

memory[Ra] = memory[Ra] ^ Rb

05 shl shift left memory[Ra] = memory[Ra] << Rb

06 shr shift right memory[Ra] = memory[Ra] >> Rb

07 min minimum memory[Ra] = memory[Ra] < Rb ? memory[Ra]

: Rb

08 max maximum memory[Ra] = memory[Ra] >Rb ? memory[Ra]

: Rb

09 minu minimum unsigned memory[Ra] = memory[Ra] < Rb ? memory[Ra]

: Rb

0A maxu maximum

unsigned

memory[Ra] = memory[Ra] > Rb ? memory[Ra]

: Rb

Sz2

0 Byte

1 Char

2 Half

3 Word

Acquire and release bits determine the ordering of memory operations.

A = acquire – 1 = no following memory operations can take place before this one

R = release – 1 = this memory operation cannot take place before prior ones.

P a g e | 60

All combinations of A, R are allowed.

P a g e | 61

AND – Bitwise And
Description:

Perform a bitwise ‘and’ operation between operands. The immediate constant is sign extended

before use.

Instruction Format:

Immed14 Rt5 Ra5 L2 08h6

L2: 0 = 14 bit constant, 1 = 30 bit constant

086 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 62

ASL – Arithmetic Shift Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. A zero is shifted into bit zero. The difference between this instruction and a SHL

instruction is that ASL may cause an arithmetic overflow exception. SHL will never cause an

exception.

Instruction Format:

2Fh6 23 Rb5 Rt5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 23 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 23 Imm5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions:

An overflow exception may result if the bits shifted out from the MSB are not the same as the

resulting sign bit and the exception is enabled in the AEC register. Exceptions are only caused by

a word size operation.

P a g e | 63

ASR – Arithmetic Shift Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. The sign bit is shifted into the most significant bits preserving the sign of the value.

Instruction Formats:

Register

2Fh6 33 Rb5 Rt5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 33 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 33 Imm5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 64

AUIPC – Add Upper Immediate to PC
Description:

This instruction forms the sum of the program counter and an immediate value shifted left 30

times. The result is then placed in the target register. The low order 30 bits of the target register

are zeroed out. When long forms of immediates are used, a full 64-bit address may be formed.

Instruction Format:

Immed18..5 Rt5 Imm4..0 L2 03h6

L2: 0 = 19 bit constant, 1 = 35 bit constant

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

Notes:

P a g e | 65

BBC –Branch if Bit Clear
Description:

If the specified bit in a register is clear, the target address is computed and loaded into the

program counter. The branch is relative to the address of the branch instruction. If the branch

branches back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 1716 15 1413 12 8 76 5 0

Disp11..3 Bitno5..1 D2..1 B0 12 Ra5 L2 30h6 BB

Operation:

 if (Ra[bitno]=0)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: 2 with accurate prediction, otherwise 8 or more

Execution Units: FCU Only

Exceptions: branch target address

P a g e | 66

BBS –Branch if Bit Set
Description:

If the specified bit in a register is set, the target address is computed and loaded into the program

counter. The branch is relative to the address of the branch instruction. If the branch branches

back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 1716 15 1413 12 8 76 5 0

Disp11..3 Bitno5..1 D2..1 B0 02 Ra5 L2 30h6 BB

Operation:

 if (Ra[bitno]=1)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: 2 with accurate prediction, otherwise 8 or more

Execution Units: FCU Only

Exceptions: branch target address

P a g e | 67

Bcc – Conditional Branch
Description:

If the branch condition is true, the target address is computed and loaded into the program

counter. The branch is relative to the address of the branch instruction. If the branch branches

back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 Cond3 Ra5 L2 30h6 BD

Opcode6 Cond2 Mne.

30h 0 BEQ Ra = Rb signed

1 BNE Ra <> Rb

2 BLT Ra < Rb

3 BGE Ra >= Rb

4 BAND Ra && Rb

5 BOR Ra || Rb

6 BLTU Ra < Rb (unsigned)

7 BGEU Ra >= Rb (unsigned)

8 FBEQ Ra = Rb (floating point)

9 FBNE Ra != Rb (floating point)

10 FBLT Ra < Rb (floating point)

11 FBGE Ra >= Rb (floating point)

12 reserved

13 reserved

14 reserved

15 FBUN register Ra contains unordered floating point constant

Clock Cycles:

Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target

P a g e | 68

BCDADD - Register-Register

Description:

Adds two registers using BCD arithmetic and places the result in a target register. Only the low

order byte of the register is used. The result is an eight-bit BCD number. The result is zero

extended to 64 bits.

Instruction Format:

006 03 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra + Rb

Exceptions: none

P a g e | 69

BCDMUL - Register-Register

Description:

Multiplies two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is a 16-bit BCD value. The result is zero

extended to 64 bits.

Instruction Format:

006 23 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Operation:

Rt = Ra * Rb

Exceptions: none

P a g e | 70

BCDSUB - Register-Register

Description:

Subtracts two registers using BCD arithmetic and places the result in a target register. Only the

low order byte of the register is used. The result is an eight-bit BCD number. The result is zero

extended to 64 bits.

Instruction Format:

006 13 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = Ra - Rb

Exceptions: none

P a g e | 71

BEQ –Branch if Equal
Description:

If two registers are equal, an eleven-bit sign extended displacement is added to the program

counter. The branch is relative to the address of the branch instruction. If the branch branches

back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 03 Ra5 L2 30h6 BD

Operation:

 if (Ra = Rb)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target

P a g e | 72

BEQI –Branch if Equal Immediate
Description:

If a register is equal to an eight-bit sign extended value, then a target address is loaded into the

program counter. The branch is relative to the address of the branch instruction. This instruction

is useful for implementing case statements based on small values.

Target Address Computation: A sign extended displacement value is added to bits 1 to 31 of the

program counter.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Imm7..3 D2..1 Imm2..0 Ra5 L2 32h6 BE

Operation:

 if (Ra = Immediate)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target

P a g e | 73

BFCHG – Bitfield Change
Description:

A bitfield in the source specified by Da is inverted, the result is copied to the target register. Bo

specifies the bit offset. Bw specifies the bit width. The bit width and offset may either be

contained in a register or an immediate value.

Instruction Format:

47 44 43 33 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

24 Da11 Rg3 Bw Bo Rt5 Da5 Bw5 Bo5 12 22h6

Rg3 Bit

0 1= Bo is a register spec, 0 = Bo is a six bit immediate

1 1 = Bw is a register spec, 0 = Bw is a six bit immediate

2 1 = Da is a register spec, 0 = Da is an sixteen bit immediate

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 74

BFCLR – Bitfield Clear
Description:

A bitfield is cleared in the target register. All bits are copied from a source Da (which is zero

extended if an immediate value) except for bits identified by the bitfield which are set to zero in

the target.

Instruction Format:

47 44 43 33 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

14 Da11 Rg3 Bw Bo Rt5 Da5 Bw5 Bo5 12 22h6

Rg3 Bit

0 1= Bo is a register spec, 0 = Bo is a six bit immediate

1 1 = Bw is a register spec, 0 = Bw is a six bit immediate

2 1 = Da is a register spec, 0 = Da is an sixteen bit immediate

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Notes:

Normally Da is a register which is the same as the target register Rt.

P a g e | 75

BFEXT – Bitfield Extract
Description:

A bitfield is extracted from the source register Da by shifting to the right and ‘and’ masking. The

result is sign extended to the width of the machine. This instruction may be used to sign extend a

value from an arbitrary bit position.

Instruction Format:

47 44 43 33 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

54 Da11 Rg3 Bw Bo Rt5 Da5 Bw5 Bo5 12 22h6

Rg3 Bit

0 1= Bo is a register spec, 0 = Bo is a six bit immediate

1 1 = Bw is a register spec, 0 = Bw is a six bit immediate

2 1 = Da is a register spec, 0 = Da is an sixteen bit immediate

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Notes:

While it is possible for Da to be a constant the instruction would not normally be used this way.

P a g e | 76

BFEXTU – Bitfield Extract
Description:

A btifield is extracted from the source register Da by shifting to the right and ‘and’ masking. The

result is zero extended to the width of the machine. This instruction may be used to zero extend a

value from an arbitrary bit position.

Instruction Format:

47 44 43 33 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

64 Da11 Rg3 Bw Bo Rt5 Da5 Bw5 Bo5 12 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 77

BFFFO – Bitfield Find First One
Description:

A bitfield contained in Da is searched beginning at the most significant bit to the least significant

bit for a bit that is set. The index into the word of the bit that is set is stored in Rt. If no bits are set

then Rt is set equal to -1. To get the index into the bitfield of the set bit, subtract off the bitfield

offset.

Instruction Format:

47 44 43 33 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

84 Da11 Rgs3 Bw Bo Rt5 Da5 Bw5 Bo5 L2 Opcode6

Rg3 Bit

0 1= Bo is a register spec, 0 = Bo is a six bit immediate

1 1 = Bw is a register spec, 0 = Bw is a six bit immediate

2 1 = Da is a register spec, 0 = Da is an sixteen bit immediate

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 78

BFINS – Bitfield Insert
Description:

A btifield is inserted into the source register Ra by shifting to the left.

Instruction Format:

34 Rg3 Da3 Bw Bo Rt5 Da5 Bw5 Bo5 L2 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 79

BFINSI – Bitfield Insert Immediate
Description:

A bitfield is inserted into the target register Rt by shifting a constant to the left. The bitfield may

not be larger than five bits. To accommodate a larger field multiple instructions can be used.

Instruction Format:

44 Rg3 Da3 Bw Bo Rt5 Da5 Bw5 Bo5 L2 22h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 80

BGE –Branch if Greater or Equal
Description:

If register Ra is greater than or equal to register Rb then the target address is computed and

loaded into the program counter. Values in registers are treated as signed values. The branch is

relative to the address of the branch instruction. This instruction may also be used to branch on

less than or equal by swapping the registers around.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 33 Ra5 L2 30h6 BD

Operation:

 if (Ra < Rb)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target address

P a g e | 81

BGEU –Branch if Greater or Equal Unsigned
Description:

If register Ra is greater than or equal to register Rb then the target address is computed and

loaded into the program counter. Values in registers are treated as unsigned values. The branch is

relative to the address of the branch instruction. This instruction may also be used to branch on

less than or equal by swapping the registers around.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 73 Ra5 L2 30h6 BD

Operation:

 if (Ra >= Rb)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target address

P a g e | 82

BLT –Branch if Less Than
Description:

If register Ra is less than register Rb then the target address is computed and loaded into the

program counter. Values in registers are treated as signed values. The branch is relative to the

address of the branch instruction. This instruction may also be used to branch on greater than by

swapping the registers around.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 23 Ra5 L2 30h6 BD

Operation:

 if (Ra < Rb)

 pc[31:1] = pc[31:1] + displacement

P a g e | 83

BLTU –Branch if Less Than Unsigned
Description:

If register Ra is less than register Rb then the target address is computed and loaded into the

program counter. Values in registers are treated as unsigned values. The branch is relative to the

address of the branch instruction. This instruction may also be used to branch on greater than by

swapping the registers around.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 63 Ra5 L2 30h6 BD

Operation:

 if (Ra < 0)

 pc[31:1] = pc[31:1] + displacement

P a g e | 84

BMM – Bit Matrix Multiply
BMM Rt, Ra, Rb

Description:

The BMM instruction treats the bits of register Ra and Rb as an 8x8 bit matrix, performs a bit

matrix multiply of the two registers and stores the result in the target register. An alternate

mnemonic for this instruction is MOR.

Instruction Format:

036 ~ Fn2 Rt5 Rb5 Ra5 02 02h6

Fn2 Function

0 MOR

1 MXOR

2 MORT (MOR transpose)

3 MXORT (MXOR transpose)

Operation:

for I = 0 to 7

for j = 0 to 7

 Rt.bit[i][j] = (Ra[i][0]&Rb[0][j]) | (Ra[i][1]&Rb[1][j]) | … | (Ra[i][7]&Rb[7][j])

Clock Cycles: 1

Execution Units: ALU #0 only

Exceptions: none

Notes:

The bits are numbered with bit 63 of a register representing I,j = 0,0 and bit 0 of the register

representing I,j = 7,7.

P a g e | 85

BNE –Branch if Not Equal
Description:

If the two registers are unequal, the target address is computed and loaded into the program

counter. The branch is relative to the address of the branch instruction. If the branch branches

back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Rb5 D2..1 13 Ra5 L2 30h6 BD

Operation:

 if (Ra <> 0)

 pc = pc + displacement

P a g e | 86

BNEI –Branch if Not Equal Immediate
Description:

If a register is not equal to an eight-bit sign extended value, then a target address is loaded into

the program counter. The branch is relative to the address of the branch instruction.

Target Address Computation: A sign extended displacement value is added to bits 1 to 31 of the

program counter.

Instruction Format:

31 23 22 18 1716 15 13 12 8 76 5 0

Disp11..3 Imm7..3 D2..1 Imm2..0 Ra5 L2 12h6 BE

Operation:

 if (Ra = Immediate)

 pc[31:1] = pc[31:1] + displacement

Clock Cycles: Typically, 2 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch target

P a g e | 87

BRK – Hardware / Software Breakpoint
Description:

Invoke the break handler routine. The break handler routine handles all the hardware and

software exceptions in the core. A cause code is loaded into the CAUSE CSR register. The break

handler should read the CAUSE code to determine what to do. The break handler is located by

TVEC[0]. This address should contain a jump to the break handler. Note the reset address is

$F[…]FFC0100. An exception will automatically switch the processor to the machine level

operating mode. The break handler routine may redirect the exception to a lower level using the

REX instruction.

For hardware interrupts a register set is selected automatically according to the hardware interrupt

level (1 to 15). For a software interrupt register set #0 is selected. Registers from alternate register

sets are available with the MOV instruction.

The core maintains an internal eight level interrupt stack for each of the following:

Item Stacked CSR reg

program counter pc_stack

operating level ol_stack available as a single CSR

privilege level pl_stack available as a single CSR

interrupt mask im_stack available as a single CSR

register set rs_stack available as a single CSR

If further nesting of interrupts is required the stacks may be copied to memory as they are

available from CSR’s.

On stack underflow a break exception is triggered.

Instruction Format:

31 26 25 21 20 17 16 15 8 7 6 5 0

User6 S5 IL4 0 Cause Code8 L2 00h6

S = skip 2 = software interrupt – return address is next instruction

S = 0 = hardware interrupt – return address is current instruction

IL4 = the priority level of the hardware interrupt, the priority level at time of interrupt is recorded

in the instruction, the interrupt mask will be set to this level when the instruction commits. This

field is not used for software interrupts and should be zero.

Cause Code = numeric code associated with the cause of the interrupt.

The User6 field may be used to pass constant data to the break handler.

Instruction Format:

P a g e | 88

31 26 25 21 20 17 16 15 13 12 8 7 6 5 0

User6 S5 IL4 1 ~3 Ra5 L2 00h6

S = word skip 2 = software interrupt – return address is next instruction

WS = 0 = hardware interrupt – return address is current instruction

IL4 = the priority level of the hardware interrupt, the priority level at time of interrupt is recorded

in the instruction, the interrupt mask will be set to this level when the instruction commits. This

field is not used for software interrupts and should be zero.

[Ra5] = Cause Code = numeric code associated with the cause of the interrupt.

The User6 field may be used to pass constant data to the break handler.

Operating

Level

Address (If TVEC[0]

contains $FFFC0000)

0 $FFFC0000 Handler for operating level zero

1 $FFFC0020

2 $FFFC0040

3 $FFFC0060

Compressed Instruction Format:

The compressed instruction format for the BRK instruction provides a short-form which may

conserve code space when using a frequently occurring break instruction. Only cause codes 32-62

are supported for the short form. Cause code 63 is reserved for the interrupt polling instruction

(PFI). The short form BRK is used only for software interrupts and the return address is the

address of the instruction following the BRK. (Skip is implied = 1).

15 12 11 8 7 6 5 4 0

01h4 Cause Code4..1 102 C0 00h5

P a g e | 89

CACHE – Cache Command

CACHEX –

CACHE Cmd, d(Rn)

CACHE Cmd, d(Ra + Rc * scale)

Description:

This instruction commands the cache controller to perform an operation. Commands are

summarized in the command table below.

Instruction Formats:

 Displacement14 Cmd5 Ra5 L2 1Eh6 CACHE Cmd,d16(Rn)

7h4 Rc5 22 ~ Sc2 Cmd5 Ra5 L2 16h6 CACHE Cmd,d(Ra+Rc*sc)

Commands:

Cmd5 Mne. Operation

00h reserved

01h reserved

02h inviline invalidate instruction cache line

03h invic invalidate entire instruction cache (address is ignored)

10h disabledc disable data cache

11h enabledc enable data cache

12h invalidate data cache line

13h invdc invalidate entire data cache (address is ignored)

Operation:

Register Indirect with Displacement Form

Line = round32(sign extend(memory[displacement + Ra]))

Register-Register Form

Line = round32(sign extend(memory[Ra + Rc * scale]))

Notes:

The displacement constant may be extended up to 64 bits.

Sc2 Code Multiply By

0 1

1 2

2 4

P a g e | 90

3 8

P a g e | 91

CALL – Call Method
Description:

Instruction Format:

This instruction loads the program counter with a constant value specified in the instruction. In

addition, the address of the instruction following the CALL is stored in the return address

register. The current code segment selector value is stored in the RS register (the upper 24 bits of

the link register). This instruction may be used to implement subroutine calls.

This format has a 32MB range and is limited to the current code segment.

Immed24 02 19h6

This format has a 256GB range and allows a call into a different code segment.

Seg2 Immed38 12 19h6

If an address range greater than 38 bits is required, then the JAL instruction must be used.

Seg2

0 ZS

1 ES

2 HS

3 CS

Software Sample:

mov2seg hs,#$001234 ; load the hs with the target segment

call hs:some_function

<…> other

call hs:another_func

Execution Units: FCU

Clock Cycles:

P a g e | 92

CAS – Compare and Swap
Description:

If the contents of the addressed memory cell is equal to the contents of CAS register then a sixty-

four bit value is stored to memory from the source register Rst and Rst is set equal to one.

Otherwise Rst is set to zero and the contents of the memory cell is loaded into the CAS register.

The memory address is the sum of the sign extended displacement and register Ra. The compare

and swap operation is an atomic operation; the bus is locked during the load and potential store

operation. This operation assumes that the addressed memory location is part of the volatile

region of memory and bypasses the data cache. Note that the memory system must support bus

locks in order for this instruction to work as expected.

This instruction is typically used to implement semaphores. The LWR and SWC may also be

used to perform a similar function where the memory system does not support bus locks, but

support address reservations instead.

Instruction Format:

Disp16 Rst5 Ra5 25h6

Operation:

if memory[Ra+displacement] = casreg

memory[Ra + displacement] = Rst

Rst = 1

else

casreg = memory [Ra + displacement]

 Rst = 0

Assembler:

CAS Rt, displacement[Ra]

P a g e | 93

CHK – Check Register Against Bounds
Description:

A register is compared to two values. If the register is outside of the bounds defined by Rb and Rc

or an immediate value then an exception will occur. Ra must be greater than or equal to Rb and

Ra must be less than Rc or the immediate.

Instruction Format:

31 18 17 13 12 8 76 5 0

Immediate14 Rb5 Ra5 02 34h6

31 26 25 23 22 18 17 13 12 8 76 5 0

34h6 ~3 Rc5 Rb5 Ra5 02 02h6

Clock Cycles: 1

Exceptions: bounds check

Notes:

P a g e | 94

CLI – Clear Interrupt Mask
Description:

The interrupt level mask is set to zero enabling all interrupts. This is an alternate mnemonic for

the SEI instruction where the mask level to set is set to zero by the assembler.

Instruction Format:

306 ~5 03 ~5 05 02 02h6

Clock Cycles: 0.5

P a g e | 95

CMOVEZ – Conditional Move If Zero
Description:

The conditional move if equal instruction moves the contents of register Rb to the target register

Rt if Ra is zero. Otherwise the contents of register Rc are moved to the target register.

Instruction Format:

28h6 Rt5 Rc5 Rb5 Ra5 02h6

Clock Cycles: 0.5

CxxxNZ – Conditional Op If Non-Zero
Description:

The conditional move if not zero instruction moves the contents of register Rb to the target

register Rt if Ra is non-zero. Otherwise the contents of register Rc or a signed extended

immediate value are moved to the target register.

Instruction Format:

47 42 4139 38 23 22 18 17 13 12 8 7 6 5 0

29h6 Op3 Immed15..0 Rb5 Rt5 Ra5 12 02h6

Op3

0 CMOVNZ

1 CADDNZ

2

3

4 CMOVNZI

5 CADDNZI

6

7

Clock Cycles: 0.5

P a g e | 96

CNTLO – Count Leading Ones
Description:

Count the number of leading ones (starting at the MSB) and place the count in the target register.

Instruction Format:

016 Sz3 15 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz3

0 Byte

1 Char

2 Half

3 Word

P a g e | 97

CNTLZ – Count Leading Zeros
Description:

Count the number of leading zeros (starting at the MSB) and place the count in the target register.

Instruction Format:

016 Sz3 05 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz3

0 Byte

1 Char

2 Half

3 Word

P a g e | 98

CNTPOP – Count Population
Description:

Count the number of ones and place the count in the target register.

Instruction Format:

016 Sz3 25 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

Sz3

0 Byte

1 Char

2 Half

3 Word

P a g e | 99

CSR – Control and Status Access
Description:

The CSR instruction group provides access to control and status registers in the core. For the

read-write operation the current value of the CSR is placed in the target register Rt then the CSR

is updated from register Ra. The CSR read / update operation is an atomic operation.

Instruction Format:

Op2 OL2 Regno10 Rt5 Ra5 02 05h6

Op2 Operation

0 CSRRD Only read the CSR, no update takes place, Ra should be R0.

1 CSRRW Both read and write the CSR

2 CSRRS Read CSR then set CSR bits

3 CSRRC Read CSR then clear CSR bits

CSRRS and CSRRC operations are only valid on registers that support the capability.

The OL2 field is reserved to specify the operating level. Note that registers cannot be accessed by

a lower operating level.

Regno10 Access Description

001 HARTID R hardware thread identifier (core number)

002 TICK R tick count, counts every cycle from reset

030-037 TVEC RW trap vector handler address

040 EPC RW exceptioned pc, pc value at point of exception

044 STATUSL RWSC status register, contains interrupt mask, operating level

045 STATUSH RW status register bits 64 to 127

080-0BF CODE RW code buffers

3F0 INFO R Manufacturer name

3F1 “ R “

3F2 “ R cpu class

3F3 “ R “

3F4 “ R cpu name

3F5 “ R “

3F6 “ R model number

3F7 “ R serial number

3F8 “ R cache sizes instruction (bits 32 to 63), data (bits 0 to 31)

Clock Cycles: 0.5

P a g e | 100

DIV – Signed Division
Description:

Compute the quotient. The first operand must be in a register. The second operand may be in

either a register or an immediate value specified in the instruction. The operands are treated as

signed values and the result is a signed result.

Instruction Format:

Immed14 Rt5 Ra5 L2 3Eh6

Return quotient

3Eh6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

Execution Units: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 101

DIVSU – Signed-Unsigned Division
Description:

Compute the quotient value. Both operands must be in registers. The first operand is treated as a

signed value. The second operand is an unsigned value. The result is a signed result.

Instruction Format:

Return quotient

3Dh6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

Execution Units: ALU #0 Only

Exception: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 102

DIVU – Unsigned Division
Description:

Compute the quotient value. The first operand must be in a register. The second operand may be

in either a register or an immediate value specified in the instruction. The operands are treated as

unsigned values and the result is an unsigned result.

Comment:

Unsigned division is often used in calculation of the difference between two pointer values.

Instruction Format:

Immed14 Rt5 Ra5 L2 3Ch6

Return quotient

3Ch6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 103

EXEC – Execute Code Buffer
Description:

Execute code from code buffer. The N6 field specifies the code buffer to use. Code buffers allow

code to be adapted at run-time. This is useful as an alternative to self-modifying code when code

has to change at runtime.

Instruction Format:

016 ~3 13h5 ~4 N6 02 02h6

Clock Cycles: Minimum 0.5 – depends on the instruction in the code buffer

P a g e | 104

FXADD – Fixed Point Addition
Description:

Add two values assuming operands are fixed point numbers. The first operand must be in a

register. The second operand may be in a register or may be an immediate value specified in the

instruction. This instruction is an alternate mnemonic for the ADD instruction.

Instruction Format:

046 Sz3 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

P a g e | 105

FXMUL – Fixed Point Multiply
Description:

This instruction multiplies Ra by Rb. Ra and Rb are fixed point numbers with whole and binary

point places (32.32) or (16.16). The result is a fixed-point number.

Instruction Format:

3Bh6 Sz3 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 19

ALU Support: All

P a g e | 106

FXSUB – Fixed Point Subtraction
Description:

Subtract two values assuming operands are fixed point numbers. Both operands must be in a

register. This instruction is an alternate mnemonic for the SUB instruction.

Instruction Format:

056 Sz3 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

P a g e | 107

INC – Increment Word (64 bits)
Description:

This instruction increments a word (64 bit) value from memory. The memory address must be

word aligned.

Instruction Format:

Immed14 Amt5 Ra5 L2 1Ah6

1Ah6 ~ Sc2 Amt5 Rb5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 108

JAL – Jump-And-Link
Description:

Instruction Format:

This instruction loads the program counter with the sum of a register and a constant value

specified in the instruction. In addition, the address of the instruction following the JALR is

stored in the specified target register. This instruction may be used to implement subroutine calls

and returns.

Immed14 Rt5 Ra5 02 18h6

Instruction Format:

This instruction loads the program counter with the sum of a register and a constant value

specified in the instruction. The code segment is set to the specified segment register. In addition,

the address of the instruction following the JALR is stored in the specified target register. This

instruction may be used to implement far subroutine calls.

Seg2 Immed28 Rt5 Ra5 12 18h6

Seg2

0 ZS

1 ES

2 HS

3 CS

Compressed Instruction Format:

For the compressed format, the constant value is zero. The address of a frequently used

subroutine call may be loaded into a register as a compiler optimization, then the compressed JAL

instruction used.

24 Rt4..1 32 Rt0 Ra4..0

Execution Units: FCU

Clock Cycles:

P a g e | 109

JMP – Jump to Address
Description:

A jump is made to the address specified in the instruction. The jump may be within the current

code segment or to another code segment.

Instruction Format:

The format modifies only PC bits 0 to 23. The high order PC bits are not affected. This allows

accessing code within a 16MB region of memory. Note that with the use of a mmu this address

range is often sufficient.

Immed24 L2 28h6

Instruction Format:

The format modifies only PC bits 0 to 37. The high order PC bits are not affected. This allows

accessing code within a 256GB region of memory. This format allows jumping to a different code

segment.

Seg2 Immed38 12 28h6

Seg2

0 ZS

1 ES

2 HS

3 CS

Execution Units: FCU

Clock Cycles: 1

Exceptions: none

Notes:

If an address range larger than 37 bits is required then the value must be loaded into a register and

the JAL instruction used.

The jump instruction executes immediately during the fetch stage of the core. This makes it much

faster than a JAL.

P a g e | 110

LB – Load Byte
Description:

This instruction loads a byte (8 bit) value from memory. The value is sign extended to 64 bits

when placed in the target register.

Instruction Formats:

Immed14 Rt5 Ra5 02 13h6

Immed30 Rt5 Ra5 12 13h6

4h4 Rc5 32 ~ Sc2 Rt5 Ra5 02 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 111

LBU – Load Unsigned Byte
Description:

This instruction loads a byte (8 bit) value from memory. The value is zero extended to 64 bits

when placed in the target register.

Instruction Formats:

Immed14 Rt5 Ra5 02 23h6

Immed30 Rt5 Ra5 12 23h6

2h4 Rc5 22 ~ Sc2 Rt5 Ra5 02 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 112

LC – Load Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. The value is sign extended to 64 bits

when placed in the target register.

Instruction Format:

Immed13 1 Rt5 Ra5 02 20h6

Immed29 1 Rt5 Ra5 12 20h6

2h4 Rc5 02 ~ Sc2 Rt5 Ra5 02 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 113

LCU – Load Unsigned Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. The value is zero extended to 64 bits

when placed in the target register.

For the short (32 bit) forms of the instruction the processor will use the stack segment for

references involving the stack or frame pointer, otherwise the data segment will be used.

For the long (48 bit) forms of the instruction the segment used is specified in the instruction. The

assembler will default this field to the stack segment for stack pointer or frame pointer references,

or the data segment otherwise. The default assignment may be overridden with a segment prefix

indicator.

Instruction Format:

Immed13 1 Rt5 Ra5 02 21h6

Immed29 1 Rt5 Ra5 12 21h6

2h4 Rc5 12 ~ Sc2 Rt5 Ra5 02 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 114

LD – Load Double-Word (128 bits)
Description:

This instruction loads a word (128 bit) value from memory. The memory address must be double-

word aligned.

Instruction Format:

Immed10 84 Rt5 Ra5 L2 20h6

Clock Cycles: 4 minimum depending on memory access time

P a g e | 115

LDI – Load Immediate
Description:

This instruction loads an immediate value into a register. It is an alternate mnemonic for the OR

instruction.

Instruction Format:

Immed14 Rt5 05 L2 08h6

L2: 0 = 14 bit constant, 1 = 30 bit constant

Clock Cycles: 0.5

P a g e | 116

LEA – Load Effective Address
Description:

This instruction loads an address value into a register.

Instruction Format:

This instruction format is simply an alternate mnemonic and representation for the ADD

instruction. The ADD instruction is sufficient to calculate the effective address for register

indirect with displacement addressing.

Immed14 Rt5 Ra5 L2 04h6

L: 0 = 14 bit constant, 1 = 30 bit constant

This instruction format is of the indexed load / store format but places the calculated address in

the target register rather than fetching or storing data.

6h4 Rc5 02 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 0.5

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 117

LFD – Load Float Double
Description:

This instruction stores a word (64 bit) value to memory. The memory address must be word

aligned.

Instruction Format:

Immed11 43 Rt5 Ra5 L2 1Bh6

7h4 Rc5 12 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 118

LFQ – Load Float Quad
Description:

This instruction stores a word (128 bit) value to memory. The memory address must be double-

word aligned.

Instruction Format:

Immed10 84 Rt5 Ra5 L2 1Bh6

7h4 Rc5 32 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 119

LFS – Load Float Single
Description:

This instruction stores a word (32 bit) value to memory. The memory address must be half-word

aligned.

Instruction Format:

Immed12 22 Rt5 Ra5 L2 1Bh6

7h4 Rc5 02 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 120

LH – Load Half-Word (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. The memory address must be

half-word aligned. The value is sign extended to 64 bits when placed in the target register.

Instruction Format:

Immed12 22 Rt5 Ra5 02 20h6

Immed28 22 Rt5 Ra5 12 20h6

4h4 Rc5 02 ~ Sc2 Rt5 Ra5 02 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 121

LHU – Load Half-Word (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. The memory address must be

half-word aligned. The value is zero extended to 64 bits when placed in the target register.

Instruction Format:

Immed12 22 Rt5 Ra5 L2 21h6

4h4 Rc5 12 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 122

LUI – Load Upper Immediate
Description:

This instruction loads an immediate value shifted left 30 times into a target register. The low

order 30 bits of the target register are zeroed out. When long forms of immediate are used, a full

64-bit immediate may be formed.

Instruction Format:

Immed18..5 Rt5 Imm4..0 L2 27h6

L2: 0 = 19 bit constant, 1 = 35 bit constant

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions:

Notes:

P a g e | 123

LVB – Load Volatile Byte (8 bits)
Description:

This instruction loads a byte (8 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory. There is only an indexed form of this instruction.

Instruction Format:

0h4 Rc5 02 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 124

LVBU – Load Volatile Unsigned Byte (8 bits)
Description:

This instruction loads a byte (8 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory. There is only an indexed form of this instruction.

Instruction Format:

0h4 Rc5 12 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 125

LVC – Load Volatile Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory.

Instruction Format:

Immed13 1 Rt5 Ra5 L2 3Bh6

Instruction Format:

0h4 Rc5 22 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 126

LVCU – Load Volatile Unsigned Char (16 bits)
Description:

This instruction loads a char (16 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory. The value is zero extended to 64-bits in the register.

Instruction Format:

Immed13 1 Rt5 Ra5 L2 11h6

Instruction Format:

0h4 Rc5 32 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 127

LVH – Load Volatile Half-word (32 bits)
Description:

This instruction loads a char (32 bit) value from memory. This load instruction bypasses the data

cache and loads directly from memory. The value is sign extended to 64-bits in the register.

Instruction Format:

Immed12 22 Rt5 Ra5 L2 3Bh6

Instruction Format:

1h4 Rc5 02 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 128

LVHU – Load Volatile Unsigned Half-word (32 bits)
Description:

This instruction loads a half-word (32 bit) value from memory. This load instruction bypasses the

data cache and loads directly from memory. The value is zero extended to 64-bits in the register.

Instruction Format:

Immed12 22 Rt5 Ra5 L2 11h6

Instruction Format:

1h4 Rc5 12 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 129

P a g e | 130

LVW – Load Volatile Word (64 bits)
Description:

This instruction loads a word (64 bit) value from memory. The memory address must be word

aligned. This load instruction bypasses the data cache and loads directly from memory.

Instruction Format:

Immed11 43 Rt5 Ra5 L2 3Bh6

Instruction Format:

1h4 Rc5 22 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 131

LW – Load Word (64 bits)
Description:

This instruction loads a word (64 bit) value from memory. The memory address must be word

aligned.

Instruction Format:

Immed11 43 Rt5 Ra5 L2 20h6

4h4 Rc5 22 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 132

LWR – Load Word and Reserve Address
Description:

This instruction loads a word (64 bit) value from memory and places a reservation on the address.

The memory address must be word aligned. This instruction activates the sr_o signal output by

the core. It relies on external hardware to implement the address reservation. This instruction

performs an un-cached load operation.

Instruction Format:

Immed14 Rt5 Ra5 L2 1Dh6

5h4 Rc5 02 ~ Sc2 Rt5 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Acquire and release bits determine the ordering of memory operations.

A = acquire – no following memory operations can take place before this one

R = release – this memory operation cannot take place before prior ones.

All combinations of A, R are allowed.

P a g e | 133

MAJ – Majority Logic

Description:

Determines the majority logic bits of three values in registers Ra, Rb, and Rc and places the result

in the target register Rt.

Instruction Format:

2Eh6 ~14 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = (Ra & Rb) | (Ra & Rc) | (Rb & Rc)

P a g e | 134

MAX – Maximum Value

Description:

Determines the maximum of two values in registers Ra, Rb and places the result in the target

register Rt.

MAX may be used to determine the lowest level privilege level of two selectors. The lowest

privilege level will have the highest value in registers.

Instruction Format:

2Dh6 Sz3 Rb5 Rt5 Ra5 02 02h6

Maximum of three values:

2Dh6 ~11 Sz3 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra > Rb

Rt = Ra

else

 Rt = Rb

P a g e | 135

MEMDB –Memory Data Barrier
Description:

All memory instructions before the MEMDB are completed and committed to the architectural

state before memory instructions after the MEMDB are issued. This instruction is used to ensure

that the memory state is valid before subsequent instructions are executed.

Instruction Format:

01h6 ~5 10h5 ~5 ~5 02h6

Clock Cycles: varies depending on queue contents

P a g e | 136

MEMSB –Memory Synchronization Barrier
Description:

This instruction is similar to the SYNC instruction except that it applies only to memory

operations. All instructions before the MEMSB are completed and committed to the architectural

state before memory instructions after the MEMSB are issued. This instruction is used to ensure

that the memory state is valid before subsequent instructions are executed.

Instruction Format:

01h6 ~5 11h5 ~5 ~5 02h6

Clock Cycles: varies depending on queue contents

P a g e | 137

MIN – Minimum Value

Description:

Determines the minimum of two values in registers Ra, Rb and places the result in the target

register Rt.

Instruction Format:

2Ch6 Sz3 Rb5 Rt5 Ra5 02 02h6

Minimum of three values:

2Ch6 ~11 Sz3 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

IF Ra < Rb

Rt = Ra

else

 Rt = Rb

P a g e | 138

MOD – Signed Modulus
Description:

Compute the modulus (remainder) value. The first operand must be in a register. The second

operand may be in either a register or an immediate value specified in the instruction. The

operands are treated as signed values and the result is a signed result.

Instruction Format:

Immed14 Rt5 Ra5 L2 2Eh6

Return remainder

16h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

Execution Units: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 139

MODSU – Signed-Unsigned Modulus
Description:

Compute the modulus (remainder) value. Both operands must be in registers. The first operand is

treated as a signed value. The second operand is an unsigned value. The result is a signed result.

There is no immediate form for this instruction.

Instruction Format:

Return remainder

15h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: A divide by zero exception may occur if enabled in the AEC register.

P a g e | 140

MODU – Unsigned Modulus
Description:

Compute the modulus (remainder) value. Both operands must be in registers. The operands are

treated as unsigned values and the result is an unsigned result. There is no immediate form for

this instruction.

Instruction Format:

Return remainder

14h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 68 (n + 4) where n is the width

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 141

MOV – Move register to register
Description:

This instruction moves one general purpose register to another including between different

register sets. This instruction may be used to move between the integer and floating-point

registers or between normal and excepted register sets.

Note that one does not normally want a value moved directly between integer and floating-point

registers. Instead usually a conversion is desired (ftoi - double to integer or itof - integer to

double) for example.

Instruction Format:

Register sets 0 to 31

22h6 D3 Rgs5 Rt5 Ra5 02 02h6

Register sets 32 to 63

23h6 D3 Rgs5 Rt5 Ra5 02 02h6

Compressed Instruction Format:

For the compressed format, moves take place only for general purpose registers in the current

register set.

04 Rt4..1 32 Rt0 Ra4..0

D3 Asm Sample Operation

0 mov r6:1,r1 move from current Ra to Rt in register set Rgs

1 mov r1,r6:1 move from Ra in register set Rgs to Rt in current register set

2 mov r7:x,r2 move from current Ra to Rt in excepted register set (Rgs is ignored).

3 mov r7,r2:x move from Ra in excepted register to Rt in current register set.

4 mov fp8,r3 move from Ra in current register set to Rt in floating point register set

5 mov r3,fp9 move from floating point to general register file in current register set

6 mov fp1,fp2 move from current floating-point to current floating-point register

7 mov r15,r23 move from current Ra to current Rt (rgs ignored).

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions: none

Notes:

P a g e | 142

The exceptioned register set referred to by the instruction is the one identified by the top stack

element of the rs_stack.

P a g e | 143

MUL – Signed Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as signed values, the result is a signed result.

Instruction Format:

Immed14 Rt5 Ra5 L2 3Ah6

Multiply, return low order product

3Ah6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 19

Exceptions: multiply overflow, if enabled

P a g e | 144

MULF – Fast Unsigned Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as unsigned values. The result is an unsigned result. The fast multiply multiplies only the low

order 24 bits of the first operand times the low order 16 bits of the second. The result is a 40-bit

unsigned product.

Instruction Format:

Immed14 Rt5 Ra5 L2 2Ah6

2Ah6 Sz3 Rb5 Rt5 Ra5 L2 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 145

MULH – Signed Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as signed values, the result is a signed result. The high order bits of the product are returned.

Instruction Format:

Multiply, return high order product

26h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 19

P a g e | 146

MULSU – Signed-Unsigned Multiply
Description:

Multiply two values. Both operands must be in registers. The first operand is treated as a signed

value. The second operand is treated as an unsigned value. The result is a signed result. There is

no immediate form for this instruction.

Instruction Format:

39h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 19

Exceptions: none

P a g e | 147

MULSUH – Signed-Unsigned Multiply
Description:

Multiply two values. Both operands must be in registers. The first operand is treated as a signed

value. The second operand is treated as an unsigned value. The result is a signed result. There is

no immediate form for this instruction. The high order bits of the product are returned.

Instruction Format:

 Multiply, return high order product

25h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 19

Exceptions: none

P a g e | 148

MULU – Unsigned Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as unsigned values. The result is an unsigned result.

Comment:

Unsigned multiply is often used in address calculations for instance calculating array indexes.

Instruction Format:

Immed14 Rt5 Ra5 L2 38h6

Multiply, return low order product

38h6 Sz3 Rb5 Rt5 Ra5 L2 02h6

Clock Cycles: 20

Exceptions: none

P a g e | 149

MULUH – Unsigned Multiply
Description:

Multiply two values. The first operand must be in a register. The second operand may be in a

register or may be an immediate value specified in the instruction. Both the operands are treated

as unsigned values. The result is an unsigned result. The high order bits of the result are returned.

Instruction Format:

Multiply, return high order product

24h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 20

Exceptions: none

P a g e | 150

MUX – Multiplex
Description:

The MUX instruction performs a bit-by-bit copy of a bit of Rb to the target register if the

corresponding bit in Ra is set, or a copy of a bit from Rc if the corresponding bit in Ra is clear.

Instruction Format:

1Bh6 ~14 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 0.5

Exceptions: none

P a g e | 151

NAND – Bitwise Nand
Description:

Perform a bitwise and operation between two operands then invert the result. Both operands must

be in registers.

Instruction Format:

0Ch6 ~3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 152

NEG - Negate
Description:

This is an alternate mnemonic for the SUB instruction where the first register operand is R0.

Instruction Format:

056 Sz3 Rb5 Rt5 05 02 02h6

Clock Cycles: 0.5

P a g e | 153

NOP – No Operation
Description:

The NOP instruction doesn’t perform any operation. NOP’s are detected in the instruction fetch

stage of the core and are not enqueued by the core. They do not occupy queue slots. Because

NOPs don’t occupy queue slots they may not be used to synchronize operations between

instructions. Note that a compressed NOP is really an add instruction and hence occupies space in

the instruction queue.

Instruction Format:

Immediate26 L2 3Dh6

Compressed Instruction Format:

00h8 80h2

Clock Cycles: 0.5

Execution Units: trapped at IF stage

Exceptions: none

P a g e | 154

NOR – Bitwise Nor
Description:

Perform a bitwise or operation between two operands then invert the result. Both operands must

be in registers.

Instruction Format:

0Dh6 ~3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 155

NOT – Logical Not

Description:

This instruction takes the logical ‘not’ value of a register and places the result in a target register.

If the source register contains a non-zero value, then a zero is loaded into the target. Otherwise if

the source register contains a zero a one is loaded into the target register.

Instruction Format:

016 Sz3 55 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Rt = !Ra

Exceptions: none

Notes:

Sz3

0 reserved

1 reserved

2 reserved

3 reserved

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 156

OR – Bitwise Or
Description:

Perform a bitwise or operation between operands.

Instruction Format:

Immed14 Rt5 Ra5 L2 09h6

L2: 0 = 14 bit constant, 1 = 30 bit constant

096 Sz3 Rb5 Rt5 Ra5 02 02h6

Triple Operand

096 ~3 Sz3 Rt5 Rc5 Rb5 Ra5 12 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 157

PFI – Poll for Interrupt
Description:

The poll for interrupt instruction polls the interrupt status lines and performs an interrupt service

if an interrupt is present. Otherwise the PFI instruction is treated as a NOP operation. The PFI

instruction has a 16-bit compressed instruction format. Polling for interrupts is performed by

managed code. PFI provides a means to process interrupts at specific points in running software.

Instruction Format:

31 26 25 21 20 17 16 15 8 7 6 5 0

User6 25 04 0 2558 L2 00h6

Compressed Instruction Format:

The compressed instruction format of the PFI instruction borrows one opcode from the

compressed format of the BRK instruction. Cause code 63 is reserved for the interrupt polling

instruction (PFI). The return address is the address of the instruction following the PFI. (Skip is

implied = 1).

15 12 11 8 7 6 5 4 0

01h4 Fh4 102 10 00h5

P a g e | 158

PTRDIF – Difference Between Pointers
Description:

Subtract two values then shift the result right. Both operands must be in a register.

Instruction Format:

1Eh6 ~2 Sc3 Rb5 Rt5 Ra5 02h6

Operation:

Rt = (Ra – Rb) >> Sc

Clock Cycles: 0.5

Exceptions:

None.

P a g e | 159

PUSH – Push Word (64 bits)
Description:

This instruction decrements the stack pointer and stores a word (64 bit) value to stack memory.

The value pushed onto the stack may come from either a register or a constant value defined in

the instruction.

Instruction Format:

Ch4 ~5 Rb5 1Fh5 1Fh5 L2 16h6

Constant14 1Fh5 IFh5 L2 14h6

Compressed Instruction Format (register only):

15 12 11 8 7 6 5 4 0

03h4 0h4 112 00 Rb5

Operation:

Memory8[SP - 8] = Rb

SP = SP – 8

Clock Cycles: 4 minimum depending on memory access time

Notes:

Stores always write through to memory and therefore take a significant number of clock cycles

before they are ready to be committed. Exceptions are checked for during the execution of a store

operation.

The instruction explicitly encodes the stack pointer register r31, if desired a different register may

be chosen. For the compressed format, the stack pointer is always r31.

P a g e | 160

REDOR – Reduction Or

Description:

This instruction turns a non-zero value in a register into a single bit Boolean one. If the register is

zero, the target is set to zero, otherwise the target is set to one.

Instruction Format:

016 Sz3 65 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: All ALU’s

Operation:

If Ra <> 0

 Rt = 1

 else

 Rt = 0

Exceptions: none

Notes:

Sz3

0 reserved

1 reserved

2 reserved

3 reserved

4 Byte Parallel

5 Char Parallel

6 Half Parallel

7 Word

P a g e | 161

RET – Return from Subroutine
Description:

This instruction performs a subroutine return by loading the program counter with the contents of

the return address register (r29). Additionally, the stack pointer is adjusted by a constant supplied

in the instruction. The immediate constant is a multiple of eight to keep the stack word aligned.

The constant is also zero extended to the left.

Instruction Format:

Immed9 IDh5 1Fh5 1Fh5 L2 29h6

PC = RA

SP = SP + Immediate * 8

Clock Cycles: 1 (more if predicted incorrectly).

Exceptions: none

Notes:

The RET instruction is detected and used at the fetch stage of the processor to update the RSB.

P a g e | 162

REX – Redirect Exception
Description:

This instruction redirects an exception from an operating level to a lower operating level and

privilege level. If the target operating level is hypervisor then the hypervisor privilege level (1) is

set. If the target operating level is supervisor, then one of the supervisor privilege levels must be

chosen (2 to 6). This instruction if successful jumps to the target exception handler and does not

return. If this instruction fails execution will continue with the next instruction.

This instruction may fail if exceptions are not enabled at the target level.

When redirecting the target privilege level is set to the bitwise ‘or’ of an immediate constant

specified in the instruction and register Ra. One of these two values should be zero. The result

should be a value in the range 2 to 255. The instruction will not allow setting the privilege level

numerically less than the operating level.

The location of the target exception handler is found in the trap vector register for that operating

level (tvec[xx]).

The cause (cause) and bad address (badaddr) registers of the originating level are copied to the

corresponding registers in the target level.

The REX instruction also specifies the interrupt mask level to set for further processing.

Attempting to redirect the operating level to the machine level (0) will be ignored. The instruction

will be treated as a NOP with the exception of setting the interrupt mask register.

Instruction Format:

31 29 28 26 25 18 1715 14 13 12 8 76 5 0

~3 IM3 PL8 ~3 Tgt2 Ra5 02 0Dh6

Tgt2

0 not used

1 redirect to hypervisor level

2 redirect to supervisor level

3 not used

Clock Cycles: 3

Example:

REX 5,12,r0 ; redirect to supervisor handler, privilege level two

; If the redirection failed, exceptions were likely disabled at the target level.

; Continue processing so the target level may complete it’s operation.

RTI ; redirection failed (exceptions disabled ?)

P a g e | 163

Notes:

Since all exceptions are initially handled at the machine level the machine level handler must

check for disabled lower level exceptions.

P a g e | 164

ROL – Rotate Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. The most significant bit is shifted into bit zero.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

2Fh6 43 Rt5 Rb5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 43 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 43 Imm5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 165

ROR – Rotate Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. The bit zero is shifted into the most significant bits.

For the sub-word forms the result is sign extended to 64 bits.

Instruction Format:

2Fh6 53 Rt5 Rb5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 53 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 53 Imm5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 166

RTI – Return from Interrupt
Description:

Return from an interrupt subroutine. The interrupted program counter is loaded into the program

counter register. The internal interrupt stack is popped and the operating level, privilege level,

interrupt mask level, and register set are reset to values before the exception occurred. Optionally

a semaphore bit in the semaphore register is cleared. The least significant bit of the semaphore

register (the reservation status bit) is always cleared by this instruction.

Instruction Format:

32h6 ~2 Sema6 ~5 Ra5 02 02h6

Semaphore[Sema6|[Ra]] = 0

Semaphore[0] = 0

Clock Cycles: 8 minimum

Execution Units: Flow Control Unit

P a g e | 167

RTE – Return from Exception
Description:

This is an alternate mnemonic for the RTI instruction.

Instruction Format:

32h6 ~2 Sema6 ~5 Ra5 02 02h6

Semaphore[Sema6|[Ra]] = 0

Semaphore[0] = 0

Clock Cycles: 8 minimum

Execution Units: Flow Control Unit

P a g e | 168

RTOP – Runtime Operation
Description:

Perform an operation that is determined at run-time by the contents of a register. The contents of

register Rc determine the instruction passed to the ALU. The register / constant fields of the

instruction will be ignored. Instead operands will come from registers Ra and Rb.

Instruction Format:

00h6 ~6 ~5 Sz3 Rt5 Rc5 Rb5 Ra5 12 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 169

SB – Store Byte (8 bits)
Description:

This instruction stores a byte (8 bit) value to memory.

Instruction Format:

Immed13…5 Rb5 Imm4..0 Ra5 02 15h6

Immed29…5 Rb5 Imm4..0 Ra5 12 15h6

8h4 Rc5 Rb5 02 ~ Sc2 Ra5 02 16h6

Operation:

Memory8[Ra + immediate] = Rb

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Notes:

Stores always write through to memory and therefore take a significant number of clock cycles

before they are ready to be committed. Exceptions are checked for during the execution of a store

operation.

P a g e | 170

SC – Store Char (16 bits)
Description:

This instruction stores a char (16 bit) value to memory. The memory address must be char (16

bit) aligned.

Instruction Format:

Immed13…5 Rb5 Im4..1 1 Ra5 L2 24h6

9h4 Rc5 Rb5 02 ~ Sc2 Ra5 L2 16h6

Operation:

Memory16[Ra + immediate] = Rb

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 171

SEI – Set Interrupt Mask
SEI #3

SEI $v0,#7

Description:

The interrupt level mask is set to the value specified by the instruction. The value used is the

bitwise or of the contents of register Ra and an immediate (M4) supplied in the instruction. The

assembler assumes a mask value of fifteen, masking all interrupts, if no mask value is specified.

Usually either M4 or Ra should be zero. The previous setting of the interrupt mask is stored in Rt.

Instruction Format:

30h6 ~2 ~2 M4 Rt5 Ra5 02 02h6

Operation:

 Rt = im

im = M3 | Ra

P a g e | 172

SETWB -Set Write Barrier
Description:

This instruction sets the write barrier indicator for the current register set in the WBRCD CSR.

This instruction is output by the compiler whenever a register is loaded with a pointer value. Rn5

identifies the register containing a pointer.

Instruction Format:

01h6 03 16h5 ~5 Rn5 02 02h6

Clock Cycles: 1

Execution Units: All ALU’s

Notes:

P a g e | 173

SFD – Store Float Double
Description:

This instruction stores a word (64 bit) value to memory. The memory address must be word

aligned.

Instruction Format:

Immed11 43 Rb5 Ra5 L2 2Bh6

Bh4 Rc5 Rb5 12 ~ Sc2 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 174

SFQ – Store Float Quad
Description:

This instruction stores a quad precision floating-point (128 bit) value to memory. The memory

address must be double-word aligned.

Instruction Format:

Immed10 84 Rb5 Ra5 L2 2Bh6

Bh4 Rc5 Rb5 32 ~ Sc2 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 175

SFS – Store Float Single
Description:

This instruction stores a word (32 bit) value to memory. The memory address must be half-word

aligned.

Instruction Format:

Immed12 22 Rb5 Ra5 L2 2Bh6

Bh4 Rc5 Rb5 02 ~ Sc2 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 176

SGN – Get Sign
Description:

The SGN instruction places a 1, 0 or -1 in the target register depending on the sign of the source

operand. This instruction is an alternate mnemonic for the compare instruction where the value is

compared to zero.

Instruction Format:

066 03 05 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

P a g e | 177

SH – Store Half-Word (32 bits)
Description:

This instruction stores a half-word (32 bit) value to memory. The memory address must be half-

word aligned.

Instruction Format:

Immed13…5 Rb5 Im4..2 22 Ra5 L2 24h6

8h4 Rc5 Rb5 12 ~ Sc2 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 178

SHL – Shift Left
Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. Zeros are shifted into the least significant bits.

Instruction Format:

2Fh6 03 Rb5 Rt5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 03 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 03 Imm5 Rt5 Ra5 02 02h6

Compressed Instruction Format:

34 Imm[4..1] 22 Imm[0] Rt5

Clock Cycles: 0.5

ALU Support: All

Exceptions: none

P a g e | 179

SHL:[op] – Shift Left and Op
SHL:ADD

SHL:OR

Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. Zeros are shifted into the least significant bits. A second operation is performed between

the first result and register Rc. The second operation must be one of: add, sub, and, or, or xor.

Double Op Instruction Format:

47 42 41 36 3533 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

2Fh6 Op26 03 Sz3 R I Rc5 Rb5 Rt5 Ra5 12 02h6

R: determines if Rb is a register (0) or an immediate value (1)

I: the high order bit of the immediate value

Clock Cycles: 2

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 180

SHR – Shift Right
Description:

Bits from the source register Ra are shifted right by the amount in register Rb or an immediate

value. Zeros are shifted into the most significant bits.

Instruction Format:

2Fh6 13 Rb5 Rt5 Ra5 02 02h6

Immediate, shift count 0 to 31

0Fh6 13 Imm5 Rt5 Ra5 02 02h6

Immediate, shift count 32 to 63

1Fh6 13 Imm5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 181

SHR:[op] – Shift Right and Op
SHR:ADD

SHR:OR

Description:

Bits from the source register Ra are shifted left by the amount in register Rb or an immediate

value. Zeros are shifted into the least significant bits. A second operation is performed between

the first result and register Rc. The second operation must be one of: add, sub, and, or, or xor.

Double Op Instruction Format:

47 42 41 36 3533 32 30 29 28 27 23 22 18 17 13 12 8 76 5 0

2Fh6 Op26 13 Sz3 R I Rt5 Rc5 Rb5 Ra5 12 02h6

Clock Cycles: 2

ALU Support: ALU #0 Only

Exceptions: none

P a g e | 182

SGT – Set if Greater Than
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is greater than a second operand in either a register (Rb) or a

constant supplied in the instruction, then the target register is set to a one, otherwise the target

register is set to a zero. The operands are treated as signed values.

The register form of the instruction is just the register form of the SLT instruction with the

operands switched.

Instruction Format:

Immed14 Rt5 Ra5 L2 2Ch6

06h6 Sz3 Ra5 Rt5 Rb5 02 02h6

Clock Cycles: 0.5

P a g e | 183

SGTU – Set if Greater Than Unsigned
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is greater than a second operand in either a register (Rb) or a

constant supplied in the instruction, then the target register is set to a one, otherwise the target

register is set to a zero. The operands are treated as unsigned values.

The register form of the instruction is just the register form of the SLTU instruction with the

operands switched.

Instruction Format:

Immed14 Rt5 Ra5 L2 1Ch6

07h6 Sz3 Ra5 Rt5 Rb5 02 02h6

Clock Cycles: 0.5

P a g e | 184

SLE – Set if Less Than or Equal
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is less than or equal to a second operand in a register (Rb), then

the target register is set to a one, otherwise the target register is set to a zero. The operands are

treated as signed values.

The instruction may also be used to test for greater than or equal by swapping the operands

around.

There is no immediate form for this instruction.

Instruction Format:

28h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

P a g e | 185

SLEU – Set if Less Than or Equal Unsigned
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is less than or equal to a second operand in a register (Rb), then

the target register is set to a one, otherwise the target register is set to a zero. The operands are

treated as unsigned values.

The instruction may also be used to test for greater than or equal by swapping the operands

around.

There is no immediate form for this instruction.

Instruction Format:

29h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

P a g e | 186

SLT – Set if Less Than
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is less than a second operand in either a register (Rb) or a constant

supplied in the instruction, then the target register is set to a one, otherwise the target register is

set to a zero. The operands are treated as signed values.

The register form of the instruction may also be used to test for greater than by swapping the

operands around.

Instruction Format:

Immed14 Rt5 Ra5 L2 06h6

06h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

P a g e | 187

SLTU – Set if Less Than Unsigned
Description:

The set instruction places a 1 or 0 in the target register based on the relationship between the two

source operands. If operand Ra is less than a second operand in either a register (Rb) or a constant

supplied in the instruction, then the target register is set to a one, otherwise the target register is

set to a zero. The operands are treated as unsigned values.

Instruction Format:

Immed14 Rt5 Ra5 L2 07h6

07h6 Sz3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

P a g e | 188

SUB - Subtract
Description:

Subtract two values. Both operands must be in a register.

Instruction Format:

056 ~2 Ov Sz2 Rb5 Rt5 Ra5 02h6

Ov

0 no overflow

1 overflow exception if overflow occurred and enabled in AEC

Overflow works properly only on 64 bit values.

Clock Cycles: 0.5

Exceptions:

The registered form of the instruction may cause an overflow exception if enabled in the AEC

register.

P a g e | 189

SUBV – Subtraction with Overflow Detection
Description:

Subtract two values. Both operands must be in registers. If an overflow occurs an overflow

exception may be generated if enabled in the arithmetic exception control register.

Instruction Format:

0Bh6 ~3 Rt5 Rb5 Ra5 L2 02h6

Clock Cycles: 0.5

Execution Units: All ALU’s

Exceptions:

The instruction may cause an overflow exception if enabled in the AEC register.

Notes:

P a g e | 190

SW – Store Word (64 bits)
Description:

This instruction stores a word (64 bit) value to memory. The memory address must be word

aligned.

Instruction Format:

Immed13…5 Rb5 I4..3 43 Ra5 L2 24h6

8h4 Rc5 Rb5 22 ~ Sc2 Ra5 L2 16h6

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

P a g e | 191

SWC – Store Word and Clear Reservation
Description:

This instruction conditionally stores a word (64 bit) value to memory and clears any memory

reservation that was previously set at the address. If the memory address was reserved at the time

of the store the store will succeed, otherwise the data is not stored. The previous status of the

reservation is copied to the least significant bit of the semaphore register. This instruction

depends on external hardware to implement the reservation. The instruction activates the cr_o

signal output by the core. The memory address must be word aligned. This instruction should be

both preceded and succeeded by SYNC instructions to ensure that the reservation status bit is

updated correctly in the semaphore CSR.

Instruction Format:

Immed13…5 Rb5 Imm4..0 Ra5 L2 17h6

8h4 Rc5 Rb5 32 ~ Sc2 Ra5 L2 16h6

Side Effect: the reservation status bit (bit 0) in the semaphore register is set accordingly.

Clock Cycles: 4 minimum depending on memory access time

Sc2 Scale Rb By

0 1

1 2

2 4

3 8

Acquire and release bits determine the ordering of memory operations.

A = acquire – no following memory operations can take place before this one

R = release – this memory operation cannot take place before prior ones.

All combinations of A, R are allowed.

P a g e | 192

SYNC -Synchronize
Description:

All instructions before the SYNC are completed and committed to the architectural state before

instructions after the SYNC are issued. This instruction is used to ensure that the machine state is

valid before subsequent instructions are executed.

Instruction Format:

01h6 03 12h5 ~5 ~5 02 02h6

Clock Cycles: 1 *varies depending on queue contents

Execution Units: All ALU’s

Notes:

This instruction may be used with CSR register access as the core does not provide bypassing on

the CSR registers. Issuing a sync instruction before reading a CSR will ensure that any

outstanding updates to the CSR will be completed before the read.

P a g e | 193

SXH – Sign Extend Half-Word
Description:

Sign extend a half word as an signed value to the full width of the machine.

Instruction Format:

016 ~3 18h5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 194

THRD – Conditional Thread Switch
Description:

This instruction performs a subroutine call to the thread switch routine or to the garbage

collection routine if one of the signals for those routines is active. The garbage collection routine

address is stored in the GCA CSR register. The thread switch routine address is stored in the TSA

CSR register. The THRD instruction should be placed at thread-safe points.

Instruction Format:

Execution Units: FCU

Clock Cycles:

P a g e | 195

TLB – TLB Command

Description:

The command is executed on the TLB unit. The command results are placed in internal TLB

registers which can be read or written using TLB command instruction. If the operation is a read

register operation, then the register value is placed into Rt. If the operation is a write register

operation, then the value for the register comes from Ra. Otherwise the Ra/Rt field in the

instruction is ignored.

This instruction is only available at the machine operating level.

Instruction Format:

3Fh6 Cmd4 Tn4 Rt5 Ra5 02 02h6

Clock Cycles: 3

Tn4 – This field identifies which TLB register is being read or written.

Reg no. Assembler

0 Wired Wired

1 Index Index

2 Random Random

3 Page Size PageSize

4 Virtual page VirtPage

5 Physical page PhysPage

7 ASID ASID

8 Miss address MA

9 reserved

10 Page Table Address PTA

11 Page Table Control PTC

12 Aging frequency control AFC

TLB Commands

Cmd4 Description Assembler

0 No operation

1 Probe TLB entry TLBPB

2 Read TLB entry TLBRD

3 Write TLB entry corresponding to random register TLBWR

4 Write TLB entry corresponding to index register TLBWI

5 Enable TLB TLBEN

6 Disable TLB TLBDIS

7 Read register TLBRDREG

8 Write register TLBWRREG

P a g e | 196

9 Invalidate all entries TLBINV

10 Get age count TLBRDAGE

11 Set age count TLBWRAGE

Probe TLB – The TLB will be tested to see if an address translation is present.

Read TLB – The TLB entry specified in the index register will be copied to TLB holding registers.

Write Random TLB – A random TLB entry will be written into from the TLB holding registers.

Write Indexed TLB – The TLB entry specified by the index register will be written from the TLB holding

registers.

 Disable TLB – TLB address translation is disabled so that the physical address will match the supplied

virtual address.

Enable TLB – TLB address translation is enabled. Virtual address will be translated to physical addresses

using the TLB lookup tables.

The TLB will automatically update the miss address registers when a TLB miss occurs only if the

registers are zero to begin with. System software must reset the registers to zero after a miss is processed.

This mechanism ensures the first miss that occurs is the one that is recorded by the TLB.

PageTableAddr – This is a scratchpad register available for use to store the address of the page table.

PageTableCtrl – This is a scratchpad register available for use to store control information associated with

the page table.

P a g e | 197

WAIT – Wait For Signal

Description:

This instruction causes the core to pause execution during the execute phase of the instruction

until an external signal is true. Note that instructions already in the queue before the wait will

continue to execute to completion. Also additional instructions may be fetched after the wait

instruction however they will not be able to update the state of the machine until the wait is done.

The signal to wait for is specified as the union of register Ra and an immediate value. Either Ra

or the immediate value should be zero.

A timeout for the wait may be specified in register Rb. If a timeout is not desired use R0 for Rb

and the instruction will wait indefinitely.

Instruction Formats:

316 ~3 Imm5 Rb5 Ra5 02 02h6

Operation:

if (no signal)

 delay instruction

else

 mark instruction done

Notes:

This instruction waits for a signal to occur before proceeding.

P a g e | 198

WTME – Write Tag Memory Enable

Description:

This instruction updates a bit enabling or disabling the tagged memory system for a given

memory page. The access key determining which map is updated must be set in the pcr CSR

register. Register Ra contains a page number (0 to 1023) to enable or disable tagged memory on,

and Rb contains the value to set the bit to. (1 = enable tagged memory, 0 = disable).

Instruction Format:

016 ~3 1Dh5 Rb5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 only

Operation:

Exceptions: none

Notes:

P a g e | 199

XNOR – Bitwise Exclusive Nor
Description:

Perform a bitwise exclusive or operation between two operands then invert the result. Both

operands must be in registers.

Instruction Format:

0Eh6 ~3 Rb5 Rt5 Ra5 02 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 200

XOR – Bitwise Exclusive Or
Description:

Perform a bitwise exclusive or operation between operands.

Instruction Format:

Immed14 Rt5 Ra5 L2 0Ah6

L2: 0 = 14 bit constant, 1 = 30 bit constant

0Ah6 Sz3 Rb5 Rt5 Ra5 02 02h6

Double Operations

0Ah6 Op26 ~5 Sz3 Rc5 Rb5 Rt5 Ra5 12 02h6

Clock Cycles: 0.5

Execution Units: All ALUs

Exceptions: none

P a g e | 201

ZXB – Zero Extend Byte
Description:

Zero extend a byte as an unsigned value to the full width of the machine.

Instruction Format:

016 ~3 0Ah5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 202

ZXC – Zero Extend Char
Description:

Zero extend a char (16 bits) as an unsigned value to the full width of the machine.

Instruction Format:

016 ~3 09h5 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 203

ZXH – Zero Extend Half-Word
Description:

Zero extend a half word as an unsigned value to the full width of the machine.

Instruction Format:

016 ~3 085 Rt5 Ra5 02 02h6

Clock Cycles: 1

Execution Units: ALU #0 Only

Exceptions: none

P a g e | 204

Floating Point

Overview

The floating-point unit provides basic floating-point operations including addition, subtraction,

multiplication, division, square root, and float to integer and integer to float conversions. The core

contains only a single floating-point unit. Only double precision floating point operations are

supported. The ISA itself supports single, double, and quad precision. The core uses the register

set specified in the floating point CSR (FSTAT) register sets for the floating-point registers.

The precision field (prec2) should be set to 1.

The rounding mode is normally specified by the rounding mode bits in the floating-point control

and status register. However, it may be overridden by specification of a rounding mode in the

instruction.

Representation

The floating-point format is an IEEE-754 representation for double precision. Briefly,

Double Precision Format:

63 62 61 52 51 0

SM SE Exponent Mantissa

SM – sign of mantissa

SE – sign of exponent

The exponent and mantissa are both represented as two’s complement numbers, however the sign

bit of the exponent is inverted.

SeEEEEEEEEEE

11111111111 Maximum exponent

….

01111111111 exponent of zero

….

00000000000 Minimum exponent

The exponent ranges from -1024 to +1023 for double precision numbers

P a g e | 205

Instruction Format (Short – two source operand)

The assumed precision is double precision.

31 26 25 23 22 18 17 13 12 8 7 6 5 0

Func6 Rm3 Rt5 Rb5 Ra5 02 0Fh6

Not all instructions required the Rb5 field. If not required Rb should be set to zero.

Instruction Format (Short – one source operand)
31 26 25 23 22 18 17 16 13 12 8 7 6 5 0

Func6 Rm3 Rt5 01 Prc4 Ra5 02 0Fh6

Instruction Format (Long)

The long instruction format adds a precision field and additional register spec field.

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

Func6 ~7 Prc4 Rm3 Rt5 Rc5 Rb5 Ra5 12 0Fh6

Prc4 Precision

0 Half (16 bit)

1 Single (32 bit)

2 Double (64 bit)

3 Triple (96 bit)

4 Quad (128 bit)

5 to 7 reserved

Prc[3] = parallel operation bit (1=SIMD)

P a g e | 206

FABS – Floating Absolute Value

Description:

Take the absolute value of the floating-point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is set to zero. No rounding of the number occurs.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

15h6 Rm3 01 Prc4 Rt5 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 207

FADD – Floating point addition

Description:

Add two floating point numbers in registers Ra and Rb and place the result into target register Rt.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

04h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

04h6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 10

Execution Units: Floating Point

P a g e | 208

FBcc – Conditional Branch
Description:

If the branch condition is true, an eleven-bit sign extended value is shift left once and added to the

program counter. The branch is relative to the address of the instruction directly following the

branch. If the branch branches back to itself a branch exception will be generated.

Instruction Format:

31 23 22 18 17 16 15 13 12 8 7 6 5 0

Displacement11..3 Rb5 D2..1 Cond3 Ra5 02 05h6

Opcode6 Cond2 Mne.

30h 0 FBEQ Ra = Rb

1 FBNE Ra <> Rb

2 FBLT Ra < Rb

3 FBGE Ra >= Rb

4 reserved

5 reserved

6

7 BUN unordered

Clock Cycles:

Typically 1 with correct branch outcome and target prediction.

Execution Units: FCU Only

Exceptions: branch displacement

P a g e | 209

FCMP - Float Compare

Description:

The register compare instruction compares two registers as floating-point values and sets the flags

in the target register as a result. The source operands are from the register set specified in the

FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

06h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

06h6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 2

Execution Units: FPU

Operation:

if Ra < Rb

 Rt[1]= true

else

 Rt[1] = false

if mag Ra < mag Rb

 Rt[2] = true

else

 Rt[2] = false

if Ra = Rb

 Rt[0] = true

else

 Rt[0] = false

if Ra <= Rb

 Rt[3] = true

else

 Rt[3] = false

if unordered

 Rt[4] = true

else

 Rt[4] = false

P a g e | 210

FCVTSD – Convert Single to Double

Description:

Convert the single precision value (32 bits) in Ra into a floating point double value (64 bits) and

place the result into target register Rt.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

19h6 Prec2 Rm3 ~5 Rt5 Ra5 0Fh6

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 211

FDIV – Floating point divide

Description:

Divide two floating point numbers in registers Ra and Rb and place the result into target register

Rt.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

09h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

Clock Cycles: 115

Execution Units: Floating Point

P a g e | 212

FCX – Clear Floating Point Exceptions

Description:

This instruction clears floating point exceptions. The Exceptions to clear are identified as the bits

set in the union of register Ra and an immediate field in the instruction. Either the immediate or

Ra should be zero.

Instruction Format:

31 26 25 24 23 18 17 13 12 8 7 6 5 0

21h6 ~2 Imm6 05 Ra5 02 0Fh6

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation clears the following:

- division of infinities

- zero divided by zero

- subtraction of infinities

- infinity times zero

- NaN comparison

- division by zero

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 summary exception

P a g e | 213

FDX – Floating Disable Exceptions

Description:

This instruction disables floating point exceptions. The Exceptions disabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero. Exceptions won’t be disabled until the instruction commits and the state of

the machine is updated. This instruction should be followed by a synchronization instruction

(FSYNC) to ensure that following floating point operations recognize the disabled exceptions.

Instruction Format:

31 26 25 24 23 18 17 13 12 8 7 6 5 0

23h6 ~2 Imm6 05 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 214

FEX – Floating Enable Exceptions

Description:

This instruction enables floating point exceptions. The Exceptions enabled are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero. Exceptions won’t be enabled until the instruction commits and the state of

the machine is updated. This instruction should be followed by a synchronization instruction

(FSYNC) to ensure that following floating point operations recognize the enabled exceptions.

Instruction Format:

31 26 25 24 23 18 17 13 12 8 7 6 5 0

22h6 ~2 Imm6 05 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 215

FMUL – Floating point multiplication

Description:

Multiply two floating point numbers in registers Ra and Rb and place the result into target

register Rt.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

08h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

Clock Cycles: 12

Execution Units: Floating Point

P a g e | 216

FNABS – Floating Negative Absolute Value

Description:

Take the negative absolute value of the floating-point number in registers Ra and place the result

into target register Rt. The sign bit (bit 63) of the register is set to one. No rounding of the number

occurs.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

18h6 Rm3 01 Prc4 Rt5 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 217

FNEG – Floating Negative Value

Description:

Negate the value of the floating-point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is inverted. No rounding of the number occurs.

Instruction Format:

31 26 25 23 22 18 17 16 13 12 8 7 6 5 0

14h6 Rm3 Rt5 01 Prc4 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 218

FSIGN – Floating Sign

Description:

FSIGN returns a value indicating the sign of the floating-point number. If the value is zero, the

target register is set to zero. If the value is negative the target register is set to the floating-point

value -1.0. Otherwise the target register is set to the floating-point value +1.0. No rounding of the

result occurs.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

16h6 Rm3 01 Prc4 Rt5 Ra5 02 0Fh6

Clock Cycles: 2

Execution Units: Floating Point

P a g e | 219

FSEQ - Float Set Equal

Description:

The register compare instruction compares two registers as floating point values for equality and

sets the target register as a result. The source operands are from the register set specified in the

FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

3Ch6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

3Ch6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra == Rb

 Rt = true

else

 Rt = false

P a g e | 220

FSGE - Float Set Greater Than or Equal

Description:

The register compare instruction compares two registers as floating point values for greater than

or equal and sets the target register as a result. The source operands are from the register set

specified in the FSTAT CSR. The target register is from the register set specified in the

MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

39h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

39h6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra >= Rb

 Rt = true

else

 Rt = false

P a g e | 221

FSGT - Float Set Greater Than

Description:

The register compare instruction compares two registers as floating-point values for greater than

and sets the target register as a result. The source operands are from the register set specified in

the FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

3Bh6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

3Bh6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra > Rb

 Rt = true

else

 Rt = false

P a g e | 222

FSLE - Float Set Less Than or Equal

Description:

The register compare instruction compares two registers as floating-point values for less than or

equal and sets the target register as a result. The source operands are from the register set

specified in the FSTAT CSR. The target register is from the register set specified in the

MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

3Ah6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

3Ah6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra <= Rb

 Rt = true

else

 Rt = false

P a g e | 223

FSLT - Float Set Less Than

Description:

The register compare instruction compares two registers as floating point values for less than and

sets the target register as a result. The source operands are from the register set specified in the

FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

38h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

38h6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra < Rb

 Rt = true

else

 Rt = false

P a g e | 224

FSNE - Float Set Not Equal

Description:

The register compare instruction compares two registers as floating point values for inequality

and sets the target register as a result. The source operands are from the register set specified in

the FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

3Dh6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

3Dh6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra <> Rb

 Rt = true

else

 Rt = false

P a g e | 225

FSUN - Float Set if Unordered

Description:

The register compare instruction compares two registers as floating point values for unorderliness

and sets the target register as a result. The source operands are from the register set specified in

the FSTAT CSR. The target register is from the register set specified in the MSTATUS CSR.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

3Eh6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

3Eh6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 1

Execution Units: FPU

Operation:

if Ra ?? Rb

 Rt = true

else

 Rt = false

P a g e | 226

FSQRT – Floating point square root

Description:

Take the square root of the floating-point number in register Ra and place the result into target

register Rt. The sign bit (bit 63) of the register is set to zero. This instruction can generate NaNs.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

1Dh6 Rm3 01 Prc4 Rt5 Ra5 02 0Fh6

Clock Cycles: 110

Execution Units: Floating Point

P a g e | 227

FSUB – Floating point subtraction

Description:

Subtract two floating-point numbers in registers Ra and Rb and place the result into target register

Rt.

Instruction Format:

31 26 25 23 22 18 17 13 12 8 7 6 5 0

05h6 Rm3 Rb5 Rt5 Ra5 02 0Fh6

47 42 41 35 34 31 30 28 27 23 22 18 17 13 12 8 7 6 5 0

05h6 ~7 Prc4 Rm3 ~5 Rb5 Rt5 Ra5 12 0Fh6

Clock Cycles: 10

Execution Units: Floating Point

P a g e | 228

FSYNC -Synchronize
Description:

All floating point instructions before the FSYNC are completed and committed to the

architectural state before floating point instructions after the FSYNC are issued. This instruction

is used to ensure that the machine state is valid before subsequent instructions are executed.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

36h6 ~2 ~3 ~5 ~5 ~5 0Fh6

Clock Cycles: varies depending on queue contents

P a g e | 229

FTOI – Floating Convert to Integer

Description:

Convert the floating-point value in Ra into an integer and place the result into target register Rt. If

the result overflows the value placed in Rt is a maximum integer value.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

12h6 Rm3 01 Prc4 Rt5 Ra5 02 0Fh6

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 230

FTX – Trigger Floating Point Exceptions

Description:

This instruction triggers floating point exceptions. The Exceptions to trigger are identified as the

bits set in the union of register Ra and an immediate field in the instruction. Either the immediate

or Ra should be zero.

Instruction Format:

31 26 25 24 2322 21 16 15 11 10 6 5 0

20h6 Prec2 ~2 Imm6 05 Ra5 0Fh6

Execution Units: All Floating Point

Operation:

Exceptions:

Bit Exception Enabled

0 global invalid operation

1 overflow

2 underflow

3 divide by zero

4 inexact operation

5 reserved

P a g e | 231

ITOF – Convert Integer to Float

Description:

Convert the integer value in Ra into a floating-point value and place the result into target register

Rt. Some precision of the integer converted may be lost if the integer is larger than 52 bits.

Double precision floating point values only have a precision of 53 bits.

Instruction Format:

31 26 25 23 22 21 18 17 13 12 8 7 6 5 0

15h6 Rm3 M1 Prc4 Rt5 Ra5 02 0Fh6

M1: Ra register set. 0 = use float register set, 1 = move from integer register set to float

Clock Cycles: 3

Execution Units: Floating Point

P a g e | 232

Vector Programming Model

The ISA supports up to 31 vector registers of length 64.

Reg no

0 <vector mask registers>

1 to 31 general purpose vector registers

Vector Length (VL register)

The vector length register controls how many elements of a vector are processed. The vector

length register may not be set to a value greater than the number of elements supported by

hardware. After the vector length is set a SYNC instruction should be used to ensure that

following instructions will see the updated version of the length register.

7 6 0

0 Length6..0

Vector Masking

All vector operations are performed conditionally depending on the setting in the vector mask

register unless otherwise noted.

Vector Mask (Vm registers)

The ISA supports up to eight, sixty-four element vector mask registers. In the proof-of-concept

version there is are four sixteen element vector mask registers. All vector instructions are

executed conditionally based on the value in a vector mask register. The mask register may be set

using one of the vector set instructions VSEQ, VSNE, VSLT, VSGE, VSLE, VSGT. Mask

registers may also be manipulated using one of the mask register operations VMAND, VMOR,

VMXOR, VMXNOR, VMFILL.

After a change to a mask register a SYNC instruction should be used to ensure that the updated

mask register is visible to following instructions.

On reset the vector mask registers are set to all ones.

The vector mask registers are aliased with vector register #0. The mask registers may be

manipulated as a group by referencing v0.

Field Descriptions

The MSB of the Prc4 field indicates a parallel operation (SIMD) if set to 1.

Prc4

0 16 bit – half precision

1 32 bit - single precision

2 64 bit – double precision

P a g e | 233

3 96 bit – triple precision

4 128 bit – quad precision

5 reserved

6 reserved

7 reserved

P a g e | 234

Detailed Vector Instruction Set

P a g e | 235

LV – Load Vector
Synopsis

Load vector

Description:

Load a vector register from memory. Vector mask register #0 is used to mask the operation.

Instruction Format:

Immed16 Vt5 Ra5 36h6

Operation

for x = 0 to VL-1

if vm[x]

Vt[x] = memory64[Ra + Immed + 8 * x]

 else

 NOP

Exceptions: DBE, DBG, LMT

P a g e | 236

LVWS – Load Vector With Stride
Synopsis

Load vector

Description:

Load a vector register from memory using indexed addressing.

Instruction Format:

26h6 Vm3 32 Vt5 Rb5 Ra5 16h6

Operation

for x = 0 to VL-1

Vt[x] = memory64[Ra+Rb*x*8]

Exceptions: DBE, DBG, LMT

P a g e | 237

LVX – Load Vector
Synopsis

Load vector

Description:

Load a vector register from memory using vector indexed addressing.

Instruction Format:

36h6 ~3 32 Vt5 Vb5 Ra5 16h6

Operation

for x = 0 to VL-1

Vt[x] = memory64[Ra+Vb[x]]

Exceptions: DBE, DBG, LMT

P a g e | 238

SV – Store Vector
Synopsis

Load vector

Description:

Store a vector register to memory. Vector mask register #0 is used to mask the operation.

Instruction Format:

Immed16 Vb5 Ra5 37h6

Operation

for x = 0 to VL-1

 if (vm[x])

memory64[Ra + Immed + 8 * x] = Vb[x]

else

 NOP

Exceptions: DBE, DBG, LMT

P a g e | 239

SVWS – Store Vector With Stride
Synopsis

Store vector

Description:

Store a vector register to memory using indexed addressing.

Instruction Format:

27h6 Vm3 32 Vc5 Rb5 Ra5 16h6

Operation

for x = 0 to VL-1

memory64[Ra+Rb*(x*8)] = Vc[x]

Exceptions: DBE, DBG, LMT

P a g e | 240

SVX – Store Vector
Synopsis

Load vector

Description:

Store a vector register to memory using vector indexed addressing.

Instruction Format:

37h6 ~3 32 Vc5 Vb5 Ra5 16h6

Operation

for x = 0 to VL-1

memory64[Ra+Vb[x]] = Vc[x]

Exceptions: DBE, DBG, LMT

P a g e | 241

V2BITS
Synopsis

Convert Boolean vector to bits.

21h6 Vm3 02 05 Rt5 Va5 01h6

Description

The least significant bit of each vector element is copied to the corresponding bit in the target

register.

Operation

For x = 0 to VL-1

Rt[x] = Va[x].LSB

Exceptions: none

Execution Units: ALUs

P a g e | 242

VABS – Absolute value
Synopsis

Vector register absolute value. Vt = Va < 0 ? –Va : Va

Description

The absolute value of a vector register is placed in the target vector register Vt.

Instruction Format

036 Vm3 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] < 0 ? –Va[x] : Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 243

VADD - Add
Synopsis

Vector register add. Vt = Va + Vb

Description

Two vector registers (Va and Vb) are added together and placed in the target vector register Vt.

Float Double Instruction Format

This instruction format assumes a double precision (64 bit), with the rounding mode in use

specified by the round mode field in the floating point CSR.

046 Vm3 Vt5 Vb5 Va5 02 01h6

Integer Word Instruction Format

This instruction format assumes a word precision (64 bit).

046 Vm3 Vt5 Vb5 Va5 02 31h6

Float Instruction Format

This instruction format allows the precision and rounding mode to be set in the instruction.

046 Vm3 ~9 Prc4 Rm3 Vt5 Vb5 Va5 12 01h6

Integer Instruction Format

046 Vm3 ~9 Prc4 ~3 Vt5 Vb5 Va5 12 31h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] + Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 244

VADDS – Add Scalar
Synopsis

Vector register add. Vt = Va + Rb

Description

A vector and a scalar (Va and Rb) are added together and placed in the target vector register Vt.

Instruction Format

14h6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Vb[x] + Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 245

VAND – Bitwise And
Synopsis

Vector register bitwise and. Vt = Va & Vb

Description

Two vector registers (Va and Vb) are bitwise and’ed together and placed in the target vector

register Vt.

Instruction Format

086 Vm3 ~9 Prc4 Rm3 Vt5 Vb5 Va5 12 31h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] & Vb[x]

Execution Units: ALUs

P a g e | 246

VANDS – Bitwise And with Scalar
Synopsis

Vector register bitwise and. Vt = Va & Rb

Description

A vector register (Va) is bitwise and’ed with a scalar register and placed in the target vector

register Vt.

Instruction Format

18h6 Vm3 02 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] & Rb[x]

P a g e | 247

VASR – Arithmetic Shift Right
Synopsis

Vector signed shift right.

0Eh6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted right. The most significant bits are loaded with the sign bit.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] >> amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 248

VBITS2V
Synopsis

Convert bits to Boolean vector.

20h6 Vm3 02 Vt5 05 Ra5 01h6

Description

Bits from a general register are copied to the corresponding vector target register.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Ra[x]

Exceptions: none

Execution Units: ALUs

P a g e | 249

VCIDX – Compress Index
Synopsis

Vector compression.

Description

A value in a register Ra is multiplied by the element number and copied to elements of vector

register Vt guided by a vector mask register.

Instruction Format

016 Vm3 02 Vt5 05 Ra5 01h6

Operation

y = 0

for x = 0 to VL - 1

if (Vm[x])

Vt[y] = Ra * x

y = y + 1

P a g e | 250

VCMPRSS – Compress Vector
Synopsis

Vector compression.

Description

Selected elements from vector register Va are copied to elements of vector register Vt guided by a

vector mask register.

Instruction Format

006 Vm3 02 Vt5 05 Va5 01h6

Operation

y = 0

for x = 0 to VL - 1

if (Vm[x])

Vt[y] = Va[x]

y = y + 1

P a g e | 251

VCNTPOP – Population Count
Synopsis

Vector register population count. Vt = popcnt(Va)

Description

The number of bits set in a vector register is placed in the target vector register Vt.

Instruction Format

28h6 Vm3 02 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = popcnt(Va[x])

P a g e | 252

VDIV - Divide
Synopsis

Vector register divide. Vt = Va / Vb

Description

Vector register Va is divided by Vb and placed in the target vector register Vt.

Instruction Format

3Eh6 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] / Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 253

VDIVS – Divide by Scalar
Synopsis

Vector register divide by scalar. Vt = Va / Rb

Description

Vector register Va is divided by Rb and placed in the target vector register Vt.

Instruction Format

2Eh6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] / Rb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 254

VEINS / VMOVSV – Vector Element Insert
Synopsis

Vector element insert.

22h6 ~ M2 02 Vt5 Rb5 Ra5 01h6

Description

A general purpose register Rb is transferred into one element of a vector register Vt. The element

to insert is identified by Ra.

Operation

Vt[Ra] = Rb

Exceptions: none

P a g e | 255

VEX / VMOVS – Vector Element Extract
Synopsis

Vector element insert.

23h6 ~ M2 02 Rt5 Vb5 Ra5 01h6

Description

A vector register element from Vb is transferred into a general purpose register Rt. The element

to extract is identified by Ra.

Operation

Rt = Vb[Ra]

Exceptions: none

P a g e | 256

VFLT2INT – Float to Integer
Synopsis

Vector float to integer.

24h6 ~ M2 T2 Vt5 05 Va5 01h6

Description

Elements of the vector are converted from floating point to integer.

Operation

For x = 0 to [Ra]-1

Vt[x] = (int)Va[x]

Exceptions: none

P a g e | 257

VINT2FLT – Integer to Float
Synopsis

Vector float to integer.

25h6 ~ M2 T2 Vt5 05 Va5 01h6

Description

Elements of the vector are converted from integer to floating point.

Operation

For x = 0 to VL-1

Vt[x] =(float) Va[x]

Exceptions: none

P a g e | 258

VMAND – Bitwise Mask And
Synopsis

Vector mask register bitwise and. Vmt = Vma & Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise and’ed together and placed in the target

vector register Vmt.

Instruction Format

30h6 03 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma & Vmb

Execution Units: ALUs

P a g e | 259

VMFILL –Mask Fill
Synopsis

Fill vector mask register with bits.

Description

The first Ra bits of the vector mask register are set to one. The remaining bits of the mask register

are set to zero.

Instruction Format

30h6 53 02 Vmt5 05 Ra5 01h6

Operation

for x = 0 to VLMAX

if (x < Ra) Vmt[x] = 1

else Vmt[x] = 0

Execution Units: ALUs

P a g e | 260

VMFIRST – Find First Set Bit
Synopsis

Convert Boolean vector to bits.

30h6 63 02 05 Rt5 ~2 Vm3 01h6

Description

The position of the first bit set in the mask register is copied to the target register. If no bits are set

the value is 64. The search begins at the least significant bit and proceeds to the most significant

bit.

Operation

Rt = first set bit number of (Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 261

VMLAST – Find Last Set Bit
Synopsis

Convert Boolean vector to bits.

30h6 73 02 05 Rt5 ~2 Vm3 01h6

Description

The position of the last bit set in the mask register is copied to the target register. If no bits are set

the value is 64. The search begins at the most significant bit of the mask register and proceeds to

the least significant bit.

Operation

Rt = first set bit number of (Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 262

VMOR – Bitwise Mask Or
Synopsis

Vector mask register bitwise and. Vmt = Vma | Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise ord’ed together and placed in the target

vector register Vmt.

Instruction Format

30h6 13 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma | Vmb

Operand Type

T2 Operand Type

0 Integer

1 reserved

2 reserved

3 reserved

Execution Units: ALUs

P a g e | 263

VMOV – Move Vector Control Register

Description:

.

Instruction Format:

33h6 05 Vt5 Ra5 02h6

Va5/Vt5

0 to 7 Vector Mask

15 Vector Length

33h6 15 Rt5 Va5 02h6

Clock Cycles: 1

Execution Units: ALUs

P a g e | 264

VMPOP – Mask Population Count
Synopsis

Convert Boolean vector to bits.

30h6 43 02 05 Rt5 ~2 Vm3 01h6

Description

A count of the number of bits set in the mask register is copied to the target register.

Operation

Rt = population count(Vm)

Exceptions: none

Execution Units: ALUs

P a g e | 265

VMUL - Multiply
Synopsis

Vector register multiply. Vt = Va * Vb

Description

Two vector registers (Va and Vb) are multiplied together and placed in the target vector register

Vt.

Instruction Format

3Ah6 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] * Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 266

VMULS – Multiply by Scalar
Synopsis

Vector register multiply by scalar. Vt = Va * Rb

Description

A vector registers (Va) and a scalar register (Rb) are multiplied together and placed in the target

vector register Vt.

Instruction Format

2Ah6 Vm3 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] * Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 267

VMXNOR – Bitwise Mask Exclusive Nor
Synopsis

Vector mask register bitwise and. Vmt = ~(Vma ^ Vmb)

Description

Two vector mask registers (Vma and Vmb) are bitwise exclusive nord’ed together and placed in

the target vector register Vmt.

Instruction Format

30h6 33 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma ^ Vmb

Execution Units: ALUs

P a g e | 268

VMXOR – Bitwise Mask Exclusive Or
Synopsis

Vector mask register bitwise and. Vmt = Vma ^ Vmb

Description

Two vector mask registers (Vma and Vmb) are bitwise exclusive ord’ed together and placed in

the target vector register Vmt.

Instruction Format

30h6 23 04 Vmt3 02 Vmb3 02 Vma3 01h6

Operation

Vmt = Vma ^ Vmb

Execution Units: ALUs

P a g e | 269

VNEG – Negate
Synopsis

Vector register subtract. Vt = R0 - Va

Description

A vector is made negative by subtracting it from zero and placing it in the target vector register

Vt. This instruction is an alternate mnemonic for the VSUBRS instruction.

Instruction Format

16h6 Vm3 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = R0 - Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 270

VOR – Bitwise Or
Synopsis

Vector register bitwise or. Vt = Va | Vb

Description

Two vector registers (Va and Vb) are or’ed together and placed in the target vector register Vt.

Instruction Format

096 Vm3 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] | Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 271

P a g e | 272

VORS – Bitwise Or with Scalar
Synopsis

Vector register bitwise and. Vt = Va | Rb

Description

A vector register (Va) is bitwise ord’ed with a scalar register and placed in the target vector

register Vt.

Instruction Format

19h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] | Rb[x]

Operand Type

T2 Operand Type

0 Integer

1 reserved

2 reserved

3 reserved

P a g e | 273

VSxx / VSxxS
Synopsis

Vector register set. Vm = Va ? Vb

Description

A vector register is compared to either a second vector register or a scalar register and the

comparison result is placed in the target vector mask register Vmt.

Instruction Format

Vector-Vector Compare (VSxx)

066/3F6 M3 T2 Cn2 Vmt3 Vb5 Va5 01h6

Vector-Vector Unsigned Compare (VSxxU)

27h6/2F6 M3 T2 Cn2 Vmt3 Vb5 Va5 01h6

Vector-Scalar Compare (VSxxS)

076/0F6 M3 T2 Cn2 Vmt3 Rb5 Va5 01h6

Vector-Scalar Unsigned Compare (VSxxSU)

17h6/1F6 M3 T2 Cn2 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vt[x] = Va[x] ? Vb[x]

Operation:

For each vector element

if signed Va op signed Vb

 Vm = true

else

 Vm = false

Set Condition

Cn3

0 Equal

1 Not Equal

2 Less Than

P a g e | 274

3 Greater Than or Equal

4 Less Than or Equal

5 Greater Than

6 reserved

7 unordered

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 275

VSCAN
Synopsis

.

Description

Elements of Vt are set to the cumulative sum of a value in register Ra. The summation is guided

by a vector mask register.

Instruction Format

026 ~ M2 02 Vt5 05 Ra5 01h6

Operation

sum = 0

for x = 0 to VL - 1

Vt[x] = sum

if (Vm[x])

sum = sum + Ra

P a g e | 276

VSEQ – Set if Equal
Synopsis

Vector register set. Vm = Va == Vb

Description

Two vector registers (Va and Vb) are compared for equality and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 02 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] == Vb[x]

Operation:

For each vector element

if signed Va equals signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 277

VSEQS – Set if Equal Scalar
Synopsis

Vector register set. Vm = Va == Rb

Description

All elements of a vector are compared for equality to a scalar value. If equal a one is written to

the output vector mask register, otherwise a zero is written to the output mask register.

Instruction Format

076 0 M2 T2 02 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] == Rb[x]

Operation:

For each vector element

if signed Va equals signed Rb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 278

VSGE – Set if Greater or Equal
Synopsis

Vector register set. Vm = Va >= Vb

Description

Two vector registers (Va and Vb) are compared for greater or equal and the comparison result is

placed in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 32 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] >= Vb[x]

Operation:

For each vector element

if signed Va greater than or equal signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 279

VSGES – Set if Greater or Equal Scalar
Synopsis

Vector register set. Vm = Va >= Rb

Description

All elements of a vector are compared for greater or equal to a scalar value. If the condition is

true a one is written to the output vector mask register, otherwise a zero is written to the output

mask register.

Instruction Format

076 0 M2 T2 32 Vmt3 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] >= Rb

Operation:

For each vector element

if signed Va greater than or equal signed Rb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 280

VSHL – Shift Left
Synopsis

Vector shift left.

0Ch6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted left. The least significant bits are loaded with the value zero.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] << amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 281

VSHLV – Shift Vector Left
Synopsis

Vector shift left.

10h6 ~ M2 02 Vt5 Amt5 Va5 01h6

Description

Elements of the vector are transferred upwards to the next element position. The first is loaded

with the value zero.

Operation

For x = VL-1 to Amt

Vt[x] = Va[x-amt]

For x = Amt-1 to 0

Vt[x] = 0

Exceptions: none

P a g e | 282

VSHR – Shift Right
Synopsis

Vector shift left.

0Dh6 S M2 S A Vt5 Amt5 Va5 01h6

Description

Elements of the vector are shifted right. The most significant bits are loaded with the value zero.

Operation

For x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] >> amt

Exceptions: none

S2 Amount Field

0 general purpose register

1 vector register

2 immediate

3 reserved

P a g e | 283

VSHRV – Shift Vector Right
Synopsis

Vector shift right.

11h6 ~ M2 02 Vt5 Amt5 Va5 01h6

Description

Elements of the vector are transferred downwards to the next element position. The last is loaded

with the value zero.

Operation

For x = 0 to VL-Amt

Vt[x] = Va[x+amt]

 For x = VL-Amt +1 to VL-1

Vt[x] = 0

Exceptions: none

P a g e | 284

VSIGN – Sign
Synopsis

Vector register sign value. Vt = Va < 0 ? –1 : Va = 0 ? 0 : 1

Description

The sign of a vector register is placed in the target vector register Vt.

Instruction Format

26h6 ~ M2 T2 Vt5 05 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] < 0 ? –1 : Va[x]=0 ? 0 : 1

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 285

VSLT – Set if Less Than
Synopsis

Vector register set. Vm = Va < Vb

Description

Two vector registers (Va and Vb) are compared for less than and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

066 0 M2 T2 22 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] < Vb[x]

Operation:

For each vector element

if signed Va less than signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSNE – Set if Not Equal
Synopsis

Vector register set. Vm = Va != Vb

Description

Two vector registers (Va and Vb) are compared for inequality and the comparison result is placed

in the target vector mask register Vmt.

Instruction Format

P a g e | 286

066 0 M2 T2 12 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] <> Vb[x]

Operation:

For each vector element

if signed Va not equal signed Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSUB - Subtract
Synopsis

Vector register add. Vt = Va - Vb

Description

Two vector registers (Va and Vb) are subtracted and placed in the target vector register Vt.

Instruction Format

056 ~ M2 T2 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x]) Vt[x] = Va[x] - Vb[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

P a g e | 287

2 reserved

3 reserved

P a g e | 288

VSUBRS – Subtract from Scalar
Synopsis

Vector register subtract. Vt = Rb - Va

Description

A vector and a scalar (Va and Rb) are subtracted and placed in the target vector register Vt.

Instruction Format

16h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Rb - Va[x]

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 289

VSUBS – Subtract Scalar
Synopsis

Vector register subtract. Vt = Va - Rb

Description

A vector and a scalar (Va and Rb) are subtracted and placed in the target vector register Vt.

Instruction Format

15h6 ~ M2 T2 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] - Rb

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

P a g e | 290

VSUN – Set if Unordered
Synopsis

Vector register set. Vm = Va ? Vb

Description

Two vector registers (Va and Vb) are compared and the comparison result is placed in the target

vector mask register Vmt.

Instruction Format

066 1 M2 T2 32 Vmt3 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

Vm[x] = Va[x] ? Vb[x]

Operation:

For each vector element

if is unordered Va or Vb

 Vm = true

else

 Vm = false

Operand Type

T2 Operand Type

0 Integer

1 Float double

2 reserved

3 reserved

VSYNC -Synchronize
Description:

All vector instructions before the VSYNC are completed and committed to the architectural state

before vector instructions after the VSYNC are issued. This instruction is used to ensure that the

machine state is valid before subsequent instructions are executed.

Instruction Format:

31 26 25 24 23 21 20 16 15 11 10 6 5 0

36h6 ~2 ~3 ~5 ~5 ~5 01h6

P a g e | 291

Clock Cycles: varies depending on queue contents

P a g e | 292

VXCHG - Exchange
Synopsis

Vector register exchange. Va = Vb;Vb= Va

Description

Exchange two vector registers (Va and Vb)

Instruction Format

0B6 Vm3 02 Va5 Vb5 Va5 01h6

Operation

for x = 0 to VL - 1

if (Vm[x])

 Vb[x] = Va[x]

Va[x] = Vb[x]

P a g e | 293

VXOR – Bitwise Exclusive Or
Synopsis

Vector register bitwise or. Vt = Va ^ Vb

Description

Two vector registers (Va and Vb) are exclusive or’ed together and placed in the target vector

register Vt.

Instruction Format

0Ah6 Vm3 02 Vt5 Vb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] ^ Vb[x]

P a g e | 294

VXORS – Bitwise Exclusive Or with Scalar
Synopsis

Vector register bitwise and. Vt = Va ^ Rb

Description

A vector register (Va) is bitwise exclusive ord’ed with a scalar register and placed in the target

vector register Vt.

Instruction Format

1Ah6 Vm3 02 Vt5 Rb5 Va5 01h6

Operation

for x = 0 to VL-1

if (Vm[x]) Vt[x] = Va[x] ^ Rb[x]

P a g e | 295

GPU

Overview

The GPU is a 32-bit version of the FT64 instruction set.

GPU Instructions

Overview

The GPU executes a 32-bit subset of the FT64 instruction set, it has some of its own instructions

as well. The GPU contains instructions specific to graphics processing. It also contains

instructions to perform 32-bit fixed point arithmetic.

The GPU contains multiple dividers to increase the performance of division operations. A handle

to a divider is returned by the divide instruction, a subsequent divider wait instruction must be

executed to retrieve the divider results.

The GPU has its own internal call / return stack and hence does not need to access memory or use

a link register to store and retrieve subroutine call and return addresses. Call and return operate

differently than in the FT64 ISA. Call pushes the return address on an internal stack and RET

pops the return address off the stack into the program counter. The internal stack contains 63

entries. Heavily recursive routines should not be used.

P a g e | 296

BLEND – Blend Colors
Description:

This instruction blends two colors whose values are in Ra and Rb according to an alpha value in

Rc. The resulting color is placed in register Rt. The alpha value is an eight-bit value assumed to

be a binary fraction less than one. The color values in Ra and Rb are assumed to be RGB888

format colors. The result is a RGB888 format color. The high order eight bits of the result register

are set to the high order eight bits of Ra. Note that a close approximation to 1.0 – alpha is used.

Instruction Format:

~4 Rt5 Rc5 Rb5 Ra5 02 0Ch6

Operation: Rt = (Ra * alpha) + (Rb * ~alpha)

Clock Cycles: 4

P a g e | 297

COLOR4TO8 – Convert RGB444 to RGB888
Description:

This instruction converts a sixteen-bit ZRGB4444 color value to a thirty-two-bit ZRGB8888

color. Each component of the color is extended with four zero bits.

Instruction Format:

01h6 ~ ~2 0Bh5 Rt5 Ra5 02 02h6

Clock Cycles: 4

P a g e | 298

COLOR8TO4 – Convert RGB888 to RGB444
Description:

This instruction converts a thirty-two-bit ZRGB8888 color value to a sixteen-bit ZRGB4444

color. Four bits are truncated off each color component.

Instruction Format:

01h6 ~ ~2 1Bh5 Rt5 Ra5 02 02h6

Clock Cycles: 4

P a g e | 299

FXDIV[.w] – Fixed Point Divide
Description:

This instruction divides Ra by Rb. A handle to the divider is placed in Rt as the divide result is

not immediately available. The program may continue to execute after the divide is started. The

handle should be used later in the program to retrieve the result value using the FXDIV.w

instruction. Ra and Rb are fixed point numbers with sixteen whole and sixteen binary point places

(16.16). The result is a (16.16) number.

FXDIV.w

This version of the instruction waits for the result of a divide operation to become available. A

handle for the divider must be in Ra. The divider result will be placed in Rt once available. Note

that this instruction waits until the divide is done which may take upwards of 70 clock cycles.

However other instructions may be executed after the divide is started to hide some of the divide

latency.

Instruction Format:

2Bh6 W ~2 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 10

P a g e | 300

FXMUL – Fixed Point Multiply
Description:

This instruction multiplies Ra by Rb. Ra and Rb are fixed point numbers with sixteen whole and

sixteen binary point places (16.16). The result is a (16.16) number. Unlike divide this instruction

does not return a handle.

Instruction Format:

3Bh6 ~ ~2 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 8

P a g e | 301

POPR – Pop Return Stack
Description:

This instruction pops the internal return stack. The value popped is discarded. This instruction

allows performing a two-up level return from a subroutine.

Instruction Format:

01h6 ~ ~2 0Eh5 ~5 ~5 02 02h6

Clock Cycles: 1

P a g e | 302

TEST_CLIP
Description:

This instruction tests if the X, Y position of a point specified in the Ra and Rb registers

respectively are within the clipping region. If clipping is enabled the point must be within the clip

region. Whether or not clipping is enabled the point is tested to ensure it is within the target area

the GPU is responsible for. A value of one indicates that the point should be clipped. A value of

zero indicates the point should not be clipped. The target area and clipping region must have been

previously set.

Instruction Format:

21h6 ~ ~2 Rt5 Rb5 Ra5 02 02h6

Clock Cycles: 4

P a g e | 303

TRANSFORM[.w]
Description:

This instruction performs a transform on a point specified in Ra, Rb, and Rc as the X, Y, and Z

co-ordinates respectively. The transformation matrix must have previously been set.

If bit W of the instruction is clear, the transformation will be performed using the supplied

register values and the results will be stored in a holding register. If the W bit of the instruction is

set, the current transform result in the holding register will be written to the target registers Rta,

Rtb and Rtc.

The TRANSFORM instruction will return immediately to continue program execution after the

transform has started. The results are available after about 16 clocks. The transform writeback

instruction will wait until the transform is complete, if it is not already complete, before updating

the register file.

Instruction Format:

11h6 W ~2 Rc5 Rb5 Ra5 02 02h6

Instruction Format (writeback):

11h6 1 ~2 Rtc5 Rtb5 Rta5 02 02h6

Clock Cycles: 18

P a g e | 304

P a g e | 305

Opcode Tables

Major Opcode (inst. bits 0 to 5)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x BRK {FVECTOR} {R2} AUIPC ADDI CSR SLTI SLTUI ANDI ORI XORI SEQI BLEND REX {FLOAT}

1x BLcc LVxU BNEI# LB PUSHC SB {MNDX} SWC JAL CALL INC /

DEC

LFx SGTUI LWR CACHE EXEC

2x LC / LH /

LW / LD

LCU / LHU {BITFIELD} LBU SC / SH /

SW

CAS BBC /

BBS

LUI JMP RET MULFI SFx SGTI {CMPRSSD} MODI {AMO}

3x Bcc {IVECTOR} BEQ# BCHK CHK LV SV MULUI FXMULI MULI LVx DIVUI NOP DIVI {AMO}

Memory Indexed (inst. bits 21,22,28 to 31) (or bits 16,17, 28 to 31 for stores) (bit 31 = 0 for loads, 1 for stores)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x LVBX LVBUX LVCX LVCUX LVHX LVHUX LVWX LCX LCUX LBUX

1x LHX LHUX LWX LBX LWRX LVWS LVX LFHX LFSX LFDX CACHEX LFQX

2x SBX SHX SWX SWCX SCX CASX SVWS INCX /

DECX

SFHX SFSX SFDX SFQX

3x PUSH SVX

Major Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x {BCD} {R1} ADDV BMM ADD SUB SLT SLTU AND OR XOR SEQ NAND NOR XNOR {shift31}

1x TRANSFORM MODU MODSU MOD LEAX INCX MOV PTRDIF {shift63}

2x TESTSCN TEST_CLIP MOV MOV MULUH MULSUH MULH SLE SLEU MULF FXDIV MIN MAX MAJ {shiftr}

3x SEI / CLI WAIT RTI VMOV CHK SLE {SEG} MULU MULSU MUL FXMUL DIVU DIVSU DIV TLB

Major Funct (inst. bits 42 to 47)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x RTOP {R1} ADDV ADD SUB AND OR XOR SUBV NAND NOR XNOR {shift31}

1x MUX MOV {shift63}

2x MOV CMOVFNZ CMOVEZ CMOVNZ MIN3 MAX3 MAJ {shiftr}

3x MULU MULSU MUL DIVMODU DIVMODSU DIVMOD

P a g e | 306

Float Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x FADD FSUB FCMP FMUL FDIV

1x FMOV FTOI ITOF FNEG FABS FSIGN FMAN FNABS FCVTSD FCVTSQ FSTAT FSQRT

2x FTX FCX FEX FDX FRM FCVTDS

3x FSYNC FSLT FSGE FSLE FSGT FSEQ FSNE FSUN

R1 (inst. bits 21 to 25)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x CNTLZ CNTLO CNTPOP COM ABS NOT NEG ZXH ZXC ZXB 4to8 2to8 POPR

1x MEMDB MEMSB SYNC EXEC CHAIN

OFF

CHAIN

ON

SETWB

 SXH SXC SXB 8to4 8to2 RD_CMD_COUNT

Compound Opcode (inst. bits 36 to 41)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x NOP ADD SUB SLT SLTU AND OR XOR SEQ

1x SGTUI

2x COM NOT MULFI SGTI {CMPRSSD} MODI

3x MULUI MULI DIVUI NOP DIVI

P a g e | 307

Shift (inst. bits 22 to 25)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x SHL SHR ASL ASR ROL ROR SHLI SHRI ASLI ASRI ROLI RORI

Vector Funct (inst. bits 26 to 31)

 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x VCMPRSS VCIDX VSCAN VABS VADD VSUB VSxx VSxxS VAND VOR VXOR VXCHG VSHL VSHR VASR

1x VSHLV VSHRV VADDS VSUBS VSUBRS VSxxSU VANDS VORS VXORS

2x VBITS2V V2BITS VEINS /

VMOVSV

VEX /

VMOVS

VFLT2INT VINT2FLT VSIGN VSxxU VCNTPOP VMULS VDIVS

3x VMAND VMOR VMXOR VMXNOR VMPOP VMFILL VMFIRST VMLAST VMUL VDIV

P a g e | 308

Appendix

Reducing the size of the core.

The vector instructions add considerably to the size of the core consuming approximately 40,000

LUTs. IF they are not required the core should be built without the vector instructions.

• Only for the FT64a core. Register file based register renaming adds considerably to the size

of the core. It uses approximately 30,000 LUTs to implement register renaming. The core

(FT64a) may be built without register renaming by setting the RENAME parameter to zero.

SMT support adds considerably to the size of the core. The additional logic requirements for

SMT consume approximately 28,000 LUTs. The core size can be reduced significantly by

building the core without SMT. This may be done by commenting out the SUPPORT_SMT

configuration define.

Support for debugging logic adds to the size of the core. The core may be built without debugging

logic in order to reduce the size. The configuration define for this is SUPPORT_DBG.

Some of the issue logic may be omitted in order to reduce the size of the core. However the issue

logic was found not to have a large impact on core size. The configuration define is

FULL_ISSUE_LOGIC.

Some of the functional units may be reduced in number. Setting the number of instruction

decoders to lower number (NUM_IDU) or the number of ALU’s (NUM_ALU) will reduce the

size of the core. Floating-point may be removed in which case executing floating-point

instructions will cause an unimplemented instruction exception. Note that removing functional

units from the core may significantly impact performance.

Architectural Register vs Physical Registers

Architectural registers are the registers visible to the programmer as part of the programming

model. Physical registers are the registers physically present in the machine’s hardware. There are

substantially more physical registers than there are architectural ones. For FT64 there are 32

registers visible to be programmed which are supported by 64 physical registers.

Register Renaming

The core maintains an eight entry deep history file for register rename mappings and register in

use flags. The depth of the history file corresponds to the number of entries in the re-order buffer.

At most a new map will be needed for each re-order buffer entry. Typically the history file is

cycled through at half or less the rate of the instruction queue as approximately 50% of

instructions don’t have target registers.

P a g e | 309

The core can allocate up to two registers as target registers for every pair of instructions queued.

If there are no target registers available the core stalls until previous instructions have made more

target registers available.

Instruction Cache Miss

During a cache miss the core streams NOP operations to the instruction fetch unit while the core

is waiting for the instruction cache to load. The program counters are not incremented however,

and they remain at the value when the cache miss occurred.

Branches

Branches store the target address in iqentry_a0 the immediate constant field of the queue. The

target address has to be stored somewhere in the instruction queue so that it may be used to

update the branch target buffer later. It can’t be stored in the result field, and it can’t be stored in

one of the other argument fields. Arg0 is the only place it can be stored safely.

Branches are evaluated after the following instruction enqueues so that false branch

mispredictions don’t occur. Mispredict logic looks at the address of the instruction following the

branch to ensure that the branch address was predicted correctly.

Configuration Defines

Q2VECTORS

- allows queuing two vector elements per cycle, rather than just one

- increases code size and complexity

- not known to be working

SUPPORT_SMT

- Enables support for SMT and two threads of execution.

- increase the size of the core

SUPPORT_DBG

- - enables support for debug registers and logic

Parameters

SUP_TXE

- default 0

- enables support for the call target exception

SUP_VECTOR

- default 1

- enables support for vector instructions

P a g e | 310

P a g e | 311

-

Instructions Supported Only on ALU #0

The following less frequently used instructions are only supported on ALU #0 in order to reduce

the size of the core. ALU #0 is almost double the size of ALU#1 due to its support of additional

instructions.

o division and remainder instructions (DIV,DIVSU,DIVU,MOD,MODSU, MODU)

o bit-field instructions (BFCLR, BFSET, BFCHG, BFINS, BFINSI, BFEXT, BFEXTU)

▪ these are rarely used instructions

o shift instructions (ASR, SHL, SHR)

▪ The shift instructions use barrel shifters to shift by any amount in a single clock

cycle and so are relatively resource expensive compared to how often they are used.

o indexed memory loads / stores (LBX, LHX, LHUX, LWX, SBX, SHX, SWX)

▪ since indexed memory instructions are infrequently used they are supported only on

alu #0.

o CSR instruction

▪ CSR instructions are rarely used. They often also have synchronization issues as

there is no bypassing for the CSR registers. Since they typically require

synchronization operations there is no benefit to having multiple CSR instructions

executing at the same time.

P a g e | 312

Glossary

Burst Access

A burst access is a number of bus accesses that occur rapidly in a row in a known

sequence. If hardware supports burst access the cycle time for access to the device is

drastically reduced. For instance dynamic RAM memory access is really fast for

sequential burst access, and somewhat slower for random access.

BTB

An acronym for Branch Target Buffer. The branch target buffer is used to improve the

performance of a processing core. The BTB is a table that stores the branch target from

previously executed branch instructions. A typical table may contain 1024 entries. The

table is typically indexed by part of the branch address. Since the target address of a

branch type instruction may not be known at fetch time, the address is speculated to be

the address in the branch target buffer. This allows the machine to fetch instructions in a

continuous fashion without pipeline bubbles. In many cases the calculated branch address

from a previously executed instruction remains the same the next time the same

instruction is executed. If the address from the BTB turns out to be incorrect, then the

machine will have to flush the instruction queue or pipeline and begin fetching

instructions from the correct address.

FPGA

An acronym for Field Programmable Gate Array. FPGA’s consist of a large number of

small RAM tables, flip-flops and other logic. These are all connected together with a

programmable connection network. FPGA’s are ‘in the field’ programmable, and usually

re-programmable. An FPGA’s re-programmability is typically RAM based. They are

often used with configuration PROM’s so they may be loaded to perform specific

functions.

HDL

An acronym that stands for ‘Hardware Description Language’. A hardware description

language is used to describe hardware constructs at a high level.

Instruction Bundle

A group of instructions. It is sometimes required to group instructions together into

bundle. For instance all instructions in a bundle may be executed simultaneously on a

processor as a unit. Instructions may also need to be grouped if they are oddball in size

for example 41 bits, so that they can be fit evenly into memory. Typically a bundle has

some bits that are global to the bundle, such as template bits, in addition to the encoded

instructions.

ISA

An acronym for Instruction Set Architecture. The group of instructions that an

architecture supports. ISA’s are sometimes categorized at extreme edges as RISC or

P a g e | 313

CISC. FT64 falls somewhere in between with features of both RISC and CISC

architectures.

Linear Address

A linear address is the resulting address from a virtual address after segmentation has

been applied.

Physical Address

A physical address is the final address seen by the memory system after both

segmentation and paging have been applied to a virtual address. One can think of a

physical address as one that is “physically” wired to the memory.

Program Counter

A processor register dedicated to addressing instructions in memory. It is also often and

perhaps more aptly called an instruction pointer. The program counter got it’s name

because it usually increments (or counts) automatically after an instruction is fetched. In

early machines in some rare cases the program counter did not count in a sequential

binary fashion, but instead used other forms of a counter such as a grey counter or linear

feedback shift register. In some machines the program counter addresses bundles of

instructions rather than individual instructions. This is common with some stack

machines where multiple instructions are packed into a memory word.

ROB

An acronym for ReOrder Buffer. The re-order buffer allows instructions to execute out of

order yet update the machine’s state in order by tracking instruction state and variables.

In FT64 the re-order buffer is a circular queue with a head and tail pointers. Instructions

at the head are committed if done to the machine’s state then the head advanced. New

instructions are queued at the buffer’s tail as long as there is room in the queue.

Instructions in the queue may be processed out of the order that they entered the queue in

depending on the availability of resources (register values and functional units).

RSB

An acronym that stands for return stack buffer. A buffer of addresses used to predict the

return address which increases processor performance. The RSB is usually small,

typically 16 entries. When a return instruction is detected at time of fetch the RSB is

accessed to determine the address of the next instruction to fetch. Predicting the return

address allows the processing core to continuously fetch instructions in a speculative

fashion without bubbles in the pipeline. The return address in the RSB may turn out to be

detected as incorrect during execution of the return instruction, in which case the pipeline

or instruction queue will need to be flushed and instructions fetched from the proper

address.

SIMD

An acronym that stands for ‘Single Instruction Multiple Data’. SIMD instructions are

usually implemented with extra wide registers. The registers contain multiple data items,

P a g e | 314

such as a 128 bit register containing four 32 bit numbers. The same instruction is applied

to all the data items in the register at the same time. For some applications SIMD

instructions can enhance performance considerably.

Stack Pointer

A processor register dedicated to addressing stack memory. Sometimes this register is

assigned by convention from the general register pool. This register may also sometimes

index into a small dedicated stack memory that is not part of the main memory system.

Sometimes machines have multiple stack pointers for different purposes but they all work

on the idea of a stack. For instance in Forth machines there are typically two stacks, one

for data and one for return addresses.

TLB

TLB stands for translation look-aside buffer. This buffer is used to store address

translations for fast memory access in a system with an mmu capable of performing

address translations.

P a g e | 315

Miscellaneous

Reference Material

Below is a short list of some of the reading material I’ve studied. I’ve downloaded a fair number of

documents on computer architecture from the web. Too many to list.

Modern Processor Design Fundamentals of Superscalar Processors by John Paul Shen, Mikko H.

Lipasti. Waveland Press, Inc.

Computer Architecture A Quantitative Approach, Second Edition, by John L Hennessy & David

Patterson, published by Morgan Kaufman Publishers, Inc. San Franciso, California is a good book on

computer architecture. There is a newer edition of the book available.

Memory Systems Cache, DRAM, Disk by Bruce Jacob, Spencer W. Ng., David T. Wang, Samuel

Rodriguez, Morgan Kaufman Publishers

PowerPC Microprocessor Developer’s Guide, SAMS publishing. 201 West 103rd Street, Indianapolis,

Indiana, 46290

80386/80486 Programming Guide by Ross P. Nelson, Microsoft Press

Programming the 286, C. Vieillefond, SYBEX, 2021 Challenger Drive #100, Alameda, CA 94501

Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

Programming the 65C816, David Eyes and Ron Lichty, Western Design Centre Inc.

Microprocessor Manuals from Motorola, and Intel,

The SPARC Architecture Manual Version 8, SPARC International Inc, 535 Middlefield Road. Suite210

Menlo Park California, CA 94025

The SPARC Architecture Manual Version 9, SPARC International Inc, Sab Jose California, PTR

Prentice Hall, Englewood Cliffs, New Jersey, 07632

The MMIX processor: http://mmix.cs.hm.edu/doc/instructions-en.html

RISCV 2.0 Spec, Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovi´c CS Division, EECS

Department, University of California, Berkeley {waterman|yunsup|pattrsn|krste}@eecs.berkeley.edu

Trademarks

IBM® is a registered trademark of International Business Machines Corporation. Intel® is a registered

trademark of Intel Corporation. HP® is a registered trademark of Hewlett-Packard Development

Company. "SPARC® is a registered trademark of SPARC International, Inc.

http://mmix.cs.hm.edu/doc/instructions-en.html

P a g e | 316

WISHBONE Compatibility Datasheet

The FT64 core may be directly interfaced to a WISHBONE compatible bus.

WISHBONE Datasheet

WISHBONE SoC Architecture Specification, Revision B.3

Description: Specifications:

General Description: Central processing unit (CPU core)

Supported Cycles:

MASTER, READ / WRITE

MASTER, READ-MODIFY-WRITE

MASTER, BLOCK READ / WRITE, BURST READ (FIXED

ADDRESS)

Data port, size:

Data port, granularity:

Data port, maximum operand

size:

Data transfer ordering:

Data transfer sequencing

64 bit

8 bit

64 bit

Little Endian

any (undefined)

Clock frequency constraints:

Supported signal list and cross

reference to equivalent

WISHBONE signals

Signal Name:

ack_i

adr_o(31:0)

clk_i

dat_i(63:0)

dat_o(63:0)

cyc_o

stb_o

wr_o

sel_o(7:0)

cti_o(2:0)

bte_o(1:0)

WISHBONE Equiv.

ACK_I

ADR_O()

CLK_I

DAT_I()

DAT_O()

CYC_O

STB_O

WE_O

SEL_O

CTI_O

BTE_O

Special Requirements:

P a g e | 317

