
The Total CPU (TCPU) Description
 TCPU is easily realizable and easily modified RISC processor mainly aimed for
implementation in FPGAs. The key feature of this CPU is that its command set does not
dependent upon data word width, and, therefore, minimal modifications are required for code
reuse. The CPU is realized on Verilog-2001 and easily expanded to include additional modules
and commands. TCPU doesn’t require a lot of FPGA resources. For example, minimal 12-bit
realization on Cyclone FPGA (Altera) requires 167 LCs, 32-bit realization – 314 LCs.

 The TCPU consists of 3 main parts. They are general purpose register blocks, ALU and
control unit. There are also special bitwise implemented registers, such as the status register.
They are picked out from general purpose blocks because their bits are used (and can be
modified) during execution of the operations. PC can be implemented either in general purpose
block or as a special register. The simplified data paths of these two variants are shown on fig.
1,2.

Fig. 1.

Fig. 2.

The first figure corresponds to PC implemented in general purpose register block, and the second
– to PC implemented as a standalone register. The first variant requires less hardware resources
but it is almost 2 times slower then the second variant. Register blocks RG A and RG B contain
the same values in order to fasten the CPU operation. ALU performs logical and arithmetic
operations. All the co-ordination of CPU parts is performed by the control unit. If hardware PC
is implemented, there is also additional multiplexer on the PC data input which switches it either
to the ALU output or directly to the output of RG-B register block. This allows one-cycle
interrupt entering and simplifies returning from interrupt. Hardware requirements for various
TCPU implementations are presented in table 1.

Type /

Data Width

12 bit 16 bit 24 bit 32 bit

Cyclone, SPC1 217 LCs 262 LCs 353 LCs 444 LCs

Cyclone 167 LCs 197 LCs 256 LCs 314 LCs

Virtex, SPC1,2 209 Slices 254 Slices 350 Slices 450 Slices

Virtex1,2 139 Slices 165 Slices 220 Slices 269 Slices

Table 1.

1 - means PC implementation as a special register.

2 - means ALU implementation using behavioral synthesis.

 The command set of TCPU is shown in table 2.

Command / bits Second
word

11-8 7-4 3-0

XOR – COP (0) DST SRC
AND – COP (1) DST SRC
OR – COP (2) DST SRC

NOT – COP (3) DST –
ADD – COP (4) DST SRC
SUB – COP (5) DST SRC
SHR – COP (6) DST –
INR – COP (7) DST –

MOV – COP (8) DST SRC
L – COP (9) DST ADR RG
S – COP (A) SRC ADR RG

LS – COP (B) DST SRC-S
SS – COP (C) SRC DST-S

MVRC SRC-C COP (D) DST CND
ADRC SRC-C COP (E) DST CND

Reserved * COP (F) * *

Table 2.

In table 2 COP denotes the code of operation, DST – destination register, SRC – source register,
DST-S – special destination register, SRC-S – special source register, SRC-C – source from code
memory, ADR RG – register containing address of the operand, CND – condition code. There
are 8 condition codes defined allowing adding 8 custom conditions (table 3).

Condition code Mnemonic Meaning
0 ALLW Always true
1 Z True if Z is set
2 C True if C is set
3 O True if O is set
4 N True if N is set
5 NZ True if Z is cleared
6 NC True if C is cleared
7 CN True if both C and N are set

Table 3.

The meanings of the mnemonics are:

• XOR – exclusive bitwise OR;
• AND – bitwise AND;
• OR – bitwise OR;
• NOT – bitwise negation;
• ADD – signed addition;
• SUB – signed subtraction;
• SHR – arithmetic rotation for 1 bit right;
• INR – increment;
• MOV – must be clear for everyone who reads this ☺;
• L – load register from external memory;
• S – save register into external memory;
• LS – load register from special register;
• SS – save register into special register;
• MVRC – conditional move of a constant from program memory into a register;
• ADRC – conditional addition of a constant from program memory into a register;

So, there are 9 commands that operate with general purpose registers
(XOR,AND,OR,NOT,ADD,SUB,INR,SHR,MOV), 2 commands for data exchanging with
external memory (L,S), 2 commands for data exchanging with special registers (LS,SS), and 2
commands for moving or adding constants from program memory into registers. The last 2
commands are also used as absolute or relative conditional jumps if the field DST=0. So, in the
case of PC implementation as a standalone register, commands MVRC 0,CND and ADRC
0,CND affect PC but not the register RG0. There is also another exclusion – if bit 3 in the CND
field is set to 1, contents of RG1 are written into PC during these commands. It doesn’t affect the
execution of the command and is used as two-in-one command: conditional “return from
interrupt” and “move constant to register” commands. In the case when PC is the general
purpose register, the command ADRC should be used only with PC in consequence of hardware
restrictions.

 According to command set, TCPU has 16 general purpose registers visible at a time
(RG0-15), and 16 special registers (SR0-15). SR0 is always reserved as a PC. If PC is
implemented in general purpose blocks, this register shouldn’t be used. SR1 is a status register.
Its contents are shown on table 4.

Bit 5... 4 3 2 1 0
Meaning Reserved I C O N Z

Table 4.

 The bit I is the interrupt enable flag. The destination of other flags is clear. The
commands modifying the status register bits 3..0 are presented on the table 5.

Command / flag N C O Z

XOR ● × × ●

AND ● × × ●

OR ● × × ●

NOT ● × × ●

ADD ● ● ● ●

SUB ● ● ● ●

INR ● ● ● ●

SHR ● × × ●

Table 5.

 Here the sign “●” means that the flag is modified during an operation, “×” means that the

flag is modified, but should not be used.

It is clear from table 2 that the command set contains only two formats – with or without
second word. It is considerably simplifies the control unit and, therefore, saves hardware
resources.

 So, the command word of TCPU contains 12 bits independently from data path width.
There are 4 idle bits in commonly used 16-bit variant. They can be used for implementing
additional commands or for extending the TCPU functionality. Despite of the fact that command
word width is fixed, the external command bus width is equal to data path width, and the second
word of two-word commands use all its bits to contain operand SRC-C. If the command bus
width is more than 24 bits, an external circuit can be used to extract the commands either from
higher or from lower part of the bus. An example of such a circuit is presented here, and it’s
connection to the TCPU is shown on fig. 3. It requires only 12 Altera LCs for implementation.

Fig. 3.

 The TCPU has a register-based interrupt system, which is this: when the interrupt comes,
the contents of the PC and RG1 are interchanged causing jump to the interrupt vector and at the
same time saving the PC. The flags should be saved and restored before exit by interrupt handler
procedure. So, in TCPU RG1 must contain a valid interrupt vector before enabling interrupts.
Returning from interrupts is implemented in TCPU as a MVRC command with bit 3 of CND
field set to 1. In further versions the interrupt system will use register windows.

 There are some definitions and parameters that influence the compilation of TCPU. They
are presented on table 6.

Control structure Realization Meaning
GENERIC_ALU Definition Whether ALU is implemented using

behavioral synthesis
GENERIC_PC Definition Whether PC is implemented using

behavioral synthesis
HW_PC Definition Is the hardware PC used

GENERIC_RG Definition Whether register blocks are
implemented using behavioral synthesis

DATA_WIDTH Parameter Data path width
FPGA_VENDOR Parameter Vendor of destine FPGA

FPGA_TYPE Parameter FPGA family
NUM_RG_WIND Parameter Number of register windows (reserved)

Table6.

 The TCPU has the following external signals:

SIGNAL WIDTH DIRECTION ACTIVE

LEVEL

DESCRIPTION

DataIn DATA_WIDTH In Data Memory input
DataOut DATA_WIDTH Out Data Memory input
Addr DATA_WIDTH Out Data Memory address
CmdIn DATA_WIDTH In Command Memory input*

CAddr DATA_WIDTH Out Command Memory address*
CRdy 1 In High Command Memory ready*
DRdy 1 In High Data Memory ready*
DWR 1 Out High Data Memory write enable
DRD 1 Out High Data Memory read enable
CMD 1 Out High Command Memory write enable
irq 1 In High Interrupt request input
irqack 1 Out High Interrupt acknowledge
nextphase 4 Out Next phase of the core
phase 4 Out Present phase of the core
clk 1 In Rising

edge
Input clock

rstn 1 In Low Negative reset

* - signals are generated when “SPLIT_BUSES” is defined.

Table 7.

Actually, there are two variants of realization of ALU, PC and registers for now. The first
is intended for implementation on Altera FPGAs. It uses vendor-defined megafunctions and is
optimized for Altera’s logical cells. ALU in this variant processes each operation in 4 stages. At
the first stage, depending on operation code, operand A (fig. 1-2) is inverted, cleared or passed
without modification. At the second stage the logical operations NOT, AND, OR, XOR are
performed. At the third stage addition and subtraction are performed, and at the last stage the
result can be shifted right for 1 bit. The second variant uses behavioral synthesis and can be
implemented in large number of FPGAs, though it requires slightly more resources.

